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ABSTRACT

The rapid growth in size and complexity of machine learning models, particu-
larly in natural language processing and computer vision, has led to significant
challenges in model execution on hardware with limited resources. This paper
introduces Superpipeline, a novel framework designed to optimize the execution
of large-scale AI models on constrained hardware for both training and inference
phases. Our approach focuses on dynamically managing model execution by par-
titioning models into individual layers and efficiently transferring these partitions
between GPU and CPU memory. Superpipeline achieves substantial reductions
in GPU memory consumption—up to 60% in our experiments—while maintain-
ing model accuracy and acceptable processing speeds. This enables the execution
of models that would otherwise exceed available GPU memory capacity. Unlike
existing solutions that primarily target inference or specific model types, Super-
pipeline demonstrates broad applicability across large language models (LLMs),
vision-language models (VLMs), and vision-based models. We evaluate Super-
pipeline’s effectiveness through comprehensive experiments on diverse models
and hardware configurations. Our method is characterized by two key parameters
that allow fine-tuning of the trade-off between GPU memory usage and processing
speed. Importantly, Superpipeline does not require model retraining or parameter
modification, ensuring full preservation of the original model’s output fidelity. The
simplicity and flexibility of Superpipeline make it a valuable tool for researchers
and practitioners working with state-of-the-art AI models under hardware con-
straints. It enables the use of larger models or increased batch sizes on existing
hardware, potentially accelerating innovation across various machine learning ap-
plications. This work represents a significant step towards democratizing access
to advanced AI models and optimizing their deployment in resource-constrained
environments.

1 INTRODUCTION

The field of machine learning has undergone unprecedented growth in recent years, with neural
network models at the forefront of this revolution. These models, spanning domains from natu-
ral language processing to computer vision, have demonstrated remarkable capabilities in tackling
complex tasks. However, their increasing size and complexity present significant challenges for exe-
cution, particularly in resource-constrained environments. State-of-the-art models such as LLaMA-3
Dubey et al. (2024) and PaLM 2 Anil et al. (2023) now comprise hundreds of billions of parame-
ters, pushing the boundaries of what’s possible in language understanding and generation. While
these models achieve unprecedented performance across a wide range of tasks, they also demand
substantial computational resources, straining the limits of current hardware capabilities. As model
parameters reach into the hundreds of billions, the constraints of GPU memory become a critical
bottleneck, especially during both training and inference tasks on consumer-grade hardware. This
growing disparity between model size and available computational resources presents a pressing
challenge for the machine learning community, necessitating innovative solutions for efficient model
execution, training, and deployment.

The machine learning community has made significant strides in optimizing model training on high-
performance computing clusters. Techniques such as model parallelism Shoeybi et al. (2019), which
distributes model layers across multiple devices, and data parallelism, which processes different
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batches of data on separate devices, have been crucial in scaling up model sizes. Recent advance-
ments like Fully Sharded Data Parallel (FSDP) Zhao et al. (2023) and Distributed Data Parallel
(DDP) Li et al. (2020) have further improved training efficiency by optimizing memory usage and
communication patterns. FSDP, in particular, allows for training larger models by sharding param-
eters, gradients, and optimizer states across data parallel workers. However, while these techniques
have revolutionized training capabilities, they primarily address the needs of institutions with access
to substantial computational resources. For the broader user base, both training and inference — the
process of deploying trained models to make predictions on new data — have become increasingly
challenging, especially when such models must run on consumer-grade hardware or edge devices
with constrained computational resources. Even when high-end hardware is available, AI practition-
ers often run into out of memory (OOM) issues when dealing with large batch sizes that are critical
for producing high-performance models.

Recent advances in model optimization have addressed the challenges of working with large models,
focusing on both efficient training and inference. Model segmentation and partitioning techniques,
such as GPipe Huang et al. (2019) and Megatron-LM Shoeybi et al. (2019), enable the distribu-
tion of large models across multiple accelerators. Dynamic memory management strategies, like
the Zero Redundancy Optimizer (ZeRO) Rajbhandari et al. (2020) and SuperNeurons Wang et al.
(2018), optimize memory usage during training by minimizing data redundancy and efficiently man-
aging intermediate activations. Pipelined execution methods such as PipeDream Narayanan et al.
(2019) and TeraPipe Li et al. (2021) have shown considerable promise in improving throughput for
distributed training. In the realm of inference, recent work has made significant strides in address-
ing efficiency challenges. Alizadeh et al. Alizadeh et al. (2023) propose an innovative method to
run LLMs on devices with limited DRAM capacity by utilizing flash memory for model storage.
The FlexGen system by Sheng et al. Sheng et al. (2023) addresses the challenge of running LLMs
on a single commodity GPU with limited memory by utilizing a combination of GPU, CPU, and
disk storage. While these advancements represent significant progress, many existing techniques
are specifically tailored for LLMs and may not generalize well to other types of neural network ar-
chitectures. Additionally, some approaches may produce outputs that differ from the original model,
potentially affecting performance and reliability.

