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Summary
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios

in many real-world applications. However, agents may fail to cooperate in practice even when
cooperation yields a better outcome. One well known reason for this failure comes from non-
credible commitments. To facilitate commitments among agents for better cooperation, we
define Markov Commitment Games (MCGs), a variant of commitment games, where agents
can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable
commitment protocol via policy gradients. We further propose incentive-compatible learning
to accelerate convergence to equilibria with better social welfare. Experimental results in chal-
lenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for
our method compared with its counterparts.

Contribution(s)
1. Formalization of Markov Commitment Games (MCGs) as a tractable framework for state-

dependent voluntary commitments in dynamic, mixed-motive multi-agent interactions.
Context: Prior work on commitment games either focused on static, one-shot commit-
ments (Kalai et al., 2010; Renou, 2009; Schelling, 1980) or suffered from recursive and
potentially infinite commitments (Bryan et al., 2010; Forges, 2013; DiGiovanni & Clifton,
2023); MCGs enable linear-size commitments in the planning horizon and are therefore
more tractable for agents to reason through.

2. Development of Differentiable Commitment Learning (DCL), a unified, end-to-end learn-
able protocol that jointly optimizes proposal, commitment, and action policies via policy
gradients.
Context: Unlike prior approaches that treated commitments as fixed contracts (Wang et al.,
2024; Haupt et al., 2022; Han et al., 2017; Sodomka et al., 2013), DCL allows agents to
backpropagate through others’ estimated or actual commitment policies, simplifying inte-
gration into gradient-based MARL algorithms.

3. Introduction of incentive-compatible proposal constraints that guarantee any proposed
joint plan improves each agent’s expected return, thereby accelerating convergence toward
Pareto-improving equilibria.
Context: None



Learning to Negotiate via Voluntary Commitment

Learning to Negotiate via Voluntary Commitment

Anonymous authors
Paper under double-blind review

Abstract

The partial alignment and conflict of autonomous agents lead to mixed-motive scenar-1
ios in many real-world applications. However, agents may fail to cooperate in practice2
even when cooperation yields a better outcome. One well known reason for this failure3
comes from non-credible commitments. To facilitate commitments among agents for4
better cooperation, we define Markov Commitment Games (MCGs), a variant of com-5
mitment games, where agents can voluntarily commit to their proposed future plans.6
Based on MCGs, we propose a learnable commitment protocol via policy gradients.7
We further propose incentive-compatible learning to accelerate convergence to equilib-8
ria with better social welfare. Experimental results in challenging mixed-motive tasks9
demonstrate faster empirical convergence and higher returns for our method compared10
with its counterparts.11

1 Introduction12

In mixed-motive applications (Dafoe et al., 2020), agents often fail to cooperate even when coop-13
eration leads to better outcomes. One key reason is the issue of non-credible commitments. For14
instance, in the Prisoner’s Dilemma (Table 1), mutual cooperation would lead to higher payoffs for15
both players compared to mutual defection, but each player, driven by its self-interest, is incentivized16
to defect regardless of the other’s choice. As a result, credible commitments to cooperate cannot be17
established.18
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Figure 1: Markov Commitment Game: A Markov commitment game consists of three stages. In the
first stage, agents announce their proposed future actions. In the second stage, agents observe others’
proposals and decide whether to commit to the joint plan. In the final stage, agents choose their
actions: if all agents commit, they follow their proposals; if any agent does not commit, all agents
independently select actions based on the current state. Afterward, agents observe the resulting
rewards and transit to the next state.

To mitigate the commitment problem, a commitment device (Rogers et al., 2014; Sun et al., 2023)19
is often required to ensure that agents fulfill their commitments, either by binding their actions to20
fixed strategies (Schelling, 1980; Renou, 2009; Kalai et al., 2010; DiGiovanni & Clifton, 2023) or21
imposing penalties for noncompliance (Bryan et al., 2010). In particular, conditional commitment22
devices (Kalai et al., 2010; Dafoe et al., 2020) have been verified to enhance cooperation in the23
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Prisoner’s Dilemma. When one player conditionally commits to cooperate if and only if the other24
does the same, the other player is motivated to cooperate. However, these conditional commitment25
mechanisms, tailored to specific problems, typically rely on fixed, pre-specified rules, leaving no26
room for adaptation in more complex, dynamic environments. Additionally, such mechanisms are27
designed primarily for simple, repeated games such as the Prisoner’s Dilemma, limiting their appli-28
cability to a broader range of strategic scenarios where the conditions for cooperation may evolve29
over time.30

To address these limitations, we propose a learnable commitment mechanism, named differentiable31
commitment learning (DCL) based on the introduced Markov Commitment Games (MCGs, Fig-32
ure 1). MCGs are a variant of commitment games (Renou, 2009; Bryan et al., 2010; Forges, 2013;33
DiGiovanni & Clifton, 2023). In two-phase commitment games, each agent first announces a uni-34
lateral commitment to a subset of possible strategies, then selects an action based on strategies they35
have committed to. Different from commitment games, MCGs incorporate an additional proposal36
phase, where agents release a proposed future plan of their own actions in the current state without37
disclosing their strategies for other states. As a result, MCGs do not require mutual transparency38
of commitment strategies and avoid incompatibilities in commitment implementation. Furthermore,39
commitments in MCGs have linear size in the planning horizon and are therefore more tractable for40
agents to reason through, whereas in conditional commitment games (Bryan et al., 2010; Forges,41
2013; DiGiovanni & Clifton, 2023), commitments are recursive and potentially infinite.42

The core idea of DCL in MCGs is to learn a commitment protocol that enables agents to voluntarily43
align their actions based on the commitments of others. Under the assumption of self-interested44
agents, DCL adopts the scheme of reinforcement learning (Sutton, 2018), optimizes long-term in-45
dividual returns via policy gradients. Different from common RL algorithms that treat other agents46
as part of the environment, DCL allows backpropagation through actual or estimated policies of47
other agents. The advantages of DCL are twofold. 1) The commitment mechanism is agnostic48
to environment dynamics so that it can generalize across various tasks. Whereas in commitment49
games (Renou, 2009; Bryan et al., 2010; Forges, 2013; DiGiovanni & Clifton, 2023), the commit-50
ment strategies are pre-defined for specific problems. 2) DCL provides more accurate value eval-51
uation and policy gradient estimations through backpropagation across commitment channels. By52
explicitly leveraging the interdependence of agents’ decisions, DCL enhances learning outcomes.53
Whereas other baseline RL algorithms (Schulman et al., 2017; Haupt et al., 2022; Ivanov et al.,54
2023) treat other agents as part of the environment, resulting in non-stationarity from each agent’s55
perspective.56

Extensive experiments in tabular, sequential and iterative social dilemmas verify the efficiency of57
our approach in promoting cooperation. DCL significantly outperforms several baseline methods,58
including independent RL, contract-based reward transfer RL, and mediated multi-agent RL, often59
by establishing mutually beneficial multilateral commitments.60

