
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZING DYNAMICS MODELING EASIER FROM
REPRESENTATION PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning system dynamics from observations is a critical problem in many appli-
cations over various real-world complex systems, e.g., climate, ecology, and fluid
systems. Recently, the neural-based dynamics modeling method has become the
prevalent solution, where its basic idea is to embed the original states of objects
into a latent space before learning the dynamics using neural-based methods such
as neural Ordinary Differential Equations (ODE). Given observations from dif-
ferent complex systems, the existing dynamics modeling methods offer a specific
model for each observation, resulting in poor generalization. Inspired by the great
success of pre-trained models, we raise a question: whether we can conduct a gen-
eralized Pre-trained Dynamic EncoDER (PDEDER), which, for various complex
systems, can embed their original states into a latent space, where the dynamics
can be easier captured. To conduct this generalized PDEDER, we collect 153 sets
of real-world and synthetic observations from 24 complex systems. Inspired by
the success of time series forecasting using Pre-trained Language Models (PLM),
we can employ any PLM and further update it over these dynamic observations
by tokenization techniques to achieve the generalized PDEDER. Given any future
dynamic observation, we can fine-tune PDEDER with any specific dynamics mod-
eling method. We evaluate PDEDER on 18 dynamic systems by long/short-term
forecasting under both in-domain and cross-domain settings and the empirical re-
sults indicate the effectiveness of PDEDER.

1 INTRODUCTION

System dynamics, which describes the object states evolving over time, is a powerful methodology
to conceptualize complex systems from various domains, e.g., climate, ecology, and fluid systems
(Alon, 2006; Bashan et al., 2016; Gao et al., 2016; Gerstner et al., 2014; Li et al., 2019; Lu et al.,
2018; Zang et al., 2016; 2018; 2019a;b). In parallel with physical methods, learning system dynam-
ics from abundant observations has drawn much attention, and the neural-based dynamics modeling
method such as neural Ordinary Differential Equations (ODE) become the representative Chen et al.
(2018).

To our knowledge, the basic idea of the representative method is to embed the original states of
objects into a latent space before learning the dynamics using neural-based methods and finally fol-
lowed by a decoder Zang & Wang (2020). Although the existing methods have been successfully
applied in various systems, most of them must train a specific model given observations from dif-
ferent systems, resulting in limited generalizability. To meet this challenge, several recent studies
investigate generic methods that can simultaneously handle multiple dynamics from various systems
and environments Kirchmeyer et al. (2022); Huang et al. (2023). Unfortunately, due to the potential
huge gap between various dynamics, developing generic dynamics modeling methods faces signifi-
cant challenges and is still an open problem.

Inspired by the great success of pre-trained models, we raise a question: instead of developing
generic dynamics modeling methods, whether we can conduct a generalized Pre-trained Dynamic
EncoDER (PDEDER), which, for various complex systems, can embed their original states into a
latent space, where the dynamics can be more easily captured. To conduct this generalized PDEDER,
we collect 153 sets of real-world and synthetic observations from 24 complex systems. Inspired by
the success of time series forecasting using Pre-trained Language Models (PLM), we can employ any
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PLM and further update it over these dynamic observations by tokenization techniques to achieve the
generalized PDEDER. Given any future dynamic observation, we can fine-tune PDEDER with any
specific dynamics modeling method. We evaluate PDEDER on 18 dynamic systems by long/short-
term forecasting under both in-domain and cross-domain settings and the empirical results indicate
the effectiveness of PDEDER.

In a nutshell, the major contributions of this paper can be outlined below:

• We propose a novel idea of updating PLM to build a generic encoder PDEDER for dynamics
modeling.

• We collect extensive real-world and synthetic observations from various complex systems
to train PDEDER.

• We conduct numbers of experiments to evaluate PDEDER on by long/short-term forecasting
under both in-domain and cross-domain settings.

2 RELATED WORK

Dynamics Modeling Methods Currently, mainstream dynamics modeling methods primarily fall
into the data-driven manner. Zang & Wang (2020) combines neural ordinary differential equations
Chen et al. (2018) with GNNs Wu et al. (2020) to approximate continuous-time dynamics of net-
works at an arbitrary time on the interaction graph. Shi et al. (2023) performs integral operations to
the derivatives of the changing on time and spatial dimensions, demonstrating the ability of adapting
to spatial and temporal dependencies. Huang et al. (2023) studies cross-environment learning of con-
tinuous multi-agent system dynamics. It models this using parameterized neural ordinary differential
equations (ODEs)Chen et al. (2018), describing the dynamics of each system through shared ODE
functions and environment-specific vectors for latent exogenous factors. Huang et al. (2020) learns
dynamics from irregularly sampled partial observations. Wang & Yu (2023) argues that data-driven
methods lack the ability of understanding hidden dynamics and responding to naturally occurring
data distribution changes. It proposes incorporating prior physical knowledge into existing deep
learning approaches to enhance model generalization in unknown environments. Kirchmeyer et al.
(2022) associates different dynamics with multiple environments separately, adjusting the dynamic
model based on context parameters specific to each environment, allowing for rapid adaptation and
better generalization in low-sample environments. Gupta et al. (2022) decomposes complex systems
into subsystems, modeling each subsystem as a neural ODE module and simulating various coupled
topologies through the combination of these modules. Huang et al. (2024b) enhanced the modeling
capability of physical systems through the time-reversal symmetry regularization term, improving
the forecasting accuracy and robustness for complex systems.Luo et al. (2023) incorporates second-
order graph convolution to capture non-neighborhood semantic information, as well as second-order
graph ODEs to model higher-order temporal dependencies. Huang et al. (2024a)uses graph neural
networks (GNN) as an ODE function to capture the dynamic effects of treatments over time and
the combined effects of multiple treatments. Wu et al. (2024) provides a new approach for OOD
fluid dynamics modeling and conducts extensive experiments on multiple benchmarks to validate
the superiority of the method. Gravina et al. (2024) proposes to reinterpret existing graph neural
networks as a discretized solution of an ODE, thereby extending them to handle graph streams with
irregular sampling. Luo et al. (2024) proposed a novel graph ODE model that significantly enhances
the modeling capability and generalization performance of multi-agent dynamical systems through
the introduction of contextual prototypes.

Pre-trained Language Models for Time Series Forecasting Recently, PLMs have been success-
fully applied to various tasks. In handling sequence data tasks, Gruver et al. (2024) encodes time
series as a string of numbers, forecasting the next token in the text to achieve sequence forecast-
ing results, allowing time series input to adapt unilaterally to the input format of language mod-
els. PromptCast Xue & Salim (2023) converts the numerical inputs and outputs of time series
into prompts, constructing forecasting tasks in a sentence-by-sentence manner. Nie et al. (2023)
segments the time series into sub-sequence-level patches to serve as input for Transformers. Au-
toTimes Liu et al. (2024) transforms time series data into a format understandable by LLMs for
auto-regressive forecasting. LLM4TS Chang et al. (2024) proposes a two-phase fine-tuning method,
first aligning the model with the characteristics of the time series to better adapt the LLM, and then
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Figure 1: The flowchart of PDEDER.

further fine-tuning the model guided by downstream forecasting tasks in the second phase. Time-
LLM Jin et al. (2024) requires no fine-tuning of any layers in the LLM, simply freezing the LLM and
using two learnable modules to process inputs and outputs. Additionally, Zhou et al. (2023) provides
a unified framework for various time series tasks. Zhang et al. (2024) proposed a framework that
transitions from univariate pre-training to multivariate fine-tuning. Through self-supervised pre-
training and cross-channel dependency fine-tuning, it demonstrates excellent performance across
various time series tasks.

3 PRELIMINARIES

Commonly speaking, a dynamics contains a set of interacting objects whose states co-evolve over
time on a weighted interaction graph. The dynamics could be formalized into a graph G = (V, E),
where the set of nodes V = {xn}Nn=1 consists of N interacting objects and E = {ei,j}Ni,j=1 denotes
the interactions among them. The observations of each node xn is a trajectory of states along time
T . On time t, the state of object n can be represented as a vector xn,t ∈ RV where V is the system-
specific state dimension. The evolution of object states are governed by some hidden regularities
for the most part. Given the states observations G, we aim to extract the hidden governing dynamics
and can help forecast the states at an arbitrary time t.

Ordinary Differential Equations (ODEs) for Dynamical System Conventionally, the evolution
of each object states in a dynamics system can be described by Ordinary Differential Equations
(ODEs): ẋn,t :=

dxn,t

dt = g(x1,t, . . . ,xN,t;G), where g(·;G) is a hand-crafted function to model the
characteristic from the observations; G denotes the objects interactions. The differential equations
describe the instantaneous changing rate of each object state under mutual influences. Given the
initial states of each object {x1,t=1, . . . ,xN,t=1}, the states at an arbitrary time point τ can be
calculated by integrating the differential equation over timeline:

xn,τ = xn,1 +

∫ τ

1

g(x1,t, . . . ,xN,t;G)dt. (1)

The above integration is also called an ODE initial value problem Boyce et al. (2021) for this differ-
ential equation, which could be solved by numerical ODE solvers such as Euler’s method, Dormand-
Prince DOPRI5 Dormand (2018), Runge-Kutta Schober et al. (2019), etc. Then the dynamics model
could be approximated with these numerical methods at an arbitrary time.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

4.1 OVERVIEW OF PDEDER

In this section, we introduce our proposed Pre-trained Dynamic EncoDER (PDEDER). To learn an
encoding model with outstanding generalizability, we first collect massive observations from both
synthetic and real-world systems to ensure the diversity of training datasets. Then we pre-train
PDEDER with the collected observations on two tasks. By ingesting the input observation into the
model, we train PDEDER from two aspects, reconstructing the input observation, and forecasting un-
seen future states. With our pre-trained PDEDER, we can generate dynamics-enriched embeddings
and approximate dynamics on these embeddings. Specifically, given the initial states of objects and
their interactions, we encode the initial states by our pre-trained PDEDER into dynamics-enriched
embeddings. Then we can learn dynamics on the interaction graph by approximating the observa-
tions using any dynamics modeling method. The flowchart is presented in Figure 1.

In this section, we first introduce the pre-training of our PDEDER. Secondly, we gave two examples
of learning specific dynamics by fine-tuning PDEDER. We adopt two dynamics modeling methods
as examples, including a black-box GNN-based neural method and a white-box method SINDy
Brunton et al. (2021).