In this paper, we present Superpipeline, a novel approach designed to overcome the limitations
associated with executing and training large neural network models on limited hardware resources.
Our method synthesizes and extends existing concepts to formulate a comprehensive framework
that addresses both memory constraints and execution efficiency, while maintaining three crucial
advantages. First, our approach ensures perfect fidelity to the original model’s output, guaranteeing
that the results of both training and inference are identical to those produced by the unmodified
model. Second, our method is designed for versatility, easily adaptable to a wide range of neural
network architectures beyond just LLMs. This broad applicability makes our solution relevant across
various domains and model types. Third, we prioritize ease of use, allowing for straightforward
implementation without the need for complex model modifications or specialized hardware setups.
Referring to Figure 1, Superpipeline is reminiscent of the super pipelining technique in computer
architecture Gaudiot et al. (2005). Superpipeline breaks a model into units and load k units into
GPU memory initially. Once a preset number, k′, where k′ < k, of units have been executed in
GPU, they are offloaded back to CPU to make space for the next k′ units while k − k′ units are still
executing in GPU. The key contributions of Superpipeline can be summarized as follows:

1. Efficient Training and Inference: Our method enhances both training and inference
phases, ensuring optimized execution on single GPU environments. It addresses the critical
need for efficiently training and deploying large models in resource-constrained scenarios.

2. No Model Retraining or Parameter Modification: Our method works without intro-
ducing any new parameters to the model, ensuring that no retraining is required. This
guarantees that both the model structure and its output remain identical to the original.

3. Universal Applicability: We present a versatile approach that is easily adaptable to various
neural network architectures, from LLMs to image generation models like Stable Diffusion,
without requiring model-specific modifications.

4. Simplified Implementation and Broad GPU Compatibility: Our method is designed for
straightforward implementation, requiring no complex modifications or specialized hard-
ware setups. Additionally, unlike methods such as FlashAttention Dao et al. (2022), which
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Moved to CPU Active on GPU Pending

Standard Superpipeline (k = 4, k' = 2) Naive (k = 2)

T = 1

T = 2

T = 3

Figure 1: Superpipeline Diagram. Comparison of model execution strategies: Standard (all layers
on GPU), Naive (k = 2), and Superpipeline (k = 4, k′ = 2). k represents layers simultaneously on
GPU. k′ denotes layers transferred back to CPU after computation, and simultaneously, the number
of next layers moved to GPU. Superpipeline optimizes GPU memory usage through this dynamic
layer management.

are limited to Ampere GPUs, our approach is compatible with any GPU architecture, pro-
viding greater flexibility and accessibility across various hardware setups.

By focusing on these key aspects, Superpipeline offers a practical and efficient solution for training
and deploying large models on memory-constrained devices, effectively balancing computational
load and memory availability to maximize performance without sacrificing accuracy or generaliz-
ability. This has profound implications for various applications, including edge computing, mobile
applications, large batch-sized training recipes, and other scenarios where access to high-end com-
puting resources is limited. By enabling the training and deployment of advanced neural networks
on such devices, our method can help bridge the gap between cutting-edge AI research and practical,
everyday applications as well as ensuring equity among common AI practitioners and well-endowed
institutions alike.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive review of
related work in model optimization and efficient training and inference techniques. Section 3 details
our proposed method, emphasizing its universality and output fidelity preservation for both training
and inference phases. Section 4 presents our experimental results across various model types and
tasks, demonstrating the effectiveness of Superpipeline in both training and inference scenarios. We
conclude in Section 6 with a summary of our findings and their potential impact on democratizing
access to state-of-the-art AI models.

2 RELATED WORK

Recent advancements in neural network research have focused on enhancing the efficiency and scal-
ability of large models, particularly in environments with limited hardware resources. This section
reviews key developments in model compression, memory management, parallelism strategies, and
data transfer optimization techniques relevant to our proposed method.

