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Abstract

Neural language models (LMs) can be used to
evaluate the truth of factual statements in two
ways: they can be either queried for statement
probabilities, or probed for internal represen-
tations of truthfulness. Past work has found
that these two procedures sometimes disagree,
and that probes tend to be more accurate than
LM outputs. This has led some researchers to
conclude that LMs “lie” or otherwise encode
non-cooperative communicative intents. Is this
an accurate description of today’s LMs, or can
query—probe disagreement arise in other ways?
We identify three different classes of disagree-
ment, which we term confabulation, deception,
and heterogeneity. In many cases, the superi-
ority of probes is simply attributable to better
calibration on uncertain answers rather than
a greater fraction of correct, high-confidence
answers. In some cases, queries and probes
perform better on different subsets of inputs,
and accuracy can further be improved by en-
sembling the two.!

1 Introduction

Text generated by neural language models (LMs)
often contains factual errors (Martindale et al.,
2019). These errors limit LMs’ ability to gener-
ate trustworthy content and serve as knowledge
sources in downstream applications (Ji et al., 2023).

Surprisingly, even when LM outputs are factu-
ally incorrect, it is sometimes possible to assess
the truth of statements by probing models’ hidden
states. In the example shown in Fig. 1A, a language
model assigns high probability to the incorrect an-
swer yes when prompted to answer the question Is
Sting a police officer? However, a linear knowl-
edge probe trained on the LM’s hidden represen-
tations (Fig. 1B) successfully classifies no as the
more likely answer. Knowledge probes of this kind
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Figure 1: Varieties of disagreement between language
model outputs and internal states. We evaluate two
approaches for answering questions or verifying state-
ments: querying models directly for answers (A), or
training a binary classifier to probe their internal states
(B). Probes and queries sometimes disagree. We pro-
pose a taxonomy of different query—probe disagreement
types (C); across several models and datasets, we find
that disagreements mostly occur in situations where
either probes or queries are uncertain (D).

have consistently been found to be slightly more
reliable at question answering and fact verification
than direct queries to LMs (Burns et al., 2022),
suggesting a mismatch between LMs’ (internal)
representations of factuality and their (external)
expressions of statement probability.

How should we understand this behavior? One
possible interpretation, suggested by several pre-
vious studies, is that it is analogous to “deception”
in human language users (Kadavath et al., 2022;
Azaria and Mitchell, 2023; Zou et al., 2023). In
this framing, if LM representations encode truthful-
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ness more reliably than outputs, then mismatches
between LM queries and probes must result from
situations in which LMs “know” that a statement is
untrue and nonetheless assign it high probability.

But knowledge is not a binary phenomenon in
LMs or humans. While probes are better than
queries on average, they may not be better on every
example. Moreover, both LMs and probes are prob-
abilistic models: LM predictions can encode uncer-
tainty over possible answers, and this uncertainty
can be decoded from their internal representations
(Mielke et al., 2022). There are thus a variety of
mechanisms that might underlie query—probe dis-
agreement, ranging from differences in calibration
to differences in behavior in different input subsets.

In this paper, we seek to understand mismatches
between internal and external expressions of truth-
fulness by understanding the distribution over pre-
dictions, taking into account uncertainty in an-
swers produced by both queries and probes. In
doing so, we hope to provide a formal ground-
ing of several terms that are widely (but vaguely
and inconsistently) used to describe factual errors
in LMs. LMs and probing techniques are rapidly
evolving, so we do not aim to provide a defini-
tive answer to the question of why LMs assign
false statements high probability. However, in a
widely studied probe class, two LMs, and three
question-answering datasets, we identify three qual-
itatively different reasons that probes may outper-
form queries, which we call confabulation (queries
produce high-confidence answers when probes are
low-confidence), heterogeneity (probes and queries
improve performance on different data subsets),
and (in a small number of instances) what past
work would characterize as deception (Fig. 1C-D,
in which queries and probes disagree confidently
on answer probabilities). Most mismatches occur
when probes or queries are uncertain about answers.
By combining probe and query predictions, it is
sometimes possible to obtain better accuracy than
either alone.

