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Abstract

The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios
in many real-world applications. However, agents may fail to cooperate in practice even
when cooperation yields a better outcome. One well known reason for this failure comes
from non-credible commitments. To facilitate commitments among agents for better co-
operation, we define Markov Commitment Games (MCGs), a variant of commitment
games, where agents can voluntarily commit to their proposed future plans. Based on
MCGs, we propose a learnable commitment protocol via policy gradients. We further
propose incentive-compatible learning to accelerate convergence to equilibria with bet-
ter social welfare. Experimental results in challenging mixed-motive tasks demonstrate
faster empirical convergence and higher returns for our method compared with its coun-
terparts. Our code is available at https://github.com/shuhui-zhu/DCL.

1 Introduction

In mixed-motive applications (Dafoe et al., 2020), agents often fail to cooperate even when coop-
eration leads to better outcomes. One key reason is the issue of non-credible commitments. For
instance, in the Prisoner’s Dilemma (Table 1), mutual cooperation would lead to higher payoffs for
both players compared to mutual defection, but each player, driven by its self-interest, is incentivized
to defect regardless of the other’s choice. As a result, credible commitments to cooperate cannot be
established.

To mitigate the commitment problem, a commitment device (Rogers et al., 2014; Sun et al., 2023)
is often required to ensure that agents fulfill their commitments, either by binding their actions to
fixed strategies (Schelling, 1980; Renou, 2009; Kalai et al., 2010; DiGiovanni & Clifton, 2023) or
imposing penalties for noncompliance (Bryan et al., 2010). In particular, conditional commitment
devices (Kalai et al., 2010; Dafoe et al., 2020) have been verified to enhance cooperation in the
Prisoner’s Dilemma. When one player conditionally commits to cooperate if and only if the other
does the same, the other player is motivated to cooperate. However, these conditional commitment
mechanisms, tailored to specific problems, typically rely on fixed, pre-specified rules, leaving no
room for adaptation in more complex, dynamic environments. Additionally, such mechanisms are
designed primarily for simple, repeated games such as the Prisoner’s Dilemma, limiting their appli-
cability to a broader range of strategic scenarios where the conditions for cooperation may evolve
over time.

To address these limitations, we propose a learnable commitment mechanism, named differentiable
commitment learning (DCL) based on the introduced Markov Commitment Games (MCGs, Fig-
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Figure 1: Markov Commitment Game: A Markov commitment game consists of three stages. In the
first stage, agents announce their proposed future actions. In the second stage, agents observe others’
proposals and decide whether to commit to the joint plan. In the final stage, agents choose their
actions: if all agents commit, they follow their proposals; if any agent does not commit, all agents
independently select actions based on the current state. Afterward, agents observe the resulting
rewards and transit to the next state.

ure 1). MCGs are a variant of commitment games (Renou, 2009; Bryan et al., 2010; Forges, 2013;
DiGiovanni & Clifton, 2023). In two-phase commitment games, each agent first announces a uni-
lateral commitment to a subset of possible strategies, then selects an action based on strategies they
have committed to. Different from commitment games, MCGs incorporate an additional proposal
phase, where agents release a proposed future plan of their own actions in the current state without
disclosing their strategies for other states. As a result, MCGs do not require mutual transparency
of commitment strategies and avoid incompatibilities in commitment implementation. Furthermore,
commitments in MCGs have linear size in the planning horizon and are therefore more tractable for
agents to reason through, whereas in conditional commitment games (Bryan et al., 2010; Forges,
2013; DiGiovanni & Clifton, 2023), commitments are recursive and potentially infinite.

The core idea of DCL in MCGs is to learn a commitment protocol that enables agents to voluntarily
align their actions based on the commitments of others. Under the assumption of self-interested
agents, DCL adopts the scheme of reinforcement learning (Sutton, 2018), optimizes long-term in-
dividual returns via policy gradients. Different from common RL algorithms that treat other agents
as part of the environment, DCL allows backpropagation through actual or estimated policies of
other agents. The advantages of DCL are twofold. 1) The commitment mechanism is agnostic
to environment dynamics so that it can generalize across various tasks. Whereas in commitment
games (Renou, 2009; Bryan et al., 2010; Forges, 2013; DiGiovanni & Clifton, 2023), the commit-
ment strategies are pre-defined for specific problems. 2) DCL provides more accurate value eval-
uation and policy gradient estimations through backpropagation across commitment channels. By
explicitly leveraging the interdependence of agents’ decisions, DCL enhances learning outcomes.
Whereas other baseline RL algorithms (Schulman et al., 2017; Haupt et al., 2022; Ivanov et al.,
2023) treat other agents as part of the environment, resulting in non-stationarity from each agent’s
perspective.

Extensive experiments in tabular, sequential and iterative social dilemmas verify the efficiency of
our approach in promoting cooperation. DCL significantly outperforms several baseline methods,
including independent RL, contract-based reward transfer RL, and mediated multi-agent RL, often
by establishing mutually beneficial multilateral commitments.

2 Related Works

2.1 Binding Contracts Mechanism

Binding contracts are generally applied to establish commitments in multi-agent systems. The liter-
ature offers various approaches to contract design. Wang et al. (2024); Han et al. (2017); Sandholm
& Lesser (1996) developed contracts that bind agents’ future actions through side payments, reward-
ing agents for fulfilling commitments and penalizing them for noncompliance. Haupt et al. (2022);
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Sodomka et al. (2013) also explored mechanisms where agents voluntarily agree to binding reward
transfers. However, these methods directly alter agents’ incentives, which may not be feasible in
practice.

Instead, Kramar et al. (2022); De Jonge & Zhang (2020); Hughes et al. (2020) proposed adaptive
binding actions without reward transfers, which are similar to MCGs but differ in specific details.
De Jonge & Zhang (2020) focused on turn-taking games with unilateral commitments, while MCGs
emphasize simultaneous moves and multilateral commitments. Hughes et al. (2020) required agents
to propose a joint plan for all, with multilateral commitment only if they propose the same plan.
In MCGs, however, each agent proposes an individual plan and uses a separate commitment model
to decide whether to commit or not. Kramdr et al. (2022) introduced pairwise negotiation through
Nash Bargaining Solution (NBS) (Binmore et al., 1986), aiming to maximize the product of agents’
utilities. In contrast, MCGs focus on selfish agents aiming to maximize their individual long-term
returns.