4.2 PRE-TRAINING OF THE PRE-TRAINED DYNAMIC ENCODER (PDEDER)

Benchmark Generation Firstly, we introduce the collection of dynamics observations. We col-
lect 153 sets of observations including 122 synthetic sets from 14 systems with various hyper-
parameters, and 31 sets of real-world observations from 10 systems. The domains consist of physics,
fluid, biology, climate and traffic system. For each synthetic system s ∈ [S], we set Ps different pa-
rameter settings, including numbers of objects and sequence lengths. For each parameter setting,
we generate Ms sets of observations {Gm = (Vm, Em)}Ms

m=1. Vm = {xm,n}Nm
n=1 denotes the ob-

servations of Nm objects and Em = {< xm,i,xm,j >}i,j∈[Nm] denotes the interactions among
them. The observations xm,n ∈ RTm×Vs of object n are denoted as a trajectory of states along time
Tm, where Vs denotes the system-specific state dimension. For example, on system “Charged”, we
set 4 different numbers of objects {5, 10, 15, 20} and 2 different sequence lengths {400, 600}. We
generate 8 sets of observations using all combinations of the two sets of parameters. Each of the 8
sets corresponds with different system-specific hyper-parameters. Then we generate 5000 observa-
tion sequences under each parameter setting with random initial values. For all systems, we vary
the number of objects and sequence length both from [5, 1024]. The statistics of observations are
illustrated in Table 1 and the detailed descriptions of each system are presented in Appendix A.
To pre-train PDEDER on multiple tasks, We split the observations xm,n into two sub-observations
x
(in)
m,n = {xm,n,t}t=Tk

t=1 and x
(out)
m,n = {xm,n,t}t=Tm

t=Tk+1. By ingesting the x
(in)
m,n, we learn PDEDER by

reconstructing x
(in)
m,n and forecasting x

(out)
m,n .

Tokenization To adapt the input observations with various lengths and serve as input tokens for
transformer-based PLMs, following Nie et al. (2023), we tokenize the observed states into sub-
observations to adapt the input states with various lengths. For object n, we patch the input states
x
(in)
m,n ∈ RTk×Vs into x(in)

m,n ∈ RPm×Lp×Vs , where Lp denotes the patch length; Pm = ⌊ (Tk−Lp)
R ⌋+2

denotes the number of patches and R denotes the stride. In this manner, the trajectory lengths are
reduced by R times, which can simultaneously maintain the local semantics in long-term dynam-
ics modeling and significantly reduce the space and time costs during model learning. Besides, to
benefit domain adaptation and generalization, we add Gaussian noises and apply instance normal-
ization before tokenization to handle the distribution shift among various domains following Kim
et al. (2021).

Data Projection To handle dimension diversity of states across different systems, we adopt a
flatten-linear data projection module to align the observations by mapping into same dimensions.
For each patched tokens x(in)

m,n ∈ RPm×Lp×Vs , we first flatten it into x(in)(fl)
m,n ∈ RPm×(Lp·Vs), and

then project it by a linear layer into the dimension of Lp for all systems x̃(in)
m,n = f(x(in)(fl)

m,n ;Ws
dp),

where Ws
dp ∈ R(Lp·Vs)×Lp denotes the system-specific trainable parameters.

4
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Table 1: Statistics of collected dynamics. Nm denotes the number of objects; Tm denotes the length
of timestamp; Vs denotes the feature dimension; Ms denotes the number of samples generated; Ps

denotes the number of different hyper-parameter settings.

System Type Domain Nm Tm Vs Ms Np

Charged Synthetic Physics {5,10,15,20} {400,600} 4 5000 8
Springs Synthetic Physics {20,25,30,35,40} {200,300} 4 3500 10

Mutualistic Synthetic Physics {100,121,169,196,225} {300,350,400} 1 1500 15
Heat Synthetic Physics {225,256,289,324} {200,250,300} 1 1500 12

1D Diff-Reaction Synthetic Fluid {256,368,464,512} {200,225,250,275} 1 700 16
1D CFD Synthetic Fluid {300,350,400} {600,625} 3 300 6
2D CFD Synthetic Fluid {400,625,784,1024} {100,150,200} 4 200 12
Burgers Synthetic Fluid {400,425,450} {512,768,960,1024} 1 250 12

Advection Synthetic Fluid {500,550} {700,725,750} 1 500 6
DarcyFlow Synthetic Fluid {625,676} {400,425,450} 1 700 6

Gene Synthetic Biology {729,841,900,1024} {125,150,175,200} 1 500 16
Shallow-Water Synthetic Fluid 768 500 1 3000 1

2D Diff-Reaction Synthetic Fluid 900 120 2 5000 1
Diff-Sorption Synthetic Fluid 1024 101 1 10000 1

LA Real-world Climate 274 384 10 1 -
SD Real-world Climate 282 384 10 1 -

NYCTaxi Real-world Traffic 75 17520 2 1 -
CHIBike Real-world Traffic 270 4416 2 1 -
TDrive Real-world Traffic 1024 3600 2 1 -

PEMS03 Real-world Traffic 358 26208 1 1 -
PEMS04 Real-world Traffic 307 16992 3 1 -
PEMS07 Real-world Traffic 883 28224 1 1 -
PEMS08 Real-world Traffic 170 17856 3 1 -

NOAA Real-world Climate

{17,24,27,29,40,40,
40,46,49,53,55,65,
77,89,93,108,160,

179,199,216,225,253}

7305 3 22 -

Learn with PLM With the projected x̃
(in)
m,n, we reconstruct the input states and forecast future

states by a pre-trained language model. First, we encode x̃
(in)
m,n by a convolutional layer f(·;Wc)

and the encoder of a PLM f(·;Θe). The convolutional layer is capable of maintaining the local
semantic information and adapt the states dimension H into which of PLM Chang et al. (2023).
Then, we decode the hidden features by the decoder of PLM f(·;Θd) attached by two flatten-
linear layers f(·;Ws

r) and f(·;Ws
p), which serves for reconstructing and forecasting, respectively.

Detailed calculations are as below:

hm,n = f(f(x̃(in)
m,n;Wc);Θe),

x̂(in)
m,n = f(f(hm,n;Θd);W

s
r), x̂(out)

m,n = f(f(hm,n;Θd);W
s
p),

(2)

Finally, the model is learnt by minimizing the reconstructing loss against the original input states
x
(in)
m,n and the forecasting loss against the ground-truth future states x(out)

m,n :

Lp(Θ,W
p) =

S∑
s=1

Ps∑
p=1

Ms∑
m=1

Nm∑
n=1

(
Tk∑
t=1

ℓ(x̂
(in)
m,n,t,x

(in)
m,n,t) +

Tm∑
t=Tk+1

ℓ(x̂
(out)
m,n,t,x

(out)
m,n,t)

)
, (3)

where ℓ(·) denotes the L1 loss; Θ = {Θe,Θd} denotes the parameters set of the encoder/decoder
of the PLM; Wp = {Ws

dp,Wc,W
s
r,W

s
p}Ss=1.

4.3 EXAMPLES OF LEARNING SPECIFIC DYNAMICS WITH PDEDER

We now introduce the usage of PDEDER when learning a specific dynamics. We introduce two
examples of learning dynamics with a black-box GNN-based dynamics learner and a white-box
dynamics learner SINDy Brunton et al. (2021).
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Conventionally, given the observations of Nd objects {xm,1, . . . ,xm,Nd
} across time Tm, we can

model the hidden dynamics by solving the ODE initial value problem with the initial observa-
tions {xm,1,1, . . . ,xm,Nd,1} as mentioned in preliminaries. Following the pre-training processes
in PDEDER, we tokenize and project the states into {x̃m,1, . . . , x̃m,Nd

} and adopt the first token
x̃m,n,1 ∈ RLp as the initial value to learn dynamics. Then we encode the initial observations to
hm,n,1 ∈ RH by the encoder of pre-trained PDEDER hm,n,1 = f(f(x̃m,n,1;Wc);Θ

∗
e), where Θ∗

e
denotes the pre-trained parameters of encoder in PDEDER.

Example: Fine-tune PDEDER with a Black-box Dynamics Learner. To model the dynamics
where the objects affect each other along with evolution, following Zang & Wang (2020), we adapt
a GNN-based module g(·) to model dynamics by incorporating the interactions among objects in
the latent space. Let Am ∈ RNm×Nm denotes the adjacent matrix of the interaction graph Gm

and hm,·,τ = [hm,1,τ , . . . ,hm,Nm,τ ] ∈ RNm×H denotes the embeddings at an arbitrary time τ
(1 < τ ≤ Tm), we describe the dynamics by the following ODE:

dhm,·,τ

dt
= g(hm,·,τ ) = ψ(W⊤

g Λmhm,·,τ ), (4)

where Λm = D
− 1

2
m (Dm − Am)D

− 1
2

m ∈ RNm×Nm denotes the Laplacian normalization of Am;
Dm denotes the degree matrix of Am; Wg denotes the trainable parameters shared across timeline;
ψ(·) denotes the ReLU activation function. With the above ODE, we can model the dynamics by
integrating over continuous time:

hm,·,τ = hm,·,1 +

∫ τ

1

ψ(W⊤
g Λmhm,·,t)dt. (5)

The hidden representations hm,·,t for all time points t ∈ (1, Tm] could be calculated with the
above integration. Then we reconstruct the states by the decoder of pre-trained PDEDER x̂m,n =
f(f(hm,n;Θ

∗
d);W

s
r) and learn dynamics on system s by minimizing the forecasting loss against

the ground-truth observations xm,n:

Lf (Θ
∗,Φ,Wf ) =

Ms∑
m=1

Nm∑
n=1

ℓ(x̂m,n,xm,n), (6)

where Θ∗ = {Θ∗
e,Θ

∗
d} denotes the encoder (decoder) parameters of the pre-trained PDEDER;

Φ = {Wg} denotes the parameters of the neural ODE module; Wf = {Ws
dp,Wc,W

s
r}Ss=1.

4.4 MODEL TRAINING.

We first pre-train PDEDER on all collected dynamics observations (without graph) with Eq.3 for Ep

epochs. To handle the massive observations and various numbers of samples on different systems,
we randomly choose 10 dynamics systems for each training round and train PDEDER for 5 epochs
with all the observations from these systems. When learning a specific dynamics, we fine-tune
PDEDER with Eq.6 for Ef . The training details are presented in Algorithm 1 and 2.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets In fine-tuning, we adopt 17 dynamics owning object interactions for validation, includ-
ing 7 sets of synthetic observations: Mutualistic, Heat Diffusion, 2D Compressible Navier-Stokes,
Darcy Flow, Gene, Shallow Water, 2D Diffusion Reaction; and 10 real-world observations: LA, SD,
TDrive, CHIBike, NYCTaxi, PEMS03, PEMS04, PEMS07, PEMS08 and NOAA. Detailed descrip-
tions are introduced in Appendix A.

Baselines We apply 5 baseline methods which models dynamics on interaction graph for compar-
ison, including GNSSanchez-Gonzalez et al. (2020), NDCN Zang & Wang (2020), ST-GODE Fang
et al. (2021), MT-GODE Jin et al. (2022) and TANGO Huang et al. (2024b). Following PDEDER,
we adopt instance normalization on observations for all methods. Details of baseline methods are
listed in Appendix B:

6
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Algorithm 1 Pre-training PDEDER to learn dynamics-enriched embeddings.

