Under review as a conference paper at ICLR 2026

MERGE BEFORE FORGET: A SINGLE LORA CONTIN-
UAL LEARNING VIA CONTINUAL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient continual learning has emerged as a promising approach for
large language models (LLMs) to mitigate catastrophic forgetting while enabling
adaptation to new tasks. Current Low-Rank Adaptation (LoRA) continual learning
techniques often retain and freeze previously learned LoRAs or generate data repre-
sentations to overcome forgetting, typically utilizing these to support new LoRAs
learn new tasks. However, these methods not only ignore growing computational
memory with tasks and limited storage space but also suffer from potential task
interference due to the lack of effective LORA merging mechanisms. In this paper,
we propose a novel continual learning method that orthogonally initializes and
sequentially merges LoRAs updates into a single unified LoRA. Our method lever-
ages orthogonal basis extraction from previously learned LoRA to initialize the
learning of new tasks, further exploits the intrinsic asymmetry property of LoRA
components by using a time-aware scaling mechanism to balance new and old
knowledge during continual merging. Our approach maintains constant memory
complexity with respect to the number of tasks, minimizes interference between
past and new tasks via orthogonal basis initialization, and improves performance
over asymmetric LoORA merging via adaptive scaling. We provide theoretical
analysis to justify our design and conduct extensive experiments across diverse
continual learning benchmarks using various Llama models, demonstrating the
effectiveness and efficiency of our method.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al., 2020; |Achiam et al., |2023; [Touvron et al., 2023) have
been growing as the cornerstone of modern machine learning, achieving remarkable performance
across a wide range of downstream tasks. However, despite their impressive capabilities, LLMs
still suffer from catastrophic forgetting (McCloskey & Cohenl [1989; Zhu et al.,[2024a; |Yang et al.}
2024) when fine-tuning sequential tasks, and their huge model capacity makes full fine-tuning
computationally expensive and memory-intensive (Zhao et al.,|2024a)). These challenges have led
to increasing attention in parameter-efficient continual learning, particularly via techniques such as
LoRA (Low-Rank Adaptation) (Hu et al.l[2022), that injects trainable low-rank matrices A and B into
pre-trained models, enabling task adaptation with minimal additional parameters. Existing methods
have shown progress in mitigating forgetting in LLMs through LoRA-based continual learning.
For example, O-LORA (Wang et al.l [2023) freezes previously learned LoRAs and incrementally
learns new tasks in their orthogonal subspace; INfLORA (Liang & Lil [2024)) preserves prior LoORAs
and uses task-dependent input matrices to define orthogonal subspaces for initializing new ones;
SAPT-LoRA (Zhao et al., 2024b)) retains earlier LoRAs and leverages generated previous tasks’
data to align new LoRA learning with shared modules; SD-LoRA (Wu et al.| 2025) incrementally
decouples the learning of magnitude and direction in LORA components while preserving directions
learned from previous tasks. However, these methods either keep and freeze previously learned
LoRAs, resulting in parameter growth of the form [B1 Ay, ..., B;A:], or generate and maintain
task-specific data representations, leading to (i) linear growth in memory usage with the number of
tasks, (ii) limited scalability due to constrained storage space, and (iii) potential task interference in
the absence of principled LoORA merging mechanisms. These limitations motivate the question:

Can we enable continual learning only using a single shared LoRA, without learning or storing
task-specific LoRAs or data representations?

Under review as a conference paper at ICLR 2026

(a) LoRA A (q) (b) LoRA B (q) (c) LoRA A (v) (d) LoRA B (v)

Figure 1: Cosine similarity between 15 tasks from the large number of tasks benchmark for fine-tuned
q and v attention LoORA A and B in the last layer (32nd) of Llama-2-7B-chat.

To address this question, we take inspiration from model merging (Garipov et al.| 2018} |Draxler et al.|
2018}, Wortsman et al. [2022), an emerging paradigm that aims to combine multiple task-specific
models into a single unified model without retraining (Stoica et al.,|2024; [[lharco et al.,|[2023} |Yadav,
et al.,[2023} |Ortiz-Jimenez et al., [2023)). By extending this idea, we frame continual learning as a
sequential model merging problem, where the objective shifts from keeping all task-specific LoRAs or
data to continually integrating their updates into a single shared LoRA as new tasks arrive. Recently,
model merging has successfully been extended to the LoRA regime: KnOTS (Stoica et al.l [2025)
leverages singular value decomposition to project LORA updates into a shared latent space, where
existing merging methods can be applied; LORA-LEGO (Zhao et al., 2025 decomposes LoRAs into
minimal semantic units via grouping and clustering, enabling a reconstruction of multiple LoRAs into
one. However, these LoRA merging methods generally assume concurrent access to all task-specific
LoRAs fine-tuned from the same pre-trained model, which limits their applicability to the continual
merging scenarios (Dziadzio et al.| 2025), where tasks arrive sequentially. In such settings, the
order of merging becomes critical and may degrade the performance of the final model. Moreover,
continual LoRA merging remains underexplored in existing literature. While in the full-model setting,
continual merging has received more attention, e.g., OPCM (Tang et al.,2025) sequentially projects
new model updates onto subspaces orthogonal to the previously merged model and uses adaptive
scaling to mitigate interference. However, these methods are not designed for LoRA, and the objective
of merging differs from that of continual learning (Ortiz-Jimenez et al.,[2023)). These challenges lead
to the following question we aim to answer:

How can we enable continual learning through LoRA-based continual merging?

We answer this question by maintaining a single pair of low-rank matrices { A, B}, shared across tasks.
Achieving this necessitates addressing key challenges, including how to initialize and continually
update the shared LoRA to effectively balance the trade-off between forgetting and generalization.
Moreover, in contrast to full-model continual merging, A and B play different roles in continual
merging with LoRA. For instance, prior works (Zhu et al.,|2024b;|Sun et al.|[2024}|Zhang et al.| | 2023b;
Kopiczko et al.| 2024) have shown that in LoRA fine-tuning, training B (initialized to zero) is critical
for the performance, even randomly initialized A often suffices, but reversing the roles of A and B
substantially decreases performance. To further investigate the asymmetry of LoRA components,
we separately fine-tune 15 tasks from a standard large number of tasks benchmark (Wang et al.,
2023) in continual learning using 15 independent LoRAs on Llama-2-7B-chat (Touvron et al., [2023),
and compute cosine similarity of A and B across 15 tasks using their last layer LoRA. Figure []]
shows that A exhibits significantly higher similarity across tasks compared to B, suggesting that
LoRA components follow inherently different learning dynamics. This motivates us to treat A and
B differently in continual merging.

To address the above questions, we propose a novel parameter-efficient continual learning method via
continual merging into a single LoRA, which initializes new task learning in an orthogonal subspace
and sequentially merges LoRA updates. We name this method SLAO (Single LoRA continual
learning with Orthogonal initialization via continual merging). Specifically, SLAO initializes each
new task learning LoRA using orthogonal basis extracted from previously learned LoRA components,
and exploits the asymmetric roles of A and B by applying a time-aware scaling mechanism that
balances knowledge retention and plasticity during continual merging. As shown in Figure 2] our
approach ensures constant memory overhead regardless of the number of tasks. Additionally, it
reduces interference between past and new tasks via orthogonal basis initialization and enhances
performance through adaptive continual merging that considers LoORA asymmetry.

Under review as a conference paper at ICLR 2026

o 120

Summary of contributions. This paper makes the follow- & SLAO (ours)
ing key contributions: (1) A novel parameter-efficient con- O-Lapa
tinual learning method for LLMs that continually merges
new task LoRAs into a single LoRA via orthogonal basis
initialization and a time-aware scaling mechanism, reduc-
ing catastrophic forgetting and improving generalization.

(2) A theoretical analysis of how our design mitigates for- P dmverottasks
getting and improves intransigence. (3) Comprehensive

experiments on various continual learning benchmarks Figure 2: Comparison of SLAO and O-
using Llama models and Qwen models of varying sizes, LORA memory usage of large number of
demonstrating effectiveness and efficiency of our proposed ~tasks benchmark via Llama-2-7B-chat.
method.

._.
)
=]

@
3

o
3

»
S

N
S

LoRA Memory Usage (

o

2 BACKGROUND AND MOTIVATION

Problem setup. Let fyy, : X —) denote a pre-trained model parameterized by W, € R™*", which
remains frozen throughout the continual learning (CL) process. Here, X’ and) represent the input
and output spaces, respectively. We consider a sequence of T tasks. For each task ¢ € {1,2,...,T},
the model is continually fine-tuned using the LoRA algorithm based on its associated training dataset
Dy = {(X4s, Yi,i)}/ . and evaluated on a separate test dataset D; = {(X;,Y;)}/*,, where N
and N’ denote the number of training and testing samples, respectively. The goal is to continually
learn a single set of LoRA parameters, specifically, matrices B € R™*" and A € R"™*" with
r < min(m,n) such that the resulting merged LoRA model remains competitive with models
optimized for expected risk (multi-task objective):

Zt 1Z(Xtyt e, Li(fwo+Ba(Xt), Y2), (1

where £; denotes the emprrlcal risk (e.g., cross-entropy or mean squared error) for task ¢.