Our results paint a nuanced picture of the repre-
sentation of factuality in LMs: even when probes
outperform LMs, they do not explain all of LMs’
ability to make factual predictions. Today, many
mismatches between internal and external represen-
tations of factuality appear attributable to different
prediction pathways, rather than an explicit rep-
resentation of a latent intent to generate outputs
“known” to be incorrect.

2 Preliminaries

Extracting answers from LMs We study autore-
gressive LMs that compute a next-token distribu-
tion ppy(x; | £<;) by first mapping the input z -,
to some hidden representation hr\(x<;), then us-
ing this representation to predict x;. There are two
standard procedures for answering questions using
such an LM:

1. Querying: Provide the question g as input
to the LM, and rank answers a (e.g. yes/no)
according to prv(a | ¢) (Petroni et al., 2019).

2. Probing: Extract the hidden representa-
tion h([g,a]) from the LM, then use ques-
tion/answer pairs labeled for correctness (or
unsupervised clustering methods) to train a
binary classifier that maps from hp s to a dis-
tribution pprobe(correct | h) (Burns et al.,
2022).

Causes of disagreement Past work has shown
that this probing procedure is effective; recent work
has shown that it often produces different, and
slightly better, answers than direct querying (Burns
et al., 2022). Why might this mismatch occur? In
this paper, we define three possible cases:

1. Model Confabulation (Edwards, 2023): Dis-
agreements occurring when probe confidence
is low, and the completions from queries are
incorrect (mid-left of Figure 1). In these cases
probes may be slightly more accurate if their
prediction confidence is better calibrated to
the probability of correctness. In LMs exhibit-
ing confabulation, a large fraction of disagree-
ments will occur on inputs with large probe en-
tropy Hprobe(correct | (¢, a)) and large query
confidence pquery (a | g) for any a.

2. “Deception” (Azaria and Mitchell, 2023),
which we define as the set of disagreements
in which the probe is confidently correct and
the query completion is confidently incorrect
(upper-left of Figure 1). In these cases, a large
fraction of disagreements will occur on ques-
tions to which queries and probes both assign
high confidence, but to different outputs.?

“We use this terminology for consistency with past work,
and do not intend any claims about the presence of specific
communicative intentions in LMs (q.v. Abercrombie et al.,
2023; Shanahan, 2022). In humans, deception involves models
of other agents’ mental states (Mahon, 2008) of a kind that are



3. Heterogeneity: Disagreements resulting from
probes and queries exhibiting differential ac-
curacy on specific input subsets (upper-mid of
Figure 1). In these cases, probes may outper-
form queries if the subset of inputs on which
probes are more effective is larger than the
(disjoint) subset on which queries are more
effective.

These three categories (along with cases of
query—probe agreement, and probe confabulation
and error) are visualized in Fig. 1C. Behaviors may
occur simultaneously in a single model: we are ulti-
mately interested in understanding what fraction of
predictions corresponds to each of these categories.

Datasets We evaluate predictions on three
datasets: BoolQ, a dataset of general-topic yes—no
questions derived from search queries (Clark et al.,
2019); SciQ, a dataset of crowdsourced multiple-
choice science exam questions, and CREAK, a
dataset of crowdsourced (true and false) factual as-
sertions (Onoe et al., 2021). We evaluate model
behavior on all three datasets via a binary ques-
tion answering task. SciQ contains multiple wrong
answers for each question; we retain the correct
answer and select a single distractor.

Models As the base LM (and implementation of
Dquery ), We use the GPT2-XL (Radford et al., 2019)
and GPT-J LMs (Wang and Komatsuzaki, 2021).
We query LMs by evaluating the probability they
assign to correct answers. In BoolQ and CREAK
we re-normalize their output distributions over the
strings {true, false}; in SciQ we use provided cor-
rect and incorrect answers.>

Probes While the space of probe designs is large,
many recent studies have used linear probes in
LMs (Hernandez and Andreas, 2021; Ravfogel
etal., 2022; Burns et al., 2022; Marks and Tegmark,
2023).* We train a linear model (using a logistic

not exhibited by the LMs we study (Sap et al., 2022). What
we call “deception” is necessary but insufficient for an LM to
“believe” one thing but choose to say another.