Input: 153 Observations sets {Vm}Ms
m=1 from S systems

Output: Optimal parameters of PDEDER {Θ∗,Wp∗}
1: Initialize Θ by pre-trained LM;
2: for round r = 1 to MaxRound do
3: Sample 10 systems for training;
4: for epoch e = 1 to MaxEpochp do
5: for iter it = 1 to MaxIterp do
6: Sample B observations from 10 systems as a batch by ratios ;
7: Encode and decode observations by Eq.2;
8: Calculate the pre-training objective of Eq.3;
9: Update {Θ,Wp} by Eq.3;

10: end for
11: end for
12: end for

Algorithm 2 Fine-tuning PDEDER to learn specific dynamics.

Input: Observations {Gm = (Vm, Em)}Ms
m=1 of a dynamics system s

Output: Optimal parameters of approximated dynamics Wg

1: Initialize Θ by Θ∗;
2: for epoch e = 1 to MaxEpochf do
3: for iter it = 1 to MaxIterf do
4: Encode initial values by pre-trained PDEDER;
5: Calculate integration for each time point by Eq.5;
6: Calculate the fine-tuning objective of Eq.6;
7: Update {Θ∗,Wg,W

f} by Eq.6.
8: end for
9: end for

Implementation Details We adopt the pre-trained T5 to initialize the PLM module. We apply all
available 153 sets of observations for pre-training PDEDER. To handle the massive observations and
different numbers of samples on different systems, we randomly sample 10 sets of observations for
each training round, and sample trajectories according to the proportions of their amounts. We train
5 epochs on each sets. The learning rates are set as 1e− 3 for the PLM module and 1e− 2 for rest
parameters. The patch length and stride are set as 30 and 6, respectively. To align the observations
with different lengths, we split each observation by a look-back window of length 150 and stride 50.
Tk is set as 120.

In fine-tuning to learning a specific dynamics, the lengths of training observations is set as 60 for
2D Diffusion Reaction and 120 for the rest systems. The rest observations are left for testing. We
fine-tune each observations for 20 epochs. The learning rates are tuned over {1e−4, 1e−5, 1e−6}
for the PLM module and {1e−2, 1e−3, 1e−4} for rest parameters. The patch length and stride are
set as 50 and 10, respectively. We adopt look-back window to handle overlong observations. The
window length and stride are set as 840 and 50 for NYCTaxi, CHIBike, TDrive, PEMS03, PEMS04,
PEMS07, PEMS08 and NOAA. Specifically, we adopt the last Lp states in training observations as
initial states to forecast the test observations when fine-tuning PDEDER.

Short/Long-term Forecasting Settings The training sequence length are same for both short and
long term forecasting. For NYCTaxi, CHIBike, TDrive, PEMS03, PEMS04, PEMS07, PEMS08 and
NOAA, the short- and long-term forecasting lengths are set as {24, 48} and {96, 192, 336, 720}. For
the rest dynamics, due to the diversity of convergence characteristics on each system, we truncate the
test sequences by ratios to form the short/long-term forecasting sequences. The ratios for short- and
long-term are set as {10%, 20%} and {50%, 70%, 80%, 100%}, respectively. For example, when
the test sequence length is 200, we set 10% × 200 = 20 and 20% × 200 = 40 as the forecasting
lengths.
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Table 2: Average results of dynamics forecasting. The best scores are in boldface. % denotes the
results are scaled by 1/100.

Short-term Forecasting

System
GNS NDCN ST-GODE MT-GODE PDEDER

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

Mutualistic 0.283 0.418 1.717 0.424 0.542 3.560 1.058 0.901 2.729 0.961 0.781 1.299 0.362 0.452 5.761
Heat 0.113 0.280 0.510 0.490 0.551 2.903 0.676 0.666 3.813 0.910 0.795 1.968 0.003 0.045 0.286

2D CFD 0.302 0.383 31.315 0.490 0.482 8.418 0.566 0.434 1.518 0.546 0.432 12.360 0.223 0.303 1.185
DarcyFlow 0.233% 4.093% 1.077 0.524% 4.960% 21.085 0.195% 3.338% 10.209 0.660% 6.214% 23.893 0.067% 2.016% 1.398

Gene 0.045 0.116 0.757 0.616 0.644 1.919 0.841 0.755 2.924 0.805 0.661 1.006 0.035 0.136 1.513
ShallowWater 0.985 0.542 1.273 0.966 0.569 1.053 1.013 0.513 1.063 1.002 0.573 1.255 0.674 0.358 1.897
2D Diff-Reac 1.013 1.059 20.029 1.157 0.846 8.604 1.000 0.853 1.063 0.967 0.761 4.373 0.960 0.723 4.942

LA 0.493 0.489 3.552 0.993 0.789 2.563 0.944 0.713 3.320 1.077 0.780 2.499 0.581 0.516 2.325
SD 0.418 0.450 6.053 1.027 0.742 3.770 0.309 0.430 3.682 1.096 0.780 2.337 0.634 0.472 3.943

NYCTaxi 0.361 0.354 56.987 0.327 0.398 44.061 0.540 0.555 54.988 1.038 0.770 24.018 0.181 0.257 85.898
CHIBike 0.592 0.237 33.041 0.719 0.258 32.404 0.506 0.258 21.940 1.039 0.428 10.450 0.349 0.174 17.906
TDrive 0.302 0.290 16070.4 0.238 0.274 10110.9 0.461 0.459 28766.0 0.827 0.605 10122.5 0.119 0.169 15789.4

PEMS03 0.173 0.276 4.498 0.996 0.815 8.196 0.200 0.310 6.882 0.998 0.824 2.729 0.186 0.284 4.177
PEMS04 0.505 0.420 7.491 1.030 0.688 3.931 0.500 0.509 5.543 0.983 0.696 2.522 0.691 0.505 4.585
PEMS07 0.578 0.535 6.373 1.101 0.825 4.090 0.716 0.627 3.331 0.988 0.769 1.563 0.263 0.344 4.912
PEMS08 1.010 0.628 9.361 0.934 0.688 2.969 0.849 0.750 3.639 1.021 0.717 2.992 0.643 0.489 7.809
NOAA 0.503 0.521 11.201 0.585 0.570 19.107 0.585 0.572 2.905 0.957 0.712 5.669 0.362 0.432 19.468

Long-term Forecasting

System
GNS NDCN ST-GODE MT-GODE PDEDER

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

Mutualistic 0.989 0.774 5.493 0.913 0.807 2.590 1.034 0.885 1.686 0.999 0.857 1.082 0.809 0.675 2.859
Heat 0.176 0.336 1.497 0.516 0.586 19.415 0.724 0.700 15.172 0.973 0.838 9.610 0.006 0.052 3.930

2D CFD 0.238 0.313 39.102 0.440 0.425 12.810 0.573 0.437 1.703 0.378 0.348 14.149 0.152 0.236 1.808
DarcyFlow 0.163% 3.254% 3.827 0.505% 4.909% 21.042 0.150% 2.901% 7.479 0.856% 7.305% 29.049 0.072% 2.064% 1.457

Gene 0.200 0.283 3.064 0.640 0.636 2.128 0.979 0.789 2.268 0.991 0.761 1.445 0.076 0.172 1.994
ShallowWater 1.002 0.545 1.316 0.993 0.578 1.018 1.012 0.513 1.046 1.006 0.579 1.134 1.145 0.527 1.960
2D Diff-Reac 1.007 1.060 10.992 1.133 0.837 5.076 1.001 0.852 1.129 1.005 0.792 2.535 1.057 0.794 4.037

LA 0.487 0.484 3.267 0.995 0.788 2.696 0.883 0.707 3.035 0.963 0.747 1.731 0.571 0.510 2.033
SD 0.428 0.454 7.476 1.027 0.747 3.285 0.332 0.444 3.175 0.968 0.741 2.008 0.642 0.482 3.764

NYCTaxi 0.361 0.354 61.015 0.340 0.406 55.474 0.580 0.579 63.998 1.018 0.763 11.699 0.208 0.271 53.717
CHIBike 0.598 0.237 69.580 0.722 0.259 60.684 0.536 0.263 93.543 1.015 0.422 15.124 0.350 0.178 62.679
TDrive 0.367 0.332 18430.2 0.303 0.320 14311.6 0.520 0.468 24255.0 0.898 0.646 7457.8 0.161 0.194 15649.1

PEMS03 0.303 0.385 5.766 1.122 0.872 7.408 0.205 0.317 7.102 1.016 0.840 2.755 0.302 0.378 7.305
PEMS04 0.742 0.548 14.116 1.026 0.687 4.195 0.394 0.456 5.569 1.003 0.708 2.483 0.836 0.586 6.029
PEMS07 0.575 0.533 7.386 1.090 0.820 4.594 0.715 0.627 3.282 1.000 0.781 1.761 0.435 0.464 6.400
PEMS08 1.006 0.625 12.804 0.935 0.688 3.822 0.872 0.757 4.179 1.008 0.715 2.805 0.763 0.565 8.161
NOAA 0.782 0.655 14.856 0.855 0.691 21.577 0.712 0.636 3.695 1.007 0.741 6.280 0.699 0.607 22.449

5.2 MODELING DYNAMICS

In-domain Forecasting We first examine PDEDER by short/long-term forecasting on in-domain
settings against 4 baseline methods. We pre-train PDEDER on all 153 sets of observations and
fine-tune on one set of observations for each system. We examine the performance by MSE and
MAE. Due to the memory limitation, we compare with TANGO only on systems with less objects,
including LA, NYCTaxi, PEMS08 and NOAA. The average results of short/long-term forecasting
are presented in Table 2 and 6. The full results are presented in Appendix C. According to the
forecasting results, we can find that our PDEDER outperforms baseline methods in most settings and
improve the performance significantly. These observations directly indicate the effectiveness of our
PDEDER which can approximate hidden dynamics elegantly in the latent space.

Cross-domain Forecasting We examine the generalizability of our PDEDER on cross-domain set-
tings. We set two Leave-One-Out (LOO) cross-domain settings, leaving one system out and leaving
one set of hyper-parameters out. For LOO on system s, we pre-train PDEDER by observations ex-
cluding all sets of observations on system s and fine-tune on one set of observations of system s for
validation. For LOO on hyper-parameters, we pre-train PDEDER with observations excluding obser-
vations of a specific hyper-parameter Gm and fine-tune on Gm for validation. The two versions are
denoted as “PDEDER-sys” and “PDEDER-para”. We compare PDEDER with the two cross-domain
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Table 3: Average results of short/long-term forecasting comparing in-domain and cross-domain
settings. The best scores are in boldface. The dataset names are abbreviated for briefness. “N/A”
denotes the system contains no system-specific hyper-parameters. “%” denotes the results are scaled
by 1/100.