2.1 MODEL SEGMENTATION AND PARTITIONING

The concept of dividing large models into smaller, manageable units has gained prominence in re-
cent years. GPipe Huang et al. (2019) introduced a scalable model-parallelism library that efficiently
trains large neural networks using pipeline parallelism. By partitioning deep networks into smaller
segments and distributing them across different accelerators, GPipe optimizes hardware utilization
and reduces training time. To maintain the simplicity of the proposed method and ensure its gener-
alizability across different models, we use the repetitive layers present in every deep model as the
model’s partition for memory management.

Megatron-LM Shoeybi et al. (2019) proposed an intra-layer model parallelism technique that effi-
ciently trains large-scale Transformer-based language models by distributing computations across
multiple GPUs. While this method enhances scalability for training, our approach adapts these prin-
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ciples for single-GPU environments, focusing on dynamic partitioning and memory management to
optimize inference and training processes.

2.2 MODEL COMPRESSION AND SELECTIVE EXECUTION

As large language models (LLMs) increase in size, reducing their computational and memory re-
quirements has become a critical area of research. Model compression techniques such as pruning
and quantization have been extensively explored to shrink models without significantly compromis-
ing performance Han et al. (2015); Jaiswal et al. (2023); Ahmadian et al. (2023); Li et al. (2024).
Additionally, selective execution methods, including sparse activations and conditional computa-
tion Zhang et al. (2024); Baykal et al. (2024), aim to reduce the computational overhead by limiting
operations to necessary components, which aligns with the broader goal of minimizing resource
usage during inference.

Selective weight loading is another related concept, where techniques have been developed to dy-
namically load a subset of weights based on activation patterns Liu et al. (2023); Sheng et al. (2023).
This strategy reduces the memory footprint required for model execution, complementing efforts to
manage memory transfers between different hardware components effectively.

2.3 DYNAMIC MEMORY MANAGEMENT AND HARDWARE OPTIMIZATION

Dynamic memory management strategies have been proposed to address GPU memory limitations
in training and deploying deep neural networks. The Zero Redundancy Optimizer (ZeRO) Rajb-
handari et al. (2020) optimizes memory usage by eliminating redundant copies of model states and
distributing them across devices. This method has parallels to dynamic memory management strate-
gies used to optimize memory allocation for inference, particularly in settings with limited hardware
resources.

Hardware optimization techniques, including efficient memory architectures Gao et al. (2019) and
dataflow optimizations Han et al. (2016), also contribute to more efficient LLM inference. These
methods can further enhance algorithmic improvements for memory management and model execu-
tion by leveraging hardware-specific optimizations.

2.4 PIPELINED EXECUTION AND SPECULATIVE TECHNIQUES

Pipelined execution has been a focus of several studies aimed at improving deep neural network
(DNN) training throughput. PipeDream Narayanan et al. (2019) and TeraPipe Li et al. (2021) ex-
plore combining intra-batch and inter-batch parallelism to optimize training processes across mul-
tiple GPUs. In contrast, adaptations of pipelining principles for single-GPU environments have
also been proposed to enhance inference efficiency, where models are partitioned and dynamically
transferred between memory hierarchies to optimize execution speed.

Speculative execution, a technique used to manage latency in model inference, has been explored
in various contexts, including speculative decoding for LLMs Zhang et al. (2023); He et al. (2023).
This approach utilizes draft models to predict outputs and verifies them with larger models, serving
as an orthogonal strategy to improve inference efficiency. Speculative techniques and adaptive exe-
cution methods contribute to the growing toolbox for managing the complexity of large models on
constrained hardware.

2.5 TRANSFER STRATEGIES AND PIPELINE OPTIMIZATION

Optimizing data transfer between different memory hierarchies is a critical yet underexplored area
for efficient large model inference. Research on minimizing memory usage through optimal check-
pointing and data movement Feng & Huang (2021) provides a foundation for strategies that aim to
reduce data transfer overhead during model execution. Techniques that streamline these transfers are
essential for executing large models effectively, particularly on devices with limited GPU or DRAM
capacity.

In contrast to previous works, which primarily target specific model types like LLMs or focus on
optimizing either the training or inference phase, Superpipeline is versatile and applicable across
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a wide range of models. It seamlessly integrates into both the training and inference processes
without altering the original model’s output, making it a simple yet effective solution for enhancing
efficiency on resource-constrained hardware. Additionally, it provides AI researchers with an effi-
cient solution for developing their models on high-end GPUs, enabling the use of larger batch sizes
while optimizing resource utilization.

