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ABSTRACT

Tactile information plays a crucial role in human manipulation tasks and has re-
cently garnered increasing attention in robotic manipulation. However, existing
approaches struggle to effectively integrate visual and tactile information, result-
ing in sub-optimal performance. In this paper, we present ViTaS, a simple yet
effective framework that incorporates both visual and tactile information to guide
an agent’s behavior. We introduce Soft Fusion Contrastive Learning, an advanced
version of conventional contrastive learning method, to enhance the fusion of these
two modalities, and adopt a CVAE module to utilize complementary information
within visuo-tactile representations. We conduct comprehensive experiments, in-
cluding 9 tasks in simulation environment, across 5 different benchmarks, to com-
pare ViTaS with existing baselines. The results demonstrate that ViTaS achieves
state-of-the-art performance, with an average improvement of 51%. Furthermore,
our method significantly enhances sample efficiency while maintaining minimal
parameters, underscoring the effectiveness of our approach. The code will be re-
leased upon acceptance.

1 INTRODUCTION

Figure 1: Overall performance. (a) shows the overall average success rate and feature extractors
parameter size (in a log scale). (b) shows success demos for 4 tasks (Block Spin, Mobile Catch, Egg
Rotate, Dual Arm Lift).

Humans are adept at performing complex manipulation tasks, such as spinning a pen or lifting a
block. While vision plays a critical role in these activities, other modalities, particularly touch,
also provide rich information for object manipulation. Interestingly, visual and tactile information
often exhibit significant relevance and complementarity (Apkarian-Stielau & Loomis, 1975). For
individuals with visual impairments, a clearer mental reconstruction of an original visual image can
be achieved by combining a blurred visual perception with tactile information (Kappers, 2011).

Most previous reinforcement learning (RL) algorithms have relied primarily on visual information
to address manipulation tasks (Yuan et al., 2022b; Xiao et al., 2022; Yuan et al., 2022a; Li et al.,
2024b;c; Haarnoja et al., 2024; Yu et al., 2023; Pitz et al., 2023; Lin et al., 2024; Xu et al., 2023;
Qi et al., 2023b;a; Plappert et al., 2018b; Yuan et al., 2024b). Recently, several efforts have aimed
to incorporate tactile information to improve the performance of RL algorithms. However, these
approaches generally exhibit limited fusion between the two modalities. For instance, Sferrazza et al.
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(2023) directly concatenates visual and tactile inputs and feeds them into MAE, while Chen et al.
(2022) segments visual and tactile data into patches and uses a transformer to extract representations.
As a result, these methods often demonstrate limited performance in contact-rich manipulation tasks
that rely heavily on both visual and tactile inputs, such as in-hand rotation. Moreover, many previous
methods employ complex encoders like transformers and MAE, which involve intricate architectures
with numerous parameters, leading to prolonged training time. Due to the insufficient utilization
of tactile information, these methods also diminish sample efficiency of RL algorithms in guiding
manipulation. Given these limitations, we pose the question: how can we more effectively fuse visual
and tactile information, to enhance the performance of RL algorithms for manipulation?

Drawing on prior research in human physiology regarding the processing of visuo-tactile informa-
tion, we propose Visual Tactile Soft Fusion Contrastive Learning (ViTaS), a novel visuo-tactile
representation learning framework for reinforcement learning. Generally ViTaS can be divided into
two parts. Firstly, given the inherent relevance between visual and tactile modalities, we utilize
contrastive learning to align the embeddings of visual data with their corresponding tactile informa-
tion in the latent space. Notably, we employ soft fusion contrastive learning inspired by Han et al.
(2020) to fuse features in alternated modalities. Specifically, we extend the original RGB single-
modality framework to incorporate both visual and tactile modalities, enabling the agent to leverage
samples of different timesteps with similar tactile information as positive samples. Additionally,
inspired by the ability of humans to reconstruct clear images from blurred visual inputs combined
with tactile information and complementarity of two modalities, we integrate conditional variational
autoencoder (CVAE) introduced by Sohn et al. (2015) to reconstruct the original image with the
embeddings of vision and touch, further improving the fusion of visual and tactile information.

To evaluate the performance of our algorithm, we conduct experiments on 9 tasks across 5 en-
vironments: Insertion (Sferrazza et al., 2023), Gymnasium (Towers et al., 2024), Robosuite (Zhu
et al., 2020), Mobile Catch (Zhang et al., 2024) and Block Spin (Yuan et al., 2024a). Especially, the
original Mobile Catch and Block Spin environments lack tactile information, so we integrate tactile
sensors into the robotic hand, creating 2 challenging visuo-tactile tasks. Additionally, to demon-
strate the generalization capability of our system, we perform further experiments on 3 auxiliary
tasks, as well as several ablation studies. The overall experimental results illustrated in Figure 1 and
Figure 2 (a) show that ViTaS achieves state-of-the-art performance compared to other visuo-tactile
learning methods in all tasks, with an average success rate of 92% and average improvement of 51%,
while minimizing total trainable parameters in representation learning.

In summary, our contributions are as follows:

• We improve the traditional contrastive learning method and leverage it for the fusion of
visual and tactile modalities.

• We propose ViTaS, a simple yet effective representation learning paradigm that can inte-
grate visual and tactile inputs through soft fusion contrastive as well as CVAE, and utilize
it to guide the training of reinforcement learning and visuomotor control agent.

• We evaluate our algorithm on various simulation tasks, demonstrating state-of-the-art per-
formance with an average growth rate of 51%. ViTaS significantly improves sample effi-
ciency and also minimizes the number of parameters in the feature extractor.