System
PDEDER PDEDER-sys PDEDER-para

short-term long-term short-term long-term short-term long-term
MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

Mutualistic 0.362 0.452 5.761 0.809 0.675 2.859 0.395 0.488 6.172 0.906 0.738 3.074 0.407 0.493 6.832 0.904 0.754 3.145
Heat 0.003 0.045 0.286 0.006 0.052 3.930 0.009 0.078 0.616 0.010 0.080 3.778 0.004 0.048 0.442 0.006 0.051 3.856

2D CFD 0.223 0.303 1.185 0.152 0.236 1.808 0.222 0.297 1.096 0.151 0.232 1.676 0.449 0.412 1.208 0.384 0.354 1.984
DarcyFlow 0.001 0.020 1.398 0.001 0.021 1.457 0.001 0.020 1.389 0.001 0.021 1.438 0.001 0.021 1.413 0.001 0.021 1.463

Gene 0.035 0.136 1.513 0.076 0.172 1.994 0.052 0.184 1.621 0.071 0.192 1.962 0.050 0.180 1.636 0.086 0.213 1.728
ShallowWater 0.674 0.358 1.897 1.145 0.527 1.960 0.773 0.368 1.304 1.032 0.464 1.448 N/A N/A N/A N/A N/A N/A
2D Diff-Reac 0.960 0.723 4.942 1.057 0.794 4.037 0.972 0.727 5.268 1.034 0.786 3.748 N/A N/A N/A N/A N/A N/A

LA 0.581 0.516 2.325 0.571 0.510 2.033 0.584 0.516 2.430 0.572 0.508 2.124 N/A N/A N/A N/A N/A N/A
SD 0.634 0.472 3.943 0.642 0.482 3.764 0.641 0.479 3.985 0.648 0.487 3.741 N/A N/A N/A N/A N/A N/A

NYCTaxi 0.181 0.257 85.898 0.208 0.271 53.717 0.192 0.266 87.668 0.217 0.278 54.779 N/A N/A N/A N/A N/A N/A
CHIBike 0.349 0.174 17.906 0.350 0.178 62.679 0.308 0.167 19.382 0.333 0.175 62.413 N/A N/A N/A N/A N/A N/A
Tdrive 0.119 0.169 15789.4 0.161 0.194 15649.1 0.118 0.171 16136.9 0.161 0.197 16000.9 N/A N/A N/A N/A N/A N/A

PEMS03 0.186 0.284 4.177 0.302 0.378 7.305 0.188 0.288 4.629 0.308 0.384 7.871 N/A N/A N/A N/A N/A N/A
PEMS04 0.691 0.505 4.585 0.836 0.586 6.029 0.681 0.497 4.555 0.832 0.583 6.104 N/A N/A N/A N/A N/A N/A
PEMS07 0.263 0.344 4.912 0.435 0.464 6.400 0.233 0.324 4.664 0.431 0.464 6.715 N/A N/A N/A N/A N/A N/A
PEMS08 0.643 0.489 7.809 0.763 0.565 8.161 0.639 0.490 8.181 0.762 0.566 8.305 N/A N/A N/A N/A N/A N/A
NOAA 0.362 0.432 19.468 0.699 0.607 22.449 0.373 0.440 20.447 0.707 0.607 22.387 0.364 0.430 20.960 0.832 0.639 23.498

versions and present the averaged results of short/long-term forecasting in Table 3. Detailed results
are presented in Appendix C. We can find that, the performance of in-domain setting outperforms the
cross-domain settings in most cases. Meanwhile, the performance of excluding one system also beat
the in-domain setting in some cases and the overall performance gaps are not too large. These phe-
nomena indicate the strong generalizability of our PDEDER, even pre-training under cross-domain
settings, our PDEDER can generate performance on a par with in-domain settings.

Impact Evaluation of Pre-training on downstream Dynamics Modeling We examine the im-
pact of pre-training on downstream dynamics modeling by modifying the initialization of the en-
coder and decoder when fine-tuning. We set two comparable versions, 1) initializing PDEDER by
pre-trained LM, denoted as “PDEDER w/o pre”; 2) initializing PDEDER by pre-trained

We conduct ablative study to examine the effectiveness of pre-training on PDEDER. We set two
ablative versions: 1) fine-tuning PDEDER without pre-training, denoted as “PDEDER w/o pre”; 2)
fine-tuning PDEDER with freezing the pre-trained encoder and decoder, denoted as “PDEDER freeze
Θ∗”. The averaged results are presented in Table 4 and full results are presented in Appendix C.
We can find that the full version with pre-training PDEDER consistently outperforms the ablative
versions, indicating the effectiveness of our pre-training mechanism on massive dynamics observa-
tions when learning hidden dynamics in latent space. Besides, we surprisingly find that the version
freezing the pre-trained encoder and decoder outperforms the version without pre-training in most
settings. This phenomena indicate that the pre-training processes can effectively capture the dy-
namics properties, leading to less efforts on fine-tuning processes when learning specific dynamics.
According to these results, our PDEDER can be directly adopted as an effective embedder on learn-
ing specific dynamics in real-world applications when fine-tuning are unavailable.

Forecasting Visualization We present forecasting visualizations on Heat and Mutualistic on vari-
ants of PDEDER and the results are presented in Fig. 2 3 of Appendix. We may find that our
PDEDER performs comparable dynamics behaviors against the ground-truth values.

Sensitivity Analysis WE conducted sensitivity analysis on the patch length and stride of fine-
tuning period on Mutualistic, Heat, DarcyFlow, Gene and 2D Diffusion-Reaction. The results are
presented in Fig. 4. We may find that the fine-tuning process are quite insensitive to these two
parameters, leading to robustness in practical usages.

Prediction of Incidence Proportion We evaluate the performance of prediction on incidence pro-
portions by MSE and MAE. Incidence Proportion (IP) Noordzij et al. (2010) measures the probabil-
ity of a special event (e.g., the infection of epidemic diseases) in a certain period. IP = De

Do
, where

De denotes the number of occurrence of a certain event; Do denotes the total number of monitored
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Table 4: Average forecasting results of MSE and MAE under on Impact Evaluation of Pre-training
on downstream Dynamics Modeling. The best scores are in boldface. The dataset names are abbre-
viated for briefness. “%” denotes the results are scaled by 1/100.

System
PDEDER PDEDER w/o pre PDEDER freeze Θ∗

short-term long-term short-term long-term short-term long-term
MSE MAE MARE MSE MAE MARE MSE MAE MARE MSE MAE MARE MSE MAE MARE MSE MAE MARE

Mutualistic 0.362 0.452 5.761 0.809 0.675 2.859 0.531 0.592 6.435 1.003 0.812 3.233 0.313 0.430 6.012 0.818 0.690 3.014
Heat 0.003 0.045 0.286 0.006 0.052 3.930 0.027 0.136 0.868 0.033 0.138 10.895 0.008 0.068 0.724 0.010 0.072 3.903

2D CFD 0.223 0.303 1.185 0.152 0.236 1.808 0.224 0.302 1.195 0.151 0.234 1.988 0.225 0.311 1.223 0.155 0.244 1.964
DarcyFlow 0.067% 2.016% 1.398 0.072% 2.064% 1.457 0.067% 2.023% 1.389 0.073% 2.086% 1.438 0.075% 2.108% 1.413 0.077% 2.141% 1.463

Gene 0.035 0.136 1.513 0.076 0.172 1.994 0.140 0.311 1.747 0.163 0.321 1.912 0.113 0.236 2.376 0.327 0.428 4.038
ShallowWater 0.674 0.358 1.897 1.145 0.527 1.960 1.000 0.416 1.091 1.057 0.437 1.122 0.754 0.371 1.244 1.034 0.478 1.456
2D Diff-Reac 0.960 0.723 4.942 1.057 0.794 4.037 0.981 0.737 5.265 1.006 0.777 3.523 0.958 0.730 4.634 1.009 0.778 3.372

LA 0.581 0.516 2.325 0.571 0.510 2.033 0.590 0.519 2.721 0.577 0.512 2.367 0.580 0.514 2.315 0.570 0.508 2.041
SD 0.634 0.472 3.943 0.642 0.482 3.764 0.666 0.500 4.093 0.675 0.509 3.733 0.642 0.480 4.007 0.652 0.490 3.805

NYCTaxi 0.181 0.257 85.898 0.208 0.271 53.717 0.188 0.265 87.134 0.219 0.284 55.841 0.212 0.297 64.056 0.224 0.286 47.551
CHIBike 0.349 0.174 17.906 0.350 0.178 62.679 0.510 0.212 23.712 0.414 0.191 76.088 0.417 0.194 18.753 0.388 0.185 61.128
Tdrive 0.119 0.169 15789.4 0.161 0.194 15649.1 0.165 0.214 19681.8 0.186 0.227 18089.6 0.152 0.194 15058.4 0.175 0.211 15216.5

PEMS03 0.186 0.284 4.177 0.302 0.378 7.305 0.202 0.311 4.729 0.333 0.408 8.353 0.186 0.295 4.488 0.302 0.382 7.392
PEMS04 0.691 0.505 4.585 0.836 0.586 6.029 0.703 0.520 5.121 0.875 0.609 6.799 0.678 0.500 4.574 0.835 0.587 6.115
PEMS07 0.263 0.344 4.912 0.435 0.464 6.400 0.302 0.386 5.670 0.494 0.509 7.513 0.238 0.326 5.077 0.426 0.461 6.547
PEMS08 0.643 0.489 7.809 0.763 0.565 8.161 0.670 0.525 9.137 0.824 0.607 9.616 0.641 0.489 7.956 0.759 0.564 8.247
NOAA 0.362 0.432 19.468 0.699 0.607 22.449 0.358 0.431 16.131 0.660 0.592 18.551 0.402 0.456 20.144 0.720 0.615 20.964

Table 5: Average results of predicted Incidence Proportion. The best scores are in boldface.

Method
PEMS03 PEMS04 PEMS07 PEMS08

short long short long short long short long

NDCN 0.012 0.010 0.020 0.020 0.026 0.024 0.017 0.016
MTGODE 0.043 0.035 0.248 0.230 0.893 0.774 1.066 0.868
TANGO OOM OOM OOM OOM OOM OOM 5.210 6.646
PDEDER 0.005 0.005 0.017 0.017 0.008 0.009 0.012 0.010

subjects in the specified period. Following this, on traffic datasets, we calculate IP of traffice flows
for each time point. We assign the object state at each time point to De and assign the states sum-
mation of all objects at one time point to Do. We measure the predicted IP by MAE and the results
are illustrated in Table 5. We can find that our PDEDER significantly outperforms baseline meth-
ods in all settings. This indicate that our PDEDER can serve as an effective forecaster for instance
monitoring and warning in real-world applications.

6 CONCLUSION

In this paper, we propose a generalized pre-trained dynamics encoder PDEDER to learn generaliz-
able embeddings for learning specific dynamics. During pre-training, we first collect 153 sets of
dynamics observations from both synthetic and real-world systems. Then we pre-train a PLM-based
PDEDER with all available observations by reconstructing and forecasting tasks to learn dynamics-
enriched embeddings for each of the observations. Specifically, we introduce a data projection
module for aligning states dimensions from different systems before the encoder. We also present
the usage of fine-tuning PDEDER to learn specific dynamics. We encode the initial states by the
pre-trained PDEDER and learn dynamics in latent space by a GNN-based ODE learner. We con-
ducted empirical studies on short/long-term forecasting under in-domain and cross-domain settings.
The results indicate the effectiveness and generality of our PDEDER. Specially, when freezing the
pre-trained encoder (decoder) in fine-tuning, our PDEDER can also generate excellent performance,
further indicating that PDEDER can serve as an effective embedder when fine-tuning are unavailabel.