3 PROPOSED METHOD: SUPERPIPELINE

This section introduces Superpipeline, our novel approach for efficient execution of large neural
network models on constrained hardware resources. Superpipeline addresses the challenge of run-
ning memory-intensive models on limited GPU hardware through dynamic memory management
and optimized data transfer strategies.

3.1 CONCEPTUAL FRAMEWORK

Our method segments large models into manageable units based on their repetitive structure. This
approach, applicable to various neural network architectures, enables efficient processing and dy-
namic memory management. By exploiting the inherent repetition in modern models, we achieve
simplicity in implementation and universality across model types.

3.2 KEY COMPONENTS OF SUPERPIPELINE

3.2.1 MODEL SEGMENTATION STRATEGY

We partition neural networks along their natural repetitive boundaries, such as transformer layers in
language models or convolutional blocks in vision models. Each repetitive unit becomes a distinct
partition. This strategy requires minimal modification to the original architecture, adapts to differ-
ent model sizes, and preserves model behavior. For example, a model like LLaMA-2 7B with 32
repeating layers would yield 32 partitions. This approach forms the foundation for our subsequent
optimization techniques, allowing efficient resource management across diverse model types.

3.2.2 DYNAMIC GPU-CPU PARTITION TRANSFER

Superpipeline employs a dynamic approach to memory management. Only specific partitions are
loaded onto the GPU as needed, and once computation is complete, their outputs are transferred
back to CPU memory. This process frees up GPU memory for subsequent partitions, allowing for
the processing of models that would otherwise exceed available hardware capacity. This dynamic
transfer mechanism is crucial for optimizing GPU resource utilization. It allows larger models to be
run on more constrained hardware by effectively managing the limited GPU memory available.

3.3 THE SUPERPIPELINE ALGORITHM

Superpipeline introduces two critical hyperparameters: k, representing the number of partitions
simultaneously on the GPU, and k′, which denotes the number of partitions transferred back to the
CPU after computation, making room for the next k′ partitions. Figure 1 illustrates this.

By adjusting these parameters, the Superpipeline framework achieves an optimal balance between
GPU memory usage and processing speed. Increasing k maximizes GPU utilization and accelerates
computation, but also raises memory requirements. On the other hand, decreasing k lowers memory
usage while slowing down execution. This flexibility allows the method to be tailored to specific
hardware constraints, optimizing the trade-off between speed and memory efficiency.

In the training phase, Superpipeline extends its benefits to both the forward and backward passes.
During the forward pass, it dynamically transfers partitions between GPU and CPU as needed. The
same process is repeated for the backward pass, where gradients are computed. This dual application
in both forward and backward passes results in even greater reductions in GPU memory usage while
maintaining acceptable performance.

By efficiently managing memory across both phases of training, Superpipeline significantly reduces
the overall GPU memory footprint, particularly in large-scale models. This method ensures that even
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resource-constrained hardware can support models that would otherwise be unmanageable, without
sacrificing speed or accuracy.

4 EXPERIMENTS AND RESULTS

In this section, we present our experimental methodology and key findings. Our experimental setup
encompasses a diverse array of models, ranging from vision architectures to language models, all
implemented using Superpipeline. This broad selection demonstrates the versatility and wide appli-
cability of our proposed method. We begin by outlining the implementation details and experimental
parameters, followed by a comprehensive description of the models tested. Through these experi-
ments, we aim to demonstrate two critical aspects of our approach: first, its ability to reduce GPU
memory usage significantly, and second, its capacity to maintain acceptable inference times across
various model types. Our experiments are designed to illustrate not only the ease with which our
approach can be adapted to various model architectures and domains but also its effectiveness in
optimizing resource utilization without substantially compromising performance.

4.1 EXPERIMENTAL SETUP

Models. To demonstrate that the method presented in this work is applicable to any model, we have
conducted our evaluation across different categories of models. We have selected three different
models from three distinct domains. One is the llama2 model from the world of LLM (Large Lan-
guage Models), the SD model from the world of VLM (Vision Language Models), and ViT-bigG
from the world of vision models. We perform our evaluations of the proposed method in two sec-
tions: during inference time and during training time. The aim of these experiments is to show the
extent to which the proposed method helps in optimizing GPU consumption and how much faster it
is compared to the naive approach.