2 RELATED WORK

Visuo-Tactile Representation Learning In recent years, numerous cross-modal representation
learning methods, particularly those focused on visuo-tactile integration, have emerged, as demon-
strated by Lee et al. (2020; 2019); Dave et al. (2024); Yang et al. (2024); Polic et al. (2019); Xu
et al. (2024); Li et al. (2022a); Yang et al. (2023); Lin et al. (2024); Xu et al. (2023); Radford et al.
(2021); Li et al. (2024a; 2022b). Among them, Li et al. (2019) utilizes an adversarial loss to learn
representation in the latent space, while Chen et al. (2022) leverages a transformer architecture to
integrate multiple modalities, introducing alignment and contact loss to enhance performance. Sfer-
razza et al. (2023) proposes a jointly visuo-tactile training scheme using an MAE-based encoder
trained through a reconstruction process, with the encoder co-trained for policy learning.

Despite the success of these approaches in specific tasks, they often fail to fully exploit the cor-
respondence between visual and tactile modalities, leading to sub-optimal encoder training and re-
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duced success rates in tasks such as dexterous hand manipulation. In contrast, our method employs a
simpler yet highly effective CNN-based encoder to improve the alignment and fusion of modalities,
achieving superior performance across multiple benchmark tasks.

Contrastive Learning Extended into computer vision by the MoCo series (He et al., 2020; Chen
et al., 2021), and SimCLR (Chen et al., 2020), contrastive learning has emerged as a prominent
technique for representation learning. We intend to extend the contrastive learning paradigm to
visuo-tactile framework for reinforcement learning. Related examples include Wang & Hu (2023a),
Dave et al. (2024), Yuan et al. (2021), Laskin et al. (2020), Wang & Hu (2023b), Han et al. (2020),
Yang et al. (2024), Wang & Hu (2023a), Yuan et al. (2024a) and Zhan et al. (2022). Among the
works most closely related to ours, Dave et al. (2024) proposes a visuo-tactile fusion approach
based on contrastive pre-training. Zhan et al. (2022) employs contrastive loss within the visual
modality to enhance policy learning. Yang et al. (2024) incorporates tactile, vision and text using
contrastive learning to solve downstream tasks. Han et al. (2020) advances contrastive learning
paradigm utilizing top K analogous samples in optical flow as positive samples in RGB modality.

However, as Han et al. (2020) mentions, simply doing instance discrimination tends to neglect
some key information that two resembling samples may be negatives for each other due to dis-
tinct timesteps. The phenomenon also pops up in the field of cross-modal contrastive learning. We
refine the contrastive learning method to alleviate the issue, which is elaborated in Section 3.1.

3 METHOD

Figure 2: Method overview. The agent takes information from two modalities, visual and tactile, as
inputs, which are then processed through separate CNN encoders. Encoded embeddings are utilized
by cross-modal soft fusion contrastive approach, yielding fused feature representation for policy
network. A CVAE-based reconstruction framework is also applied for cross-modal integration.

In this section, we elaborate Visual Tactile Soft Fusion Contrastive Learning (ViTaS), an advanced
visuo-tactile fusion framework tailored for reinforcement learning. We note that when two tactile
maps are resembling, the key features derived from the corresponding visual data should likewise
bear a strong resemblance and vice versa. This alignment makes the data particularly well-suited
for contrastive learning. Meanwhile, given the complementary information tactile and image offer,
our objective is to reconstruct the features extracted from two modalities, obtaining outputs with en-
riched and more detailed information. CVAE is a good candidate for this process. Therefore, ViTaS
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fuses visual and tactile modalities through the collaboration of Cross-modal Soft Fusion Contrastive
Learning (Section 3.1) and CVAE (Section 3.2). We utilize the PPO (Schulman et al., 2017), an
on-policy reinforcement learning strategy, for the underlying algorithm framework of our method.
Formally, our ultimate reinforcement learning objective can be defined as follows:

L = λLCON + µLVAE + LPPO, (1)

where λ, µ be tunable parameters to bridge the gap between various components. Critical hyper-
parameters and detailed settings of CNN are displayed in Table 3 and Table 4. The overall pseu-
docode for ViTaS is shown in Algorithm 3.

3.1 SOFT FUSION CONTRASTIVE LEARNING

We denote a trajectory as Γ = {oi, ti}Ni=1where oi stands for image observation at i-th timestep and
ti for tactile inputs, with total lengthN . For simplicity, we denote oi and ti are dual samples of each
other. We use two convolutional neural networks separately to extract features from raw images and
tactile maps. Formally, we denote fo(·) and ft(·) as the image and tactile extractors respectively.

Inspired by Han et al. (2020), we present soft fusion contrastive learning, a novel cross-modal
contrastive learning paradigm to enhance the fusion of two modalities. We use soft fusion contrastive
below for simplicity. Specifically, we accomplish this by identifying the K most analogous samples
from one modality, say modality A, leveraging their dual samples as positives for each other in
alternated modality B. During the process, the parameters of the encoder corresponding to modality
A are frozen, with the counterpart in B updated actively. K is a hyper-parameter representing
the number of positives needed to be utilized. We set K = 10 by default and the effectiveness
of different values of K will be studied in Section 4.4. Then, we reach the following formula in
accordance to the description above:

 LCON,1,i = −E

[
log

∑
p∈P1(i)

exp(fo(op) · fo(oi) / τ)∑
p∈P1(i)

exp(fo(op) · fo(oi) / τ) +
∑
n∈N1(i)

exp(fo(on) · fo(oi) / τ)

]
s.t. P1(i) = {j|(Sim(ft(tj), ft(ti))) ∈ topKmaxk(Sim(ft(ti), ft(tk)))}, N1(i) = S \ P1(i)

(2)

In the formula, we denote P1(i) as the set of positives of oi, calculated by K most similar samples
in corresponding inputs in tactile modality, while N1(i) as negatives. S stands for universal sam-
ples of oi in one trajectory. We use topKmaxk(U) to obtain the top K similar samples in set U ,
which is obtained in replay buffer in implementation. Sim(x, y) calculate the similarity between key
features x and y. We use cosine similarity to achieve this, with detailed information elaborating in
Appendix A.7. We would like to emphasize that we discern positives by extracted features, where
the encoders walk in.