In the single shared LoRA setting for CL, we are restricted to maintaining only one pair of LoRA

parameters, denoted by Afnergc and Bmerge, across all tasks. When task ¢ arrives, we fine-tune on

its training data, possibly initialized with current merged models {Aﬁmlge7 Bfneée} to obtain task-

specific LoRA parameters By ; € R™*" and Ag € R™™". The fine-tuned model for task ¢ is
represented as fw,+ B, , A, ,(-). After fine-tuning, we merge the previously accumulated LoRA

parameters BrtnerlgeAfnerlge with the new task-specific parameters By ; A ¢, resulting in an updated

merged representation BmergeAfner .. Due to the inherent asymmetry in LoRA components, the

merging of the LoORA components 1s performed separately for B and A as formalized below:

B! = ContinualMerge B(BL_! : By)5 Al = ContinualMerge A(A% L Ay 1), t>2

merge merge ’ merge merge)

where By o = 0 and Ay is initialized using a Gaussian distribution, following the standard LoRA
initialization (Hu et al.| 2022). B! = By,; and Al = A, are initialized as the first task

merge merge

fine-tuned LoRA, and B! . A ... is to optimize Equatronl

merge merge

2.1 OPPORTUNITIES AND CHALLENGES IN CONTINUAL LEARNING VIA CONTINUAL
MERGING

Storage and memory efficiency is one of the core advantages of continual merging for CL. Unlike
existing continual learning methods that benefit from freezing and retaining previously fine-tuned
LoRAs, using continual merging after fine-tuning task ¢ only requires storing a fixed number of
LoRAs: (1) the current merged LoRA and (2) the fine-tuned LoRA to be merged. This strategy
results in a constant memory complexity of O(|B| + |A]) = O((m + n)r), where | B| + | A| denote
the parameter sizes of a single LoRA. Critically, this memory requirement remains independent
of the number of sequential tasks T". In contrast, as shown in Figure [2] existing freezing-based
continual learning methods require storing all LoRAs, incurring a linear memory complexity of
O(T(|B| + |Al)), which is O(T'(m + n)r), growing linearly with the number of tasks.

Training efficiency is an evident advantage of continual merging for CL. Prior works do not simply
keep previous tasks’ LoRAs without any operations. Instead, when training new tasks, prior works

Under review as a conference paper at ICLR 2026

use these multiple LoRAs during training through constraints, i.e., making new task LoRA parameters
orthogonal to all previous LoRAs, heavily increasing computational cost during training. However,
continual merging in CL would only use the parameters of a single previously fine-tuned LoRA to
initialize new task LoRA parameters before training, avoiding extra computation during training.

Difference between continual learning and merging is mainly in the objective. In the context of
multi-task model merging, the task arithmetic property, as defined by |Ortiz-Jimenez et al.| (2023)),
refers to the ability to add task-specific vectors without interfering with performance on other tasks.
However, in CL, the objective extends beyond retention: the model must both preserve previously
acquired knowledge and generalize effectively to unseen data. Hence, while merging can support CL,
its underlying objectives are not entirely equivalent to those of CL, leading to fundamental differences
in both theoretical analysis and algorithmic design.

2.2 ORTHOGONAL INITIALIZATION MOTIVATED BY LORA NTK ANALYSIS

To inform our algorithmic design, we evaluate the performance of CL using LoRA by two key metrics,

forgetting error (Lin et al.;2023)) and intransigence error (Li et al.} 2023)), defined as below:

(1) Forgetting error: It measures how much knowledge of old tasks has been forgotten after learning

the current task. Specifically, after learning task ¢ € [2, T'], the average forgetting over all old tasks
€ [1,¢ — 1] is defined as:

Fi = Zt: (Li(Wo + BiAy) — Li(Wo + B, Ay)) 2)

In Equation 2} £;(Wy + B:A;) — L;(Wy + B;A;) denotes the performance difference between
B; A; (result after training task 7) and B; A; (result after training task ¢) on test data of task 4.

(2) Intransigence error: It evaluates the ability of the algorithm to adapt to a new task after having
already adapted to a sequence of old tasks.

I = Z;l (Li(Wo + B;A;) — Li(Wo + B A7) 3)

In Equation L;(Wy + B;A;) — L;(Wy + B} AY) denotes the performance difference between
B} A? (optimal result of training task 7) and B; A; (result after training task) on test data of task 1.

To examine these errors, we draw on the empirical observation (Malladi et al.l [2023)) that, when
prompt-based fine-tuning is employed (Schick & Schiitze}, 2021} |Gao et al.,|2021), the fine-tuning
of a pre-trained language model tends to remain within the Neural Tangent Kernel (NTK) regime.
Specifically, under the NTK regime, assuming D; = {(X,Y3)}ieqa,... Ny the empirical risk for task
t using LoRA can be approximated as (Jang et al., 2024)

.....

L= o3 G(w (X0 + (Vw fw, (X0, BiA), Vi))

As detailed in Appendix [C](Lemmal[I)), by extending the analysis in Jang et al.| (2024); Maurer| (2016),
we show that, under the NTK regime, the term in forgetting error can be bounded as follows:

L;(Wy + BiAy) — L;(Wy + B A;) < G|(BiA; — B A, Vw fwv, (X2)) |2

K K
<G| Y IBA;: - BAZIVw £ (X3 < G| S I1BiA — BiA|3R2 (5)

Jj=1 Jj=1

where K is output dimension and ||V f) - (Xi)|[» < R. Thus, to minimize Equation we should
make || By A; — B; A;|| r as small as p0551ble Similarly, to minimize Equation[3] | B; A; — B} A} || p
should be minimized. Thus, the term in forgetting-intransigence decomposition can be written as:

B:A: — BiAi||lr + | BiAi — Bf Aj]|r
<|IBi(A; — Al + [[(B: — Bi) Aillr + | Bi(Ai — AD)||lr + [|(Bi — B))Ajllr (6)
Algorithmic motivation. From above bound, we observe that forgetting-intransigence error in CL.
with LoRA depends asymmetrically on the choice of frozen and trainable components. For example,

freezing A and fine-tuning B is at least as effective, if not better, than the reverse (Zhu et al.|
2024b). However, if we apply freezing A in CL, then ||A; — A;||r = 0 but ||A; — A}||F may

Under review as a conference paper at ICLR 2026

be unintentionally increased due to random A;. Instead, if we propose to fine-tune A; and extract

orthogonal basis Q;_; from A;_;, where Qi_lQll = I, to initialize AZ(.O) via QQ;_1, then we

have AEO)(AEO))T = I, where i € [1,...,t]. This orthogonal structure not only keeps geometric
consistency across tasks but also allows A; (t > j > i), to remain well-aligned with previous A;,
ie. E[A;A]] ~ I,, thereby minimizing both |A; — A;| r and ||A; — A} || . This motivates our
design of orthogonal initialization. The complete derivation is in Appendix [C.1}

2.3 CONTINUAL MERGING MOTIVATED BY LORA ASYMMETRY ANALYSIS

To provide the analysis of merging B, we consider a scenario where a single LoRA is continually
fine-tuned for sequential tasks, which means each task starts from the previous task’s fine-tuned
LoRA. We initialize task 1 as By = 0 and Ay ~ N(0,02) (Hu et al., 2022). After fine-tuning with
T steps, we obtain its parameters:

Wo+ (Bo+ AB;)(Ag+ AA) =Wy + AB1 Ay + AB1AA; @)
Since By = 0, we have that
I(AB1) " Bollr =0, [[Ao(AA:)||r#0 ®)
Based on theorem in|[Hao et al.|(2024)), we write task 1 fine-tuned LoRA:
By =nfs(T)Ag, A1=Ao+nAofa(T) ©)
Using recursion, for task ¢ where ¢ > 2, the orthogonality measures become:

IAB] Bi_1|lp = |(nfa(T)AL,) " (nfe(T)A_)|lr =0l Aii f5(T)" f5(T)A,llr (10)
A1 AA] ||~ [[(Ais + nAi_2 fa(T) (A1 fa(T)) || ¢
=nl|Ai_afa(T)T A, + 1 Ao fa(T) fa(T)" A F (an

Our insight is that the second term in Equation [l 1| has a smaller magnitude when learning rate is
not large, since when n < 1/L, lim;_, o 0|/ fa(?)|| < 1 (Hao et al., 2024), thus the second term is
significantly smaller than the first term, and |AB,” B;_1[[r < [[A;_1AA] | 7. Hence, the update
of B is more orthogonal to its initialization than the update of A is to its initialization. Based on
the findings in|[Wei et al.| (2025)), task vectors in model merging are inherently close orthogonal to
minimize interference, which indicates that in our case, merging B rather than merging A provides
better task isolation and reduced interference, motivating our choice to perform merging B.

Then, for the operation of merging B, we build on parameter-efficient module linear arithmetic
composition, including addition and negation. Linear connectivity implies that model parameters
fine-tuned from the same pretrained checkpoint can be added to improve generalization (Wortsman
et al., [2022)), a property that extends to PEFT adapters, whose small updates likewise allow linear
composition (Zhang et al.,[2023a)). Hence, we can write merging operations on B using task vectors

Bmerge = Bmerge +A- (Bnew - Bmerge) (12)

This makes the foundation of the operation of merging B in continual merging.