3Just as different behavior may be exhibited by different
models, it may be induced by different prompts or query
formats (Lin et al., 2022). We experimented with different
query formatting strategies but found no striking changes in
results. However, future work may more systematically study
the distribution of query—probe disagreements induced by
different prompts.

“The probing paradigm has limitations. A successful probe
does not indicate that the LM necessarily uses the feature being
probed for, and an unsuccessful probe does not indicate that
the LM does not use the feature being probed for (Ravichander
et al., 2020; Elazar et al., 2021; Belinkov, 2022).

CREAK
GPT-2  GPTJ

BoolQ
GPT-2  GPTJ

Query 61.8 618 761 841 51.1 504
Probe 629 625 788 886 635 710

Ensemble - 62.7 79.7 90.5 - 71.3

SciQ
GPT-2  GPT-J

Table 1: Accuracies of different evaluation approaches.
As in past work, we find that probes are consistently
more accurate than queries. Surprisingly, by ensembling
probes and queries together, it is possible in 4 of 6 cases
to obtain further improvements.
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Figure 2: Calibration of GPT-J queries and probes. Each
point represents a group of predictions: the horizontal
axis shows the query’s average confidence E, ,p(a | ¢),
the vertical axis shows the query’s empirical accuracy
E|a is correct], and point radius shows the number of
predictions in the group. Probes are substantially better
calibrated than LM queries.

regression objective) to classify (question, answer)
pairs as correct or incorrect using the training split
of each dataset described above. The input to this
linear model is the LM’s final hidden state in the
final layer (we did not find substantial differences
in probe accuracy using different layers or repre-
sentation pooling techniques). As in past work, we
obtain a distribution over answers by normalizing
OVer Pprobe(correct | ¢, a). Our main results train
an ordinary linear model; additional results with a
sparse probing objective (as in e.g. Voita and Titov,
2020) are in Appendix A.

3 The success of probes over queries can
largely be explained by better
calibration

By evaluating accuracy of probes and queries on
held-out data, we replicate the finding that probes
are more accurate than queries (Table 1). In some
cases the difference is small (less than 1% for GPT-
J on BoolQ); in other cases, it is substantial (more
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Figure 3: Distribution of query and probe predictions. “Deception”-like results (orange) do not feature particularly
prominently compared to other outcomes. Note that heatmaps (left) use the same shade of gray for “both correct”
and “both incorrect”, even though they are distinguished in histograms (right) to enable direct comparison.

than 20% on CREAK).

Another striking difference between probes and
queries is visualized in Fig. 2, which plots the cal-
ibration of predictions from GPT-J (e.g. when a
model predicts an answer with 70% probability,
is it right 70% of the time?). Probes are well cali-
brated, while queries are reasonably well calibrated
on SciQ but poorly calibrated on other datasets.
This aligns with the finding by Mielke et al. (2022)
that it is possible to obtain calibrated prediction
of model errors (without assigning probabilities to
specific answers) using a similar probe.

It is important to emphasize that the main goal
of this work is to understand representational cor-
relates of truthfulness, not to build more accurate
models. Indeed, the superior calibration and accu-
racy of probes over queries might not seem surpris-
ing given that probes are trained many-shot while
queries use the model zero-shot. To contextual-
ize these results, we also finetuned GPT2-XL on
true question/answer pairs and found it performed
better overall than probing the pretrained model.
Probe predictions exhibited 1.7% better accuracy
than fine-tuned model queries on BoolQ. However,
querying the fine-tuned model had 6.9% and 1.9%
better accuracy on SciQ and CREAK.