Similarly, we switch the position of ti and oi periodically like workflow presented in Yang et al.
(2023) to update both encoders equally, and the corresponding metrics are then denoted as LCON,2,i
and P2(i). Moreover, we replace all oi, fo(·) in the formula above as ti, ft(·) and vice versa.

To achieve a more balanced update of the target, we adopt alternating updates when calculating
ultimate objective LCON according to LCON,1/2,i. Specifically, LCON is contributed by LCON,1,i at start,
and shifted to LCON,2,i after exact Tswitch steps and so forth. Furthermore, we define the coefficient
sequence as ui = 1/2 ×

(
1− (−1)⌈i/T⌉) = [1, 1, · · · , 1, 0, 0, · · · , 0, 1, 1, · · · ]. Consequently, the

target of the contrastive loss can be written as:

LCON =
N∑
i=1

ui · LCON,1,i + (1− ui) · LCON,2,i (3)

To facilitate a more thorough and specific comprehension of the part, we have included the pseu-
docode of soft fusion contrastive in Algorithm 1.
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3.2 CONDITIONAL VAE VISUO-TACTILE FEATURE INTEGRATION

In the realm of visuo-tactile integration, VAE-based methods are commonly employed (Nair et al.,
2018; Bai et al., 2021). Inspired by Bachhav et al. (2019), we extend the CVAE framework for
visuo-tactile fusion by incorporating the condition component, which is derived from the projec-
tion of image and tactile embedding. Consequently, the image and tactile encoders are optimized
concurrently during the training process. A comprehensive depiction is presented in Figure 2.

We establish condition on the concatenated visuo-tactile feature c to reconstruct the current image
frame ocur. CVAE consists of an encoder pθ(·), decoder qψ(·), and visuo-tactile embedding projector
fϕ(·), which are parameterized by θ, ψ and ϕ separately. We use z to represent the latent variables,
and the reconstructed frame ôcur conditioned on visuo-tactile feature c can be expressed as:

ôcur = qψ(pθ(ocur, fϕ(c)), fϕ(c)) (4)

In accordance with CVAE constraints, the target can be formulated as:

LVAE = E
[
∥ocur − ôcur∥2

]
+DKL (pθ(z|pθ(ocur), c)∥ N (0, 1)) (5)

Notably, the CVAE module is active only during training and does not impose any additional com-
putational overhead during test time.

4 EXPERIMENTS

In this section, we conduct several tasks, most of which are relatively complex and contact-rich, to
showcase the performance in cross-modal fusion and policy learning. We aim at clarifying following
questions through comprehensive experiments:

(i) Does ViTaS have the capability to solve complicate tasks requiring compact tactile infor-
mation (e.g. dexterous hand rotation)?

(ii) How does ViTaS demonstrate generalization and robustness with respect to tasks involving
objects of various shapes, significant noise or different physical parameters?

(iii) What merit does ViTaS offer in comparison to previous visuo-tactile algorithms?

Moreover, we do a thorough examination of distinct components contributing to overall performance
of ViTaS, and the detailed analysis is presented in Ablation Study (see Section 4.4).

4.1 SIMULATION ENVIRONMENT

Allegro Hand

Tactile Sensor

Figure 3: Tactile Sensors on Alle-
gro Robotic Hand.

We conduct experiments using 9 simulated tasks, categorized
into 5 primary parts and shown in Figure 4: (a). shadow dex-
terous hand tasks (Plappert et al., 2018a; Melnik et al., 2021)
based on Gymnasium (Towers et al., 2024) (pen rotation, block
rotation, and egg rotation), (b). Robosuite (Zhu et al., 2020)-
based tasks (door opening, lift, and dual arm lift), (c). In-
sertion tasks originated by Sferrazza et al. (2023) simulated
in mujoco, (d). Mobile-Catch environment implemented by
Zhang et al. (2024) and (e). Block Spinning task created by
Yuan et al. (2024a). Beyond these foundational experiments,
we introduce a series of auxiliary tasks involving altering ob-
ject shapes in Lift or modifying physical parameters in Pen
Rotation. The outcomes of (a)-(d) environments are quanti-
fied in terms of success rate, whereas (e) is assessed based on training reward. A comprehensive
explanation of the experimental settings is provided in Appendix A.1.

Moreover, it is crucial to integrate tactile sensors to obtain tactile data for ViTaS framework. In re-
cent years, tactile sensors have gradually piqued the interest of researchers. For real-world scenarios,
sensors like Sferrazza & D’Andrea (2022), Zhang et al. (2022), Lin et al. (2023b), Lin et al. (2023a)
are commonly used, whereas in simulation environments, Akinola et al. (2024), Si & Yuan (2022)
are utilized. In our experiments, we incorporate appropriate tactile sensors across all 9 environments.

5
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Figure 4: Tasks. Our method is evaluated on 9 contact-rich tasks across 5 different domains, cover-
ing multiple types of grippers and dexterous hands, with tactile sensors embedded.