3 METHODOLOGY

3.1 SLAO: SINGLE LORA CONTINUAL LEARNING

Based on the above analysis, we propose our method, SLAQ, to utilize continual merging into a
single LoRA to minimize task interference and improve generalization for CL. SLAQO is motivated
by four key insights: (1) Orthogonal Retention: To minimize forgetting error and intransigence error,
it is crucial to maintain orthogonality in the LoORA components across tasks; (2) Continual Merging:
To reduce memory usage in LoRA-based CL, continually merging new task fine-tuned LoRA updates
into a single merged LoRA is a highly efficient strategy; (3) Asymmetry of LoRA: Given the distinct
learning roles of LoRA components A and B, they should be handled separately; and (4) Time-aware
Scaling: To retain prior knowledge while adapting to new tasks, the merging process for new LoRA
updates should be scaled in a time-aware manner that reflects its training trajectory.

Under review as a conference paper at ICLR 2026

Algorithm 1 SLAO: Single LoRA Continual Learning
1: Initialize Bl ... = Bi.1, A} oree = A1, scaling factor A(1) = 1, number of tasks 7.

merge merge

2: fori=2toT do
3: QiR = QR((Asi-1)"), Qi = Q; -sign(diag(R;)) " // Extract orthogonal basis of Ag ;1

4 AL =Q], By = By // Initialize Ay ; and By for task i

5: By i Ag,; < fine-tune(W), Btgl?i) Aﬁgz) // Fine-tune Ay ; and By ; for task i
6: Alzj_nerge = Af't,i '

7. Brlnerge = BanZrlge +)‘(7’) (Bftv'i - Brln;rlge)

8: Use merged LORA Bype Afyeree fOr inference until new task comes

9: end for

10: return BY AT

merge " merge

The SLAO consists of two main operations: (1) Initialize each new task learning LoRA by extracted
orthogonal basis from the previous task’s fine-tuned LoRA; (2) After fine-tuning on the new task,
we utilize the asymmetry of LoRA components to employ adaptive time-varying scaling for new
LoRA updates to merge into the merged LoRA. The complete procedure is outlined in Algorithm|T]
and illustrated in Figure Starting with the first task’s fine-tuned LoRA By 1 Ag,; by standard fine-
tuning, our method iteratively integrates LoRA updates of subsequent tasks in a continual fashion.
Orthogonal basis extraction for initialization. For new task ¢, we first extract orthogonal basis of
previous fine-tuned Ay ;_1, use that to initialize Ag’) Z) , making Ag? 2 (AEB Z))T = I,.. We utilize QR
decomposition to extract orthogonal matrix from Ay ;_1, which is:

QiR: = QR((Ar;-1)") — Qi = Q; -sign(diag(R;))" — AY) = Q] (13)
As a result, the initialization A§3 2 has orthogonal rows. For B, we directly initialize Bt(t?i) by B ;-1
which is the fine-tuned B of previous task ¢ — 1.

Asymmetrically merging LoRA via time-aware scaling. After fine-tuning task ¢, we merge its
LoRA updates into {Bi 1. Al 1 Due to the intrinsic asymmetry of B and A in LoRA, we

merge’ < 'merge

update Afmrge = Ay ;, and we merge B by time-aware coefficient \(¢) for new task updates:
Binerge = Brin;r%ge +)‘(7’) ’ (Bfl,i - Brin;rlge) (14)

where \(¢) is introduced to maintain a consistent magnitude of the merged B’s deviation from
previous tasks throughout the merging process. In our method, the scaling factor can be set to
A(d) = %, which follows the continual merging method proposed in|Tang et al.|(2025). The findings

in|[lharco et al.| (2023)); Tang et al.|(2024)) indicate that task vectors from different tasks tend to be
approximately orthogonal, and since Bs across tasks are approximately orthogonal to each other,
as shown in Figure |[l| which indicates that B task vectors are approximately orthogonal. This
orthogonality makes A(i) = % a natural choice for the scaling factor, since it helps maintain the

magnitude of parameter changes across merging steps [Tang et al.| (2025)).

3.2 DyNAMICS OF SLAO

To better understand the effectiveness of SLAQO, inspired by the analysis of [Hao et al.|(2024)), in the
following theorem we analyze the dynamics of task-specific parameters’ update in CL scenario.
Theorem 1. Let the parameters A and B be updated using SGD at each step s for task i as follows:

A=A (B (VwLs), B =B —n(VwL;)(A7)' (15)

where 1 is the learning rate. We assume Aj = AEO) +17AZ(-O)fA(5) and B = Bi(o) +nfB(s) (Al(}o))T
holds with such functions fa and fp for1,...,s, and || Zle VWEES) lF < L for every S during
training task i, which implies that the model stays within a finite Euclidean ball. If we assume

Al(-o)(AZ(-O))—r = I, in this case, the dynamics of A; satisfies ||fa(s)|2 < % and

the dynamics of B satisfies fp(s) = — Z;;é (VWL’Z)(an (j) + I). When 7 is small, we have

Under review as a conference paper at ICLR 2026

fB(s) =~ —Z;;é(vwﬁg). Thus BY = nfB(S)(AEO))T, and total update for B; is AB; =
“n(ELo(Vw L) (A7)

The proof is deferred to Appendix [C| This analysis, under the orthogonal initialization of A, suggests
that B may update across different initialization subspaces, effectively increasing the rank of B and
thereby aiding generalization. We note that the key difference between ours and [Hao et al.| (2024)) lies

in the initialization of LoRA: while they use standard initialization with B(O) = 0, we initialize B

%

using the previously fine-tuned LoRA parameters, resulting in Bi(o) # 0, complicating the analysis.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and datasets. We evaluate our approach across three Llama models: Llama-2-7B-chat,
Llama-2-13B-chat, and Llama-3-2-3B, and two Qwen models: Qwen2.5-3B and Qwen2.5-7B. All
experiments are conducted on NVIDIA A100 GPUs utilizing DeepSpeed repository. We consider
three continual learning benchmarks: (1) Standard CL benchmark: AG News, Amazon, Reviews,
Yelp Reviews, DBpedia, and Yahoo Answers. (2) Large number of tasks: five standard CL bench-
mark tasks, four GLUE tasks (MNLI, QQP, RTE, SST-2), five SuperGLUE tasks (WiC, CB, COPA,
MultiRC, BoolQ), and IMDB movie reviews. Following O-LoRA (Wang et al., [2023), each task
uses 1000 randomly sampled training samples and 500 validation samples per class. (3) SuperNI
Benchmark (Wang et al.;,|2022a): A diverse collection of NLP tasks with expert-written instructions,
covering dialogue generation, information extraction, question answering, summarization, and sen-
timent analysis. We follow task selection and ordering in SAPT (Zhao et al.,2024b)), using 1,000
training instances and 100 for validation/testing per task.

Baselines. We compare our method SLAO with the following baselines: (1) Continual learn-
ing baselines: SegqLORA: sequentially fine-tunes a single LoORA on multiple tasks without con-
straints; INCLORA: incrementally adds a new LoRA per task while freezing previous LoRAs; O-
LoRA (Wang et al., [2023)); InfLoRA (Liang & Li,[2024); SAPT-LoRA (Zhao et al., [2024b); MTL.:
a single model is trained jointly on all tasks; LORM (Salami et al., [2025)); CorDA (knowledge-
preserved adaptation) (Yang et al., 2024); Magmax (Marczak et al. [2024). (2) LoRA merging
baselines: LORA-LEGO (Zhao et al.,2025); KnOTS (Stoica et al.,[2025)). (3) Continual merging
baseline: OPCM (Tang et al.,[2025). To fairly evaluate existing merging methods in LoRA-based
continual learning, we extend full-model merging methods to LoRA and equally treat components of
LoRA, and all merging methods are achieved sequentially.

Evaluation metrics. To evaluate our proposed approach, we employ three key metrics: (1) av-
erage accuracy (AA), calculated as the mean accuracy across all tasks after training on the last

task: % Zle a;, T, where a; 7 is accuracy for classification tasks and Rouge-L for other tasks; (2)

backward transfer (BWT) (Lin et al.,2022), defined as ﬁ ZiT:_ll (@i, 7 — a;,;), and experimental
results are shown in Appendix[E-4} (3) maximum order-normalized performance disparity (MOPD)
and average order-normalized performance disparity (AOPD) (Yoon et al., 2020), which evaluate
order-robustness, and experimental results are shown in Appendix

4.2 OVERALL RESULTS

Continual learning performance results analysis As shown in Table|l} our method consistently
outperforms all data-free baselines across three benchmarks using Llama-2-7B-chat. LoRA-Based
continual learning: SeqlLoRA performs worst among LoRA-based methods, as unconstrained
continual fine-tuning on a single LoRA causes severe forgetting. INCLORA improves by freezing prior
learned LoRAs to isolate subspaces, though its subspace separation is simple. INfLORA outperforms
O-LoRA in standard CL benchmark due to orthogonal input-based subspaces, but drops on large
number of tasks and SuperNI benchmark, due to sensitivity to manually tuned DualGPM threshold.
SAPT-LoRA achieves the highest average performance among LoRA-based methods, but relies on
generated previous task pseudo samples, unrealistic in many LLLM scenarios, and is more order-
sensitive than ours. LORM-BA (begin with freezing B) and LORM-AB yield nearly identical results,
suggesting that the freezing order of LoRA components in CL matters little. CorDA performs

Under review as a conference paper at ICLR 2026

Table 1: Testing performance (%) on three CL benchmarks using Llama-2-7B-chat across different
task orders, where each result is run three random times, where O7 denotes ith task order.