Hardware Configuration. We evaluated models on three distinct hardware configurations to ensure
the generalizability of our method across various devices. The first setup featured a Quadro 8000
graphics card with 50 GB of GPU memory. The second configuration utilized an NVIDIA GTX
3090 graphics card, offering 24 GB of GPU RAM. Our third setup employed an H20 graphics card
with a substantial 98 GB of GPU RAM. By conducting evaluations across these diverse hardware
environments, we aimed to validate the robustness and adaptability of our approach

4.2 RESULTS

Our experiments evaluated Superpipeline across four distinct modes of operation:

1. Standard mode: The entire model is loaded onto the GPU and processed, representing the
conventional approach for model execution.

2. Naive method: The model is loaded onto the GPU k layers at a time, offering a simple but
potentially inefficient way to reduce memory usage.

3. CPU-only mode: The entire model runs on the CPU without GPU acceleration, providing
a baseline for comparison in resource-constrained environments.

4. Superpipeline method: Our proposed approach for dynamic memory management, bal-
ancing GPU utilization and processing efficiency.

The key metrics we focused on were GPU Memory Usage and Processing Time. GPU Memory
Usage, measured in gigabytes (GB), shows how efficiently each method utilizes available GPU
memory. Processing Time, measured in milliseconds (ms) for inference tasks and iterations per
second for training tasks, reflects the speed of each method. It’s important to note that Superpipeline,
by design, does not alter the model’s computations or outputs in any way. The results produced by
Superpipeline are identical to those of the standard mode, ensuring perfect fidelity to the original
model’s performance and accuracy.
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Table 1: Superpipeline Performance During Inference
Model Method GPU Usage (GB) Time (ms) K K’

ViT-bigG

Standard 13.7 37.5 ms /embed - -
CPU-only 0 9250 ms /embed - -
Naive 4.2 181.5 ms /embed 1 -
Naive 5.2 175.5 ms /embed 8 -
Naive 6.0 176.6 ms /embed 15 -
Superpipeline 4.8 111.5 ms /embed 4 2
Superpipeline 5.7 109.7 ms /embed 6 3
Superpipeline 6.0 103.5 ms /embed 10 8
Superpipeline 7.3 96.8 ms /embed 14 12
Superpipeline 8.8 90.5 ms /embed 19 16
Superpipeline 10.7 72.5 ms /embed 19 16

LlaMA2

Standard 15.0 26 ms /token - -
CPU-only 0 29200 ms /token - -
Naive 2.9 4520 ms /token 1 -
Naive 3.8 4000 ms /token 8 -
Naive 3.8 3980 ms /token 8 -
Naive 6.5 3970 ms /token 15 -
Superpipeline 4.7 2053 ms /token 4 2
Superpipeline 5.7 1964 ms /token 5 3
Superpipeline 8.0 1748 ms /token 8 3
Superpipeline 9.2 1607 ms /token 10 2
Superpipeline 11.9 1460 ms /token 10 2
Superpipeline 13.0 880 ms /token 20 6

Stable Diffusion

Standard 6.3 10 s /image - -
CPU-only 2.5 529 s /image - -
Naive 2.5 60 s /image 1 -
Naive 3.8 59 s /image 8 -
Superpipeline 2.9 33 s /image 5 3
Superpipeline 3.3 27 s /image 5 4
Superpipeline 4.0 27 s /image 8 6
Superpipeline 4.1 22 s /image 7 5
Superpipeline 4.4 19 s /image 8 2
Superpipeline 4.8 16 s /image 9 3
Superpipeline 5.0 14 s /image 10 2

4.2.1 INFERENCE TIME

One of the significant advantages of our proposed method is its ease of implementation across var-
ious existing models by making necessary changes in the forward pass. Since no parameters are
added to or removed from the model, and no changes are made to the overall model structure, Su-
perpipeline can be applied to many current models without the need for retraining.

The primary parameters in this approach are K and k′. These values can be easily optimized through
a grid search, tailored to the hardware on which the model is running. This flexibility allows for
adjusting GPU consumption during inference by simply modifying k and k′. Consequently, any
remaining GPU space can be utilized for processing larger batch sizes if required.

The effectiveness of Superpipeline during inference is demonstrated in Table 1. These results high-
light the method’s capability to optimize GPU usage without compromising model performance,
making it a versatile solution for both training and inference stages.

As shown in Table 1, Superpipeline achieves significant reductions in GPU usage and inference
time while maintaining the same accuracy as the standard and naive methods. This demonstrates the

7
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method’s efficiency in resource utilization during the inference phase. Table 4 shows results from
the Quadro GPU, with other GPU results in the appendix.