2 Markov Commitment Games61

The ability to make binding commitments is a fundamental mechanism for promoting cooperation.62
To enable strategic commitment-making among intelligent agents in multi-agent systems, we for-63
mulate a Markov Commitment Game (MCG, Figure 1), formally defined by a tuple64

MCG = (N ,S, T , (Mi, Ci,Ai,Ri)i∈N , γ). (1)

MCGs include three stages. At each time step t, the agent i ∈ N observes a global state st ∈ S65
and announces a proposal mi ∈ Mi = Ai in the first stage. Then each agent i observes the66
joint proposal m = (mi)i∈N and makes a commitment decision ci ∈ Ci = {0, 1} in the second67
stage, where ci = 1 indicates that agent i commits to the joint proposal, ci = 0 indicates that68
agent i rejects the joint proposal. In the third stage, if all agents commit to the joint plan, they69
execute the actions in the proposal, i.e., ai = mi,∀i ∈ N ; otherwise, each agent i independently70
selects an action ai ∈ Ai. Agent i receives the reward ri, determined by the reward function71
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Ri : S × A → R, where A = (Ai)i∈N represents the joint action space. Meanwhile, the next72
state st+1 is generated by the transition function T : S × A → ∆(S), which satisfies the Markov73
property and the stationarity condition, i.e., T (st+1 = s′|st = s,at = a) = T (st+1 = s′|st =74
s,at = a, st−1,at−1..., s0,a0) = T (s′|s,a),∀t. This process is repeated until the episode ends. It75
is important to note that the transition distribution conditions on the current state and joint actions76
only, not on the proposals or commitment decisions. This is because proposals and commitments77
indirectly influence the transition by affecting the actions executed.78

In an MCG, each agent has three decisions to make at each time step: what to propose, whether79
to commit or not, and how to choose actions without joint commitment. Therefore, we decompose80
each agent’s behavioral model into three strategic policies. The proposal policy, ϕiηi : S → ∆(Mi),81
maps the current state st to a distribution over agent i’ space of proposals. The commitment policy,82
ψiζi : S ×M → ∆(Ci), depends on the state st and the joint proposal mt ∈ M = (Mi)i∈N . The83
action policy, πiθi : S → ∆(Ai), samples action based on the current state st only.84

MCGs adopt a strategic commitment mechanism in mixed-motive multi-agent systems. In this85
framework, the environment also serves as a commitment device, enforcing agents’ voluntarily im-86
posed restrictions on their future actions. Agents in MCGs have access to this device, which is87
effective only when all self-interested agents agree to commit to a public joint plan. If any agent88
declines, all agents will independently select actions without restrictions by commitment. Thus, the89
commitment device facilitates a conditional commitment: agents agree to execute their proposed90
actions only if every other agent also commits to the joint plan.91

Driven by self-interest, the objective of each agent i is to find the optimal strategy (ϕiηi∗ , ψ
i
ζi∗ , π

i
θi∗)92

that maximizes their future expected return, i.e. the expected cumulative discounted reward, defined93
by94

max
ηi,ζi,θi

V iϕ,ψ,π(s) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s], (2)

where γ is the discounted factor, ϕ = (ϕiηi)i∈N , ψ = (ψiζi)i∈N , π = (πiθi)i∈N . Note that agent95
i’s value function V iϕ,ψ,π(s) is dependent on other agents’ strategies, as the collective actions of96
all agents jointly decide the rewards and state transitions in multi-agent systems. Meanwhile, each97
agent’s proposal and commitment decision also indirectly affect others’ expectation of their future98
returns. Therefore, the impact of other players’ policies on each agent’s objective should be properly99
evaluated during learning.100

2.1 Equilibrium Analysis in Prisoner’s Dilemma101

MCGs induce a conditional commitment mechanism, which can lead to different strategic behaviors102
and outcomes compared to a game without such commitments.103

Proposition 2.1. Mutual cooperation is a Pareto-dominant Nash equilibrium in the MCG of the104
Prisoner’s Dilemma.105

Specifically, we demonstrate with Proposition 2.1 that with the ability to commit, both players have106
an incentive to strategically propose and commit to cooperation, given the other agent does the same,107
thereby transforming mutual cooperation into a Pareto-dominant Nash equilibrium. The formal108
proof of this proposition is provided in Appendix 9.109

3 Differentiable Commitment Learning110

Based on MCGs, we propose differentiable commitment learning (DCL) under the assumption of111
self-interested agents. Instead of treating other agents as part of the environment, DCL considers112
joint actions when evaluating individual returns. To formulate this idea, we define the state-action113
value function of agent i in MCGs asQiϕ,ψ,π(s,a) = Eϕ,ψ,π[

∑∞
k=t γ

k−trik+1|st = s,at = a], rep-114
resenting the expected future returns conditioned on the current state and the joint actions. Because115
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the environment’s transitions and reward function in MCGs depend only on the state and joint ac-116
tions, the state-action value function does not condition on proposals or commitments either. Under117
the scheme of on-policy reinforcement learning (Sutton, 2018), DCL estimates this state-action value118
function by minimizing the mean square error between Qiϕ,ψ,π(s,a) and the Monte Carlo returns119

Ĝit =
∑T
k=t γ

k−trik+1 of the sampled trajectories. Similar to the policy gradient theorem (Sutton120
et al., 1999), we then derive unbiased policy gradients based on Qiϕ,ψ,π(s,a) in Equations (3), (4),121
and (5) respectively. The complete proof of Lemma 3.1 is provided in Appendix 7.122

Lemma 3.1. Given proposal policy ϕiηi , commitment policy ψiζi and the action policy πiθi of each123
agent i in an MCG (1), the gradients of the value function V iϕ,ψ,π(s) w.r.t. θi, ζi, ηi are124

∇θiV
i
ϕ,ψ,π(s) ∝ Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)∇θi log π

i(ai|x)
]
, (3)

125

∇ζiV
i
ϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qi

ϕ,ψ,π(x,m) +
(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)

]
∇ζi logψ

i(ci|x,m) +
[
Qi
ϕ,ψ,π(x,m)−Qi

ϕ,ψ,π(x,a)
]∏
k ̸=i

1(ck = 1) · ∇ζi1(c
i = 1)

]
,

(4)
126

∇ηiV
i
ϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qi

ϕ,ψ,π(x,m) +
(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)

]
·
(
∇ηi log ϕ

i(mi|x) +
∑
j

∇ηi logψ
j(cj |x,m)

)
+

∑
j

∏
k ̸=j

1(ck = 1)
[
Qi
ϕ,ψ,π(x,m)

−Qi
ϕ,ψ,π(x,a)

]
· ∇ηi1(c

j = 1)

]
,

(5)
where 1(·) denotes the indicator function, which equals 1 if the condition inside is true and 0127

otherwise; ρϕ,ψ,π(x) denotes a discounted probability of state x encountered, starting at s and128
then with all agents following ϕ,ψ,π : ρϕ,ψ,π(x) =