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark

Method | O1 02 03 avg | 04 O5 O6 avg | O1 O2 avg
SeqLoRA 733 762 784 760 | 69.1 66.0 71.1 68.7| 184 268 22.6
IncLoRA 753 773 783 77.0 | 722 7T1.6 73.8 725|220 256 238
O-LoRA 76.1 763 792 772 | 740 72.0 746 735|233 284 259
InfLoRA 784 804 799 79.6 | 694 674 725 69.8 | 165 221 193

SPAT-LoRA | 829 81.8 78.7 &I.1 | 84.7 789 822 819|532 485 509

LoRM-BA 76.0 76.8 783 770 | 714 69.0 703 702|256 18.7 222
LoRM-AB 715 747 759 76.0 | 71.0 695 70.2 702 | 25.6 2377 247

CorDA 784 793 80.0 792 | 734 727 740 734209 160 185
MagMax 80.1 80.6 803 803 |723 735 745 734|153 70 112
KnOTS 679 659 708 682 | 615 60.1 580 599|346 30.1 324
LoRA-LEGO | 68.3 660 709 684 |588 587 532 569|328 267 29.8
OPCM | 619 620 567 602 | 519 528 469 505|116 123 120
SLAO(ours) | 80.1 80.8 80.4 804 |750 744 751 748387 357 372
Multi-Task | 80.9 | 78.1 | 45.2

Table 2: Comparison of initialization strategies on testing performance across three standard CL
benchmarks using Llama-2-7B-chat under different task orders, where Oi denotes ith task order.

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark
Initialization | O1 02 O3 avg | 04 O5 O6 avg | O1 02 avg

Random (Zero) | 66.4 62.4 684 657 | 614 603 572 59.6 333 289 3l.1
Last-Merge 80.1 80.8 80.1 803 | 747 728 750 742|374 305 340
Last-FT (ours) | 80.1 80.8 80.4 804 | 750 744 751 748 | 38.7 357 37.2

well on standard CL benchmark and large number of tasks, but drops significantly on SuperNI
benchmark, likely due to relying on nullspace selection from pretrained models and lacking time-
aware merging. MagMax performs comparably to ours on standard CL benchmark, slightly worse
on large number of tasks, but underperforms on SuperNI benchmark, where task similarity is lower,
thus only keeping weights which have the largest absolute value would cause forgetting. LoRA
merging baselines: KnOTS and LORA-LEGO perform similarly in the standard CL benchmark, but
KnOTS outperforms in the large number of tasks and SuperNI. KnOTS may benefit from flexible
SVD-merging mechanism so that we apply time-aware scaling on merging, while LORA-LEGO treats
tasks equally, lacks prioritization, and is ineffective in complex CL contexts. Continual merging
approaches: since OPCM is designed for full model, directly applying it to LoRA by treating its
two components identically leads to suboptimal performance. The results under Llama-2-13B-chat,
Qwen2.5-3B, and Qwen2.5-7B are shown in Appendix [E]

Impact of initialization strategies. We compare three different initialization strategies for learning
new tasks: (1) random (zero) initialization, (2) initialization from last merging point, (3) initialization
from last fine-tuning point (ours). As shown in Table [2] initializing from last fine-tuning point
consistently outperforms other two strategies across all three benchmarks. Using last merging point
performs slightly worse, while random (zero) initialization performs the worst. The performance gap
is due to how initialization affects LoRA’s learning trajectory and merging way. Random initialization
places A far away from optimal task-specific A*, making intransigence worse. Initialization from last
merging point fixes time coefficients after merging back to a single LoRA, limiting its flexibility, while
initialization from last fine-tuning point allows the merged LoRA to implicitly reweight previous
tasks’ updates when merging. This adaptive adjustment yields better CL performance.

Under review as a conference paper at ICLR 2026

Table 3: Comparison of merging strategies on testing performance on three standard CL benchmarks
using Llama-2-7B-chat across different task orders, where Oi denotes ith task order.

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark
Merging | O1 02 O3 avg | O4 O5 06 avg | O1 O2 avg

FREB-MA | 777 780 762 773 | 70.8 66.1 721 69.7 | 139 254 19.7
FREA-MB | 787 79.3 78.0 78.7 | 723 73.0 735 729 | 237 292 265
FTBA-MA | 762 79.0 799 784 | 71.6 695 741 717 | 21.1 30.7 259
FTBA-MBA | 79.7 804 80.2 80.1 | 73.2 739 745 739 | 338 327 333
FTBA-MB 793 80.8 80.1 80.1 | 741 740 748 743 | 324 352 338

SLAO (ours)| 80.1 80.8 804 804 | 750 744 751 748 | 387 357 372

Table 4: Comparison of model variants and sizes on testing performance across three standard CL
benchmarks using Llama-2-7B-chat in different task orders, where Oi denotes ith task order.

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark
Model | 01 02 03 avg |04 O5 06 avg| Ol 02 avg
Llama-3-2-3B ‘ 743 758 753 75.1 ‘ 733 725 749 73.6 ‘ 327 34.6 33.7

Llama-2-7B-chat | 80.1 80.8 80.4 80.4 |750 744 75.1 748 |38.7 357 372
Llama-2-13B-chat| 80.8 81.1 81.1 81.0 |76.5 759 76.0 76.1 |423 422 423

Asymmetry in LoRA merging. To investigate the asymmetry in LoRA merging, we compare
different continual merging strategies for LoORA: (1) Freeze A Merge B (FREA-MB), (2) Freeze
B Merge A (FREB-MA), (3) Fine-tune BA Merge A (FTBA-MA), (4) Fine-tune BA Merge BA
(FTBA-MBA), (5) Fine-tune BA Merge B (FTBA-MB). As shown in Table [3| only FTBA-MB
consistently outperforms other strategies, except ours. FTBA-MBA has comparable performance
compared to FTBA-MB, but FTBA-MA yields the poorest performance among fine-tuning LoRA
methods. When freezing one component of LoORA, FREA-MB is better than FREB-MA, consistent
with [Zhu et al.| (2024b) that freezing A and fine-tuning B is at least better than the reverse. It
highlights asymmetry in LORA components and the importance of asymmetric merging based on
their fundamental roles in adaptation.

Effect of model variants and sizes. We evaluate our method on three LLM variants: Llama-2-7B-
chat, Llama-2-13B-chat, Llama-3-3B. The results in Table [indicate that model variants and model
size play crucial roles in average performance across different task orders and benchmarks. Llama-
3-3B performs the worst, while in same generation of Llama, larger models consistently achieve
better accuracy: Llama-2-13B-chat relatively has higher accuracy compared to Llama-2-7B-chat.
This trend suggests that increased model capacity enhances both reducing catastrophic forgetting
and improving generalization in continual learning. Moreover, we observe that larger models exhibit
greater robustness to task order variations compared to smaller models.

76 ‘
80.0 A & 7 E 35 [T ;
9 o 2
8775 %72 ® 30
5 5 5
5 75.0 g 70 Y25
< <y <
7251 20
66
70.0 15
0.1 0.5 0.9 A(b) (Ours) 01 0.5 0.9 A(t) (Ours) 0.1 0.5 0.9 A(t) (Ours)
Time scaling factor Time scaling factor Time scaling factor
(a) Standard CL Benchmark-7B (b) Large Number of tasks-7B (¢) SuperNI Benchmark-3B

Figure 3: Comparison of model performance across time coefficients.

Time-varying coefficient analysis. To evaluate impact of adaptive time-varying scaling in continual
merging for CL, we compare it against fixed factors {0.1,0.5,0.9} on three benchmarks via Llama-
2-7B-chat and Llama-3-2-3B. As shown in Figure [3] adaptive strategy consistently achieves highest

Under review as a conference paper at ICLR 2026

average accuracy with lower variance across task orders and models. For simpler standard CL
benchmark, larger fixed value 0.9 outperforms smaller one 0.1, while for more complex or long
benchmarks, smaller values perform better; 0.5 is relatively stable but consistently suboptimal.

5 CONCLUSION

In this work, we proposed a novel parameter-efficient continual learning based on continual merging
of LoRA, enabling no additional training or access to any data representations. Our approach
leverages the orthogonal basis from previous fine-tuned LoRA to initialize for new task learning and
constructs a single shared merged LoRA via time-aware scaling, thus ensuring constant memory usage
regardless of task number. Through comprehensive experiments, we demonstrated the effectiveness
and efficiency of our method across multiple benchmarks and model scales.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920-15930, 2020.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape. In International conference on machine learning, pp. 1309-1318.
PMLR, 2018.

Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel
Albanie, and Matthias Bethge. How to merge multimodal models over time? In ICLR 2025
Workshop on Modularity for Collaborative, Decentralized, and Continual Deep Learning, 2025.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International conference on artificial intelligence and statistics, pp. 3762-3773.
PMLR, 2020.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3816-3830. Association for Computational Linguistics, August 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In Forty-first International Conference on Machine Learning, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in
optimizing deep linear networks. In International Conference on Learning Representations, 2020.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations, 2023.