REFERENCES

Uri Alon. An introduction to systems biology: Design principles of biological circuits. 2006.

Amir Bashan, Travis E Gibson, Jonathan Friedman, Vincent J Carey, Scott T Weiss, Elizabeth L
Hohmann, and Yang-Yu Liu. Universality of human microbial dynamics. Nature, 534(7606):
259–262, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

William E Boyce, Richard C DiPrima, and Douglas B Meade. Elementary differential equations
and boundary value problems. John Wiley & Sons, 2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2021.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Aligning pre-trained
llms as data-efficient time-series forecasters. arXiv preprint arXiv:2308.08469, 2024.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation research record, 1748
(1):96–102, 2001.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances In Neural Information Processing Systems, 31, 2018.

Hwangyong Choi, Jeongwhan Choi, Jeehyun Hwang, Kookjin Lee, Dongeun Lee, and Noseong
Park. Climate modeling with neural advection–diffusion equation. Knowledge and Information
Systems, 65(6):2403–2427, 2023.

John R Dormand. Numerical methods for differential equations: a computational approach. CRC
press, 2018.

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks
for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 364–373, 2021.
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GENERALIZING DYNAMICS MODELING EASIER FROM REPRESENTATION
PERSPECTIVE: APPENDIX

A DYNAMICS

We introduce the dynamics we adopted for generating observations and the descriptions on synthetic
systems.

Charged Similar to the Springs dataset, the Charged dataset Kipf et al. (2018) simulates the mo-
tion of charges in a two-dimensional bounded space. Five charges interact with each other through
Coulomb forces, with the magnitude of the force being influenced by the distance between the
charges. The expression for the Coulomb force is as follows, where C is a constant.

Fij = C · sign(qi · qj)
ri − rj

∥ri − rj∥3
. (7)

Springs Five particles move in a two-dimensional bounded space without external forces Kipf
et al. (2018). The probability of randomly connecting each pair of particles with a spring is 0.5.
Particles connected by springs will be influenced by Hooke’s law Fm,n = −k(rm − rn), where
Fm,n is the force exerted by particle vm on particle vn, and rm is the position vector of particle vm.
The initial position of each particle is sampled from N(0, 0.5), and the initial velocity is a random
vector with a norm of 0.5.

Mutualistic Interaction Dynamics In the field of ecology, species interact with each other, and
the expression Gao et al. (2016) is given as below :

dxi(t)

dt
= bi + xi

(
1− xi

ki

)(
xi

ci
− 1

)
+

n∑
j=1

Ai,j
xixj

di + eixi + hjxj
. (8)

We denote xi represents the abundance of species i, bi denotes the immigration term, ki represents
the logarithmic growth of population capacity, ci indicates the Allee effect with a cold-start thresh-
old, and A is the interaction network with interaction terms.

Heat Diffusion The heat diffusion dynamics is governed by Newton’s law of cooling v Luikov
(2012). The expression is given as below:

dxt
n

dt
= −knn′

∑
n′∈N (n)

Ann′(xn − xn′). (9)

Let A denotes the heat capacity matrix, for object n, the corresponding heat change is proportional
to the temperature differences between object n and its corresponding neighbor objects n′ ∈ N (n).

1D Diffusion-Reaction In the one-dimensional diffusion-reaction equation Takamoto et al.
(2022),with the specific expression as follows:

∂tu(t, x)− ν∂xxu(t, x)− ρu(1− u) = 0, x ∈ (0, 1), t ∈ (0, 1],

u(0, x) = u0(x), x ∈ (0, 1).
(10)

In the equation, the variable u is used to represent the ability to capture fast dynamics, where peri-
odicity and initial conditions known to the advection equation are used

Compressible Navier-Stokes The flow of compressible fluids is generally represented by com-
pressible fluid dynamics equations Klaasen & Troy (1984), which are expressed as follows:

∂tρ+∇ · (ρv) = 0,

ρ(∂tv + v · ∇v) = −∇p+ η∆v +
(
ζ +

η

3

)
∇(∇ · v),

∂t

[
ϵ+

ρv2

2

]
+∇ ·

[(
ϵ+ p+

ρv2

2

)
v − v · σ

]
= 0,

(11)
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where ρ represents mass density, v denotes velocity, p is the pressure, ϵ signifies internal energy, σ
represents the viscous tensor, η is the shear viscosity, ζ is the bulk viscosity, and M = |v|

cs
denotes

the Mach number. Following Takamoto et al. (2022), we abbreviate this dynamics as “CFD” for
briefness.

Burgers The Burgers’ equation is used to describe nonlinear behavior and diffusion processes in
fluid dynamics Takamoto et al. (2022). Define the specific equation as follows:

∂tu(t, x) + ∂x

(
u2(t, x)

2

)
=
ν

π
∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2],

u(0, x) = u0(x), x ∈ (0, 1).

(12)

Here, v is the diffusion coefficient, which is a constant, and the same initial conditions as those used
for advection are applied.

Advection The advection equation is used to simulate nonlinear advection behavior Takamoto
et al. (2022). The specific equation is as follows:

∂tu(t, x) + β∂xu(t, x) = 0, x ∈ (0, 1), t ∈ (0, 2],

u(0, x) = u0(x), x ∈ (0, 1).
(13)

Set β as the advection velocity, using the sine wave’s hyperposition as the initial condition u0(x).

Gene Regulatory The dynamics of gene regulation are governed by the Michaelis-Menten equa-
tion, as specifically shown below Gao et al. (2016).

dxn(t)

dt
= −bnxf

n +

m∑
n′=1

An,n′
xn′ h

xh
n′ + 1

. (14)

In the first term, f takes the values of 1 or 2, representing degradation and dimerization, respectively.
The second term reflects genetic activation regulated by the Hill coefficient h Alon (2006).

Shallow-Water The architectures chosen to simulate free surface flow problems are mostly de-
rived from the Navier-Stokes equations. The specific equation is shown below:

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
u2h+

1

2
grh

2

)
+ ∂y(uvh) = −grh∂xb,

∂t(hv) + ∂y

(
v2h+

1

2
grh

2

)
+ ∂x(uvh) = −grh∂yb,

(15)

where u and v represent the horizontal and vertical velocities, respectively, h denotes the water
depth, b indicates spatial variations, and gr is the gravitational acceleration. The terms hu and hv
represent the components of momentum in the horizontal and vertical directions Takamoto et al.
(2022).

2D Diffusion-Reaction The diffusion-reaction equation in two-dimensional space is defined as
follows Takamoto et al. (2022):

∂tu = Du∂xxu+Du∂yyu+Ru,

∂tv = Dv∂xxv +Dv∂yyv +Rv,
(16)

where the activator is represented by u and the inhibitor by v. Du and Dv are the diffusion co-
efficients for both, while Ru and Rv are the reaction functions Klaasen & Troy (1984), which are
defined as follows:

Ru(u, v) = u− u3 − k − v,

Rv(u, v) = u− v.
(17)

We set the constants k = 5× 10−3, Du = 1× 10−3, Dv = 5× 10−3.
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Diffusion-Sorption The diffusion process delayed by adsorption is typically described by the
diffusion-adsorption equation. The equation is defined as follows:

∂tu(t, x) =
D

R(u)
∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 500],

R(u) = 1 +
1− φ

φ
ρsknfu

nf−1,

(18)

where D represents the diffusion coefficient, while R denotes the delay factor of adsorption that
hinders the diffusion process, with the value ofR being dependent on u. The parameterϖ represents
the porosity of the porous medium, ρs represents the packing density, k is the Freundlich parameter,
and n is the Freundlich index Limousin et al. (2007).

LA and SD The dataset collected hourly climate observation data for six consecutive days in Los
Angeles and San Diego (from June 28, 2012, at 21:00 to July 14, 2012, at 22:00), with each node
containing 10 observation values Choi et al. (2023). The interaction graph structures are provided
by the original datasets.

NYCTaxi ,TDrive and CHIBike The NYCTaxi dataset Liu et al. (2021) contains bicycle trajec-
tory data for 182 days in New York City, along with 4,392 traffic flow images.The TDrive dataset
Liu et al. (2021) contains a large number of GPS trajectories from taxis in Beijing, along with 22,459
traffic flow images. The CHIBike dataset is sourced fromWang et al. (2021). The interaction graph
structures are calculated by the geometry coordinate or grid distances between each station.

PEMS The PeMS dataset is real-world traffic data collected by the California Department of
Transportation Chen et al. (2001) and contains three traffic measurements, separated at five-minute
intervals. The interaction graph structures are provided by the original datasets.

NOAA Following Hwang et al. (2021), we randomly select 22 areas on the map of America and
collect hourly temperatures from Online Climate Data Directory of the National Oveanic and Atmo-
spheric Administration (NOAA)1. The interaction graph structures are calculated by the geometry
coordinate distances between each station.

B BASELINE METHODS

Details of baseline methods are listed below:

• GNS2 Sanchez-Gonzalez et al. (2020) is a discrete GNN-based dynamics modeling
method. We modify the graph learning module into static graph structures.

• NDCN3 Zang & Wang (2020) combines the ODEs with GNNs and approximate the inte-
gration differential equation systems by the GNN module. In testing, we set the state of the
last time point of training observations as the initial states to forecast the test observations.
We set the state of the last time point of training observations as the initial states for testing.

• STGODE4 Fang et al. (2021) incorporates the geometry spatial information into contin-
uous dynamics learning. STGODE constructs two types of graphs, including spatial and
semantic correlations to capture the spatial temporal semantics by a continuous GNN with
residual connections.

• MT-GODE5 Jin et al. (2022) solves the multivariate time series forecasting by mapping
the interacting observations into dynamic-graph and solve by learning continuous spatial-
temporal dynamics in latent space. We adopt the single-step forecasting setting.

1https://www.ncdc.noaa.gov/cdo-web/
2https://github.com/zhouxian/GNS-PyTorch
3https://github.com/calvin-zcx/ndcn
4https://github.com/square-coder/STGODE
5https://github.com/TrustAGI-Lab/MTGODE
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Table 6: Average results of short/long-term forecasting comparing with TANGO. Due to the memory
limitation, we compare with TANGO only on systems with less objects. The best scores are in
boldface.

System
TANGO PDEDER

short-term long-term short-term long-term
MSE MAE MSE MAE MSE MAE MSE MAE

LA 0.761 0.685 0.699 0.649 0.574 0.509 0.561 0.502
NYCTaxi 1.051 0.793 2.459 1.207 0.184 0.261 0.208 0.273
CHIBike 0.453 0.391 1.231 0.621 0.339 0.174 0.345 0.178
PEMS08 1.034 0.810 2.878 1.233 0.639 0.489 0.765 0.568
NOAA 1.064 0.809 1.965 1.031 0.351 0.422 0.687 0.597

Table 7: Average results of short/long-term forecasting comparing fine-tuning PDEDER by GNN-
based module and SINGy. The best scores are in boldface.