The adaptability of Superpipeline to different hardware configurations and model architectures,
combined with its performance benefits in both training and inference, positions it as a valuable
tool for optimizing deep learning workflows across various applications and deployment scenarios.

4.2.2 TRAINING TIME

Unlike some previous methods that are only applicable during the inference stage, Superpipeline
can be used in both training and inference phases with minimal modifications.

Implementing Superpipeline involves applying this method to the forward section of each model.
By utilizing pre backward hook and post backward hook functions, Superpipeline can be
easily integrated into the model training phase. This capability is particularly significant during
training, as gradients are calculated in addition to the usual computations. In these conditions, the
efficiency of our proposed method in optimizing GPU usage becomes even more pronounced.

A key feature of Superpipeline is the preservation of model accuracy even when used in training.
Since no changes are made to the computational values, the model’s output using our proposed
method is identical to that of the standard approach. This distinguishes Superpipeline from methods
that rely on predicting which neurons or layers will be used, which may lead to prediction errors and
changes in output.

To rigorously evaluate the proposed method, we compared the ViT-BigG model on the imagenet-
tiny dataset using identical hyperparameters (batch size, learning rate, number of epochs). The
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Figure 2: Comparison of memory usage and speed during ViT-BigG training on ImageNet-tiny.

results of this comparison are shown in Figure 2. As observed, the Superpipeline method not only
significantly reduces GPU consumption but also provides a highly acceptable speed compared to the
standard mode and the naive method.

Superpipeline offers several notable advantages. It’s implementation process for training remains
straightforward, and can be applied to various types of models. Additionally, by adjusting the pa-
rameters k and k′, GPU consumption can be easily controlled. By optimizing GPU usage, it becomes
possible to train models with larger batch sizes, which can lead to improved performance and faster
model convergence.

4.2.3 BENEFIT OF DIFFERENT GPU USAGE

While Superpipeline offers significant benefits for general users, its impact on AI research and model
development is particularly noteworthy. As deep learning models continue to grow in size and
complexity, GPU memory constraints have become a critical bottleneck in the training process. Even
with high-capacity GPUs boasting 50 to 100 gigabytes of memory, researchers face limitations in
increasing batch sizes, a crucial factor for many advanced training techniques.
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Table 2: GPU Usage for ViT-BigG and LLaMA2 Models w/ and w/o Gradient Checkpointing.
OOM: Out-Of-Memory.

With Grad. Checkpointing Without Grad. Checkpointing

Model Method BS GPU BS GPU BS GPU BS GPU

ViT-BigG
(Fully Trainable)

(on Quadro)

Superpipe (k=6, k’=3)
16 10.1 64 25.8 4 23.0 10 42.3
32 15.4 128 42 8 36.9 12 48.0

Standard
16 38.9 64 47.4 4 42.6 10 OOM
32 41.8 128 OOM 8 OOM 12 OOM

LLaMA2
(Fully Trainable)

(on H20)

Superpipe (k=6, k’=3)
32 33.5 128 53.6 16 55.3 64 OOM
64 39.5 256 81.8 32 85.6 128 OOM

Standard
32 OOM 128 OOM 16 OOM 64 OOM
64 OOM 256 OOM 32 OOM 128 OOM

LLaMA2
(Half of Layers Frozen)

(on H20)

Superpipe (k=6, k’=3)
4k 21 16k 48 2k 29.8 8k 73
8k 30 32k 88.8 4k 44 10k 88.3

Standard
4k 36 16k 64 2k 64 8k OOM
8k 45 32k OOM 4k 79 10k OOM

As shown in Table 2, Superpipeline significantly expands the potential for larger batch sizes during
model training. For instance, when training the LLaMA2 model without gradient checkpointing, the
standard approach fails due to out-of-memory errors even at smaller batch sizes. In contrast, Su-
perpipeline successfully trains the model with larger batch sizes, demonstrating its ability to handle
scenarios infeasible with standard training methods.

To provide a more equitable comparison and further demonstrate Superpipeline’s advantages in en-
abling larger batch sizes, we conducted an additional experiment where half of the LLaMA2 model’s
layers were frozen. This approach allowed the standard method to handle larger batch sizes, creat-
ing a more balanced comparison scenario. In this setting, Superpipeline continued to outperform,
accommodating significantly larger batch sizes and achieving more efficient GPU utilization.