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. LoRA training in the NTK regime has no spurious
local minima. In Forty-first International Conference on Machine Learning, 2024.

10

Under review as a conference paper at ICLR 2026

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
continual learning. In Conference on Lifelong Learning Agents, pp. 513-533. PMLR, 2023.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638-23647, 2024.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning with
backward knowledge transfer. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078-21100. PMLR,
2023.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Dangi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610-23641. PMLR, 2023.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative

pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
77657773, 2018.

Daniel Marczak, Barttomiej Twardowski, Tomasz Trzciniski, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning. In European Conference on Computer
Vision, pp. 379-395. Springer, 2024.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Algorithmic
Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016,
Proceedings 27, pp. 3—17. Springer, 2016.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent

space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36:66727-66754, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
Progressive prompts: Continual learning for language models. arXiv preprint arXiv:2301.12314,
2023.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Jacopo Bonato, Luigi Sabetta, and Simone
Calderara. Closed-form merging of parameter-efficient modules for federated continual learning.
In The Thirteenth International Conference on Learning Representations, 2025.

11

Under review as a conference paper at ICLR 2026

Timo Schick and Hinrich Schiitze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 255-269. Association for
Computational Linguistics, April 2021.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoff-
man. Zipit! merging models from different tasks without training. In The Twelfth International
Conference on Learning Representations, 2024.

George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
merging with SVD to tie the knots. In The Thirteenth International Conference on Learning
Representations, 2025.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving loRA in privacy-preserving federated
learning. In The Twelfth International Conference on Learning Representations, 2024.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter-efficient multi-task model fusion with partial linearization. In The Twelfth International
Conference on Learning Representations, 2024.

Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
on the fly without retraining: A sequential approach to scalable continual model merging. arXiv
preprint arXiv:2501.09522, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaogi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139-149, 2022b.

Yongxian Wei, Anke Tang, Li Shen, Zixuan Hu, Chun Yuan, and Xiaochun Cao. Modeling multi-task
model merging as adaptive projective gradient descent. In Forty-second International Conference
on Machine Learning, 2025.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. SD-IoRA: Scalable decoupled low-rank adaptation for class
incremental learning. In The Thirteenth International Conference on Learning Representations,
2025.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon Song, Jianlong Wu, Ligiang Nie, and
Bernard Ghanem. CorDA: Context-oriented decomposition adaptation of large language models
for task-aware parameter-efficient fine-tuning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

12

Under review as a conference paper at ICLR 2026

Jaehong Yoon, Saechoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust contin-
ual learning with additive parameter decomposition. In International Conference on Learning
Representations, 2020.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589—-12610,
2023a.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, 2024a.

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao, Bing Qin, Xuanyu Zhang, Qing Yang,
Dongliang Xu, and Wanxiang Che. Sapt: A shared attention framework for parameter-efficient
continual learning of large language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11641-11661, 2024b.

Ziyu Zhao, Tao Shen, Didi Zhu, Zexi Li, Jing Su, Xuwu Wang, and Fei Wu. Merging 10RAs like
playing LEGO: Pushing the modularity of 1o0RA to extremes through rank-wise clustering. In The
Thirteenth International Conference on Learning Representations, 2025.

Didi Zhu, Zhongyisun Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Chao Wu, and Kun
Kuang. Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In
Forty-first International Conference on Machine Learning, 2024a.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sdez de Ocariz Borde, Rickard Briiel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Forty-first International Conference on
Machine Learning, 2024b.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

The appendix is organized as follows:

* Appendix BJis the use of LLMs.

* Appendix[C|provides theoretical analysis.

* Appendix D] provides the overview of SLAO.

* Appendix [E] provides more experimental setup details and additional experimental results.

Overall Results on Llama-2-13B-chat[E]

Results on Qwen2.5 models [E-2]

Impact of initialization strategies for existing LoORA merging methods
Continual learning performance on backward transfer [E.4]

Continual learning performance on Order-normalized Performance Disparity (MOPD
and AOPD)[E.3]

Choice of orthogonal decomposition strategy [E.6|

Asymmetry of LORA

Impact of learning rate [E.§|

Impact of the rank of LoRA [E.9]

Comparison of training cost[E.10|

— Comparison of orthogonality among LoRA-based CL methods [E.TT]
Descriptions of task sequence orders[E.12]

* Appendix [F]provides related works.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize LLM:s to polish the paper writing.

C THEORETICAL ANALYSIS

C.1 THE FORGETTING-INTRANSIGENCE ERROR DECOMPOSITION UNDER NTK

Lemma 1. (Jang et al.| [2024; Maurer}|2016) Assume D is i.i.d N random samples sampled from
probability distribution P. Let Ap = {X; — fw,(Xi) + (Vw fw, (X;),8) € RE |8 <
D, d € R™*™} is class of affine predictors with bounded nuclear norm D. For 1 < j < K, suppose

HVWf‘(,{% (X)|lr < R almost surely with respect to the random data X; ~ P. For1 < i < N,
suppose U; = L(-,Y;) is G-Lipschitz continuous on A on the first argument (with respect to the
Euclidean norm) for almost surely with respect to the random data X; C D ~ P. That is

[0i(a(X1)) — (d'(X2))| < Glla(Xy) — d'(X2)||2 foranya,a’ € A, X1,X2 CD~P (16)

Proof. First, let g : X — R be a function satisfying the following property with ¢ > 0:
lg(X1, Xio1, Xiy Xig1, -, Xn) — (X1, .o, X1, X Xig1, -, X)) < e (07)
forall X,..., Xy, X, € X. Then, forall € > 0,
P9(X1r- . Xi) — Elo(Xs, . X)) 2 0 < exp (305 18)

Take g to be g = sup|5/<p(L(0) — L(8) — L(80) + L(d)), which is a function of X7, ..., Xx.
Since ||8]|. < D implies ||d]||r < D and by the Lipschitz continuity of (-, Y;), we have the following
for any (X;,Y;) € D:

14

Under review as a conference paper at ICLR 2026

K
<G D 1180 = 813G (X)|3

Jj=1

K
<G| 1180 = 8)121GO (X)|I%
j=1

K
<@ Z4D2-R2

= 2GRDVK. (19)

Thus, from this lemma, we apply it to LoRA-based continual learning and have

L;(Wy + BLA;) — Li(Wy + B;A;) < G||(BiAy — B A, Vw fw, (X3))|2

K
<G| Y IBiA; — BiA|Z|Vw i) (X013
j=1
K
<G| |IBiA; — B;A;|}.R? (20)
j=1

where K is the output dimension. From this, we can see that to minimize forgetting error, we should
make ||B;A; — B; A;||r as small as possible. Similarly, to minimize intransigence error, || B; A; —
B} Af|| r should be also small. Besides, it’s evident that £;(Wy + B A;) — L:(Wy + B A;) = 0.
Thus, if we makes | B;A; — B;A;||r < D and | B;A; — B} A}||r < D, then we have

Fi+ 1,

t

ZZ i(Wo + By A,) — Li(Wy + B;A;)))+Z _, (LiWo + BiA;) - Li(Wh + B} A]))
7217 (Wo + By Ay) — Li(Wy + B, A;))+ZZ (LdWo + B, Aj) — Li(Wo + B} A7)
Zl i(Wo + BLAy) — L;(Wy + B;A;)) + (L;(Wo + B;A;) — L;(Wy + B A}))
‘ K
gzi Z||BtAt—BA||2R2+G > IB:iA; - By A} |3 R?
Jj=1
¢ K K
=GR Zi:l > IBiA; - BiAi|3 + | > IBiA; — By Af|%
j=1 j=1
<4DGRY. VK @

To make both | B;A; — B; A;|| r and | B; A; — B A} | r minimized, the forgetting-intransigence
decomposition can be written as:
|B:A: — BiAi|r + | BiAi — Bf Aj||r

<[IBi(Ar = Aj)llp + [(B: — Bi) Aillp + | Bi(Ai — AD)||lr + [|(B: — B)Ajllr (22)
Algorithmic motivation. From the above bound, we observe that generalization error in CL with
LoRA depends asymmetrically on the choice of frozen and trainable components. Interestingly,
this insight contrasts with standard fine-tuning practices. For example, as concluded in (Zhu et al.,
2024b)), freezing A and fine-tuning B is at least as effective, if not better, than the reverse. However,
if we apply freezing A in CL, it implies ||A; — A;||r = 0, which may unintentionally increase
|A; — AZ||F due to limited task-specific expressiveness. In/Hu et al.| (2022)), A is initialized to a
random Gaussian matrix satisfying E[A(?)(A(®)T] = I,.. Instead, if we propose to fine-tune A;

15

Under review as a conference paper at ICLR 2026

while extracting orthogonal basis Q;_1 from A;_;, where Qi,lQ;r_l = I, to initialize AEO) via

Q;_1, then we will have AZ(.O) (AZ(.O))T = I, where i € [1,...,t]. This orthonormal structure not
only keeps geometric consistency across tasks but also allows A; (¢ > j >), to remain well-aligned
with previous A;, i.e. E[A;A]] ~ I,, thereby minimizing both ||A; — A;||r and ||A; — A} F.
This motivates our design of continual merging with orthogonal initialization to reduce forgetting and
maintain adaptability.