System
PDEDER PDEDER +SINDy

short-term long-term short-term long-term
MSE MAE MSE MAE MSE MAE MSE MAE

Mutualistic 0.362 0.452 0.809 0.675 1.014 1.014 0.334 0.334
Heat 0.003 0.045 0.006 0.052 0.886 0.884 1.577 1.586

2D CFD 0.223 0.303 0.152 0.236 1.001 0.984 1.139 1.164
DarcyFlow 0.001 0.020 0.001 0.021 0.858 0.851 1.103 1.104

Gene 0.035 0.136 0.076 0.172 0.613 0.537 0.783 0.783
Shallow Water 0.674 0.358 1.145 0.527 0.538 0.463 1.040 1.047
2D DiffReac 0.960 0.723 1.057 0.794 0.126 0.126 0.807 0.808

• TANGO6 Huang et al. (2024b) introduce time-reversal symmetry into GNN-based ODE
learner and models the observations and reversed observations simultaneously. In the pe-
riod of model training, we set the observations of the first 60 lengths as observed states to
forecast the latter 60 observations. In model testing, we set the last 40 lengths of training
observations as observed initial states to forecast the test observations. Specially, due to the
memory limitation, we only compare with TANGO on systems with less objects.

C FULL RESULTS OF SHORT/LONG-TERM FORECASTING

The full results for forecasting are presented in Tables 8,9, 10, 11, including the variants results and
cross-domain results. The variant without pre-training of PDEDER is denoted as “PDEDER-nopre”.
The variant freezes the encoder/decoder of PDEDER is denoted as “PDEDER-frz”. The variant pre-
trains PDEDER excluding one system on cross-domain setting is denoted as “PDEDER-sys”

6https://github.com/wanjiaZhao1203/TREAT
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Table 8: Full results of short/long-term forecasting comparing with baselines (1/2). The best scores
are in boldface. The dataset names are abbreviated for briefness. “%” denotes the results are scaled
by 1/100.

System
NDCN GNS ST-GODE MT-GODE PDEDER

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

Mutualistic

10% 0.166 0.338 1.031 0.328 0.475 2.840 1.064 0.909 2.875 0.947 0.792 1.297 0.276 0.386 5.702
20% 0.399 0.498 2.402 0.520 0.609 4.281 1.051 0.894 2.584 0.976 0.769 1.302 0.448 0.518 5.820
50% 0.886 0.733 5.202 0.855 0.770 3.221 1.040 0.878 1.985 0.998 0.833 1.118 0.750 0.656 3.675
70% 0.984 0.773 5.361 0.912 0.806 2.599 1.035 0.884 1.690 0.997 0.856 1.082 0.813 0.679 2.879
80% 1.017 0.785 5.391 0.930 0.817 2.405 1.033 0.887 1.598 0.998 0.864 1.071 0.829 0.683 2.625
100% 1.069 0.806 6.017 0.956 0.833 2.134 1.029 0.890 1.470 1.002 0.877 1.058 0.844 0.683 2.259

Heat

10% 0.112 0.284 0.542 0.483 0.545 2.613 0.668 0.661 3.114 0.877 0.774 1.847 0.003 0.045 0.307
20% 0.114 0.276 0.478 0.498 0.558 3.192 0.683 0.672 4.511 0.943 0.817 2.088 0.003 0.045 0.264
50% 0.135 0.290 0.920 0.512 0.579 9.268 0.710 0.690 8.326 0.967 0.834 8.384 0.004 0.048 0.885
70% 0.161 0.321 1.418 0.518 0.587 19.715 0.727 0.702 15.480 0.978 0.841 9.091 0.005 0.051 3.719
80% 0.180 0.343 1.644 0.519 0.589 22.421 0.730 0.704 17.535 0.980 0.842 9.893 0.006 0.052 4.536
100% 0.227 0.392 2.008 0.516 0.589 26.257 0.729 0.705 19.346 0.968 0.836 11.070 0.009 0.059 6.581

2D CFD

10% 0.308 0.390 28.476 0.486 0.483 8.452 0.575 0.439 1.544 0.611 0.457 12.435 0.230 0.309 1.158
20% 0.295 0.376 34.153 0.494 0.480 8.384 0.557 0.429 1.492 0.480 0.406 12.285 0.216 0.296 1.212
50% 0.260 0.339 39.077 0.465 0.449 11.434 0.553 0.425 1.671 0.403 0.368 13.364 0.177 0.261 1.539
70% 0.241 0.317 37.658 0.444 0.429 12.306 0.564 0.432 1.697 0.377 0.348 12.581 0.155 0.240 1.715
80% 0.232 0.307 38.380 0.434 0.419 12.745 0.579 0.441 1.727 0.370 0.341 14.436 0.146 0.230 1.861
100% 0.218 0.288 41.295 0.415 0.401 14.753 0.598 0.452 1.717 0.363 0.335 16.217 0.130 0.212 2.118

DarcyFlow

10% 0.241% 4.178% 1.069 0.532% 4.981% 21.489 0.192% 3.404% 10.887 0.522% 5.580% 21.086 0.065% 1.998% 1.404
20% 0.226% 4.008% 1.084 0.516% 4.939% 20.680 0.197% 3.272% 9.532 0.797% 6.848% 26.700 0.069% 2.034% 1.392
50% 0.186% 3.545% 1.169 0.507% 4.914% 21.351 0.162% 2.992% 7.970 0.845% 7.193% 28.617 0.072% 2.063% 1.486
70% 0.166% 3.288% 1.308 0.505% 4.909% 20.978 0.148% 2.888% 7.462 0.857% 7.320% 28.951 0.072% 2.065% 1.468
80% 0.157% 3.180% 1.452 0.505% 4.908% 21.000 0.148% 2.887% 7.384 0.897% 7.497% 29.882 0.072% 2.065% 1.449
100% 0.144% 3.004% 11.379 0.504% 4.906% 20.839 0.142% 2.836% 7.100 0.825% 7.211% 28.746 0.072% 2.065% 1.426

Gene

10% 0.038 0.100 0.645 0.596 0.633 1.854 0.841 0.764 2.838 0.752 0.618 0.974 0.033 0.135 1.528
20% 0.053 0.132 0.870 0.636 0.654 1.984 0.841 0.746 3.010 0.858 0.705 1.038 0.036 0.138 1.499
50% 0.121 0.220 2.048 0.648 0.650 2.199 0.901 0.762 2.332 0.977 0.760 1.567 0.052 0.152 1.796
70% 0.182 0.273 2.897 0.643 0.639 2.136 0.961 0.782 2.207 0.990 0.763 1.451 0.069 0.167 1.928
80% 0.214 0.297 3.346 0.639 0.633 2.067 0.994 0.793 2.252 0.998 0.763 1.406 0.079 0.176 1.985
100% 0.283 0.342 3.966 0.631 0.622 2.111 1.062 0.818 2.282 0.997 0.758 1.357 0.103 0.194 2.268

ShallowWater

10% 0.982 0.541 0.804 0.955 0.565 1.057 1.012 0.515 0.893 0.998 0.571 1.306 0.582 0.327 1.611
20% 0.988 0.542 1.741 0.978 0.572 1.049 1.014 0.510 1.232 1.005 0.576 1.204 0.766 0.389 2.183
50% 0.997 0.544 1.303 0.991 0.577 1.023 1.012 0.514 1.021 1.006 0.580 1.132 1.085 0.500 1.930
70% 1.001 0.545 1.334 0.993 0.578 1.019 1.012 0.514 1.033 1.006 0.578 1.125 1.152 0.529 1.938
80% 1.003 0.545 1.273 0.994 0.578 1.017 1.013 0.513 1.008 1.006 0.579 1.120 1.165 0.536 1.866
100% 1.006 0.545 1.355 0.995 0.579 1.015 1.012 0.513 1.122 1.006 0.579 1.158 1.179 0.543 2.106

2D DiffReac

10% 1.013 1.061 24.661 1.168 0.850 10.476 1.000 0.854 1.046 0.949 0.747 5.338 0.945 0.715 4.918
20% 1.012 1.057 15.398 1.146 0.841 6.732 1.001 0.853 1.080 0.985 0.775 3.408 0.975 0.731 4.965
50% 1.006 1.060 11.152 1.135 0.837 5.386 1.001 0.852 1.108 1.000 0.789 2.744 1.061 0.789 4.292
70% 1.007 1.060 11.343 1.133 0.837 5.156 1.001 0.852 1.146 1.006 0.792 2.576 1.053 0.792 4.123
80% 1.007 1.060 11.107 1.132 0.836 4.989 1.001 0.852 1.135 1.007 0.793 2.433 1.055 0.795 3.984
100% 1.006 1.061 10.366 1.131 0.836 4.775 1.001 0.852 1.128 1.008 0.794 2.387 1.061 0.800 3.751

LA

10% 0.486 0.485 3.696 0.992 0.789 2.552 0.936 0.701 3.387 1.126 0.794 2.873 0.581 0.516 2.405
20% 0.500 0.494 3.408 0.994 0.789 2.574 0.953 0.725 3.252 1.027 0.766 2.126 0.582 0.516 2.245
50% 0.491 0.488 3.405 0.995 0.789 2.625 0.910 0.716 3.133 0.971 0.750 1.780 0.575 0.512 2.087
70% 0.486 0.484 3.338 0.995 0.788 2.666 0.883 0.706 3.092 0.963 0.747 1.719 0.572 0.510 2.039
80% 0.487 0.484 3.234 0.995 0.788 2.793 0.879 0.707 3.007 0.961 0.746 1.718 0.570 0.509 2.019
100% 0.483 0.481 3.090 0.995 0.787 2.700 0.861 0.701 2.907 0.957 0.745 1.707 0.568 0.508 1.988

SD

10% 0.408 0.443 5.532 1.027 0.741 4.052 0.304 0.427 3.838 1.149 0.797 2.285 0.634 0.472 2.958
20% 0.429 0.456 6.573 1.027 0.743 3.489 0.314 0.434 3.526 1.043 0.763 2.388 0.634 0.473 4.927
50% 0.425 0.454 7.190 1.027 0.746 3.391 0.319 0.434 3.228 0.980 0.746 2.113 0.639 0.478 4.018
70% 0.424 0.453 7.637 1.027 0.747 3.241 0.330 0.444 3.120 0.968 0.742 1.976 0.642 0.481 3.749
80% 0.430 0.456 7.557 1.027 0.748 3.225 0.335 0.446 3.084 0.966 0.741 2.014 0.643 0.483 3.677
100% 0.431 0.455 7.520 1.026 0.747 3.282 0.345 0.453 3.267 0.958 0.736 1.929 0.644 0.484 3.613