∑∞
t=0 γ

tPr{st = x|s0 = s}.129

Through policy gradients in Lemma 3.1, DCL enables agents to optimize their strategies by consid-130
ering both direct and indirect effects of their policies on their utilities. To capture the direct impact,131
DCL allows agents to differentiate through their own policies, updating in the direction that maxi-132
mizes their individual returns. On the other hand, DCL allows agents to consider how their decisions133
influence others’ commitments and how these influences, in turn, affect their own utilities. This in-134
direct influence is leveraged by differentiation through the commitment policies of other players135
when computing ∇ηiV iϕ,ψ,π(s). To backpropagate through discrete commitments, we apply the136
Gumbel-Softmax distribution (Jang et al., 2016) for differentiable sampling.137

Instead of limiting DCL to centralized training (Appendix 8.1) with access to other agents’ policies,138
we extend DCL to fully decentralized settings (Appendix 8.2). In decentralized DCL, each agent139
estimates others’ policies and differentiates through these estimates to update their own policies.140

3.1 Incentive-Compatible Constraints141

Although mutual cooperation can be a Nash equilibrium in MCGs for some mixed-motive environ-142
ments, agents may still have the equilibrium selection problem when multiple equilibria exist. For143
instance, mutual defection is another Nash equilibrium of the MCG in Prisoner’s Dilemma, with144
less pay-offs of both agents compared to mutual cooperation equilibrium in Lemma 3.1. Even if145
agents are motivated by self-interest to select mutual cooperation equilibria over mutual defection146
equilibria with DCL, they may fail to find the equilibria with better outcomes because of ineffi-147
cient exploration. To address this challenge, we introduce a set of incentive-compatible constraints148
on agents’ proposal policies in Equation (6), which encourage agents to find mutually beneficial149
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(a) Agent 1 Reward in PD
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(b) Agent 2 Reward in PD
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(c) Social Welfare in PD

Figure 2: Prisoner’s Dilemma: DCL v.s. Other Baselines
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(a) DCL Action Policy
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(b) DCL Proposal Policy
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(c) DCL Commitment Policy of
(C,C)

Figure 3: DCL Policies in Prisoner’s Dilemma

proposals.150
Em∼ϕ[Q

i
ϕ,ψ,π(s,m)] ≥ Ea∼π[Q

i
ϕ,ψ,π(s,a)] ∀ i. (6)

Combining these incentive-compatible constraints with the self-interested objective, agents are151
driven to maximize their expected returns and propose mutually beneficial agreements. If a joint152
proposal results in outcomes worse than actions induced by independent action policy for any player,153
agents are penalized during training through a regularization term induced by constraints in Equa-154
tion (6). This regularization encourages agents to develop better agreements that benefit all players.155
Meanwhile, these constraints do not sacrifice agents’ self-interests, as they retain the ability to reject156
proposals that do not enhance their own utility. Thus, they will follow their unconstrained policies157
unless a mutually beneficial agreement emerges.158

It is important to note that feasible solutions always exist for Equation (6), as agents can align their159
proposal policies with their action policies, i.e. ϕi(s) = πi(s) for ∀i ∈ N . We then integrate160
these constraints into the objective function of agent i with a Lagrange multiplier λ, to update the161
parameter ηi of the proposal policy:162

ηi ←ηi +∇ηiV iϕ,ψ,π(s) + λ∇ηi
∑
j

min{0,Em∼ϕ[Q
j
ϕ,ψ,π(s,m)]− Ea∼π[Q

j
ϕ,ψ,π(s,a)]}.

(7)
Note that when λ = 0, the proposal policies are not constrained by Equation (6). The abstract163
pseudocode of DCL is provided in Algorithm 1. Please refer to Appendix 8 for more details about164
DCL.165

4 Experiments166

We evaluated the performance of DCL focusing on two objectives. First, we investigated DCL’s167
ability to foster cooperative behaviors among agents in challenging mixed-motive tasks. To validate168
this, we analyzed the behaviors of agents with mutual commitment and without commitment. Sec-169
ond, we compared DCL’s efficiency against other multi-agent reinforcement learning algorithms in170
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(a) Agent 1 Return in Grid Game
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(b) Agent 2 Return in Grid Game
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(c) Social Welfare in Grid Game

Figure 4: Grid Game (Horizon=16): DCL v.s. Other Baselines.
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(a) Agent 1 Return in RPC
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(b) Agent 2 Return in RPC
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(c) Social Welfare in RPC

Figure 5: Repeated Purely Conflicting Game (Horizon=16): DCL v.s. Other Baselines.

tabular, repeated, and sequential social dilemmas. We demonstrated improvements in both agents’171
self-interest optimization and social welfare. Additionally, we compared centralized (Algorithm 2,172
Appendix 8.1) and decentralized (Algorithm 3, Appendix 8.2) versions of DCL. Each algorithm was173
executed with and without incentive-compatible constraints (denoted as DCL-IC and DCL respec-174
tively), to further explore the impact of the constraints introduced in Equation (6). We compared175
DCL with Independent PPO (IPPO) (Schulman et al., 2017), Mediated MARL (Ivanov et al., 2023)176
and Multi-Objective Contract Augmentation Learning (MOCA) (Christoffersen, 2024; Haupt et al.,177
2022). Each curve was averaged over 10 seeds with shaded regions indicating standard errors. Hy-178
perparameters and more implementation details can be found in Appendix 10.179

4.1 Results180

4.1.1 Prisoner’s Dilemma181

Prisoner’s Dilemma (Rapoport, 1965) is a normal form mixed-motive game, with payoff matrix182
in Table 1. In accord with Proposition 2.1, Figure 2 shows that the DCL agents converge to mu-183
tual cooperation in the MCG with utilitarian social welfare −2. The fully decentralized DCL also184
converges to mutual cooperation, while having a larger oscillation before convergence (Figure 2).185

Table 1: Prisoner’s Dilemma

C D
C (-1,-1) (-3,0)
D (0,-3) (-2,-2)

This behavior is expected since decentralized DCL estimates186
policies of other agents rather than directly accessing the true187
policies, which introduces biases, particularly in the early188
stages of training. These biases are gradually reduced as the189
estimated policies approach the actual policies over time. Fig-190
ure 3 shows the policies of proposals, commitments and ac-191
tions. Without mutual commitment, the probability of coop-192
eration converges to 0. Whereas under the conditional com-193
mitment mechanism, the probabilities of proposing and com-194
mitting to mutual cooperation converge to 1. This result aligns with our theoretical analysis in195
Proposition 9 and demonstrates the capability of commitment mechanism to achieve cooperation.196
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Mediated MARL with an unconstrained mediator shows the second-best performance, while con-197
strained mediated MARL performs worse, failing to converge to either mutual cooperation or defec-198
tion. This failure may arise from inaccurate value estimation in mediated MARL, which constrains199
the mediator’s policy during training. Specifically, mediated MARL trains each agent with indepen-200
dent actor critic (Mnih et al., 2016), considering other agents as part of the environment, leading to201
nonstationarity from each agent’s perspective. In contrast, DCL agents consider joint actions when202
evaluating future expected returns, avoiding conflicts with the stationary environment assumption203
in MCGs. Furthermore, the constrained mediated MARL dynamically updates the Lagrange multi-204
plier, shifting the optimization objective at each timestep, which may lead to divergence.205