For the 3 Gymnasium rotate in-hand rotation tasks, we employ the built-in tactile modules. For the
Lift, Insertion, and Door Opening tasks, we employ a parallel gripper equipped with a 32× 32× 3
tactile sensor at the contact surfaces between the gripper and the object. Among the 3 channels in
tactile map, channel 1 and 2 represent the normal force and the value of channel 3 denotes shear
force. In the catch and block spin tasks, we enhanced the Allegro hand and Leap hand with tactile
sensors by integrating four 3× 3× 3 sensors on each finger (located at the proximal, middle, distal,
and tip segments) and one 3 × 3 × 3 sensor on the palm, as shown in Figure 3. These sensors are
zero-padded to form a 32× 32× 3 input, following Sferrazza et al. (2023).

4.2 COMPARED BASELINES

To validate the effectiveness of ViTaS, we compare with the following visuo-tactile representation
learning baselines:

• M3L (Sferrazza et al., 2023): A visuo-tactile fusion training algorithm utilizing the MAE
encoder for PPO policy learning, while simultaneously trains the MAE encoder with re-
construction loss through the MAE encoder-decoder architecture. Information in visual
and tactile is concatenated and passed through a unified encoder. Training process of pol-
icy and MAE encoder occurs concurrently.

• VTT (Chen et al., 2022): A visuo-tactile fusion training method rooted in the transformer
architecture. Specifically, both image and tactile data are segmented into patches, which
are then processed through transformer layers to obtain embeddings. Subsequently, the
latent representations are reconstructed into images and rewards using a VAE decoder. The
method also incorporates contact and alignment modules to further enhance performance.

• PoE (Lee et al., 2020): A VAE-like framework to fuse two modality. In particular, subse-
quent to acquiring the embeddings, instead of reconstructing images via a decoder, an MLP
is deployed after the decoder stage to tackle designed tasks. Additionally, KL divergence
is harnessed to ascertain the parameters of the latent embeddings.

• Concatenation (Lee et al., 2019): A relatively primitive multi-modal fusion method. Image
and tactile data are passed through a CNN encoder independently, whose results are then
concatenated and fed into a contrastive-like module.

4.3 EXPERIMENT RESULTS

We conduct comparisons of our algorithm against 4 baseline methods across the aforementioned 9
primitive tasks. We evaluate each algorithm in each environment 5 times under different random
seeds, and average the results when training 3× 106 timesteps to obtain the performance metrics.

The results for all 5 methods in 9 tasks are shown in Figure 5. Several baselines show excellent per-
formance in some relatively simple tasks like Door Opening or Insertion. However, for tough tasks
like Egg Rotation and Block Rotation, which are contact-rich and require methods to incorporate vi-
sual and tactile information jointly, few baselines can solve it within a limited horizon, while ViTaS
still owns the capability to succeed. We can calculate the average success rate for ViTaS and other
baselines in Figure 5, obtaining the results in Figure 1. The average improvement upon 4 baselines
is 51%, also illuminated in the abstract part. Furthermore, in cases like the Dual Arm Lift, where
all baselines are capable of solving the task, ViTaS exhibits notably enhanced sample efficiency by
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Figure 5: Learning curves for all 5 methods in 9 primitive tasks and the derived ones. We utilize
success rate for the evaluation of first 8 tasks, with reward for Block Spin task. In the last 3 plots,
we measure model robustness on additional Gaussian noise in Insertion and various objects in Lift.

accomplishing the desired outcomes in far fewer timesteps (about 3 times faster). This underscores
its exceptional capability to extract features and solve complicate tasks, clarifying question (i).

In order to assess the generalization capability and robustness of our approach, we introduce auxil-
iary tasks derived from the Lift and Pen Rotate tasks mentioned earlier. For the Lift task, the object
shape is modified from a cube to cylinder and capsule in both training and testing phases, allowing
us to evaluate the method’s resilience to changes in object geometry. As for the Pen Rotate task, we
randomize the target angle within a large range, enabling a thorough evaluation of the model’s gener-
alization across varying conditions. We also add Gaussian noise in Insertion task. The experimental
parameters are kept in alignment with the preceding 9 primitive benchmarks.

Table 1: Generalization ability. We
show the success rate of best run among 3
seeds in Pen Rotate task with randomized
position. All results are recorded when
training 3× 106 timesteps.

Tasks / Method ViTaS M3L

Fixed 99.2 93.1
Random 78.4 62.7
Drop 20.8 30.4

As illustrated in Figure 5, when the object shape is
changed, every baseline model experiences a perfor-
mance drop when training 106 timesteps, indicating
sensitivity to these alterations. ViTaS, however, ex-
hibits a negligible decrease, demonstrating its resilience
to variations in object geometry. Pen rotation, among
the most challenging tasks, is only successfully handled
by ViTaS and M3L. When the target angle is random-
ized, the agent is required to extract the most signifi-
cant information from the current observations via vi-
sual tactile representation learning to make appropriate
moves. In this scenario, M3L struggles to maintain per-
formance, while ViTaS continues to solve the task effectively with less drop than M3L. Given the
robust performance in 3 auxiliary tasks, we provide a clear clarification of question (ii).

Another observation from Figure 5 is that although baseline like M3L can solve tasks in some
cases, it may suffer from unstable training process and large variance (e.g. insertion, door and
pen rotate). A possible explanation lies in M3L’s approach of segmenting both image and tactile
maps into discrete tokens, which are then passed through the MAE encoder. This token-based
feature extraction is prone to overlooking critical information compared to pixel-level extraction,
thus resulting in the capture of fewer essential features. The dexterous hand manipulation task,
however, requires more compact information especially rich tactile features in latent space to control
the manipulation agent, and the rather scarce information of observation leads to underfitting of the
agent and large variance of training metrics.