NYCTaxi

24 0.360 0.354 72.023 0.323 0.396 51.990 0.510 0.533 69.029 1.057 0.776 30.944 0.174 0.252 112.286
48 0.361 0.354 41.951 0.330 0.400 36.132 0.570 0.577 40.947 1.019 0.765 17.091 0.189 0.261 59.510
96 0.362 0.354 51.430 0.336 0.403 43.938 0.569 0.574 43.910 1.023 0.766 13.353 0.196 0.265 58.008
192 0.361 0.354 58.848 0.341 0.407 53.038 0.574 0.573 71.913 1.015 0.763 10.608 0.208 0.271 50.885
336 0.360 0.353 69.981 0.341 0.407 62.130 0.588 0.584 70.197 1.016 0.762 11.105 0.210 0.271 49.687
720 0.360 0.353 63.802 0.341 0.407 62.789 0.589 0.585 69.971 1.018 0.761 11.730 0.216 0.276 56.289

CHBike

24 0.586 0.236 11.287 0.719 0.259 15.736 0.483 0.253 20.722 1.033 0.427 13.046 0.348 0.172 17.738
48 0.598 0.238 54.795 0.720 0.258 49.071 0.528 0.263 23.159 1.044 0.429 7.855 0.350 0.177 18.073
96 0.600 0.238 40.558 0.720 0.258 39.272 0.533 0.261 62.846 1.026 0.426 14.586 0.349 0.176 45.471
192 0.597 0.237 54.833 0.721 0.259 53.351 0.536 0.263 76.555 1.016 0.423 15.592 0.347 0.175 57.547
336 0.597 0.236 72.382 0.722 0.259 60.742 0.538 0.265 98.041 1.011 0.421 13.229 0.344 0.174 61.071
720 0.600 0.237 110.547 0.723 0.259 89.368 0.538 0.264 136.728 1.006 0.416 17.090 0.361 0.187 86.629
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Table 9: Full results of short/long-term forecasting comparing with baselines (2/2). The best scores
are in boldface. The dataset names are abbreviated for briefness. “%” denotes the results are scaled
by 1/100.

System
NDCN GNS ST-GODE MT-GODE PDEDER

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

TDrive

24 0.292 0.283 15736.0 0.225 0.266 7574.2 0.431 0.446 27129.3 0.814 0.595 10453.3 0.116 0.168 15286.5
48 0.311 0.297 16404.9 0.250 0.283 12647.7 0.491 0.471 30402.6 0.841 0.615 9791.7 0.121 0.169 16292.3
96 0.328 0.309 16976.4 0.269 0.296 15117.7 0.483 0.461 28853.0 0.858 0.622 10139.2 0.132 0.175 17015.3
192 0.345 0.318 18483.8 0.284 0.306 14503.9 0.494 0.463 26906.7 0.880 0.635 8501.7 0.142 0.180 16026.1
336 0.373 0.333 18978.9 0.309 0.324 14032.6 0.530 0.473 23672.2 0.905 0.651 6640.1 0.163 0.194 14970.5
720 0.421 0.367 19281.9 0.350 0.352 13592.2 0.574 0.476 17588.1 0.947 0.675 4550.2 0.205 0.226 14584.5

PEMS03

24 0.148 0.254 2.772 0.969 0.803 8.454 0.199 0.309 6.150 0.980 0.814 2.181 0.158 0.261 3.235
48 0.198 0.297 6.223 1.022 0.826 7.937 0.200 0.311 7.615 1.016 0.835 3.276 0.213 0.306 5.120
96 0.264 0.352 5.665 1.088 0.856 7.184 0.203 0.315 6.767 1.005 0.833 2.787 0.283 0.361 6.089
192 0.317 0.395 6.167 1.141 0.881 7.096 0.206 0.319 6.655 1.014 0.839 3.075 0.328 0.398 8.279
336 0.298 0.381 5.582 1.120 0.871 6.993 0.205 0.317 7.959 1.022 0.843 2.689 0.287 0.366 7.562
720 0.335 0.411 5.651 1.138 0.879 8.358 0.205 0.317 7.027 1.024 0.844 2.469 0.311 0.389 7.290

PEMS04

24 0.465 0.396 6.577 1.032 0.689 4.049 0.534 0.526 4.554 0.980 0.694 2.481 0.663 0.488 4.007
48 0.545 0.443 8.405 1.029 0.688 3.813 0.466 0.493 6.532 0.986 0.699 2.563 0.719 0.521 5.163
96 0.655 0.504 11.508 1.027 0.687 4.201 0.408 0.462 5.515 0.994 0.704 2.444 0.803 0.568 6.158
192 0.751 0.557 12.697 1.026 0.687 4.092 0.393 0.455 5.551 1.003 0.708 2.384 0.874 0.607 6.079
336 0.741 0.547 14.319 1.026 0.687 4.168 0.394 0.456 5.520 1.008 0.710 2.596 0.829 0.581 5.964
720 0.822 0.584 17.939 1.026 0.687 4.317 0.382 0.450 5.688 1.008 0.710 2.508 0.840 0.586 5.916

PEMS07

24 0.579 0.536 6.308 1.104 0.826 4.080 0.717 0.627 3.342 0.987 0.766 1.575 0.226 0.318 4.472
48 0.578 0.535 6.438 1.098 0.824 4.099 0.716 0.627 3.320 0.989 0.772 1.551 0.300 0.370 5.353
96 0.574 0.532 7.255 1.092 0.821 4.455 0.715 0.627 3.070 1.000 0.779 1.663 0.402 0.439 6.687
192 0.574 0.533 7.332 1.090 0.820 4.471 0.715 0.627 3.439 1.002 0.781 1.796 0.479 0.493 6.500
336 0.576 0.533 7.349 1.089 0.819 4.663 0.714 0.626 3.359 0.999 0.781 1.817 0.418 0.454 5.771
720 0.575 0.533 7.609 1.088 0.819 4.788 0.714 0.626 3.259 1.000 0.782 1.767 0.439 0.472 6.644

PEMS08

24 1.009 0.628 8.452 0.933 0.688 2.788 0.853 0.751 3.725 1.024 0.718 3.145 0.623 0.476 8.177
48 1.011 0.628 10.270 0.934 0.688 3.150 0.845 0.748 3.553 1.018 0.717 2.839 0.663 0.503 7.441
96 1.011 0.628 11.651 0.935 0.688 3.638 0.862 0.753 4.006 1.009 0.715 2.619 0.729 0.544 7.716
192 1.004 0.625 14.057 0.935 0.688 3.887 0.879 0.759 4.162 1.004 0.714 2.768 0.791 0.582 8.775
336 1.003 0.624 13.029 0.935 0.688 3.784 0.872 0.756 4.040 1.008 0.715 2.721 0.768 0.569 8.102
720 1.007 0.625 12.479 0.935 0.687 3.977 0.876 0.758 4.507 1.012 0.716 3.111 0.765 0.567 8.050

NOAA

24 0.485 0.510 8.817 0.567 0.560 17.798 0.578 0.568 3.129 0.952 0.708 5.074 0.324 0.408 17.031
48 0.521 0.532 13.585 0.603 0.580 20.415 0.592 0.575 2.682 0.962 0.717 6.263 0.399 0.456 21.904
96 0.622 0.584 15.519 0.700 0.626 22.065 0.648 0.604 2.853 0.990 0.730 5.623 0.533 0.524 26.829
192 0.828 0.677 15.616 0.900 0.710 21.805 0.727 0.643 4.433 1.005 0.739 6.472 0.684 0.597 24.321
336 0.840 0.681 14.823 0.914 0.715 21.309 0.738 0.649 3.735 1.014 0.745 6.714 0.742 0.629 22.113
720 0.839 0.677 13.466 0.907 0.711 21.129 0.738 0.648 3.760 1.020 0.751 6.312 0.835 0.678 16.534

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Full results of short/long-term forecasting on variants of PDEDER (1/2). The best scores
are in boldface. The dataset names are abbreviated for briefness. “%” denotes the results are scaled
by 1/100.

System
PDEDER PDEDER-nopre PDEDER-frz PDEDER-sys

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

Mutualistic

10% 0.276 0.386 5.702 0.420 0.516 6.379 0.213 0.356 5.949 0.298 0.415 6.136
20% 0.448 0.518 5.820 0.642 0.669 6.491 0.414 0.504 6.075 0.491 0.562 6.208
50% 0.750 0.656 3.675 0.971 0.805 4.140 0.774 0.678 3.896 0.840 0.718 3.947
70% 0.813 0.679 2.879 1.008 0.819 3.256 0.827 0.698 3.040 0.915 0.745 3.097
80% 0.829 0.683 2.625 1.014 0.817 2.972 0.836 0.698 2.762 0.931 0.747 2.824
100% 0.844 0.683 2.259 1.020 0.808 2.564 0.835 0.687 2.359 0.939 0.742 2.430

Heat

10% 0.003 0.045 0.307 0.027 0.135 0.910 0.008 0.068 0.782 0.009 0.078 0.639
20% 0.003 0.045 0.264 0.027 0.136 0.825 0.007 0.067 0.667 0.009 0.078 0.593
50% 0.004 0.048 0.885 0.030 0.136 3.643 0.008 0.064 1.438 0.009 0.079 1.298
70% 0.005 0.051 3.719 0.031 0.136 12.385 0.009 0.067 3.055 0.010 0.079 3.448
80% 0.006 0.052 4.536 0.032 0.137 13.063 0.010 0.072 3.975 0.010 0.079 4.136
100% 0.009 0.059 6.581 0.037 0.142 14.490 0.015 0.086 7.144 0.012 0.082 6.230

2D CFD

10% 0.230 0.309 1.158 0.231 0.309 1.170 0.232 0.317 1.196 0.229 0.303 1.069
20% 0.216 0.296 1.212 0.217 0.296 1.221 0.218 0.304 1.249 0.215 0.291 1.122
50% 0.177 0.261 1.539 0.179 0.261 1.704 0.180 0.270 1.734 0.176 0.256 1.389
70% 0.155 0.240 1.715 0.158 0.241 1.878 0.158 0.249 1.872 0.154 0.236 1.590
80% 0.146 0.230 1.861 0.149 0.231 2.044 0.149 0.239 2.003 0.145 0.226 1.731
100% 0.130 0.212 2.118 0.119 0.205 2.325 0.133 0.221 2.248 0.129 0.209 1.993

DarcyFlow

10% 0.065% 1.998% 1.404 0.092% 2.338% 3.679 0.077% 2.140% 2.333 0.065% 2.002% 1.376
20% 0.069% 2.034% 1.392 0.090% 2.307% 3.131 0.078% 2.154% 2.316 0.069% 2.044% 1.401
50% 0.072% 2.063% 1.486 0.086% 2.256% 2.156 0.080% 2.176% 2.479 0.072% 2.079% 1.476
70% 0.072% 2.065% 1.468 0.085% 2.236% 2.059 0.080% 2.180% 2.538 0.073% 2.086% 1.445
80% 0.072% 2.065% 1.449 0.085% 2.231% 2.079 0.080% 2.181% 2.549 0.073% 2.088% 1.428
100% 0.072% 2.065% 1.426 0.084% 2.224% 2.227 0.080% 2.180% 2.594 0.074% 2.092% 1.405