The other baselines, MOCA and IPPO, converge to the mutual defection equilibrium after only a few206
iterations. Without mechanism design, mutual defection is the only Nash equilibrium in Prisoner’s207
Dilemma, so it is expected that IPPO fails to achieve cooperation. Without a specific choice of208
contract space and hand-crafted rules, MOCA also fails to find a contract acceptable to all agents.209

4.1.2 Grid Game210

The above results show that DCL works well on a tabular social dilemma with a single state, we next211
extend the evaluation to sequential social dilemmas. We created a 2-player, T -step, N -grid game,212
where agent 1 starts at grid position p10 = 0, and agent 2 starts at p20 = N − 1. At each timestep,213
each player observes both agents’ locations, st = (p1t , p

2
t ), and chooses between moving forward,214

pit+1 = min{pit + 1, N − 1}, or moving backward, pit+1 = max{pit − 1, 0}. Rewards are defined215
based on agents’ positions: for agent 1, r1 = p1−2(N−1−p2); for agent 2, r2 = N−1−p2−2p1.216
This grid game presents a social dilemma at every state. Agents benefit from cooperation by moving217
away from the other player’s initial position, while the dominant strategy is to move towards the218
other’s starting point. Figure 4 demonstrates that DCL agents gradually learn to cooperate, with zero219
accumulated discounted rewards. In contrast, other baselines fail to converge to such cooperative220
strategies.221

4.1.3 Repeated Purely Conflicting Game222

To investigate whether DCL can adapt effectively to scenarios with significant competition, we223
then introduced a purely conflicting game presented in Table 2. In this game, an increase in one224
agent’s payoff always results in a decrease in the payoff of others. The dominant strategy of each225
agent is to play A2 regardless of the opponent’s action, which also holds true in finitely repeated226
versions (denoted as RPC). Under such conditions, agents have no opportunity to establish 1-step227
mutually beneficial agreements. As a result, all players receive zero payoff throughout episodes.228

Table 2: Purely Conflicting Game

A1 A2

A1 (0,0) (-1,2)
A2 (2,-1) (0,0)

229

However, if agents can commit to actions over multiple steps,230
both can achieve positive long-term returns by committing to231
a tit-for-tat agreement. To explore this, we extended DCL232
with mega-step commitments, enabling agents to commit to233
multi-step, mutually beneficial proposals. Our experiments234
show that DCL agents successfully converge to cooperative235
strategies [(A1, A2), (A2, A1), ...] by alternating between A1236
and A2 in multiple steps. While DCL agents make sacrifices237
at certain steps, they achieve significantly higher cumulative payoffs over the long run compared to238
other baselines (Figure 5), demonstrating DCL’s adaptability to highly competitive environments.239

5 Discussion on Experiments240

5.1 Many-player Scenarios241

In MCGs, the joint proposal space grows exponentially with the number of agents, which would242
inevitably increase the computational complexity. To investigate how DCL handles scalability with243
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(a) Commitment Policy of (C,D)
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(b) Commitment Policy of (D,C)
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(c) Commitment Policy of (D,D)

Figure 6: DCL Commitment Policies in Prisoner’s Dilemma

many players, we conducted additional experiments on an N -player public goods game (Marwell244
& Ames, 1981) with benefit factor 1.5, where the dominant strategy for each agent is to free-ride245
by not contributing to the public pool. The results demonstrate that DCL with incentive-compatible246
constraints performs effectively across scenarios with 2, 3, 5, and 10 agents, achieving high social247
welfare. Most agents converge to propose contributions and commit to joint proposals that result248
in positive individual welfare. These findings indicate that DCL scales well to many-player games,249
with the agreement rate of joint proposals remaining stable (> 0.99) as the number of agents in-250
creases. We report runtime, average joint proposal agreement rate and average social welfare per251
batch (batch size =256) across 5 random seeds in Table 8, Appendix 11.252

5.2 Robustness to Maliciously Irrational Agents253

As shown in Figure 3c and Figure 6, DCL agents converge to commitment policies that accept254
proposals for mutual cooperation and self-defection when the co-player cooperates, while reject-255
ing cooperation when the co-player proposes defection in the Prisoner’s Dilemma. Consequently,256
when interacting with irrational agents—such as those who always propose defection—DCL agents257
will reject such proposals and choose to defect following their action policies (Figure 3a). This258
demonstrates the robustness of DCL agents against malicious agents, as they effectively reject dis-259
advantageous agreements and act in their own best interests.260

6 Conclusion261

We introduced the Markov Commitment Games, a framework that allows self-interested agents to262
negotiate future plans through voluntary commitments. It responds to the open problem in cooper-263
ative AI (Dafoe et al., 2020) on commitment capabilities without relying on altruism. We derived264
unbiased proposal, commitment, and action policy gradients (Lemma 3.1), which facilitates the de-265
sign of policy updates while preserving the stationarity assumption of the multi-agent environment.266
Under the framework of MCGs, we proposed differentiable commitment learning (DCL), which267
maximizes agents’ expected self-interests while incorporating incentive-compatible constraints on268
their proposal policies to encourage mutually beneficial agreements. DCL also mitigates limitations269
of non-stationary training of existing methods. Rather than treating other agents as part of a sta-270
tionary environment—a simplification that does not hold in multi-agent settings—DCL explicitly271
leverages other agents’ actions when estimating future expected values. This approach enhances the272
accuracy of value estimations and promotes stability during training. We empirically showed that273
our method outperforms the baseline methods in multiple tasks, often by successfully facilitating274
cooperation among agents. We also demonstrated the efficacy of DCL in its fully decentralized275
implementation.276
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7 Proof of Lemma 3.1376

The proof of Lemma 3.1 derives the action, commitment, and proposal policy gradients in DCL.377
Recall that the state value function (the objective function of self-interested agents) in MCGs is:378

V iϕ,ψ,π(s) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s]. (8)

The state-action value function is:379

Qiϕ,ψ,π(s,a) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s,at = a]. (9)

Therefore we can expand the state value function by:380

V iϕ,ψ,π(s) =
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)
∑
a∼π

π(a|s)

[
1(c = 1)Qiϕ,ψ,π(s,m)

+
(
1− 1(c = 1)

)
Qiϕ,ψ,π(s,a)

]
.

(10)

We then derive policy gradients based on the state-action value function and policy functions.381

7.1 Unconstrained Policy Gradient382

Proof. First, we consider the action policy gradient∇θiV iϕ,ψ,π(s) for each agent i ∈ N :383

∇θiV iϕ,ψ,π(s)

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇θiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

)
∑
a∼π

Qiϕ,ψ,π(s,a)∇θiπ(a|s) + π(a|s)∇θiQiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(s,a)∇θiπ(a|s)

]

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m) ·

[
1(c = 1)∇θiQiϕ,ψ,π(s,m)

+
(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇θiQiϕ,ψ,π(s,a)

]
.

(11)

Let

fϕ,ψ,π(s) =
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(s,a)∇θiπ(a|s)

]
.
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We have384

∇θiV iϕ,ψ,π(s) =fϕ,ψ,π(s) +
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇θiQiϕ,ψ,π(s,m)

+
(
1− 1(c = 1)

)
·
∑
a∼π

π(a|s)∇θiQiϕ,ψ,π(s,a)

]
.