7
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We quantify the number of trainable parameters employed in representation learning across 5 algo-
rithm, depicted in Figure 1. It is evident that ViTaS, in addition to exhibiting superior performance,
also owns a smaller parameter count compared to other baselines.

Taking into account several key reasons including higher success rate and sample efficiency, fewer
training parameters, enhanced generalization and robustness and diminished training variance, we
reach the conclusion that ViTaS owns better performance in all presented benchmarks, show-
ing a state-of-the-art result, which is a comprehensive solution to question (iii).

4.4 ABLATION STUDY

To verify the fidelity of various designs in our algorithm, we conduct extensive ablation experiments
to show the necessity of each component. The overall ablation results are presented in Table 2. In
order to simplify the name of each ablation experiments, we use abbreviations of experiments in the
first row of Table 2. Specifically, the corresponding experiments are ViTaS, w/o. Tactile, w/ Unified
Encoder, w/o. soft fusion Contrastive module, w/ Time Contrastive, K = 1 and K = 50. The
meaning and detailed information of each experiment are clarified in the following sections.

Table 2: Overall ablation study. We conduct the experiments with each repeats with 5 times, and
take the average success rate percentage as results when training 3 × 106 times. The experiment
results show that various designs in ViTaS are of high importance. Without the designs, the success
rate drops 31.5% on average. Names of each column are abbreviations of different experiments,
and are explained above. Green for optimal results while purple for suboptimal.

Tasks / Methods V w/o. TA U w/o. C TC K1 K50
Insertion 99.2±0.7 88.1±4.3 61.6±5.7 90.3±2.5 75.2±5.2 83.3±3.9 78.7±3.6

Block rotation 92.7±2.0 67.7±3.6 18.4±0.8 67.7±2.6 79.5±4.3 88.0±2.1 70.1±4.8

Egg rotation 85.3±3.1 24.3±4.1 3.3±2.4 6.5±2.1 57.7±1.8 65.2±2.3 3.6±6.4

Average 92.5±2.8 60.9±5.6 27.1±2.6 54.7±6.1 70.6±4.4 78.8±3.7 67.3±5.2

Is tactile information crucial? We conduct 2 main experiments in this part. Firstly we eliminate the
tactile information, retaining only the visual data, and solely utilize the image encoder, while han-
dling the corresponding tactile information through zero-padding. Additionally, the workflow out-
lined in Sferrazza et al. (2023) employs a unified MAE encoder across both modalities, disregarding
the inherent distinctions between them. This oversight could potentially leads to less discriminative
feature representations and a notable reduction in overall effectiveness. To prove that tactile maps
can offer unique information beyond visual inputs can provide, we build another experiment that
image and tactile are directly concatenated and subsequently fed into a shared encoder.

Figure 6: Learning curve for tactile and CVAE. The left part shows results for ViTaS,ViTaS w/o.
tactile information and w/ unified encoder, while the right one indicates pen rotation ablating CVAE.

The results in Figure 6 (a) show that when ablating tactile information, the success rate in 3 bench-
marks drops 34% on average. Thus, tactile information gets crucial in dexterous operation tasks like
rotation, while it also makes difference in simpler tasks like Insertion.
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Using a unified encoder, however, is not a good choice either given the poor performance on the U-
column in Table 2, almost failing to accomplish 2 in-hand rotation tasks. We then clarify that tactile
has some complementary information to image, which cannot be extracted via a unified encoder.

How much do CVAE and soft fusion contrastive contribute to ViTaS? In order to clarify the
effectiveness of each component, we remove the CVAE and soft fusion contrastive components
separately, conducting independent tests on the same benchmarks and comparing results.

We use ViTaS without CVAE to perform pen rotation task and results are shown in Figure 6 (b).
Several extra experiments are also added in Figure 11 and Appendix A.6.1. The learning curves
show that when ablating CVAE, the performance drops heavily (about 25%), and the training process
is rather unstable. Moreover, as shown in Table 2, we remove soft fusion contrastive learning and
the results drop for about 28.9%, with a surge in variance.

Trajectory time steps

Traj_1

Traj_2

ViTaS_traj1
ViTaS_traj2
w/o_contr_traj1
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t-SNE Dimension 1

t-S
N

E 
D

im
en

si
on

 2

t-SNE Visualization of Visuo-Tactile Embedding

Visuo
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Tactile

Figure 7: Visuo-Tactile embedding visu-
alization. We collect 2 aligned insertion
trajectories with different hole shapes.
ViTaS exhibits superior capability in ex-
tracting structured multimodal features.

Moreover, feature space distribution is shown in Fig-
ure 7 to illuminate underlying reasons. We extract
visuo-tactile features using ViTaS and ViTaS ablating
soft fusion contrastive learning from two aligned tra-
jectories with different plug-in shapes. In the figure,
each color represents a trajectory-method combination,
with shades from light to dark indicating the progres-
sion from start to finish. The endpoints of the lines de-
note the corresponding visual and tactile embeddings.
ViTaS maintains a consistent structure across both tra-
jectories, with similar visuo-tactile embedding relation-
ships and spatial distributions before and after changing
the plug-in shape. In contrast, the model without soft
fusion contrastive learning lacks this stable relation-
ship, highlighting the superiority of this module in ex-
tracting high-quality, generalizable features. By com-
bining the three experiments above, we show that two
main components of ViTaS are necessary and powerful.