C.2 DYNAMICS OF LOW-RANK ADAPTERS UPDATED BY SLAO

We analyze the dynamics of A and B; in continual learning setting. This analysis, under the
orthogonal initialization of A, suggests that B may update across different initialization subspaces,
effectively increasing the rank of B and thereby aiding generalization.

Theorem 2. Let the parameters A and B be updated using SGD at each step s for task i as follows:
A = A3 —(B)) (VwLl), Bit' = Bf - n(Vw£)(AD)T 23)

where 1) is the learning rate. We assume A; = AZ(»O) —|—77AZ(.O)fA (s) and B = BZ-(O) +nfp(s) (AEO))T

holds with such functions fa and fg for1,...,s, and || ZSSZI VW/.:Z(»S) |F < L for every S during
training task i, which implies that the model stays within a finite Euclidean ball. If we assume

ASV,O)(AEVO))—r = I, in this case, the dynamics of Ailsatisﬁes Ifa(s)]le < %, and
the dynamics of B satisfies fp(s) = — Zj;é (VwL)(nfi(j) + I). When 1 is small, we have

fe(s) =~ —Zj;é(vwﬁz) Thus BY = nfB(S)(AEO))T, and total update for B; is AB; =
5 s 0

- (Zo(Vwis)) (A)T.

Proof. We start by noting the fact that for Task 1, when s = 0, f4(0) = f5(0) = 0. For s > 0,

assume A5 = Ao +nAgfa(s)and B = nfp(s)A] . Since the first task training is the same as the
LoRA fine-tuning in[Hao et al.|(2024)) for the dynamics of A and B we have:

AT = A7 —0(BY) T (Vw, £3)
= Ao +nAofals) = 1° Ao f5 () (Vw, £3)
= Ao +nAofa(s+1) 24
and

Bi*! = Bf — n(Vw, L1)(A})"

=nfp(s +1)Ag (25)
Thus, by rearranging the terms, we have:
s—1
fals) == fEG) (Vwi L) (26)
=0
s—1)
IB(s) == (Vw, L)) (nfa () + 1) 27)
§=0

Since Wy + BA ~ W, + AB A when learning rate) is small, the change in B dominates the
final weight update. Thus, if freezing A, we obtain

S
ABl ~ -n (Z VWO‘Ci> AJ (28)
s=1
and
s—1]
fo(s)~=> Vw,L] (29)
j=0

16

Under review as a conference paper at ICLR 2026

Task ¢ (i > 1): when s =0, f4(0) = f5(0) =
For s > 0: Assume A} = Al(-o) + nAl(-O)fA(s) and B} = BZ-(O) + 77!]‘5(8)(A1(-0))T hold with such
functions f4 and fg for 1,...,s. Then, for s + 1, we have

AT = A3 —n(B])" (Vw, £])
= AL +9A fa(s) = (B +0f5(s)(A))T (Vw, £7)
= AL 4940 fa(s) — (BT +nAY £5(5)(Vw, £3)
= A + AL (fa(s) = nf3 () (Vo £)) — n(BO)T (Vi £5) (30)
We would like to express AT as
AT = A AL fa(s + 1) 31)
So compare both sides:
1AL fals +1) = nA” (fa(s) = nf5 ()(Vw L)) = n(BO) (Vwp £5) (32)
Divide both sides by 7, rearrange:
A fa(s +1) = AP (fals) = nf3 ()(Vwn £5) — (BT (Vi £5) (33)

Since by our initialization AEO) (AZ(-O))T = I, then we have

AP fa(s+1) = A (fals) = nfh (5)(Vw, £5)) — I.(BY)(Vwoﬁf) (34)
AP fa(s+1) = AP (fals) = nf 5 (5)(Vwo £5) = (A AT (B (Vw, £5) - (35)
fals +1) = Fa(s) = nf3 (5)(Vwy £5) — (A) T (BT (Vs £3) (36)
fals+1) == (£50) - (AN TBT) (Vwo L)) (37)

§=0

For B, we have:
Byt = B — (Vw, £3)(A)T
=B + nf5(s)(AN)T — n(Vw, £)(A” +nA fa(s)T
=B +0(f5(s)(AN)T — (Vw, £)(A” + 1A fa(s)T)
=B +0(f5(s)(ANT = (Vwr £)(A)T = (Y, L) 4 (5)(A)T)
=B + 0 (f5(s) = (Vwo £5) — n(Vw, L) f1 (5)) (A)T (38)
Thus,
(5) = (Vwo L) = n(Vwo £5)f4 (5)
= f5(s) = (Vwo £5) (0 f 3 (s) + 1)

==, (Vwo £ (nfs () + 1) (39)

Then, we have:

s—1 —
1fa@s)lle =0 (Z nfa(m +I><vw0c;”>T+<A§°>>T<B£°>>T) (Vw, L)
j=0 Ia
-2 s—1 .
Z VWo‘Cm) Z (VWOEZ)
m=0 j=m-+1 F

17

Under review as a conference paper at ICLR 2026

0|3 S (Vw L) (T £)

j=0 m=0 7

+0 || > (AN T(BOT (Vw, £1)

7=0 P
2

+ L% + 2L (AT (BT |
F

<L Y (faG)) (Ve £7) T

AT B r = 1B AN Ir = | Y o2(BPAY) < vr
p=1
201 _(272)s
If || fa(s)]| < ag = =002 then
1fa(s)lr < n°L?as—1 +nL?> +n*L?s\/r

L2 1— 2L2$
:772L2n ((77))+77L2+772L28\/;+7]2L28\/;

1—12L2
_PL A = (PL2)%) + L — P L+ P LPsyr — ' Lts
N 1—n2L2
_ (1 = (’L?)*) + P L?s/r(1 — n*L?)
N 1—n2L2
We have
[fa(s)ll2 < lfa(s)ll7
Ifn < 1/L,
nL*(1— (P’ L%)°) + n*L?s\/r(1 — n*L?)
nllfa(s)llr <n gy
nL?(1— (n*L?)°)
- 1—n2L2
< nas
Thus, we have || fa(s)|| < nas. The dynamics are:
s—1 s—1
fa(s) = =0 FED(Vwo L), fo(s) == (Vw, L)(nfi () + 1)
=0 j=0
In our algorithm, we fine-tune AZ(.O) in our algorithm and we have 7||f4(s)|| < I, then
s—1 j—1 T) s—1)
fals)=-n>_ (Z(vwoz:;“)) (Vwoll), fB(s)==> (Vw L))
=0 \ m=0 j=0

Therefore, we have

S
AB; ~ —1) (Z Vwo£f> AT
s=0

D OVERVIEW OF SLAO

(40)

(41)

(42)

(43)

(44)

(45)

(46)

47

We show the detailed overview of SLAQO in Figure 4] It presents a framework where fine-tuned
LORA and merged LoRA are processed over time, and specializes key components: (1) orthogonal

initialization, and (2) time-aware continual merging.

18

Under review as a conference paper at ICLR 2026

l l Time

: (1) y Orthogonal (2] s Time-aware
By, Brrerge Initialization Continual Merging
Ap; Ap;
Ag ;i By, . g

WO ol Qj X j'(l)(Bf‘,i+1 Bmerge) Aft,i+1
Biivi €@ |\ Brrse l J l
Ay Ay, 5 - -
TH TH AR B, Brirge Apyist |

Figure 4: Overview of SLAQO. Left area is a framework where fine-tuned LoRA (orange) and merged
LoRA (gray) are processed over time. Right area (2 blue boxes) highlights key components: (1)
Orthogonal initialization for new task ¢ 4 1 learning LoRA, where orthogonal basis is extracted from

Ay ; to initialize Ag ;41 such that At(l0 L) +1(A§S 2 +1)T = I, and By ;4 is initialized by previous

By i; (2) Time-aware continual merging for By ;11 and By, and update ALEL . via Agiq.

E EXPERIMENTS DETAILS

Our experiments are conducted on 4 NVIDIA A100 GPUs using the DeepSpeed repository. We
evaluate three LLMs: Llama-2-7B-chat, Llama-2-13B-chat, and Llama-3-2-3B. Each individual
experiment (e.g., running a single task order from the large number of tasks benchmark on Llama-2-
13B-chat) can be executed on a single A100 GPU. We apply LoRA to the query and value projection
matrices in the attention modules of each Llama model, with a fixed rank of 8. Each task order is
evaluated over 3 random seeds.

For Standard CL benchmark and the large number of tasks benchmark on Llama-2-7B-chat and
Llama-2-13B-chat, we follow the setting in Wang et al.| (2023)), and train the models with one epoch,
a constant learning rate of le-4, the training batch size is 1, and the gradient accumulation step is 8.
And for Standard CL benchmark and the large number of tasks benchmark on Llama-3-2-3B, we set
the learning rate as le-4. For SuperNI benchmark using Llama-2-7B-chat and Llama-2-13B-chat, we
follow the learning rate, training batch size, and gradient accumulation steps inZhao et al.| (2024b)),
and we use 5e-5 and train the models with five epochs with a training batch size of 2, and gradient
accumulation steps of 4. And for SuperNI benchmark on Llama-3-2-3B, we set the learning rate as
Se-5.