(12)

Since Qiϕ,ψ,π(s,a) = Ri(s,a) + γ
∑
s′ p(s

′|s,a)V iϕ,ψ,π(s′), we obtain385

∇θiQiϕ,ψ,π(s,a) = ∇θi
(
Ri(s,a) + γ

∑
s′

p(s′|s,a)V iϕ,ψ,π(s′)
)
= γ

∑
s′

p(s′|s,a)∇θiV iϕ,ψ,π(s′).

(13)
Therefore,386

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)

∑
s′

p(s′|s,m)∇θiV iϕ,ψ,π(s′) +
(
1− 1(c = 1)

)

·
∑
a∼π

π(a|s)
∑
s′

p(s′|s,a)∇θiV iϕ,ψ,π(s′)

]
.

(14)
Define dϕ,ψ,π(s, s′, k) as the probability of transitioning from state s to state s′ in k steps under387
ϕ,ψ,π, then we have388

dϕ,ψ,π(s, s
′, 1) =

∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)p(s′|s,m)+

(
1−1(c = 1)

) ∑
a∼π

π(a|s)p(s′|s,a)

]
,

(15)
and389

dϕ,ψ,π(s, s
′, k + 1) =

∑
x

dϕ,ψ,π(s, x, k)dϕ,ψ,π(x, s
′, 1). (16)

Note390
dϕ,ψ,π(s, s, 0) =

∑
x

dϕ,ψ,π(s, x, 0) = 1. (17)

Then,391

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
s′

∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)p(s′|s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)p(s′|s,a)

]
· ∇θiV iϕ,ψ,π(s′),

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)∇θiV iϕ,ψ,π(s′).

(18)
By induction,392

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)

(
fϕ,ψ,π(s

′) + γ
∑
s′′

dϕ,ψ,π(s
′, s′′, 1)∇θiV iϕ,ψ,π(s′′)

)
,

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)fϕ,ψ,π(s

′) + γ2
∑
s′′

dϕ,ψ,π(s, s
′′, 2)∇θiV iϕ,ψ,π(s′′),

=
∑
x∈S

∞∑
k=0

γkdϕ,ψ,π(s, x, k)fϕ,ψ,π(x).

(19)
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Then we define a stationary distribution ρϕ,ψ,π(x) =
∑∞

k=0 γ
kdϕ,ψ,π(s,x,k)∑

x∈S
∑∞

k=0 γ
kdϕ,ψ,π(s,x,k)

, also known as an393

occupancy measure of ϕ,ψ,π. Thus,394

∇θiV iϕ,ψ,π(s)

∝
∑
x∈S

ρϕ,ψ,π(x)fϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)

[(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(x,a)∇θiπ(a|x)

]
,

=
∑
x∈S

ρϕ,ψ,π(x)
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
∑
a∼π

π(a|x)

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi logπ(a|x)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi logπ(a|x)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi log πi(ai|x)

]
.

(20)
Therefore, we have395

∇θiV iϕ,ψ,π(s) ∝ Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1−1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi log πi(ai|x)

]
.

7.2 Commitment Network Gradient396

Proof. Next, we consider commitment policy gradient∇ζiV iϕ,ψ,π(s):397

∇ζiV iϕ,ψ,π(s)

=∇ζi
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)∇ζi
[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζi1(c = 1)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ζiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇ζiQiϕ,ψ,π(s,a)

]
.

(21)
Let398

gϕ,ψ,π(s) =
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζi1(c = 1).
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Then,399

∇ζiV iϕ,ψ,π(s)

=gϕ,ψ,π(s) +
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ζiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)

· ∇ζiQiϕ,ψ,π(s,a)

]
,

=gϕ,ψ,π(s) + γ
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)

∑
s′

p(s′|s,m)∇ζiV iϕ,ψ,π(s′) +
(
1− 1(c = 1)

)

·
∑
a∼π

π(a|s)
∑
s′

p(s′|s,a)∇ζiV iϕ,ψ,π(s′)

]
.

(22)
According to (15),400

∇ζiV iϕ,ψ,π(s) = gϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)∇ζiV iϕ,ψ,π(s′). (23)

Similarly by induction,401

∇ζiV iϕ,ψ,π(s)

=
∑
x∈S

∞∑
k=0

γkdϕ,ψ,π(s, x, k)gϕ,ψ,π(x),

∝
∑
x∈S

ρϕ,ψ,π(x)gϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)

[ ∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ζiψ(c|x,m) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
[
Qiϕ,ψ,π(x,m)−

∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]
∇ζi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
∇ζi logψ(c|x,m)

+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ζi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
∇ζi logψi(ci|x,m)

+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]∏
k ̸=i

1(ck = 1)∇ζi1(ci = 1)

]
.

(24)
Therefore,402

∇ζiV iϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
· ∇ζi logψi(ci|x,m) +

[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]∏
k ̸=i

1(ck = 1)∇ζi1(ci = 1)

]
.
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Note that ∇ζi1(ci = 1) = d1(ci=1)
dci

∂ci

∂ζi . To compute ∂ci

∂ζi , we apply the Gumbel-Softmax dis-403
tribution (Jang et al., 2016) for differentiable sampling. This allows backpropagation through the404
differentiable commitment sample ci for ∀i ∈ N .405

7.3 Proposing Network Gradient406

Proof. Finally, we consider the proposal policy gradient∇ηiV iϕ,ψ,π(s):407

∇ηiV iϕ,ψ,π(s)

=∇ηi
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiϕ(m|s)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηi1(c = 1)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ηiQiϕ,ψ,π(s,m)

+
(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇ηiQiϕ,ψ,π(s,a)

]
.

(25)
Let408

hϕ,ψ,π(s)

=
∑
m∼ϕ

∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiϕ(m|s)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηi1(c = 1).

(26)
Similarly we have409

∇ηiV iϕ,ψ,π(s)

∝
∑
x∈S

ρϕ,ψ,π(x)hϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)

[ ∑
m∼ϕ

∑
c∼ψ

ψ(c|x,m)
[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ηiϕ(m|x) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ηiψ(c|x,m) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
[
Qiϕ,ψ,π(x,m)−

∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]
∇ηi1(c = 1)

]
,
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=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi logϕ(m|x)

+∇ηi logψ(c|x,m)
)
+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ηi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi log ϕi(mi|x)

+
∑
j

∇ηi logψj(cj |x,m)
)
+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

](
1(c−i = 1)∇ηi1(ci = 1) + 1(ci = 1)

· ∇ηi1(c−i = 1)
)]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi log ϕi(mi|x)

+
∑
j

∇ηi logψj(cj |x,m)
)
+
∑
j

∏
k ̸=j

1(ck = 1)
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ηi1(cj = 1)

]
.

(27)

Therefore,410

∇ηiV iϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
·(

∇ηi log ϕi(mi|x) +
∑
j

∇ηi logψj(cj |x,m)
)
+
∑
j

∏
k ̸=j

1(ck = 1)
[
Qiϕ,ψ,π(x,m)−

Qiϕ,ψ,π(x,a)
]
∇ηi1(cj = 1)

]
.