Gene

10% 0.033 0.135 1.528 0.138 0.309 1.790 0.101 0.224 2.342 0.051 0.183 1.652
20% 0.036 0.138 1.499 0.141 0.312 1.704 0.124 0.248 2.409 0.053 0.185 1.590
50% 0.052 0.152 1.796 0.151 0.319 1.817 0.219 0.344 3.461 0.058 0.184 1.784
70% 0.069 0.167 1.928 0.159 0.320 1.873 0.303 0.414 3.963 0.066 0.188 1.891
80% 0.079 0.176 1.985 0.163 0.320 1.894 0.348 0.447 4.092 0.073 0.193 1.928
100% 0.103 0.194 2.268 0.177 0.324 2.066 0.438 0.508 4.638 0.089 0.204 2.243

ShallowWater

10% 0.582 0.327 1.611 0.994 0.415 0.732 0.713 0.356 0.923 0.733 0.353 0.965
20% 0.766 0.389 2.183 1.006 0.418 1.450 0.794 0.385 1.565 0.813 0.382 1.643
50% 1.085 0.500 1.930 1.044 0.434 1.071 0.985 0.458 1.406 0.985 0.445 1.406
70% 1.152 0.529 1.938 1.057 0.438 1.065 1.036 0.480 1.421 1.033 0.466 1.409
80% 1.165 0.536 1.866 1.061 0.439 1.038 1.050 0.485 1.380 1.047 0.471 1.364
100% 1.179 0.543 2.106 1.066 0.440 1.315 1.066 0.490 1.620 1.063 0.475 1.612

2D DiffReac

10% 0.945 0.715 4.918 0.986 0.737 5.565 0.959 0.728 4.877 0.964 0.721 5.508
20% 0.975 0.731 4.965 0.976 0.738 4.966 0.957 0.732 4.391 0.981 0.733 5.028
50% 1.061 0.789 4.292 0.993 0.765 3.619 1.000 0.769 3.440 1.034 0.780 3.964
70% 1.053 0.792 4.123 1.004 0.776 3.628 1.006 0.777 3.468 1.030 0.785 3.819
80% 1.055 0.795 3.984 1.009 0.780 3.463 1.010 0.780 3.355 1.032 0.788 3.659
100% 1.061 0.800 3.751 1.016 0.786 3.381 1.021 0.787 3.224 1.041 0.793 3.548

LA

10% 0.581 0.516 2.405 0.590 0.519 2.787 0.580 0.514 2.390 0.585 0.516 2.503
20% 0.582 0.516 2.245 0.590 0.519 2.655 0.580 0.514 2.240 0.584 0.515 2.358
50% 0.575 0.512 2.087 0.581 0.515 2.456 0.574 0.510 2.098 0.576 0.511 2.191
70% 0.572 0.510 2.039 0.577 0.513 2.380 0.571 0.509 2.046 0.572 0.508 2.134
80% 0.570 0.509 2.019 0.575 0.511 2.340 0.570 0.508 2.027 0.571 0.507 2.103
100% 0.568 0.508 1.988 0.572 0.510 2.293 0.567 0.507 1.990 0.567 0.505 2.067

SD

10% 0.634 0.472 2.958 0.663 0.498 3.099 0.641 0.479 3.018 0.642 0.479 3.029
20% 0.634 0.473 4.927 0.668 0.502 5.086 0.642 0.481 4.996 0.641 0.479 4.941
50% 0.639 0.478 4.018 0.672 0.507 4.023 0.648 0.486 4.043 0.646 0.484 4.016
70% 0.642 0.481 3.749 0.675 0.509 3.723 0.652 0.489 3.780 0.648 0.486 3.723
80% 0.643 0.483 3.677 0.676 0.511 3.623 0.653 0.491 3.712 0.649 0.488 3.643
100% 0.644 0.484 3.613 0.675 0.511 3.562 0.654 0.492 3.683 0.649 0.489 3.581
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Table 11: Full results of short/long-term forecasting on variants of PDEDER (2/2). The best scores
are in boldface. The dataset names are abbreviated for briefness. “%” denotes the results are scaled
by 1/100.

System
PDEDER PDEDER-nopre PDEDER-frz PDEDER-sys

MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE MSE MAE MRAE

NYCTaxi

24 0.174 0.252 112.286 0.179 0.257 113.806 0.211 0.300 83.433 0.185 0.263 114.767
48 0.189 0.261 59.510 0.197 0.273 60.461 0.212 0.293 44.679 0.198 0.269 60.569
96 0.196 0.265 58.008 0.211 0.281 60.900 0.214 0.284 47.414 0.206 0.272 57.876
192 0.208 0.271 50.885 0.216 0.282 53.787 0.223 0.285 44.304 0.216 0.278 50.721
336 0.210 0.271 49.687 0.213 0.276 52.057 0.215 0.278 46.323 0.214 0.277 51.752
720 0.216 0.276 56.289 0.235 0.297 56.623 0.243 0.296 52.163 0.233 0.288 58.768

CHBike

24 0.348 0.172 17.738 0.520 0.213 23.882 0.431 0.198 19.476 0.302 0.165 19.628
48 0.350 0.177 18.073 0.501 0.211 23.543 0.402 0.190 18.030 0.315 0.170 19.136
96 0.349 0.176 45.471 0.466 0.204 52.778 0.384 0.183 43.365 0.322 0.172 42.505
192 0.347 0.175 57.547 0.426 0.195 67.644 0.382 0.181 56.502 0.329 0.174 53.260
336 0.344 0.174 61.071 0.394 0.187 69.650 0.374 0.179 60.060 0.332 0.174 56.850
720 0.361 0.187 86.629 0.369 0.180 114.281 0.411 0.198 84.584 0.348 0.181 97.035

TDrive

24 0.116 0.168 15286.5 0.164 0.211 19079.9 0.154 0.197 14473.9 0.116 0.170 15618.7
48 0.121 0.169 16292.3 0.167 0.216 20283.7 0.150 0.191 15643.0 0.121 0.171 16655.2
96 0.132 0.175 17015.3 0.168 0.219 20387.7 0.152 0.192 16497.6 0.131 0.176 17389.7
192 0.142 0.180 16026.1 0.170 0.219 18704.0 0.157 0.198 15550.5 0.142 0.182 16384.3
336 0.163 0.194 14970.5 0.186 0.225 17032.2 0.174 0.212 14556.4 0.164 0.198 15269.7
720 0.205 0.226 14584.5 0.220 0.246 16234.7 0.216 0.242 14261.4 0.207 0.230 14959.7

PEMS03

24 0.158 0.261 3.235 0.170 0.287 3.684 0.157 0.273 3.441 0.158 0.264 3.560
48 0.213 0.306 5.120 0.233 0.335 5.774 0.215 0.317 5.535 0.218 0.312 5.698
96 0.283 0.361 6.089 0.313 0.393 6.842 0.287 0.369 6.283 0.289 0.367 6.698
192 0.328 0.398 8.279 0.367 0.432 9.395 0.331 0.403 8.364 0.333 0.403 8.922
336 0.287 0.366 7.562 0.321 0.399 8.728 0.288 0.369 7.494 0.287 0.369 8.140
720 0.311 0.389 7.290 0.330 0.406 8.446 0.301 0.385 7.427 0.321 0.398 7.726

PEMS04

24 0.663 0.488 4.007 0.671 0.502 4.484 0.649 0.482 3.975 0.652 0.479 3.946
48 0.719 0.521 5.163 0.734 0.537 5.758 0.708 0.517 5.173 0.710 0.515 5.165
96 0.803 0.568 6.158 0.834 0.590 6.948 0.798 0.568 6.221 0.797 0.565 6.177
192 0.874 0.607 6.079 0.921 0.634 6.871 0.876 0.610 6.235 0.869 0.605 6.113
336 0.829 0.581 5.964 0.868 0.605 6.748 0.830 0.582 6.105 0.825 0.579 6.034
720 0.840 0.586 5.916 0.876 0.606 6.630 0.838 0.586 5.899 0.836 0.585 6.094

PEMS07

24 0.226 0.318 4.472 0.256 0.356 5.075 0.194 0.294 4.553 0.190 0.291 4.123
48 0.300 0.370 5.353 0.348 0.417 6.265 0.281 0.358 5.601 0.277 0.356 5.205
96 0.402 0.439 6.687 0.469 0.491 7.996 0.394 0.436 7.013 0.391 0.435 6.815
192 0.479 0.493 6.500 0.556 0.546 7.721 0.472 0.491 6.764 0.476 0.494 6.721
336 0.418 0.454 5.771 0.480 0.498 6.809 0.413 0.452 5.993 0.417 0.455 6.063
720 0.439 0.472 6.644 0.473 0.499 7.525 0.425 0.465 6.416 0.439 0.474 7.261

PEMS08

24 0.623 0.476 8.177 0.642 0.509 9.626 0.621 0.476 8.323 0.617 0.475 8.631
48 0.663 0.503 7.441 0.697 0.541 8.647 0.660 0.502 7.589 0.661 0.504 7.731
96 0.729 0.544 7.716 0.786 0.588 9.096 0.727 0.544 7.804 0.729 0.547 7.954
192 0.791 0.582 8.775 0.867 0.630 10.622 0.788 0.580 8.884 0.789 0.583 8.975
336 0.768 0.569 8.102 0.831 0.610 9.663 0.764 0.567 8.191 0.764 0.569 8.254
720 0.765 0.567 8.050 0.812 0.600 9.084 0.758 0.565 8.109 0.763 0.566 8.036

NOAA

24 0.324 0.408 17.031 0.331 0.415 15.150 0.375 0.444 19.176 0.336 0.418 17.995
48 0.399 0.456 21.904 0.385 0.447 17.113 0.429 0.469 21.112 0.409 0.462 22.900
96 0.533 0.524 26.829 0.499 0.509 22.450 0.542 0.525 23.307 0.554 0.533 27.712
192 0.684 0.597 24.321 0.633 0.579 20.795 0.690 0.597 22.598 0.697 0.600 24.067
336 0.742 0.629 22.113 0.692 0.610 17.663 0.774 0.639 20.318 0.749 0.626 21.997
720 0.835 0.678 16.534 0.815 0.671 13.298 0.876 0.698 17.635 0.829 0.669 15.774
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Figure 2: Forecasting visualizations on Mutualistic dynamics evolving comparisons between the
ground-truth values, fine-tuning PDEDER, fine-tuning without pre-training PDEDER and fine-tuning
with freezing the pre-trained PDEDER. Axes “x” and “y” denote the indexes of each object; axis “z”
denotes the state values of each object.
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Figure 3: Forecasting visualizations on Heat dynamics evolving comparisons between the ground-
truth values, fine-tuning PDEDER, fine-tuning without pre-training PDEDER and fine-tuning with
freezing the pre-trained PDEDER. Axes “x” and “y” denote the indexes of each object; axis “z”
denotes the state values of each object.
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Figure 4: Sensitivity study results MSE on patch length and stride during fine-tuning PDEDER.
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