E.1 OVERALL RESULTS ON LLAMA-2-13B-CHAT

Continual learning performance analysis. As shown in Table[5] our method consistently outper-
forms all data-free baselines across two benchmarks using Llama-2-13B-chat model.

LoRA-Based continual learning: IncLORA improves upon SeqLoRA by freezing previously learned
LoRAs to isolate subspaces, though its subspace separation is simplistic. SeqLORA performs a little
better than O-LORA in the standard CL benchmark, since we use the hyperparameter A = 0.5 in the
orthogonal loss in O-LORA that may be adjusted along with the different models and datasets, while
O-LoRA outperforms SeqLoRA and IncLoRA in large number of tasks benchmark. SAPT-LoRA
achieves the highest average performance among LoRA-based methods, but it relies on generated
previous task pseudo samples, unrealistic in many LLM scenarios, and is more sensitive to task order-
ing than our method. LORM-BA (from second task, begin with freezing B) and LORM-AB (from
second task, begin with freezing A) yield nearly identical results in large number of tasks benchmark,
suggesting that the order of alternating LoRA components in learning sequential tasks does not
significantly affect outcomes, but LORM-BA outperforms LORM-AB in standard CL benchmark.
CorDA performs well in standard CL benchmark and large number of tasks, but both of them are
lower than our method. MagMax performs comparably to our approach on standard CL benchmark,
and slightly worse on large number of tasks, thus only keeping the weights which have the largest
absolute value would cause catastrophic forgetting.

LoRA merging baselines: KnOTS and LORA-LEGO perform similarly in the standard CL bench-
mark, but KnOTS outperforms in the large number of tasks. KnOTS may benefit from flexible
SVD-merging mechanism so that we apply time-aware scaling on merging, while LORA-LEGO
treats tasks equally, lacks prioritization, and is ineffective in complex CL contexts.

19

Under review as a conference paper at ICLR 2026

Table 5: Testing performance (%) on three CL benchmarks using Llama-2-13B-chat across different
task orders, where each result is run three random times, where O7 denotes ith task order.

\ Standard CL Benchmark \ Large Number of Tasks

Method | o1 02 03 avg | O4 05 06 avg
SeqLoRA 77.1 71.4 78.6 71.7 74.1 74.2 74.5 74.3
IncLoRA 78.3 79.6 79.5 79.1 74.2 76.1 75.1 75.1
O-LoRA 76.1 77.1 78.5 77.2 75.5 75.5 74.8 75.3
SPAT-LoRA 83.2 82.4 80.1 81.9 83.9 80.2 82.3 82.1
LoRM-BA 78.4 80.2 80.4 79.7 74.9 71.9 70.5 72.4
LoRM-AB 76.2 74.1 75.3 75.2 74.3 70.1 72.3 72.2
CorDA 79.1 80.4 80.6 80.0 75.9 75.8 72.9 74.9
MagMax 80.9 80.6 80.7 80.7 73.7 73.4 76.0 74.4
KnOTS(zero init) | 71.9 73.1 73.9 73.0 66.8 65.5 66.0 66.1
LoRA-LEGO 73.0 72.3 72.9 72.7 64.3 63.3 64.0 63.9
OPCM ‘ 68.8 63.6 61.6 64.7 ‘ 57.6 60.2 58.8 58.9
SLAO (ours) ‘ 80.8 81.1 81.1 81.0 ‘ 76.5 75.9 76.1 76.2
Multi-Task | 81.4 | 7922

Table 6: Comparison of merging strategies on testing performance on two CL benchmarks using
Llama-2-13B-chat across different task orders, where O7 denotes th task order.

\ Standard CL Benchmark \ Large Number of Tasks
Method | o1 02 03 avg | 04 05 06 avg

FREB-MA 7.7 71.5 76.4 77.2 69.1 68.2 69.3 68.9
FREA-MB 79.4 79.2 78.9 79.2 73.2 73.8 73.2 73.4
FTBA-MA 79.2 80.1 80.8 80.0 75.1 75.0 75.8 75.3
FTBA-MBA | 80.7 80.9 80.8 80.8 75.4 75.4 76.0 75.6
FTBA-MB 80.6 80.9 80.9 80.8 75.8 75.7 76.0 75.8
SLAO(ours) 80.8 81.1 81.1 81.0 76.5 75.9 76.1 76.2

Continual merging approaches: since OPCM is designed for full model, directly applying it to
LoRA by treating its two components identically leads to suboptimal performance.

Asymmetry in LoORA merging. To investigate the asymmetry in LoORA merging, we compare
different continual merging strategies for LoRA: (1) Freeze A, merge B (FREA-MB), (2) Freeze
B, merge A (FREB-MA), (3) Fine-tune BA, merge A (FTBA-MA), (4) Fine-tune BA, merge BA
(FTBA-MBA), (5) Fine-tune BA, merge B (FTBA-MB). As shown in Table @ only fine-tuning
LoRA and merging B consistently outperforms other strategies, except ours. Fine-tuning LoRA
and merging B A has comparable performance compared to fine-tuning LoRA and merging B, but
fine-tuning LoRA and merging A yields the poorest performance among fine-tuning LoRA methods.
When freezing one component of LoRA during training, freezing A and merging B is much better
than freezing B and merging A, consistent with conclusion in|Zhu et al.|(2024b)) that freezing A and
fine-tuning B is at least better than freezing B and fine-tuning A. This highlights the asymmetry in
LoRA components and the importance of asymmetric merging based on their fundamental roles in
adaptation.

E.2 RESULTS IN QWEN2.5 MODELS

20

Under review as a conference paper at ICLR 2026

Table 7: Comparison of testing performance on SuperNI benchmark using Qwen2.5-3B and Qwen2.5-
7B models across two different task orders.

\ Qwen2.5-3B \ Qwen2.5-7B
Method | O1 02 avg | O1 02 avg

O-LoRA 31.1 29.8 30.5 343 32.6 334
InfLoRA 35.6 25.6 30.6 43.5 31.0 37.3
SLAO 37.8 324 35.1 41.0 355 383

Table 8: Comparison of initialization strategies for existing LoRA merging methods on testing
performance on two CL benchmarks using Llama-2-7B-chat and Llama-2-13B-chat across different
task orders, where O¢ denotes ith task order.

| Standard CL Benchmark | Large Number of Tasks

Init Model Method | 01 02 O3 avg | 04 O5 06 avg
Random (Zero) 7B KnOTS 679 659 70.8 68.2 61.5 60.1 58.0 59.9
Random (Zero) 7B LoRA-LEGO | 68.3 66.0 709 68.4 58.8 58.7 532 56.9

Last-FT 7B KnOTS 79.7 80.7 79.9 80.1 740 725 75.0 73.8
Last-FT 7B LoRA-LEGO | 78.8 79.8 79.5 794 722 704 742 723
Random (Zero) 13B KnOTS 71.9 73.1 739 73.0 66.8 65.5 66.0 66.1
Random (Zero) 13B LoRA-LEGO | 73.0 723 729 72.7 643 633 64.0 639
Last-FT 13B KnOTS 80.1 79.6 80.3 80.0 754 749 758 754
Last-FT 13B LoRA-LEGO | 79.8 80.0 80.2 80.0 753 73.8 76.0 75.0

To evaluate the performance of our SLAO using state-of-the-art LLMs, we use Qwen2.5-3B and
Qwen?2.5-7B to compare with the other two LoRA-based continual learning baselines on the SuperNI
benchmark.

When evaluating SuperNI benchmarks, SLAO is consistently better than other two baselines and
achieves the best average performance on both Qwen2.5-3B and Qwen2.5-7B models, demonstrating
its robustness on Qwen2.5 model sizes. Also, the performance of SLAO on Qwen2.5-3B is better
than that on Qwen2.5-7B.

E.3 IMPACT OF INITIALIZATION STRATEGIES FOR EXISTING LORA MERGING METHODS

We compare the testing performance of different initialization strategies for existing LoRA merging
methods in Table 8] where we compare two strategies: random (zero) initialization and the last
fine-tuning point of previous tasks. For zero initialization for new tasks, when using Llama-2-7B-chat
and Llama-2-13B-chat, KnOTS and LoRA-LEGO perform similarly in the standard CL benchmark,
but KnOTS outperforms in the large number of tasks. For last fine-tuning point initialization, KnOTS
and LORA-LEGO perform similarly in the standard CL benchmark and the large number of tasks,
while KnOTS is slightly over LORA-LEGO. All results in the last fine-tuning point initialization
are significantly better than the zero initialization. These results show that our last fine-tuning point
initialization has better performance than zero initialization in continual merging scenarios.

E.4 CONTINUAL LEARNING PERFORMANCE ON BACKWARD TRANSFER

We evaluate the performance of backward transfer (BWT) using Llama-2-7B-chat on the large
number of tasks benchmark. As shown in Table |§|, SLAO demonstrates strong backward transfer
ability. Among all methods, SeqLORA performs the worst due to its lack of mechanisms to prevent
forgetting. KnOTS and LORA-LEGO also underperform, as they are primarily designed for model
merging rather than continual learning. INCLORA exhibits limited BWT performance, while O-
LoRA achieves better results by enforcing orthogonality during learning. InfLORA slightly trails
O-LoRA, and CorDA performs worse, possibly due to its reliance on nullspace projection without
time-aware updates. SAPT-LORA achieves the best BWT overall, though it benefits from synthetic

21

Under review as a conference paper at ICLR 2026

Table 9: Testing performance (%) of the average of backward transfer (BWT) on large number of
tasks using Llama-2-7B-chat across different task orders.