K in soft fusion contrastive learning. We explore the
impact of varying K, for instance, setting it to 1, 10 (ours) and 50, to observe how the results are
affected. It is noteworthy that image and tactile at the same timestep are the only positives for each
other when K = 1, adopting the same process as conventional cross-modal contrastive learning.
Therefore, by comparing results between ours and K = 1, we can also clarify whether soft fusion
contrastive could outperform conventional contrastive learning method.
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Ablation on Contrastive Method

ViTaS
TC

Figure 8: Ablation on contrastive
method. We evaluate soft fusion con-
trastive learning (ViTaS) and time con-
trastive learning (TC) on 3 tasks with 3
seeds when training 3× 106 timesteps.

The last two columns of Table 2 show the effectiveness
of different K in ViTaS. The results when K = 1 show
that though conventional contrastive learning can achieve
relatively excellent performance, it still has performance
gap with our method (i.e. K = 10), while too large K
value as 50 also causes a drop in performance.

Soft fusion contrastive v.s. time contrastive. To ver-
ify the effectiveness of soft contrastive in another per-
spective, we carry out experiments utilizing an alternative
contrastive approach, namely time contrastive, to high-
light the indispensable role of cross-modal soft fusion
contrastive learning. Neighboring frames (i.e., a fixed
number of preceding and succeeding frames) are treated
as positives in this method, while distant frames serve as
negatives, echoing with Sermanet et al. (2018). The im-
plementation of time contrastive is shown in Algorithm 2 as pseudocode. The motivation behind this
lies in emphasizing that, despite frames within close time intervals often appearing to be similar, it
is crucial during the contrastive learning process to identify the K most analogous frames, which
may not necessarily be temporally adjacent. This distinction underscores the importance of going
beyond mere time contrastive.
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As shown in Figure 8, time contrastive learning cannot surpass soft fusion contrastive, proving the
necessity of our advanced soft fusion contrastive.

In conclusion, our ablation study delves deep into our algorithm to analyze the effectiveness of each
component. The results prove that tactile information, soft fusion contrastive learning and CVAE
are of high importance, while soft fusion contrastive performs better than other contrastive methods
like conventional contrastive and time contrastive. We show the necessity of every design we use.

5 CONCLUSION

In general, we introduce ViTaS, a succinct yet effective visuo-tactile fusion framework. Drawing
an analogy to human physiology, we extend the application of visual and tactile perception to the
domain of reinforcement learning, yielding remarkable results. We propose soft fusion contrastive
learning to extract key features from one modality according to another, and we adopt a CVAE mod-
ule to utilize complementary information from different modalities. Experiments, auxiliary tasks and
ablation studies are meticulously conducted to verify each component of ViTaS. The results show
the effectiveness of ViTaS and necessity of soft fusion contrastive and CVAE. It has not escaped our
notice that ViTaS is theoretically capable of being seamlessly deployed to physical robotic systems,
for information we use could be easily obtained in real world. The task of validating this transfer on
real hardware is reserved for future work.
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A APPENDIX

A.1 DETAILS IN SIMULATED ENVIRONMENT

A.1.1 INSERTION

The insertion environment consists of various kinds of holes and a peg corresponding to one of those
shapes. The peg is attached to a Robotiq-85 robotic arm and securely held by the arms two fingers
(grippers). During the operation, tactile sensors fixed on both fingers detect tactile information,
generating two 3× 32× 32 tactile maps, which is stated in Xu et al. (2023). The three channels rep-
resent forces in two shear directions and one contact (normal) direction. A third-person perspective
camera is positioned in front of the peg to capture RGB information during the insertion process,
represented as a 3× 64× 64 image. The task is considered successful when the peg is fully inserted
into the hole with the matching shape.

To more effectively evaluate the algorithm’s generalization and robustness performance under vary-
ing conditions, the insertion environment includes pegs of different shapes (e.g., rectangular, trian-
gular, trapezoidal, etc.). Additionally, multiple positional configurations are provided, ranging from
the center to the periphery of the workspace.

A.1.2 GYMNASIUM-BASED TASKS

Shadow Dexterous Hand in Gymnasium are equipped with tactile sensors on the fingers offered by
the sensor package, providing a foundation for tactile-based manipulation operations. We selected
three tasks from the Shadow Dexterous Hand suite as our benchmarks, specifically pen rotation, egg
rotation, and block rotation.

The tasks are composed of a dexterous hand which is manipulated by agent and an object varying
in different task. The target of each task is to rotate the object and reach the final position provided
by task itself. For instance, the target in block rotation is to manipulate an egg to reach the target
position, which indicated by colors on different faces. To maintain consistency with the baseline,
we adopted the environmental configurations outlined in M3L, which include parameters such as
position settings, reward magnitude, object specifications, and tactile information padding.

A.1.3 ROBOSUITE-BASED TASKS

We selected the Franka robotic arm and a Robotiq 2F-85 gripper from the Robosuite environment,
augmenting the gripper fingers with additional tactile sensors to facilitate the acquisition of both
visual and tactile data.

In the Door Opening task, the agent manipulates the robotic arm to open a door equipped with a
handle. Similar to the aforementioned tasks, we adopt the same environment configuration as used
in M3L, employing a dense reward structure. Additionally, the doors initial position is randomized
within a specific range: x ∼ [0.06, 0.10], y ∼ [−0.1, 0.1] to align with baselines and compare fairly.

The above 5 tasks are used in baselines, and we do not modify any parameters. Additionally, we
add 2 original tasks based on Robosuite in order to evaluate the performance of algorithms. The two
tasks, Lift and TwoArmLift, will be clarified below.

In the Lift task, the robotic arm attempts to learn a strategy for lifting an object, which could be a
cube or potentially other shapes like cuboids or cylinders, to a specified height. To better focus on
assessing the fusion of multimodal information and testing the models generalization capabilities,
we employ a dense reward structure to facilitate learning. Specifically, when the robotic arm suc-
cessfully lifts the object, the reward is increased to 300, and when the object is successfully grasped,
the corresponding reward is multiplied by 10. All other settings remain consistent with the default
configuration in Robosuite.