Note that ∇ηi1(ci = 1) = d1(ci=1)
dci (∂ψ

i

∂ci )
−1 ∂ψ

i

∂mi
∂mi

∂ηi , ∇ηi1(cj = 1)|j ̸=i =411
d1(cj=1)
dcj (∂ψ

j

∂cj )
−1 ∂ψ

j

∂mi
∂mi

∂ηi . We apply Gumbel-Softmax distribution (Jang et al., 2016) again, which412

allows autodifferentiation through mi,∀i.413

8 DCL Details414

8.1 Centralized DCL415

DCL updates policies with respect to policy gradients in Lemma 3.1. Because calculating416
∇ηiV iϕ,ψ,π(s) requires differentiation through commitment policies of other agents j ∈ N \ i, we417
present centralized DCL in Algorithm 2 that allows agents to backpropagate through exact policies418
of others.419

8.2 Decentralized DCL420

Centralized training is not always feasible in mixed-motive environments. To address this limitation,421
we further present decentralized DCL in Algorithm 3. In decentralized DCL, each agent estimates422
others’ policies and value functions with DCL. Then, agents can differentiate through these estimates423
to update their own policies.424
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9 Proof of Proposition 2.1425

Recall the definition of Nash equilibrium and Pareto-dominant outcome:426

Definition 9.1. (Hu & Wellman, 2003) In stochastic game Γ, a Nash equilibrium point is a tuple of427
n strategies (π1

∗, ..., π
n
∗ ) such that for all s ∈ S and i = 1, ..., n,428

V i(s, π1
∗, ..., π

n
∗ ) ≥ V i(s, π1

∗, ..., π
i−1
∗ , πi, πi+1

∗ , ..., πn∗ ), ∀πi ∈ Πi, (28)

where Πi is the set of strategies available to agent i.429

At a Nash equilibrium, no player can improve their payoff by changing their strategy, assuming that430
the other players stick to their current strategies.431

Definition 9.2. (Censor, 1977; Fudenberg, 1991) An outcome of a game is Pareto-dominant, also432
known as Pareto-optimal and Pareto-efficient, if it’s impossible to make one player better-off, without433
making some other players worse-off.434

To prove Proposition 2.1, we need to find a tuple of strategies ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) in435

MCGs that satisfies the conditions of Nash equilibrium and Pareto-optimality.436

Proof. In the MCG of the Prisoner’s Dilemma, we define a tuple of deterministic strategies ∀i ∈ N ,437
ϕi(s) = C, πi∗(s) = D and438

ψi∗(s,m = {C,C}) =1,

ψi∗(s,m = {D,C}) =1,

ψi∗(s,m = {C,D}) =0,

ψi∗(s,m = {D,D}) =0 or 1.

(29)

So the value function of this tuple is:439

V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )) = −1. (30)

Then we show that no player can increase their payoff by unilaterally changing to other deterministic440
strategies, assuming all other players keep their strategies fixed.441

1. ∀ϕi ̸= ϕi∗, i.e. ϕi(s) = D, and ∀ψi:442

(a) if πi(s) = C,443

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −3 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )),

(31)

(b) otherwise πi(s) = D,444

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −2 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )).

(32)

2. ϕi = ϕi∗ and ψi ̸= ψi∗:445

(a) ∀ψi ̸= ψi∗ s.t. ψi(s,m = {C,C}) = 1 and ∀πi,446

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (33)

(b) ∀ψi ̸= ψi∗ s.t. ψi(s,m = {C,C}) = 0,447

i. if πi(s) = C,448

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −3 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )),

(34)
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ii. otherwise πi(s) = D,449

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −2 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )).

(35)

3. ϕi = ϕi∗, ψ
i = ψi∗,∀πi:450

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (36)

Thus,451

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) ≤ V i(s, (ϕi∗, ψi∗, πi∗)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )), ∀ϕi, ψi, πi. (37)

Therefore, ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) is a pure strategy Nash equilibrium in the MCG of Pris-452

oner’s Dilemma. Meanwhile, ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) is also a Pareto-optimal equilibrium.453

Given the payoff matrix in Table 1, other possible outcomes are (−2,−2), (0,−3) and (−3, 0).454
Therefore, no further improvement can be made to one player’s outcome without reducing the pay-455
off of another player compared to (−1,−1) achieved by ((ϕi∗, ψ

i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )).456

Algorithm 1 Differentiable Commitment Learning

Input: initial parameters of action policy θi, commitment policy ζi, proposal policy ηi, action-
value function wi for i ∈ N , learning rate β, Lagrange multiplier λ, number of iterations T .
for k=0, 1, 2, ..., T − 1 do

Collect set of trajectories Dk = {τt} by running latest policies (θi, ζi, ηi), ∀i ∈ N .
Compute Monte-Carlo discounted accumulative rewards Ĝit,∀i ∈ N .
Fit value function with gradient descent by minimizing the mean-squared error:

w
i
k+1 = arg min

wi

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(Q
i
wi (st, at) − Ĝ

i
t)

2
.

Estimate action policy gradient ĝθik according to Equation (3).
Estimate commitment policy gradient ĝζik according to Equation (4).
Estimate proposal policy gradient ĝηik w.r.t. expected return according to Equation (5).

Estimate proposal policy gradient ĝ
′

ηik
w.r.t. the incentive-compatible constraints by

1

|Dk|

∑
τ∈Dk

T∑
t=0

∑
j

∇
ηi
k

min{0, Qj

w
j
k+1

(st,mt) − Q
j

w
j
k+1

(st, at)}.

Update policy parameters for all agents with gradient ascent,
θ
i
k+1 = θ

i
k + βĝ

θi
k
, ζ

i
k+1 = ζ

i
k + βĝ

ζi
k
, η

i
k+1 = η

i
k + βĝ

ηi
k

+ λĝ
′
ηi
k
.

end for

10 Hyperparameters457

For all algorithms, we utilized 2-layer MLP networks with ReLU activation in the hidden layers. All458
policy networks apply a softmax function as the output activation, whereas the value network uses a459
linear output without any activation function. Other hyperparameters are reported in Table 5, 6 and460
7.461
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Algorithm 2 Differentiable Commitment Learning (Centralized Version)

Input: initial action policy parameters θi, initial commitment policy parameters ζi, initial proposal
policy parameters ηi, initial action-value function parameters wi for all i ∈ N .
for k=0, 1, 2, ... do

Collect set of trajectories Dk = {τt} by running latest policies (θi, ζi, ηi), ∀i ∈ N .
Compute Monte-Carlo discounted accumulative rewards Ĝit,∀i ∈ N .
Fit value function for all i ∈ N with gradient descent by minimizing the mean-squared error:

wik+1 = argmin
wi

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qiwi(st,at)− Ĝit)2.

Estimate action policy gradient for all i ∈ N as

ĝθik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)∇θik log π

i
θik
(ait|st).