By alleviating memory constraints, Superpipeline enables the exploration of training regimes that
were previously infeasible, potentially accelerating advancements in areas such as self-supervised
learning, large-scale visual representation learning, and the training of Large Language Models.
This adaptability is crucial in an era where model innovation often outpaces hardware advancement,
allowing researchers with limited resources to work on cutting-edge models and training techniques
previously exclusive to well-resourced institutions.

5 LIMITATIONS AND FUTURE WORK

An examination of Table 1 reveals that while the superpipeline method consistently outperforms
the naive approach across all models, the performance gap between the proposed superpipeline
method and the standard approach is notably smaller for the ViT-bigG model compared to models
like Llama2. To investigate this discrepancy, we measured two distinct timings for both the ViT-
bigG and Llama2 models: the time required to transfer a layer to the GPU and the time needed
to transfer a layer to the CPU. The results are illustrated in Figure 3. Two key observations can
be drawn from Figure 3. First, the transfer time of a layer to the CPU is slower than to the GPU.
Second, and more importantly, we observe that the transfer speed of a single layer from the Llama
model is significantly slower than that of the ViT-bigG model. This difference explains the larger
performance gap between the superpipeline and standard approaches in the Llama model.

In essence, when considering a single forward pass, the superpipeline and standard methods do
not differ significantly. However, since we calculate model speed based on an average of multiple
consecutive forward passes, a limitation becomes apparent in the superpipeline approach. Although
the model’s output is quickly generated in the first forward pass, it cannot immediately produce the
second output as it must wait for the layers from the previous forward pass to complete their transfer
to the CPU. This issue represents a key limitation of our work. In scenarios where the layer transfer
speed to the CPU is slow for a particular model or hardware configuration, the superpipeline method,
while still outperforming the naive approach, may not achieve performance parity with the standard
method.
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Several potential solutions to address this limitation could be explored in future work. One ap-
proach involves rewriting the model transfer function to the CPU using CUDA custom kernels.
Another possibility is developing a faster method for creating and transferring a copy of each layer
to the GPU. This approach would eliminate the need to transfer layers back to the CPU after GPU
processing, instead overwriting the previous layer directly on the GPU. Currently, implementing
this with existing PyTorch features is significantly more time-consuming than transferring a layer
to the CPU, necessitating a more optimized implementation. In future research, we plan to explore
these optimization strategies to further enhance the performance of the superpipeline method across
a wider range of models and hardware configurations. Additionally, we aim to investigate the appli-
cability of our approach to emerging model architectures and to develop adaptive strategies that can
automatically adjust the superpipeline parameters based on the specific characteristics of the model
and hardware in use.

6 CONCLUSION

Transfer to CUDA Transfer to CPU
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Figure 3: Comparison of layer transfer
times between GPU and CPU for ViT-
bigG and Llama2 models.

In this paper, we introduced Superpipeline, a novel
method for efficient execution of large neural network
models on constrained hardware resources. Our approach
addresses the critical challenge of deploying and training
increasingly complex models in environments with lim-
ited GPU memory, without compromising model perfor-
mance or accuracy. The key strengths of Superpipeline
lie in its versatility and ease of implementation. Unlike
previous methods that primarily focused on LLM models
or were limited to inference stages, Superpipeline demon-
strates broad applicability across various model architec-
tures, including LLMs, VLMs, and vision-based models.
Moreover, it can be seamlessly integrated into both in-
ference and training pipelines, offering a comprehensive
solution for resource optimization throughout the model
lifecycle. A significant advantage of our method is its
ability to substantially reduce GPU memory consumption
while maintaining acceptable execution speeds. This is
achieved without adding new parameters to the model or requiring retraining, ensuring that the
model’s output in Superpipeline mode remains identical to that in standard mode. This preserva-
tion of accuracy sets Superpipeline apart from other optimization techniques that may introduce
performance trade-offs.

Our experimental results across diverse model types and hardware configurations validate the effec-
tiveness of Superpipeline. We demonstrated significant reductions in GPU usage during both infer-
ence and training, with minimal impact on processing speed. The method’s adaptability to different
hardware setups further enhances its practical value, making it a viable solution for a wide range of
deployment scenarios. The simplicity of Superpipeline’s implementation, coupled with its flexibility
in fine-tuning through the k and k’ parameters, positions it as a powerful tool for researchers and
practitioners alike. By optimizing resource utilization, our method opens up new possibilities for
working with larger models or increased batch sizes on existing hardware, potentially accelerating
research and development in the field of deep learning.