2.2 Altruistic Third Party

Without manipulating agents’ rewards, (Ivanov et al., 2023; McAleer et al., 2021; Greenwald et al.,
2003) introduced pro-social third parties to mediate agents’ actions and induce cooperative behav-
iors. These approaches optimize social welfare such as the sum of agents’ returns while incor-
porating rationality constraints that define equilibria, ensuring that self-interested agents have no
incentive to deviate from their strategies. Specifically, utilitarian correlated-Q learning (Greenwald
et al., 2003) utilized a centralized model to optimize the joint action probability distribution of all
agents, with an objective that maximizes the sum of the agents’ rewards. In contrast, Ivanov et al.
(2023); McAleer et al. (2021) trained agents to optimize their individual payoffs, allowing them
to follow the recommendations of a prosocial mediator or take their actions independently if those
recommendations do not align with their self-interests. However, these approaches still rely on a
centralized altruistic third party, which may become ineffective in highly conflicting environments
where collective interests significantly clash with individual self-interests.

3 Background on Commitment Games

A normal form game G = (N, (R, A%);cnr) consists of a set A/ of agents, where each agent
i chooses an action a’ € A’ and earns a reward according to the function R* : [[; A7 —
R. A commitment game (Renou, 2009) extends a normal form game to two phases where
each agent first makes a commitment and then plays an action. Formally, a commitment game
CG = (N, (R}, A*,C");cn) extends a normal form game with a commitment space C* for each
agent. Player i’s strategy (c’, o) consists of a commitment ¢! € C’ and a response function
ot 1 i Ci — A'. For example, Renou (2009) considered unconditional unilateral commitments
where a commitment ¢! C A’ is a subset of the action space, meaning that the agent commits to
choose an action in that subset. Such unconditional unilateral commitments can yield better equilib-
ria (i.e., Pareto optimal) when ruling out some threats will incite other agents to cooperate. However,
in other games such as Prisoner’s Dilemma, no unilateral commitment will induce convergence to
mutual cooperation.

Kalai et al. (2010) proposed conditional unilateral commitments C? : J] it CJ — A?, where agents
commit to some actions conditioned on the commitments of others. This space of commitments is
recursive and potentially infinite, however it can turn mutual cooperation into a stable equilibrium in
Prisoner’s Dilemma when both agents commit to cooperating conditioned on the other one cooperat-
ing too. Kalai et al. (2010) further augmented conditional unilateral commitments with a voluntary
commitment space. In this voluntary commitment space, agents are allowed to play the normal form
game G without making any advanced commitment. Thus, agents will independently select their
actions a’ € A° if they voluntarily decide not to commit to any ¢ € C*. However, this conditional
commitment mechanism requires agents to reveal their commitment strategies (Kalai et al., 2010;
Forges, 2013) or source code of their models (DiGiovanni & Clifton, 2023), which may be imprac-
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tical and lead to incompatibilities in commitment implementation. Two tables in the supplementary
material summarize the differences and similarities between various types of games and associated
algorithms to optimize strategies.

4 Markov Commitment Games

The ability to make binding commitments is a fundamental mechanism for promoting cooperation.
To enable strategic commitment-making among intelligent agents in multi-agent systems, we for-
mulate a Markov Commitment Game (MCG, Figure 1), formally defined by a tuple

MCG = (N,8,T,(M",C", A", R)ien, 7)- (1

MCGs include three stages. At each time step ¢, the agent ¢ € A observes a global state s, € S
and announces a proposal m* € M? = A in the first stage. Then each agent i observes the
joint proposal m = (m?);cxr and makes a commitment decision ¢! € C* = {0, 1} in the second
stage, where ¢! = 1 indicates that agent i commits to the joint proposal, ¢! = 0 indicates that
agent ¢ rejects the joint proposal. In the third stage, if all agents commit to the joint plan, they
execute the actions in the proposal, i.e., a’ = m®, Vi € N; otherwise, each agent i independently
selects an action a’ € A’. Agent i receives the reward ¢, determined by the reward function
Ri: S x A — R, where A = (A?);cn tepresents the joint action space. Meanwhile, the next
state s is generated by the transition function 7 : & x A — A(S), which satisfies the Markov
property and the stationarity condition, i.e., 7 (s;41 = §'|s; = s,a; = a) = T (sp41 = §'|sy =
S,a; = a&,8;_1,a;_1...,50,a0) = T (§'|s,a), Vt. This process is repeated until the episode ends. It
is important to note that the transition distribution conditions on the current state and joint actions
only, not on the proposals or commitment decisions. This is because proposals and commitments
indirectly influence the transition by affecting the actions executed.

In an MCG, each agent has three decisions to make at each time step: what to propose, whether
to commit or not, and how to choose actions without joint commitment. Therefore, we decompose
each agent’s behavioral model into three strategic policies. The proposal policy, ¢’n : S — A(MY),
maps the current state s; to a distribution over agent ¢’ space of proposals. The commitment policy,
wéi : S x M — A(C?), depends on the state s; and the joint proposal m; € M = (M?%);cnr. The
action policy, wéi : S — A(A?), samples action based on the current state s; only.

MCGs adopt a strategic commitment mechanism in mixed-motive multi-agent systems. In this
framework, the environment also serves as a commitment device, enforcing agents’ voluntarily im-
posed restrictions on their future actions. Agents in MCGs have access to this device, which is
effective only when all self-interested agents agree to commit to a public joint plan. If any agent
declines, all agents will independently select actions without restrictions by commitment. Thus, the
commitment device facilitates a conditional commitment: agents agree to execute their proposed
actions only if every other agent also commits to the joint plan.

Driven by self-interest, the objective of each agent 5 is to find the optimal strategy (¢;7 , wz )
that maximizes their future expected return, i.e. the expected cumulative discounted reward, defined
by

o0
max Vo () = Epapm[d_ 7" rialse = 2)
k=t

where + is the discounted factor, ¢ = (¢;i)ieN, P = (d’éz)vﬁe/\/, m = (), )ien- Note that agent
1’s value function V(;’w’ﬂ(s) is dependent on other agents’ strategies, as the collective actions of
all agents jointly decide the rewards and state transitions in multi-agent systems. Meanwhile, each
agent’s proposal and commitment decision also indirectly affect others’ expectation of their future
returns. Therefore, the impact of other players’ policies on each agent’s objective should be properly
evaluated during learning.
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4.1 Equilibrium Analysis in Prisoner’s Dilemma

MCGs induce a conditional commitment mechanism, which can lead to different strategic behaviors
and outcomes compared to a game without such commitments.

Proposition 4.1. Mutual cooperation is a Pareto-dominant Nash equilibrium in the MCG of the
Prisoner’s Dilemma.

Specifically, we demonstrate with Proposition 4.1 that with the ability to commit, both players have
an incentive to strategically propose and commit to cooperation, given the other agent does the same,
thereby transforming mutual cooperation into a Pareto-dominant Nash equilibrium. The formal
proof of this proposition is provided in Appendix 12.