Estimate commitment policy gradient for all i ∈ N as

ĝζik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
· ∇ζik logψ

i
ζik
(cit|st,mt) +

[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]∏
j ̸=i

1(cjt = 1)∇ζi1(cit = 1).

Estimate proposal policy gradient w.r.t. the expected return for all i ∈ N by

ĝηik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
·
(
∇ηik log ϕ

i
ηik
(mi

t|st) +
∑
j

∇ηik logψ
j

ζjk
(cjt |st,mt)

)
+
∑
j

∏
l ̸=j

1(clt = 1)
[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]
∇ηik1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i ∈ N by

ĝ
′

ηik
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∑
j

∇ηik min{0, Qj
wj

k+1

(st,mt)−Qjwj
k+1

(st,at)}.

Update policy parameters for all i ∈ N with gradient ascent,

θik+1 = θik + βĝθik ,

ζik+1 = ζik + βĝζik ,

ηik+1 = ηik + βĝηik + λĝ
′

ηik
.

end for
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Algorithm 3 Differentiable Commitment Learning (Decentralized Version)

Input: initial action policy parameters: θi, initial estimated action policy parameters of b ∈ N \ i:
θ̃ib, initial commitment policy parameters: ζi, initial estimated commitment policy parameters of
b ∈ N \ i: ζ̃ib, initial proposal policy parameters: ηi, initial estimated proposal policy parameters
of b ∈ N \ i: η̃ib, initial action-value function parameters: wi for i ∈ N , initial estimated
action-value function parameters of b ∈ N \ i: w̃ib for all i ∈ N .
for k=0, 1, 2, ... do

Collect set of trajectories Dk = {τt} by running latest policies (θi, ζi, ηi), ∀i ∈ N .
Compute Monte-Carlo discounted accumulative rewards Ĝit,∀i ∈ N .
Fit value function for all i ∈ N with gradient descent by minimizing the mean-squared error:

wik+1 = argmin
wi

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qiwi(st,at)− Ĝit)2.

Fit estimated value function of b for ∀b ∈ N \ i and ∀i ∈ N with gradient descent by
minimizing the mean-squared error:

w̃ibk+1 = argmin
wb

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qbwb(st,at)− Ĝbt)2.

Estimate action policy gradient for all i ∈ N as

ĝθik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)∇θik log π

i
θik
(ait|st).

Estimate action policy of b for ∀b ∈ N \ i and ∀i ∈ N by

ĝθ̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)∇θ̃ibk log πb

θ̃ibk
(abt |st).

Estimate commitment policy gradient for all i ∈ N as

ĝζik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
· ∇ζik logψ

i
ζik
(cit|st,mt) +

[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]∏
j ̸=i

1(cjt = 1)∇ζi1(cit = 1).

Estimate commitment policy gradient of b for ∀b ∈ N \ i and ∀i ∈ N by

ĝζ̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qbw̃ib

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)

]
· ∇ζ̃ibk logψi

ζ̃ibk
(cbt |st,mt) +

[
Qbw̃ib

k+1
(st,mt)−Qbw̃ib

k+1
(st,at)

]∏
j ̸=b

1(cjt = 1)∇ζ̃ibk 1(c
b
t = 1).

Estimate proposal policy gradient w.r.t. the expected return for all i ∈ N by

ĝηik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
·
(
∇ηik log ϕ

i
ηik
(mi

t|st)

+
∑
j

∇ηik logψ
j

ζjk
(cjt |st,mt)

)
+
∑
j

∏
l ̸=j

1(clt = 1)
[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]
∇ηik1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i ∈ N by
21
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ĝ
′

ηik
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∇ηik min{0, Qiwi
k+1

(st,mt)−Qiwi
k+1

(s,a)}+
∑
b̸=i

∇ηik min{0, Qbw̃ib
k
(s,m)−Qbw̃ib

k
(s,a)}.

Estimate proposal policy gradient w.r.t. the expected return of b for ∀b ∈ N \ i and ∀i ∈ N
by

ĝη̃ibk =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qbw̃ib

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)

]
·
(
∇η̃ibk log ϕbη̃ibk

(mb
t |st)

+
∑
j

∇η̃ibk logψj
ζ̃ijk

(cjt |st,mt)
)
+

∑
j

∏
l ̸=j

1(clt = 1)
[
Qbw̃ib

k+1
(st,mt)−Qbw̃ib

k+1
(st,at)

]
∇η̃ibk 1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints of b for ∀b ∈ N \ i
and ∀i ∈ N by

ĝ
′

η̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∇η̃ibk min{0, Qiwi
k+1

(st,mt)−Qiwi
k+1

(s,a)}+
∑
b̸=i

∇η̃ibk min{0, Qbw̃ib
k+1

(s,m)−Qbw̃ib
k+1

(s,a)}.

Update policy parameters for all i ∈ N with gradient ascent,

θik+1 = θik + βĝθik , ζ
i
k+1 = ζik + βĝζik , η

i
k+1 = ηik + βĝηik + λĝ

′

ηik
.

Update policy parameters for all b ∈ N \ i and i ∈ N with gradient ascent,

θ̃ibk+1 = θ̃ibk + βĝθ̃ibk
, ζ̃ibk+1 = ζ̃ibk + βĝζ̃ibk

, η̃ibk+1 = η̃ibk + βĝη̃ibk + λĝ
′

η̃ibk
.

end for

Table 3: Comparison with Related Frameworks

Name Commitment Share Policies Altruistic Third Party Reward Transfer Proposal of Actions
Commitment Games (Renou, 2009) Unconditional Yes No No No

Conditional Commitment Games (Bryan et al., 2010) Conditional Yes No No No
Contract Mechanism (Hughes et al., 2020) Conditional No No No Joint Action

Formal Contracting (Haupt et al., 2022) Conditional No No Yes No
Mediated-MARL (Ivanov et al., 2023) N/A No Yes No No

MCGs (Ours) Conditional No No No Self Action

Table 4: Comparison with MARL Baselines

Name Objective Reward Transfer Independent Learning Decentralized Learning
IPPO (Schulman et al., 2017) Individual Returns No Yes Yes
MOCA (Haupt et al., 2022) Individual Returns Yes Yes Yes

Mediated-MARL (Ivanov et al., 2023) Social Welfare + Individual Returns No Yes Yes
Centralized DCL (Ours) Individual Returns No No No

Decentralized DCL (Ours) Individual Returns No No Yes
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Table 5: Hyperparameters of Prisoner’s Dilemma

Hyperparameters DCL Mediated-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Batch size 128 128 128 128
Entropy Coef. Start 1.0 1.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0 0 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 8 8 8 8
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 10.0 N/A N/A N/A
Temperature Decay 0.05 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 1 1 1 1

Table 6: Hyperparameters of Grid Game

Hyperparameters DCL Mediated-MARL IPPO MOCA
Horizon 16 16 16 16
Grid Size 4 4 4 4
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001 0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 30 30 30 30
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Table 7: Hyperparameters of Repeated Pure Conflicting Game

Hyperparameters DCL Mediated-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001 0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 30 30 30 30