Similarly, in the TwoArmLift task, the agent must learn to lift a pot-like object with two handles. In
this case, the algorithm controls two robotic arms, each with the same configuration as the single-
arm tasks. Following the reasons for incorporating dense rewards in the previous tasks, we also
introduce dense rewards in this scenario. Specifically, we amplify the grasping reward and reaching
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reward, setting the grasp reward to 70 and multiplying the proximity reward by 5× to enhance the
learning process.

A.1.4 MOBILE-CATCH TASKS

The task is originated by Zhang et al. (2024). The whole task can be divided into 2 parts, track
and catch. The track period is to manipulate the movable robot to reach as close to the object to
be thrown later as possible. It usually utilizes the image information while the tactile maps are in
absence, so it is not suitable to deploy our algorithm. We use the method proposed in the paper and
the pre-trained models to complete the first period.

The latter catching period, in contrast, is contact-rich and relatively fit for our cross modal algorithm.
The content of catching period is to literally catch the thrown object and make it stable in the robot’s
palm. We use environment with same physical parameters. For consistency, we add propriocep-
tive information presented in original paper along with image and tactile to better evaluate training
results. We concatenate image, tactile and proprioception directly.

A.1.5 BLOCK SPIN TASK

Block spin environment is borrowed from Yuan et al. (2024a), where we add tactile sensors on the
robotic hand. The agent is expected to spin the in hand block with an Allegro hand and the overall
input is RGB image observation and padded 32× 32× 3 tactile sensor data. It is worth noting that
the task is different from shadow dexterous hand tasks, in which objects are rotated with a fixed
angle in every episode.

A.2 PSEUDOCODE OF THE PROPOSED SEVERAL CONTRASTIVE METHODS

Algorithm 1 Pseudocode of soft fusion contrastive learning
Input: two modality inputs q, k; parameter K for soft fusion contrastive. k is detached for stabiliz-
ing the update process.

1: logits← q · k / τ
2: k logits← k · k
3: k index← topKmax(k logits,K)
4: mask← scatter(k index)
5: soft← softmax(logits) ·mask
6: loss← − log(

∑N
i=1 soft)

Output: soft fusion contrastive loss loss

Algorithm 2 Pseudocode of time contrastive learning
Input: two modality inputs q, k; parameter K, t for soft fusion contrastive and time contrastive. k
is detached for stabilizing the update process.

1: logits← q · k / τ
2: for each i ∈ [1, N ] do
3: k indexi ←

∪max(N,i+t)
j=min(1,i−t){j} {we use t preceding and succeeding frames}

4: end for
5: mask← scatter(k index)
6: soft← softmax(logits) ·mask
7: loss← − log(

∑N
i=1 soft)

Output: time contrastive loss loss

A.3 HYPER PARAMETERS

The important hyper-parameters are shown in Table 3. The detailed information of our CNN encoder
is shown below. CNN encoder we adopt corresponds to the designs in drq-v2.
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Algorithm 3 Pseudocode of ViTaS guiding reinforcement learning
Initialization: parameters in policy πθ, CNN encoder and CVAE.
Notations: We denote C as numbers of trajectories collected per step, U as update times for policy
each iteration in training process.

1: while train until reach horizon do
2: Run policy πθ and collect {oi, ti, ai, ri} to buffer B for C times.
3: Estimate advantages Ai in B using ri, γ.
4: for i ∈ [1,U] do
5: Prepare observation fo(oi), ft(ti) to interact with environment.
6: Set si ← {fo(oi), ft(ti)}
7: Calculate policy loss via

LPPO = min

(
πθ(a|s)
πθk(a|s)

A(s, a), clip
( πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ
)
A(s, a)

)
8: Calculate soft fusion contrastive loss LCON according to Equation (2) and Equation (3)
9: Calculate CVAE loss LVAE via Equation (5)

10: Update policy, CNN encoder and CVAE via optimizing L = λ · LCON + µ · LVAE + LPPO
11: end for
12: end while

Table 3: Hyper-parameters in ViTaS

Hyper-parameters Value
RGB Image Input shape 64 × 64 × 3

Tactile Input shape 32 × 32 × 3
Soft Contrastive Learning projection dim 1024

InfoNCE temperature 0.1

CVAE Condition Projection dim 81 × 64 × 2
CVAE latent space dim 256

Policy learning rate 10−4

CNNs learning rates 10−4

MLP truncate dimension 64
batch size in training process 512

Tswitch 100
K in soft fusion contrastive 5

γ in PPO 0.99
clip range in PPO 0.2

λ 0.1
µ 1

batch size in soft fusion contrastive 4096
t in time contrastive 5

horizon 3× 106

update per iteration 10

A.4 ADDITIONAL BASELINES

Apart from 4 baselines raised above, we add extra visual RL algorithms as baselines. DrQ-V2, a
critical visual RL algorithm, is adopted here to further illuminate the merit of ViTaS. Specifically, we
use image-only and combined image-tactile observations as inputs respectively to test the efficiency
based on 4 aforementioned benchmarks, with results listed below.
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Table 4: CNN parameters in ViTaS

Layer in channel out channel kernel size stride
Layer 1 3 32 3 2

Layer 2 (ReLU) - - - -
Layer 3 32 32 3 1

Layer 4 (ReLU) - - - -
Layer 5 32 32 3 1

Layer 6 (ReLU) - - - -
Layer 7 32 32 3 1

Layer 8 (for image) 32 64 3 2
Layer 9 (for image) 64 64 4 1

Layer 10 (for image, ReLU) - - - -
Layer 8 (for tactile) 32 64 1 1

Layer 9 (for tactile, ReLU) - - - -

Figure 9: Learning curve for ViTaS and DrQ-V2. We validate the performance of image-only and
combined image-tactile versions of DrQ-V2 on Insertion, Door, Lift and Pen rotate.