5 Differentiable Commitment Learning

Based on MCGs, we propose differentiable commitment learning (DCL) under the assumption of
self-interested agents. Instead of treating other agents as part of the environment, DCL considers
joint actions when evaluating individual returns. To formulate this idea, we define the state-action
value function of agent 7 in MCGs as QY , -(s,8) = Egy,x[> o V" "7y |50 = 5,2, = al, rep-
resenting the expected future returns conditioned on the current state and the joint actions. Because
the environment’s transitions and reward function in MCGs depend only on the state and joint ac-
tions, the state-action value function does not condition on proposals or commitments either. Under
the scheme of on-policy reinforcement learning (Sutton, 2018), DCL estimates this state-action value
function by minimizing the mean square error between Qfﬁ,wm(s, a) and the Monte Carlo returns

G‘% = Z;‘::t yR=tpd 1 of the sampled trajectories. Similar to the policy gradient theorem (Sutton
et al., 1999), we then derive unbiased policy gradients based on Qfﬁ,w,w (s,a) in Equations (3), (4),
and (5) respectively. The complete proof of Lemma 5.1 is provided in Appendix 10.

Lemma 5.1. Given proposal policy (bj] commitment policy wz and the action policy ﬂ'gi of each
agent i in an MCG (1), the gradients of the value function Vé;,qp,n (s) wrt. 0%, ¢t 0t are

Vo Virpm(5) X Banpyy wmmropann | (1= 1€ = 1)) Qh,n(2,2) Vi log 7' (a']2)| . 3)

Vi Vaap,m(8) 0Banpgy v ommsp,onpam Uﬂ(c = 1)Q,yp,x(z,m) + (1 —1(c= 1))Q2,¢,"(m,a)]

Vi logwi(ci|x, m) + [Qfﬁ,w,"(:ﬂ, m) — in,,,,,,,,(:c,a)} H Il(ck =1) -Vgill(ci = 1):|7
ki
“4)

Vﬂi’ V‘;ﬂ/’s"" (S) O(Ez"‘qu,w,nva‘t'vCvaaN"" |:[]l (C = 1)in>,1b,7r (1’, m) + (1 - ]l(C = 1))ij>,1/),7r (x7a)]

(Vg log ¢! (m'[x) + 37 Ve log (. m)) + 3 [T 10" = 1) [ Qg m)

J k#j

- Qib,w,n(m, a)} . Vnzzll(cj = 1):| ,
©)

where 1(-) denotes the indicator function, which equals 1 if the condition inside is true and 0
otherwise; pg .= (x) denotes a discounted probability of state x encountered, starting at s and
then with all agents following ¢, ¥, T : ppp,n(T) = D 1oV Pri{s: = z|sp = s}

Through policy gradients in Lemma 5.1, DCL enables agents to optimize their strategies by consid-
ering both direct and indirect effects of their policies on their utilities. To capture the direct impact,
DCL allows agents to differentiate through their own policies, updating in the direction that maxi-
mizes their individual returns. On the other hand, DCL allows agents to consider how their decisions
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influence others’ commitments and how these influences, in turn, affect their own utilities. This in-
direct influence is leveraged by differentiation through the commitment policies of other players
when computing V,: V(;,wm(s). To backpropagate through discrete commitments, we apply the
Gumbel-Softmax distribution (Jang et al., 2016) for differentiable sampling.

Instead of limiting DCL to centralized training (Appendix 11.1) with access to other agents’ policies,
we extend DCL to fully decentralized settings (Appendix 11.2). In decentralized DCL, each agent
estimates others’ policies and differentiates through these estimates to update their own policies.

Algorithm 1 Differentiable Commitment Learning

Input: initial parameters of action policy #%, commitment policy ¢, proposal policy n’, action-
value function w' for i € N/, learning rate 3, Lagrange multiplier A, number of iterations 7.
for k=0,1,2,...., T — 1 do

Collect set of trajectories Dy, = {74} by running latest policies (6%, ¢, n*), Vi € N.

Compute Monte-Carlo discounted accumulative rewards Gf;, VieN.

Fit value function with gradient descent by minimizing the mean-squared error:

T
i . 1 i Ai
W41 = arginin W E E (@i (st,a¢) — Gy)*.

w TED), t=0

Estimate action policy gradient gei according to Equation (3).
Estimate commitment policy gradient ggi according to Equation (4).
Estimate proposal policy gradient gn}; w.r.t. expected return according to Equation (5).

Estimate proposal policy gradient Q;i w.r.t. the incentive-compatible constraints by
k

T
ﬁ 2 22 Vymin{0.Q,, (st.me) =@, (s}

€Dy, t=0 j Ykt
Update policy parameters for all agents with gradient ascent,
ka1 = 0k + Bdoi s Chorr = G+ BIci s Mo = Mo + By + Ay -

end for

5.1 Incentive-Compatible Constraints

Although mutual cooperation can be a Nash equilibrium in MCGs for some mixed-motive environ-
ments, agents may still have the equilibrium selection problem when multiple equilibria exist. For
instance, mutual defection is another Nash equilibrium of the MCG in Prisoner’s Dilemma, with
less pay-offs of both agents compared to mutual cooperation equilibrium in Lemma 5.1. Even if
agents are motivated by self-interest to select mutual cooperation equilibria over mutual defection
equilibria with DCL, they may fail to find the equilibria with better outcomes because of ineffi-
cient exploration. To address this challenge, we introduce a set of incentive-compatible constraints
on agents’ proposal policies in Equation (6), which encourage agents to find mutually beneficial
proposals.

Em~[Qp, 4,7 (5, m)] > Eanr[Qg 4, (5,2)] Vi (6)

Combining these incentive-compatible constraints with the self-interested objective, agents are
driven to maximize their expected returns and propose mutually beneficial agreements. If a joint
proposal results in outcomes worse than actions induced by independent action policy for any player,
agents are penalized during training through a regularization term induced by constraints in Equa-
tion (6). This regularization encourages agents to develop better agreements that benefit all players.
Meanwhile, these constraints do not sacrifice agents’ self-interests, as they retain the ability to reject
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Figure 2: Prisoner’s Dilemma: DCL v.s. Other Baselines
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Figure 3: DCL Policies in Prisoner’s Dilemma

proposals that do not enhance their own utility. Thus, they will follow their unconstrained policies
unless a mutually beneficial agreement emerges.

It is important to note that feasible solutions always exist for Equation (6), as agents can align their
proposal policies with their action policies, i.e. ¢'(s) = 7'(s) for Vi € N. We then integrate
these constraints into the objective function of agent ¢ with a Lagrange multiplier A, to update the
parameter 77° of the proposal policy:

0+ ViV () + AV > min{0, B[ @ 5, (5:1)] = Earerr [ Q. (5, 2)]}-
J
(N
Note that when A = 0, the proposal policies are not constrained by Equation (6). The abstract
pseudocode of DCL is provided in Algorithm 1. Please refer to Appendix 11 for more details about
DCL.