In conclusion, Superpipeline represents a significant step forward in making advanced AI models
more accessible and efficient to deploy. As the complexity of neural networks continues to grow,
methods like Superpipeline will play a crucial role in bridging the gap between state-of-the-art model
architectures and the practical constraints of real-world computing environments. Future work could
explore further optimizations and extensions of this approach, potentially leading to even more effi-
cient and scalable solutions for large-scale model deployment and training. You may include other
additional sections here.
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A APPENDIX

A.1 RESULTS ON DIFFERENT GPUS

In this section, we present the results of applying the Superpipeline method on two different GPUs:
the NVIDIA RTX 3090 and the H20 (shown in Table 3. The Superpipeline approach was evaluated
using three different models—ViT-bigG, LlaMA2, and Stable Diffusion—under varying memory
constraints and batch sizes

A.2 OPTIMIZED PARTITION TRANSFER STRATEGY

Our experiments revealed that the method of transferring partitions between GPU and CPU signifi-
cantly impacts overall performance. We compared two approaches: Sequential Transfer and Batch
Transfer. In Sequential Transfer, layers are transferred one-by-one to the GPU and back to the CPU.
Batch Transfer, on the other hand, moves all layers to the GPU simultaneously, then back to the CPU
as a batch. As illustrated in Figure 4, the batch transfer method proved significantly faster, despite

GPU

 Transfer Layer 1 

 Transfer Layer 2 

 Transfer Layer 3 

 Transfer Layer 4 

 Transfer Layer 1 

 Transfer Layer 2 

 Transfer Layer 3 

 Transfer Layer 4 

Sequential Transfer Batch Transfer

CPU CPU GPU

Figure 4: Comparison of Sequential and Batch Transfer Strategies

involving the same number of total transfers. Figure 5 provides empirical evidence of this perfor-
mance difference across various model architectures. These findings underscore the importance of
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Figure 5: Performance comparison of Sequential vs. Batch Transfer strategies

optimizing not just the partitioning of the model, but also the mechanisms for data transfer between
different memory hierarchies.
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Table 3: Superpipeline Performance During Inference On RTX 3090

Model Method GPU Usage (GB) Time (ms) K K’

ViT-bigG

Superpipeline 4.1 242.8 ms /embed 4 3
Superpipeline 5.7 223.25 ms /embed 5 3
Superpipeline 8 212.5 ms /embed 7 5
Superpipeline 8.8 213.1 ms /embed 9 4
Superpipeline 11.9 197.5 ms /embed 11 7

LlaMA2

Superpipeline 4.8 108.1 ms /token 4 2
Superpipeline 5.1 104.6 ms /token 6 4
Superpipeline 5.5 100.5 ms /token 7 6
Superpipeline 6.4 98.3 ms /token 11 8
Superpipeline 7.7 91.2 ms /token 16 12
Superpipeline 8.6 86.2 ms /token 18 16

Stable Diffusion

Superpipeline 2.9 70 s /image 3 2
Superpipeline 3.8 54 s /image 6 2
Superpipeline 4.1 55 s /image 8 5
Superpipeline 4.7 53 s /image 9 3
Superpipeline 5.0 49 s /image 11 2

Table 4: Superpipeline Performance During Inference On H20

Model Method GPU Usage (GB) Time (ms) K K’

ViT-bigG

Superpipeline 4.7 34.1 ms /embed 4 3
Superpipeline 5.1 33.2 ms /embed 6 4
Superpipeline 5.9 32.3 ms /embed 9 6
Superpipeline 7.2 30.3 ms /embed 14 12
Superpipeline 8.5 28.8 ms /embed 17 16

LlaMA2

Superpipeline 4.5 41.25 ms /token 4 2
Superpipeline 5.7 40.6 ms /token 5 3
Superpipeline 8.0 37.3 ms /token 7 5
Superpipeline 7.6 36 ms /token 8 2
Superpipeline 10.3 31.6 ms /token 11 3
Superpipeline 11.9 30.25 ms /token 12 5

Stable Diffusion

Superpipeline 3.3 11.7 s /image 3 2
Superpipeline 3.8 9.2 s /image 6 3
Superpipeline 4.1 8.8 s /image 8 5
Superpipeline 4.8 8.3 s /image 9 3
Superpipeline 5.0 7.5 s /image 10 4
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