The results in Figure 9 manifest the prominent performance of ViTaS, with a significant improve-
ment compared to DrQ-V2. Despite variance in the policy architecture (off policy like DrQ-V2 vs.
on policy like PPO), ViTaS still boasts better feature extraction, leading to a better performance con-
sequently. Moreover, the distinction between two versions of DrQ-V2 also shows the critical role
tactile information plays in representation learning.

A.5 VALIDATE ROTATE ENVIRONMENTS

To show we adequately optimize the rotate environments for all algorithms, we conduct additional
experiments to validate the environments. Specifically, we train M3L for up to 20 million timesteps
in Block Rotate and Egg Rotate environments.

The results in Figure 10 clearly validate Block Rotate and Egg Rotate. The training results of M3L
resonate with Sferrazza et al. (2023), as in gymnasium rotate tasks success demonstration usually
has rewards around 8000 (Towers et al. (2024)). Moreover, the similarity M3L shows before 3M in
Figure 10 and Figure 5 also implies the accuracy of our experiments before.

A.6 ADDITIONAL EXPERIMENTS

A.6.1 ABLATION ON CVAE

Apart from the experiments presented in Figure 6 (b), we conduct extensive experiments to further
investigate how CVAE contribute to our algorithm. Block Rotate and Egg Rotate are added with 3
seeds. Moreover, we shift the shape of objects in Lift task, shrinking the target object into various
smaller shapes. The results are shown below.
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Figure 10: Extensive learning curve for ViTaS and M3L. We validate the rotate environments by
enlarging total timesteps of M3L.

Figure 11: Extensive experimental results for ViTaS and ViTaS ablating CVAE. We show the
results in Egg Rotate, Block Rotate, Lift and Lift with tiny objects.

From the figure above, it can be deduced that the performance of ViTaS decreases by approximately
35% on average after the removal of the CVAE module. Furthermore, in the task of Lift with tiny
object, ViTaS demonstrates remarkable robustness, as its performance at 3M is comparable to that
of original Lift task. However, when ablating CVAE module, the performance of ViTaS drops by
50%, which underscores the significant role of CVAE in capturing the nuances of visual imagery.

A.7 CLARIFICATION OF CONTRASTIVE FORMULA

The original formulation of Equation (2) is like below:

LCON,1,i = −E

[
log

∑
p∈P1(i)

exp(qp · qi / τ)∑
p∈P1(i)

exp(qp · qi / τ) +
∑
n∈N1(i)

exp(qn · qi / τ)

]
(6)

Specifically, we use contrastive learning with multiple positives qp, combining with infoNCE loss.
As mentioned above, we use the key featuers to discriminate positives and negatives, so we use
encoders to obtain samples in accordance to He et al. (2020) and Chen et al. (2021). Moreover, we
use cosine similarity in Sim. The extracted features fo(oi) and ft(ti), however, are normalized at
the very end, leading to (

∑|oi|
j=1 fo(oi,j)

2)1/2 = 1. Thus, the cosine similarity is numerically equal
to the corresponding dot product, which is all we need to calculate.

A.8 RECONSTRUCTION RESULTS FOR CVAE MODULE

To effectively demonstrate the impact of CVAE module, we employ weights from ViTaS in the
Egg Rotate task for image reconstruction from pure gaussian noise conditioned on visuo-tactile
embedding. We compare the performance under varying levels of Gaussian noise added to the
observation space (both visual and tactile) against the token-based MAE method used in M3L.
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Figure 12: Reconstruction results under different level of observation noise.

As illustrated in figure 12, the results indicate that our approach surpasses the token-based MAE in
reconstructing critical interaction details, such as finger joint positions and the egg’s location, which
are vital for the task. Our method also maintain robust under higher level of noise, underscoring the
high quality of the visuo-tactile embeddings used as conditions.

Furthermore, we conducted experiments where heavy noise (noise level 0.5) was introduced to ei-
ther the visual or tactile inputs while keeping the other noise-free. As shown in figure 13,these
experiments yielded superior generation performance compared to scenarios with heavy noise in
both inputs, demonstrating the complementary nature of the two modalities.

noise on tactile noise on visual noise on bothorigin

Figure 13: Reconstruction results under heavy noise applied to different modalities.

A.9 T-SNE VISUALIZATION FOR VISUO-TACTILE EMBEDDING

To visually demonstrate the contribution of ViTaS at the feature level, we extracted visuo-tactile
embeddings from three models: ViTaS, ViTaS without CVAE, and ViTaS without contrastive learn-
ing. These embeddings were obtained along the same egg rotate trajectory and visualized within the
same space, as shown in figure 14.

In the figure, the visual and tactile representations are color-coded as follows: blue-purple for visuo-
tactile embedding of ViTaS, red-gray for ViTaS without contrastive, and green-orange for ViTaS
without CVAE. The gradient from light to dark indicates the progression of a trajectory from start to
finish. It is evident that in ViTaS, the features from the two modalities exhibit strong complementary
characteristics. Additionally, within the same modality, the different phases of the trajectory are
spatially separated rather than clustered together. Such feature distribution is advantageous for the
downstream policy network, a benefit not observed when using CVAE or contrastive learning alone.
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Figure 14: t-SNE visualization of visuo-tactile feature space.
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