6 Experiments

We evaluated the performance of DCL focusing on two objectives. First, we investigated DCL’s
ability to foster cooperative behaviors among agents in challenging mixed-motive tasks. To validate
this, we analyzed the behaviors of agents with mutual commitment and without commitment. Sec-
ond, we compared DCL’s efficiency against other multi-agent reinforcement learning algorithms in
tabular, repeated, and sequential social dilemmas. We demonstrated improvements in both agents’
self-interest optimization and social welfare. Additionally, we compared centralized (Algorithm 2,
Appendix 11.1) and decentralized (Algorithm 3, Appendix 11.2) versions of DCL. Each algorithm
was executed with and without incentive-compatible constraints (denoted as DCL-IC and DCL re-
spectively), to further explore the impact of the constraints introduced in Equation (6).
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Figure 5: Repeated Purely Conflicting Game (Horizon=16): DCL v.s. Other Baselines.

6.1 Baselines

We compared DCL with the following baselines. Each curve was averaged over 10 seeds with
shaded regions indicating standard errors. Hyperparameters and more implementation details can
be found in Appendix 13.

Independent PPO (IPPO) In this baseline, each agent was trained independently with the proxi-
mal policy optimization (PPO) (Schulman et al., 2017). The objective of each agent is maximizing
individual expected returns. We implemented multi-agent independent PPO with RLIib (Liang et al.,
2018).

Mediated MARL To compare with an altruistic third party mechanism, we implemented mediated
multi-agent reinforcement learning using the code released by Ivanov et al. (2023). The mediator,
whether constrained or unconstrained, was trained to maximize the utilitarian social welfare, i.e.,
the expected sum of all agents’ returns, while other agents were trained independently to maximize
their self-interests. Both agents and the mediator were optimized via actor-critic algorithms (Mnih
et al., 2016).

Multi-Objective Contract Augmentation Learning (MOCA) To compare with a contract mech-
anism with reward transfer, we implemented multi-objective contract augmentation learning with the
code released by Christoffersen (2024); Haupt et al. (2022). Each agent was trained to maximize
self-interest, with a learnable transfer payment that directly modifies agents’ rewards.

6.2 Results
6.2.1 Prisoner’s Dilemma

Prisoner’s Dilemma (Rapoport, 1965) is a normal form mixed-motive game, with payoff matrix in
Table 1.
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In accord with Proposition 4.1, Figure 2 shows that the DCL Table 1: Prisoner’s Dilemma
agents converge to mutual cooperation in the MCG with util-

itarian social welfare —2. The fully decentralized DCL also

converges to mutual cooperation, while having a larger oscil- C D
lation before convergence (Figure 2). This behavior is ex- C|¢L-D | 30
pected since decentralized DCL estimates policies of other D | (0,-3) | (-2,-2)

agents rather than directly accessing the true policies, which

introduces biases, particularly in the early stages of training.

These biases are gradually reduced as the estimated policies approach the actual policies over time.
Figure 3 shows the policies of proposals, commitments and actions. Without mutual commitment,
the probability of cooperation converges to 0. Whereas under the conditional commitment mecha-
nism, the probabilities of proposing and committing to mutual cooperation converge to 1. This result
aligns with our theoretical analysis in Proposition 12 and demonstrates the capability of commitment
mechanism to achieve cooperation.

Mediated MARL with an unconstrained mediator shows the second-best performance, while con-
strained mediated MARL performs worse, failing to converge to either mutual cooperation or defec-
tion. This failure may arise from inaccurate value estimation in mediated MARL, which constrains
the mediator’s policy during training. Specifically, mediated MARL trains each agent with indepen-
dent actor critic (Mnih et al., 2016), considering other agents as part of the environment, leading to
nonstationarity from each agent’s perspective. In contrast, DCL agents consider joint actions when
evaluating future expected returns, avoiding conflicts with the stationary environment assumption
in MCGs. Furthermore, the constrained mediated MARL dynamically updates the Lagrange multi-
plier, shifting the optimization objective at each timestep, which may lead to divergence.

The other baselines, MOCA and IPPO, converge to the mutual defection equilibrium after only a few
iterations. Without mechanism design, mutual defection is the only Nash equilibrium in Prisoner’s
Dilemma, so it is expected that IPPO fails to achieve cooperation. Without a specific choice of
contract space and hand-crafted rules, MOCA also fails to find a contract acceptable to all agents.

6.2.2 Grid Game

The above results show that DCL works well on a tabular social dilemma with a single state, we next
extend the evaluation to sequential social dilemmas. We created a 2-player, 7T'-step, N-grid game,
where agent 1 starts at grid position p} = 0, and agent 2 starts at p2 = N — 1. At each timestep,
each player observes both agents’ locations, s; = (p}, p?), and chooses between moving forward,
pii 1 = min{p} + 1, N — 1}, or moving backward, p; ,; = max{p} — 1,0}. Rewards are defined
based on agents’ positions: for agent 1, 7! = p! —2(N —1—p?); foragent 2,72 = N —1—p? —2p'.
This grid game presents a social dilemma at every state. Agents benefit from cooperation by moving
away from the other player’s initial position, while the dominant strategy is to move towards the
other’s starting point. Figure 4 demonstrates that DCL agents gradually learn to cooperate, with zero
accumulated discounted rewards. In contrast, other baselines fail to converge to such cooperative
strategies.

6.2.3 Repeated Purely Conflicting Game

To investigate whether DCL can adapt effectively to scenar-

ios with significant competition, we then introduced a purely  Table 2: Purely Conflicting Game
conflicting game presented in Table 2. In this game, an in-
crease in one agent’s payoff always results in a decrease in
the payoff of others. The dominant strategy of each agent
is to play A, regardless of the opponent’s action, which also
holds true in finitely repeated versions (denoted as RPC). Un-
der such conditions, agents have no opportunity to establish
1-step mutually beneficial agreements. As a result, all players
receive zero payoff throughout episodes.

Ay Ag
A | (0,0) | (-1,2)
Ay | (2,-1) | (0,0)
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Figure 6: DCL Commitment Policies in Prisoner’s Dilemma

However, if agents can commit to actions over multiple steps, both can achieve positive long-term
returns by committing to a tit-for-tat agreement. To explore this, we extended DCL with mega-step
commitments, enabling agents to commit to multi-step, mutually beneficial proposals. Our experi-
ments show that DCL agents successfully converge to cooperative strategies [(A1, Az), (A2, A1), ...]
by alternating between A; and A, in multiple steps. While DCL agents make sacrifices at certain
steps, they achieve significantly higher cumulative payoffs over the long run compared to other
baselines (Figure 5), demonstrating DCL’s adaptability to highly competitive environments.