4 Most disagreements result from
confabulation and heterogeneity

Next, we study the joint distribution of query and
probe predictions. Results are visualized in Fig. 3.
GPT2-XL and GPT-J exhibit a similar pattern of
errors on each dataset, but that distribution varies

substantially between datasets. In BoolQ and SciQ,
the query is correct and the probe is incorrect nearly
as often as the opposite case; on both datasets, ex-
amples of highly confident but contradictory pre-
dictions by probes and queries are rare.

Fig. 1D shows the fraction of examples in each
of the nine categories depicted in Fig. 1C. Only
in CREAK do we observe a significant number of
instances of “deception”’; however, we also observe
many instances of probe errors. In all other cases
(even SciQ, where probes are substantially more
accurate than queries), query—probe mismatches
predominantly represent other types of disagree-
ment.

5 Queries and probes are complementary

Another observation in Fig. 1 is that almost all
datasets exhibit a substantial portion of heterogene-
ity: there are large subsets of the data in which
probes have low confidence, but queries assign high
probability to the correct answer (and vice-versa).

We can exploit this fact by constructing an en-
semble model of the form:

pensemble(a ’ Q) =\ pprobe(a | Q)

ey
+ (1 - )‘) 'pquery<a ’ Q)

We select A using 500 validation examples from
each dataset, and evaluate accuracy on the test split.
Results are shown at the bottom of Table 1; in 4/6
cases, this ensemble model is able to improve over
the probe. While improvements on BoolQ and
CREAK are small, on SciQ they are substantial—
nearly as large as the improvement of the probe



over the base LM. These results underscore the
fact that, even when probes significantly outper-
form queries, query errors are not the source of
all mismatches, and heterogeneity in probing and
querying pathways can be exploited.

6 Conclusion

We studied mismatches between language models’
factual assertions and probes trained on their inter-
nal states, and showed that these mismatches reflect
a diverse set of situations including confabulation,
heterogeneity, and a small number of instances
of deception. In current models, disagreements
between internal and external representations of
truthfulness appear predominantly attributable to
different prediction pathways, rather than a latent
intent to produce incorrect output. A variety of
other model interventions are known to decrease
truthfulness, including carefully designed prompts
(Lin et al., 2022), and future models may exhibit
more complex relationships between internal repre-
sentations and generated text (especially for open-
ended generation). Even in these cases, we expect
the taxonomy in Fig. 1 to remain useful: not all
mismatches between model and probe behavior in-
volve deception, and not all model behaviors are
(currently) reducible to easily decodable properties
of their internal states.

7 Limitations

As seen in Fig. 1, there is significant heterogeneity
in the distribution of disagreement types across
datasets. These specific findings may thus not
predict the distribution of disagreements in future
datasets. As noted in Section 2, our experiments
use only a single prompt template for each experi-
ment; we believe it is likely (especially in CREAK)
that better prompts exist that would substantially
alter the distribution of disagreements—our goal in
this work has been to establish a taxonomy of er-
rors for future models. Finally, we have presented
only results on linear probes. The success of ensem-
bling methods means that some information must
be encoded non-linearly in model representations.

8 Ethical Considerations

Our work is motivated by ethical concerns raised
in past work (e.g., Askell et al., 2021; Evans et al.,
2021) that LMs might (perhaps unintentionally)
mislead users. The techniques presented here might
be used to improve model truthfulness or detect

errors. However, better understanding of model-
internal representations of factuality and truthful-
ness might enable system developers to steer mod-
els toward undesirable or harmful behaviors.

Finally, while we have presented techniques for
slightly improving the accuracy of models on ques-
tion answering tasks, models continue to make a
significant number of errors, and are not suitable
for deployment in applications where factuality and
reliability are required.
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A Sparse Probing Results
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Figure 4: Sparse probing results. In these experiments, we train the same probes as in the main paper, but with a
varying ¢ penalty applied to the probing objective to encourage the discovery of sparse solutions. Here we report
the level of sparsity, probe accuracy, and distribution of disagreement types as we vary the strength of the regularizer
within {0,0.01,0.03,0.1}. Except at extremely high sparsity values, both accuracies and error distributions remain
similar to those reported in the main set of experiments.