11 Many-player Experiments462

To investigate how DCL handles scalability with many players, we conducted experiments on an463
N -player public goods game. For each agent i, the reward is calculated as Ri =

∑
j C

j ∗ β − Ci,464
where Ci denotes the contribution of agent i, β denotes the benefit factor with a range between465
(1, N). In our experiments, we set β = 1.5 for all scenarios. Results in Table 8 indicate that DCL466
with incentive-compatible constraints scales effectively with large numbers of agents. While the467
runtime of DCL increases with the number of agents, the agreement rate of joint proposals remains468
stable (> 0.99), achieving high social welfare.469

Table 8: DCL-IC on Many-player Public Goods Game

Number of Agents Run Time (Hours) Agreement Rate Social Welfare
2 4 0.996± 0.002 0.997± 0.002
3 7 0.994± 0.001 1.491± 0.004
5 12 0.996± 0.001 1.989± 0.002

10 32 0.991± 0.001 3.659± 0.143

12 Related Works470

12.1 Cooperation Problems in Mixed-Motive Environments471

The causes of cooperation failures between self-interested agents in mixed-motive environments472
have been primarily categorized into two types: information problems and commitment prob-473
lems (Dafoe et al., 2020; Powell, 2006; Fearon, 1995). Information problems refer to coopera-474
tion failures caused by incorrect or insufficient information, which frequently occur in partially475
observable environments. Existing works have demonstrated that information problems can be al-476
leviated by communication (Kim et al., 2020; Sukhbaatar et al., 2016; Foerster et al., 2016) and477
opponent reasoning (Konan et al., 2022; Jaques et al., 2019; Wen et al., 2019). However, in mixed-478
motive environments, agents driven by conflicting self-interests may deceive others regarding their479
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private observations (Lin et al., 2024; Kamenica, 2019; Taneva, 2019; Dughmi, 2017). Coopera-480
tion may also fail due to agents’ inability to make credible commitments, known as commitment481
problems, even in the absence of information asymmetries. For instance, cooperation can not be482
achieved through cheap talk communication or non-binding promises of cooperation in the Pris-483
oner’s Dilemma (Rapoport, 1965), as agents achieve higher payoffs by defecting regardless of the484
opponent’s actions. To address commitment problems, a commitment device is often required to en-485
sure that agents fulfill their commitments, either by restricting their actions or imposing penalties for486
noncompliance (Sun et al., 2023; Rogers et al., 2014). Static conditional commitments facilitated by487
such devices have been shown to enhance cooperation in the prisoner’s dilemma (Kalai et al., 2010;488
Renou, 2009; Schelling, 1980). However, these fixed strategies are difficult to generalize across489
various games and environments.490

12.2 Binding Contracts Mechanism491

Binding contracts are generally applied to establish commitments in multi-agent systems. The liter-492
ature offers various approaches to contract design. Wang et al. (2024); Han et al. (2017); Sandholm493
& Lesser (1996) developed contracts that bind agents’ future actions through side payments, reward-494
ing agents for fulfilling commitments and penalizing them for noncompliance. Haupt et al. (2022);495
Sodomka et al. (2013) also explored mechanisms where agents voluntarily agree to binding reward496
transfers. However, these methods directly alter agents’ incentives, which may not be feasible in497
practice.498

Instead, Kramár et al. (2022); De Jonge & Zhang (2020); Hughes et al. (2020) proposed adaptive499
binding actions without reward transfers, which are similar to MCGs but differ in specific details.500
De Jonge & Zhang (2020) focused on turn-taking games with unilateral commitments, while MCGs501
emphasize simultaneous moves and multilateral commitments. Hughes et al. (2020) required agents502
to propose a joint plan for all, with multilateral commitment only if they propose the same plan.503
In MCGs, however, each agent proposes an individual plan and uses a separate commitment model504
to decide whether to commit or not. Kramár et al. (2022) introduced pairwise negotiation through505
Nash Bargaining Solution (NBS) (Binmore et al., 1986), aiming to maximize the product of agents’506
utilities. In contrast, MCGs focus on selfish agents aiming to maximize their individual long-term507
returns.508

12.3 Altruistic Third Party509

Without manipulating agents’ rewards, (Ivanov et al., 2023; McAleer et al., 2021; Greenwald et al.,510
2003) introduced pro-social third parties to mediate agents’ actions and induce cooperative behav-511
iors. These approaches optimize social welfare such as the sum of agents’ returns while incor-512
porating rationality constraints that define equilibria, ensuring that self-interested agents have no513
incentive to deviate from their strategies. Specifically, utilitarian correlated-Q learning (Greenwald514
et al., 2003) utilized a centralized model to optimize the joint action probability distribution of all515
agents, with an objective that maximizes the sum of the agents’ rewards. In contrast, Ivanov et al.516
(2023); McAleer et al. (2021) trained agents to optimize their individual payoffs, allowing them517
to follow the recommendations of a prosocial mediator or take their actions independently if those518
recommendations do not align with their self-interests. However, these approaches still rely on a519
centralized altruistic third party, which may become ineffective in highly conflicting environments520
where collective interests significantly clash with individual self-interests.521

12.4 Background on Commitment Games522

A normal form game G = (N , (Ri,Ai)i∈N ) consists of a set N of agents, where each agent523
i chooses an action ai ∈ Ai and earns a reward according to the function Ri :

∏
j Aj →524

R. A commitment game (Renou, 2009) extends a normal form game to two phases where525
each agent first makes a commitment and then plays an action. Formally, a commitment game526
CG = (N , (Ri,Ai, Ci)i∈N ) extends a normal form game with a commitment space Ci for each527
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agent. Player i’s strategy (ci, σi) consists of a commitment ci ∈ Ci and a response function528
σi :

∏
j Cj → Ai. For example, Renou (2009) considered unconditional unilateral commitments529

where a commitment ci ⊆ Ai is a subset of the action space, meaning that the agent commits to530
choose an action in that subset. Such unconditional unilateral commitments can yield better equilib-531
ria (i.e., Pareto optimal) when ruling out some threats will incite other agents to cooperate. However,532
in other games such as Prisoner’s Dilemma, no unilateral commitment will induce convergence to533
mutual cooperation.534

Kalai et al. (2010) proposed conditional unilateral commitments Ci :
∏
j ̸=i Cj → Ai, where agents535

commit to some actions conditioned on the commitments of others. This space of commitments536
is recursive and potentially infinite, however it can turn mutual cooperation into a stable equilib-537
rium in Prisoner’s Dilemma when both agents commit to cooperating conditioned on the other one538
cooperating too. Kalai et al. (2010) further augmented conditional unilateral commitments with a539
voluntary commitment space. In this voluntary commitment space, agents are allowed to play the540
normal form game G without making any advanced commitment. Thus, agents will independently541
select their actions ai ∈ Ai if they voluntarily decide not to commit to any ci ∈ Ci. However, this542
conditional commitment mechanism requires agents to reveal their commitment strategies (Kalai543
et al., 2010; Forges, 2013) or source code of their models (DiGiovanni & Clifton, 2023), which may544
be impractical and lead to incompatibilities in commitment implementation.545
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