7 Discussion on Experiments

7.1 Many-player Scenarios

In MCQGs, the joint proposal space grows exponentially with the number of agents, which would
inevitably increase the computational complexity. To investigate how DCL handles scalability with
many players, we conducted additional experiments on an N-player public goods game (Marwell
& Ames, 1981) with benefit factor 1.5, where the dominant strategy for each agent is to free-ride
by not contributing to the public pool. The results demonstrate that DCL with incentive-compatible
constraints performs effectively across scenarios with 2, 3, 5, and 10 agents, achieving high social
welfare. Most agents converge to propose contributions and commit to joint proposals that result
in positive individual welfare. These findings indicate that DCL scales well to many-player games,
with the agreement rate of joint proposals remaining stable (> 0.99) as the number of agents in-
creases. We report runtime, average joint proposal agreement rate and average social welfare per
batch (batch size =256) across 5 random seeds in Table 8, Appendix 14.

7.2 Robustness to Maliciously Irrational Agents

As shown in Figure 3¢ and Figure 6, DCL agents converge to commitment policies that accept
proposals for mutual cooperation and self-defection when the co-player cooperates, while reject-
ing cooperation when the co-player proposes defection in the Prisoner’s Dilemma. Consequently,
when interacting with irrational agents—such as those who always propose defection—DCL agents
will reject such proposals and choose to defect following their action policies (Figure 3a). This
demonstrates the robustness of DCL agents against malicious agents, as they effectively reject dis-
advantageous agreements and act in their own best interests.

8 Conclusion

We introduced the Markov Commitment Games, a framework that allows self-interested agents to
negotiate future plans through voluntary commitments. It responds to the open problem in cooper-
ative Al (Dafoe et al., 2020) on commitment capabilities without relying on altruism. We derived
unbiased proposal, commitment, and action policy gradients (Lemma 5.1), which facilitates the de-
sign of policy updates while preserving the stationarity assumption of the multi-agent environment.
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Under the framework of MCGs, we proposed differentiable commitment learning (DCL), which
maximizes agents’ expected self-interests while incorporating incentive-compatible constraints on
their proposal policies to encourage mutually beneficial agreements. DCL also mitigates limitations
of non-stationary training of existing methods. Rather than treating other agents as part of a sta-
tionary environment—a simplification that does not hold in multi-agent settings—DCL explicitly
leverages other agents’ actions when estimating future expected values. This approach enhances the
accuracy of value estimations and promotes stability during training. We empirically showed that
our method outperforms the baseline methods in multiple tasks, often by successfully facilitating
cooperation among agents. We also demonstrated the efficacy of DCL in its fully decentralized
implementation.

9 Limitations and Future Work

Sample Efficiency Both centralized and decentralized versions of DCL employ on-policy updates
for agents’ actors and critics, which explores by sampling actions according to the current policy
models. This is less sample efficient compared to off-policy methods, which use past trajectories
from a replay buffer for model updates. However, off-policy methods may bring biases due to
discrepancies between the behavior policy and the target policy. While importance sampling can
mitigate this issue by re-weighting experiences, it may also introduce high variance, especially when
policies diverge significantly. Furthermore, in fully decentralized DCL, agents do not have access
to other agents’ policies, and importance sampling based on estimations of other agents’ policies
may introduce additional biases. Therefore, the trade-off between the sample efficiency, bias and
variance can be further explored in our future work.

Complex Proposal Domain In DCL and MCGs, the proposal domain is formulated as a set of
future actions. This reflects real-world scenarios, where agreements often specify future actions
conditioned on the behavior of other parties. Nevertheless, human commitments can take various
forms, such as stochastic policies of future plan. Extending our framework to accommodate more
complex proposal domains presents a promising direction for future research.
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10 Proof of Lemma 5.1

The proof of Lemma 5.1 derives the action, commitment, and proposal policy gradients in DCL.
Recall that the state value function (the objective function of self-interested agents) in MCGs is:

o0
Vg (5) = Egpap Z Y g lse = 8] (3)
=t

The state-action value function is:

o0

Qpp,(5:2) = Egpm[d 7" 'ripilse = 5,0, = a). ©
k=t
Therefore we can expand the state value function by:
Viwm(s) =D dmls) Y w(cls,m) ) m(als) [ll(c = 1)Q,y,x(5,m)

m~¢ c~p an~Tr

(10)
+ (1 ~1(c= 1))@:’,,,%,7(5,51)1 .

We then derive policy gradients based on the state-action value function and policy functions.

10.1 Unconstrained Policy Gradient

Proof. First, we consider the action policy gradient Vg: Vé’wm(s) for each agent 1 € \:

Vgin’;’wm(s)

= 3 plmi) 3 wiclem) |1 = 1)V Qg r (o) + (1-1(e=1)
3 Qosen(ss2)Von(als) + 7(al) Vo Qg (o a)] ,

= X #(mlo 3_ wici,m)| (1-1(c= 1) a;cz;ﬂ,,,ﬂ<s,a>ww<a|s>] v
+ Z¢ ¢(m]s) Z;pw(cls,m) : [ﬂ(c = 1)VpiQlp (5, m)
+ (1 ~1(c= 1)) ;w(a|s)v9i%¢,,,(s,a)] .

Let
fowin(s) = 3 plmis) 37 lcls.m l( =1))§TQ2,¢,«(573)VWW(38) .
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‘We have

VoV on(8) =Fompm(s) + 3 d(mls) 3 wp(cls, m) [ﬂ(e 1)V Qi (5, m)
m~ ¢ c~p
(12)

+ (1 —1(c= 1)) 3 7 (als) Vo Qi g (5, a)] .

anvT

Since QY x(5,a) = R'(s,a) +v 3, p(s']s,2)Vy 4 (s'), we obtain

Vo Qi pm(5,2) = Vor (B (5,2) +7 3 0515, )V () =7 D (5 15,2) Vo V().

(13)
Therefore,
VQiVJ)ﬂ/,,ﬂ.(S)
=fouwm(s)+7 Z ¢(mls) Z 1(c|s, m) l]l(c =1) Zp(3/|5,m)V9iV£,¢m(3’) + (1 —1(c= 1))
m~¢ c~p s’
) Z m(als) X:p(s’|s7 a)Vyi V£’¢,ﬂ(s’)] )

Define dg .= (5,5, k) as the probability of transitioning from state s to state s’ in k steps under
@, 1, 7, then we have

dgpen(s5,5,1) = > plmls) > p(cls,m) [ﬂ(e = Dp(/]s,m)+(1-1(c=1)) - w<a|s>p<s's,a>],

m~aqo c~p a~T
(15)
and
g5, k+1) =) dpy,m(s, @, k)dgpn(z,s', 1), (16)
Note
d¢,¢,w(8,8,0) = Zd¢’¢’ﬂ(s,$70) =1. (17
Then,
=fobem(s) £ D dlmls) Y- wlels.m) [L(e = Vp(s'ls,m) + (1-L(c=1)) 3 w<a|s>p<s’s,a>]
s’ m~a¢ c~p a~T
’ Vgiv(;vwvﬂ(S/)’
=foupim(8) + 7D A (8,5, 1)V Vg (5.
) (18)

By induction,
V@i Vq’ia"/)a""(s)
=fpapm(s) + 7D dpy,n(s,5,1) (f¢,wnr(8') +9 Y dpy,m(s', 8", 1)V V$,¢,ﬂ(8")) :

=L (5) + 7D dapp,m (5,8, 1) fppm () +79° D dopp,m(5,5",2) Vi Vg o (s7), (19

S S

=305 g5 2, k) fopm(a).

z€S k=0
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S0V g, m (5,3,k)
ves 2oneo Vide,p,n(s,2k

Then we define a stationary distribution pg ., () = = L also known as an

occupancy measure of ¢, ¢, . Thus,

Vei V‘;ﬂpsﬂ'(s)
X Z p¢7'¢)97" (‘/L.)f(bywy"r (m)7

zeS

=Y pown(@) Y dlmlr) D v(clz,m) [(1 “1e=1)) > Qpyala a)%m(am] :

€S mn~a c~p a~T

= Z P ap,m (T) Z ¢(m|z) Z Y (clz, m) Z m(a|z) [(1 —1(c= 1)) Qﬁb’w,ﬂ(x,a)Vm 10g7r(a|x)] ,

€S mn~g c~p a~T
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“Eurpp g mammticrparcs | (1= 1€ = 1)) Qf s (@,2) Vo log ' (a'[2)
(20)
Therefore, we have

Vai V(z,w,‘rr (8) X EIdi,,w,-,r ,mn~¢@,crp,a~T |:(]- -1 (C = 1)) be,’d),ﬂ ({E, a)vei IOg ﬂ-i (ai |(E):| . O

10.2 Commitment Network Gradient

Proof. Next, we consider commitment policy gradient V Vdi’w,ﬂ (s):

=V 3 p(mls) > wp(cls, m) [ﬂ(e = Qi ypalsm) + (1-1(c=1)) > w<a|s>c2i¢,¢,,r<s,a>] ,
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Let
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Then,

—gppm(s)+ > (mls) > wp(cls,m) ln(c = )V Qhpn(ssm) + (1= 1(c=1)) Y w(als)
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According to (15),
VeiVipn(S) = 9ppm() + 7D dgapm(s,8, 1)V Vi o (5). (23)
Similarly by induction,
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Note that Vi 1(c! = 1) = dﬂ(;:f ) ggi To compute g—gi, we apply the Gumbel-Softmax dis-

tribution (Jang et al., 2016) for differentiable sampling. This allows backpropagation through the
differentiable commitment sample ¢ for Vi € N.

10.3 Proposing Network Gradient

Proof. Finally, we consider the proposal policy gradient V Vdi’w’ﬂ(s):

Vfli dehill »TT (S)

=V, 3 ¢(mls) 3 w(cs, m) [ﬂ(e = )Qpypr(sm)+ (1-1(c=1)) w<a|s>czi¢,¢,ﬁ<s,a>] ,
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Similarly we have

o Z P, (L) hpap e (),
€S
= pon(@ | 30D wlelr.m)[1(e = )@Y pn(e.m) + (1= L = 1)) 3 m(al2)Ql,y,n(.2)]
€S mn~¢ c~p a~T
Vydml) + Y ¢mla) D [1e = 1)Qy ynle.m) + (1= 1e = 1)) 3 m(ale)Qlyx(v.2)]

anT

mn~ ¢ c~p

Y tplelrm) + 3 dmle) 3 abcl, m) [ @y, m) — 3 w(alr) Qi g 7 2) Ve = 1)1,

mn~ ¢ c~p a~T



Reinforcement Learning Journal 2025
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Therefore,
[1(c = 1)Q) () + (1= 1(e = 1)) Ql y (w,2) |

( i log ¢ (m'|z) +ZVLlog1/1 cj\xm) ZH]IC =1) [Q¢¢, (z,m)—
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J k#j
Qg (.8)| V1 (e = 1)1. O
Note that V,l(ci = 1) = 4= (0viy-10u" I Vpl(d = 1w
dﬂ(;;zl) (%15 )1 g;fi %’:}L . We apply Gumbel-Softmax distribution (Jang et al., 2016) again, which

allows autodifferentiation through m?, Vi.

11 DCL Details

11.1 Centralized DCL

DCL updates policies with respect to policy gradients in Lemma 5.1. Because calculating
Vi Vé,’w’ﬂ (s) requires differentiation through commitment policies of other agents j € N\ i, we
present centralized DCL in Algorithm 2 that allows agents to backpropagate through exact policies
of others.

11.2 Decentralized DCL

Centralized training is not always feasible in mixed-motive environments. To address this limitation,
we further present decentralized DCL in Algorithm 3. In decentralized DCL, each agent estimates
others’ policies and value functions with DCL. Then, agents can differentiate through these estimates
to update their own policies.
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12 Proof of Proposition 4.1

Recall the definition of Nash equilibrium and Pareto-dominant outcome:
Definition 12.1. (Hu & Wellman, 2003) In stochastic game 1, a Nash equilibrium point is a tuple

of n strategies (mtl, ..., ™) such that forall s € S and i = 1, ...,n,

Vi(s,ml, ..., 7" > Vi(s,ﬂ'i,...,wi_l,wi,ﬂiﬂ,...,7rf), vt e IT, (28)

) * 9
where I1* is the set of strategies available to agent i.

At a Nash equilibrium, no player can improve their payoff by changing their strategy, assuming that
the other players stick to their current strategies.

Definition 12.2. (Censor, 1977; Fudenberg, 1991) An outcome of a game is Pareto-dominant, also
known as Pareto-optimal and Pareto-efficient, if it’s impossible to make one player better-off, without
making some other players worse-off.

* 7 *

MCGs that satisfies the conditions of Nash equilibrium and Pareto-optimality.

To prove Proposition 4.1, we need to find a tuple of strategies ((¢%, %, 7t), (o4 w8 %)) in

Proof. In the MCG of the Prisoner’s Dilemma, we define a tuple of deterministic strategies Vi € N,
¢'(s) = C,wi(s) = D and

)
(s,m={D,C}) =1,
(A {D,C}) 29)
¢i(s,m = {C,D}) =0,
¢>Z)<(Svm - {D,D}) :O orl
So the value function of this tuple is:
Vs, (60 vl w6, v m ") = —1. (30)

Then we show that no player can increase their payoff by unilaterally changing to other deterministic
strategies, assuming all other players keep their strategies fixed.

1. V¢! # ¢i,ie. ¢'(s) = D, and Vo':
(a) if mi(s) = O,
Vis (@' 9", m)l(¢ "yt mt)) = =3 < =1 = Vs, (o5, ¥l m)|(¢", 9 7)),
(€29)
(b) otherwise 7%(s) = D,
Vi(s, (6%, 4", m)|(¢7" ' mh)) = =2 < =1 = Vi(s, (¢4, ¢l m)| (677 40, 1))
(32
2. ¢' = ¢l and ¢' # i
(@) Vot # i st Yi(s,m = {C,C}) =1 and V7',
Vs, (¢ 0", m)|(0.7 ¢t m ) = =1 = Vs, (¢, ¥, m)l (6 ol ). (33)
(b) Vo' # st ¢ (s,m = {C,C}) =0,
i ifri(s) = C,

Vi(s, (o', m)|(or" it mih) = =3 < =1 =V'(s, (&, i, m)|(65" 4", m),
(34)
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ii. otherwise 7(s) = D,

Vi(sa (qﬁi»wiaﬂ-i)'((b*_ia *_ivﬂn*_i)) =-2<-1= Vi(sa( 17 1)7‘-1)'( >k_i7 *_7,771-*_1))
(35)

3. ¢f = ¢l = i, v
Vis, (o', ', 7)) (¢r " st w0 ) = =1 = Vi(s, (oL, ol ) |(¢7 v mo ). (36)

Thus,

Vs, (¢, 0", 7)) (07 s, mh) S Vs, (oLl m) (67 vt mh), Veh, ot mt. (37)

Therefore, ((¢%, 9%, 7l), (¢, 1w m %)) is a pure strategy Nash equilibrium in the MCG of Pris-

oner’s Dilemma. Meanwhile, ((¢%, %%, 7i), (¢ %, 9 ¢ w7 %)) is also a Pareto-optimal equilibrium.
Given the payoff matrix in Table 1, other possible outcomes are (—2,—2), (0,—3) and (—3,0).
Therefore, no further improvement can be made to one player’s outcome without reducing the pay-

off of another player compared to (—1, —1) achieved by ((¢%, 9%, 7l), (¢ ¢ mt)). O

13 Hyperparameters

For all algorithms, we utilized 2-layer MLP networks with ReLU activation in the hidden layers. All
policy networks apply a softmax function as the output activation, whereas the value network uses a
linear output without any activation function. Other hyperparameters are reported in Table 5, 6 and
7.

Table 3: Comparison with Related Frameworks

Name Commitment Share Policies Altruistic Third Party Reward Transfer Proposal of Actions
Commitment Games (Renou, 2009) Unconditional Yes No No No
Conditional Commitment Games (Bryan et al., 2010) Conditional Yes No No No
Contract Mechanism (Hughes et al., 2020) Conditional No No No Joint Action
Formal Contracting (Haupt et al., 2022) Conditional No No Yes No
Mediated-MARL (Ivanov et al., 2023) N/A No Yes No No
MCGs (Ours) Conditional No No No Self Action

Table 4: Comparison with MARL Baselines

Name Objective Reward Transfer Independent Learning Decentralized Learning
IPPO (Schulman et al., 2017) Individual Returns No Yes Yes
MOCA (Haupt et al., 2022) Individual Returns Yes Yes Yes
Mediated-MARL (Ivanov et al., 2023)  Social Welfare + Individual Returns No Yes Yes
Centralized DCL (Ours) Individual Returns No No No

Decentralized DCL (Ours) Individual Returns No No Yes
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Algorithm 2 Differentiable Commitment Learning (Centralized Version)

Input: initial action pOlle parameters #?, initial commitment pohcy parameters ?, initial proposal
policy parameters 7°, initial action-value function parameters w* for all 7 € N.
for k=0,1,2,... do

Collect set of trajectories Dy = {7;} by running latest policies (6%, ¢, n%), Vi € N.

Compute Monte-Carlo discounted accumulative rewards é’%, VieN.

Fit value function for all ¢ € A/ with gradient descent by minimizing the mean-squared error:

wz+1 argmm |D Z Z Li(se,a) — G2
k TED) t=0
Estimate action policy gradient for all i € N as
do; = |Du > §j( (c0 = 1)) QL (50,20 Vi log my (ails).
EDk t=0
Estimate commitment policy gradient for all ¢ € A as

ng |D | Z Z [ =1 Ql (St,mt) + (1 - ]]-(Ct = 1))Qiu;+l(5taat)}

TEDE t=0

'ng logd’é;; (Cﬂstvmt) + {qu;;“(St,mt) f"h St At } 1;[11 Vcl ( =1).
VE2

Estimate proposal policy gradient w.r.t. the expected return for all ¢ € A/ by

gnk |Dk| Z Z { ¢ =1)¢ i+1 (s¢,me) + (1 — (e = 1))Q;’2+1 (¢, )

TED t=0
. (v,,i log 6} (milse) + > V., log v, (clls, mt))
J
+ Z H ]l(cé =1) [qu;‘,c_u(St,mt) - qui“ (Staat)} Vn;]l(ci =1).
J I#j
Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i € N by
s Z ZZV ; min{0, Q (st,mt) — Q7 (sp,a)}.
e |Dk| Wh+1
TED t=0 j
Update policy parameters for all 7 € N with gradient ascent,
Or1 = 0p + Bae: ,
Chyr = Ci + Baci »
Miopr = 1+ By + Adyi

end for
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Algorithm 3 Differentiable Commitment Learning (Decentralized Version)

Input: initial action policy parameters: 6, initial estimated action policy parameters of b € N\ i:
6™ initial commitment policy parameters: (?, initial estimated commitment policy parameters of
be N\i: ¢, initial proposal policy parameters: 7°, initial estimated proposal policy parameters
of b € N \ i ﬁ“’, initial action-value function parameters: w® for i € N, initial estimated
action-value function parameters of b € N\ i: @ for all i € N.
for k=0,1,2, ... do

Collect set of trajectories Dy = {7;} by running latest policies (6%, ¢*,7"), Vi € N.

Compute Monte-Carlo discounted accumulative rewards Gt, Vie N.

Fit value function for all ¢ € A/ with gradient descent by minimizing the mean-squared error:

Ai\2
Wy = argmln E E wi(se,a) — Gy .

i
w TEDk t=0

Fit estimated value function of b for Vb € N \ ¢ and Vi € N with gradient descent by
minimizing the mean-squared error:

~ b . Ab
Wiy = argn;ln Z Z b (st,ar) — GY)%
TGDk t=0
Estimate action policy gradient for all i € A as
T
oy = |Dk| >3 (1 e = 1)@y (51,20 Vg log i, (ails).
TED) t=0

Estimate action policy of b for Vb € A\ i and Vi € N by

ezb = \Dk Z Z (1 ))Qf})ﬂl(st,at)v(,lb logwelb(aﬂst).

TED) t=0

Estimate commitment policy gradient for all i € A as

ﬁgk |Dk| Z Z [ ;;CH(st,mt) + (1 —1(c; = 1))Qi’£+1(st’at)}

TED t=0

Ve logwéi(cﬂst,mt) + {Q;;H(Stamt) iu@ St, ¢ } 1;[1[ Vil (i =1).
VE

Estimate commitment policy gradient of b for Vb € A/ \ i and Vi € N by

=y 33 =k, + (e )k ]

TED t=0

Ve log Y, (cf e, my) + {szﬂl(st,mt) Qb (s1,0)] gn(d = DV l(c = 1),
J

Estimate proposal policy gradient w.r.t. the expected return for all ¢ € A by

Ini, = |D | Z Z [ l(shmt) + (1 —1(c; = 1))Qiui+l(st,at):| : (Vn; logqﬁf]i(mﬂst)

TED), =0

+ZV Llogw<7 CJ|5tamt ) +ZH]1 [ wi (¢, my) —Q;£+1(8t,at)}vn;1(‘3{ =1).

J 1#g

Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i € A/ by
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T
A 1 . i i . b b
G = T 2 2 Ve mind0, Qo (6 ma)=Qly | (s, @)}+) ] Vo min{0, Qp (5, m) — Qi (5,2}

TED), t=0 beti

Estimate proposal policy gradient w.r.t. the expected return of b for Vb € N\ i and Vi € N
by

T
N 1P _ b b (b
i = 1Dy Z Z [1(% = 1)ng1;1(5t7mt) + (1 — (et = 1))mel(5t,at)} : (Vﬁ;;b log @7 (my]51)

T7ED t=0

+ 3 Vo log vl (cllsmy)) + 3 [T 10 = 1)[@p (st.m) = Qo (50,20)| Vg L(] = 1),
J Jo1#g

Estimate proposal policy gradient w.r.t. incentive-compatible constraints of b for Vb € N\ 4
and Vi € N by

T
o 1 . i i . b
i = Dy E E V0 min{0, Qwi“(st, mt)—QwiH(s,a)}—i— E V0 min{0, szbﬂ(s, m)— ﬁ)ml(s,a)}.

TED), t=0 b#i
Update policy parameters for all ¢ € A/ with gradient ascent,
kr = 04 + Bioy s Gt = G+ Bicg Miwr = i + By + Adyr -
Update policy parameters for all b € A"\ ¢ and ¢ € N/ with gradient ascent,
Oy = 0 + B Giler = G + Bagns it = 7 + Bdgn + Ao

end for
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Table 5: Hyperparameters of Prisoner’s Dilemma

Hyperparameters DCL Mediatedc-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Batch size 128 128 128 128
Entropy Coef. Start 1.0 1.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0 0 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 8 8 8 8
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 10.0 N/A N/A N/A
Temperature Decay 0.05 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 1 1 1 1

Table 6: Hyperparameters of Grid Game

Hyperparameters DCL Mediated-MARL IPPO MOCA
Horizon 16 16 16 16
Grid Size 4 4 4 4
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001  0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A

Num of Update Per Iteration 30 30 30 30




Learning to Negotiate via Voluntary Commitment

Table 7: Hyperparameters of Repeated Pure Conflicting Game

Hyperparameters DCL Mediatedc-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001 0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 30 30 30 30

14 Many-player Experiments

To investigate how DCL handles scalability with many players, we conducted experiments on an
N-player public goods game. For each agent i, the reward is calculated as R = > y Cixp—C
where C? denotes the contribution of agent 7, 3 denotes the benefit factor with a range between
(1, N). In our experiments, we set 5 = 1.5 for all scenarios. Results in Table 8 indicate that DCL
with incentive-compatible constraints scales effectively with large numbers of agents. While the
runtime of DCL increases with the number of agents, the agreement rate of joint proposals remains
stable (> 0.99), achieving high social welfare.

Table 8: DCL-IC on Many-player Public Goods Game

Number of Agents Run Time (Hours) Agreement Rate Social Welfare

2 4 0.996 £0.002  0.997 £ 0.002
3 7 0.994 £0.001  1.491 £ 0.004
5 12 0.996 £0.001  1.989 £ 0.002
10 32 0.991 £0.001  3.659 £ 0.143

15 Other Related Works

15.1 Cooperation Problems in Mixed-Motive Environments

The causes of cooperation failures between self-interested agents in mixed-motive environments
have been primarily categorized into two types: information problems and commitment prob-
lems (Dafoe et al., 2020; Powell, 2006; Fearon, 1995). Information problems refer to coopera-
tion failures caused by incorrect or insufficient information, which frequently occur in partially
observable environments. Existing works have demonstrated that information problems can be al-
leviated by communication (Kim et al., 2020; Sukhbaatar et al., 2016; Foerster et al., 2016) and
opponent reasoning (Konan et al., 2022; Jaques et al., 2019; Wen et al., 2019). However, in mixed-
motive environments, agents driven by conflicting self-interests may deceive others regarding their
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private observations (Lin et al., 2024; Kamenica, 2019; Taneva, 2019; Dughmi, 2017). Coopera-
tion may also fail due to agents’ inability to make credible commitments, known as commitment
problems, even in the absence of information asymmetries. For instance, cooperation can not be
achieved through cheap talk communication or non-binding promises of cooperation in the Pris-
oner’s Dilemma (Rapoport, 1965), as agents achieve higher payoffs by defecting regardless of the
opponent’s actions. To address commitment problems, a commitment device is often required to en-
sure that agents fulfill their commitments, either by restricting their actions or imposing penalties for
noncompliance (Sun et al., 2023; Rogers et al., 2014). Static conditional commitments facilitated by
such devices have been shown to enhance cooperation in the prisoner’s dilemma (Kalai et al., 2010;
Renou, 2009; Schelling, 1980). However, these fixed strategies are difficult to generalize across
various games and environments.

15.2 Comparison with Related Works

Table 3 and 4 summarize the differences and similarities between various types of games and asso-
ciated algorithms to optimize strategies.