Method BWT Method BWT
SeqLoRA -17.2 LoRM-BA -6.7
IncLoRA -9.6 LoRM-AB -4.1
O-LoRA -4.0 MagMax -3.8
InfLoRA -49 OPCM -3.9
SAPT-LoRA -2.9 KnOTS (zero init) -14.1
CorDA -4.5 LoRA-LEGO -15.6

SLAO (Ours) -3.5

Table 10: Comparison of MOPD and AOPD on testing performance across three standard CL
benchmarks using Llama-2-7B-chat in different task orders.

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark

Method | MOPD AOPD | MOPD AOPD | MOPD AOPD
O-LoRA 9.84% 5.79% 17.87% 8.53% 22.16% 11.63%
SAPT-LoRA 8.75% 5.69% 18.94% 9.65% 25.28% 12.38%
InfLoRA 8.23% 2.54% 19.58% 10.01% 23.42% 11.46%
SLAO(ours) 1.72% 1.30% 15.17% 7.16% 18.94% 10.76%

data from previous tasks, which may not be feasible in realistic settings. Between the two variants of
LoRM, LoRM-BA slightly outperforms LORM-AB. Finally, MagMax and OPCM show comparable
performance, both designed to balance update integration during continual merging.

E.5 CONTINUAL LEARNING PERFORMANCE ON ORDER-NORMALIZED PERFORMANCE
DISPARITY

We evaluate the performance of Order-normalized Performance Disparity (Yoon et al.,|2020) using
Llama-2-7B-chat on three benchmarks. Order-normalized Performance Disparity is used to evaluate
order-sensitivity for each task ¢, defined as the disparity between its performance on R random task
sequences:

OPD, = max(P,,...,P") —min(P,,..., P}) (48)

where ?: denotes the performance of task ¢ to the task sequence r. The Maximum OPD is de-
fined as MOPD = max(OPD;y,...,OPD;) and the Average OPD is defined as AOPD =

T Z;T:l OP Dy, to evaluate order-robustness on the whole task set. Lower scores of both metrics
indicate higher robustness.

Table[I0]shows the performance of MOPD and AOPD on three benchmarks with their task sequences.
Our SLAO shows the most stable performance across different task orders, indicating that it handles
order sensitivities better compared to other baselines. While SAPT-LoRA achieves higher scores in
Table[T] it heavily depends on past tasks’ data information, so that SAPT-LoRA suffers from greater
variation in different task orders, mostly due to its past pseudo-sample generation.

E.6 CHOICE OF ORTHOGONAL DECOMPOSITION STRATEGY

In our algorithm, SLAQO, we use QR decomposition to extract the orthogonal basis from previous
LoRA A. To evaluate the effectiveness of QR decomposition, we compare it against orthogonal bases
derived from (1) singular value decomposition (SVD), where the product UV T forms an orthogonal
approximation, and (2) randomized SVD, where the product QU forms an orthogonal approximation.
As shown in Table [TT] QR initialization performs similarly to the SVD approach on standard CL
benchmark and large number of tasks, but the performance of QR on SuperNI benchmark is better
than that of SVD. The performance of randomized SVD is not better than SVD and QR across these

22

Under review as a conference paper at ICLR 2026

Table 11: Comparison of orthogonal decomposition strategies on testing performance on two CL
benchmarks using Llama-2-7B-chat across different task orders, where Oi denotes ith task order.

\ Standard CL Benchmark \ Large Number of Tasks SuperNI Benchmark
Method |01 02 O3 avg |04 O5 06 avg |01 O2 avg

Randomized SVD |72.6 69.1 733 71.7 |52.3 625 57.8 57.5 |[11.8 22.8 17.3
SVD 79.9 80.8 80.2 80.3 |753 744 75.1 749 |369 33.7 353
QR 80.1 80.8 80.4 80.4 |75.0 744 75.1 74.8 |38.7 35.7 37.2

three benchmarks. This suggests that SLAO is robust to the choice of orthogonal decomposition
technique.

E.7 ASYMMETRY OF LORA
We separately fine-tune 15 tasks from the SuperNI benchmark using 15 LoRAs on Llama-2-7B-
chat (Touvron et al, 2023)), and compute cosine similarity of A and B across 15 tasks using the last

layer LoRA. Figure [5|shows that A exhibits significantly higher similarity across tasks compared to
B, suggesting that LoORA components follow inherently different learning dynamics.

(a) LoRA A (q) (b) LoRA B (q) (¢) LoRA A (v) (d) LoRA B (v)

Figure 5: Cosine similarity between 15 tasks from SuperNI benchmark for fine-tuned q and v attention
LoRA A and B in the last layer (32nd) of Llama-2-7B-chat.

E.8 IMPACT OF LEARNING RATE

To assess the effect of different learning rates, we evaluate SeqLORA on the standard CL benchmark
using Llama-2-7B-chat with learning rates of le-3, le-4, and le-5. As shown in Table[T2] a learning
rate of le-4 achieves the best performance, while 1e-3 performs the worst, significantly degrading
the overall results. This highlights the importance of careful learning rate selection in LoRA-based
continual learning.

Table 12: Impact of learning rate on testing performance of SeqLORA using Llama-2-7B-chat across
three task orders in Standard CL Benchmark, where Oi denotes ith task order.

Standard CL Benchmark
01 02 03 avg

learning rate

le—3 60 00 197 86
le—4 733 762 784 76.0
le—5 73.6 71.8 76.0 73.8

E.9 IMPACT OF THE RANK OF LORA

We assess the effect of different LoRA rank values in our algorithm by comparing three rank settings
on both the standard CL benchmark and the large number of tasks benchmark using Llama-2-13B-
chat. As shown in Table[I3] a rank of 8 yields the best performance on the standard CL benchmark,
while a rank of 4 performs best on the large number of tasks benchmark. Overall, the performance

23

Under review as a conference paper at ICLR 2026

differences across the three ranks are relatively small, suggesting that our method is robust to the
choice of rank.

Table 13: Impact of the rank of LoRA on testing performance of SLAO using Llama-2-13B-chat
across Standard CL Benchmark and large number of tasks, where Oi denotes ith task order.

Standard CL Benchmark ‘ Large Number of Tasks

rank 01 02 03 avg | 04 O5 O6 avg
r=4 | 80.6 81.0 8l.1 809 | 772 763 77.1 769
r=8 | 80.8 81.1 81.1 81.0 | 76.5 759 76.1 762
r=16 | 80.3 809 809 80.7 | 769 755 759 76.1

E.10 COMPARISON OF TRAINING COST

We compare the training cost among several baselines in Table We use a single NVIDIA A100
GPU to fine-tune Llama-2-7B-chat. It shows that our SLAO is both memory usage efficient and
training efficient, since we only compute one-time QR matrix factorization at initialization, avoiding
additional computational cost during training. Besides, we observe that the walltime under orthogonal
initialization is often smaller than the walltime without orthogonal initialization. There is a similar
conclusion in|[Hu et al.|(2020), which proves that drawing the initial weights from the orthogonal
group can speed up convergence. Therefore, SLAO provides an ideal balance between performance,
memory usage, and training speed.

E.11 COMPARISON OF ORTHOGONALITY AMONG LORA-BASED CL METHODS

* Initialization:
(a) O-LoRA: New task’s LoRA B; A; is randomly initialized and is not orthogonal to
previous tasks’ LoRAs {B1A;1,...,B;_1A; 1}.
(b) InfLoRA: Use all of new task ¢ data to compute its input matrix H; on current full
model parameters, and use all previous ¢ — 1 tasks’ gradient spaces which denote as
M; to make new A; € R"™*? lie in IN; N M- where IN; is the subspace spanned by
the columns of H;. B; € R**" is initialized as zero.
(c) SLAO: Extract orthogonal basis from previous fine-tuned A;_; € R"*¢ as new task’s
A;, which makes A;A] = I,.. B; € R¥" is initialized as previous fine-tuned B,;_.
* Training:
(a) O-LoRA: Compute orthogonal loss to make new task’s A; € R™*? orthogonal to all
previous tasks’ A, and update A; and B;.
(b) InfLoRA: Compute standard cross entropy loss and update B; € R4*".
(c) SLAO: Compute standard cross entropy loss and update B; € R4*" and A; € R™*,
* Post-Training:
(a) O-LoRA: Store all tasks’ LoRA {B1A4,...,B;A;}.
(b) InfLoRA: Use new task ¢ data to compute new task input matrix R; on new learned
B; A,;, then compute new gradient orthogonal bases memory M; through DualGPM,
where M represents the gradient space of all 4 tasks. Then, integrate B; A; to W;_
and store the updated gradient space M, of all ¢ tasks.

(c) SLAO: Merge B; to previously merged B;_; and keep fine-tuned B;, merged B;, and
fine-tuned A;.

Overall, InfLoRA and SLAO both focus on the orthogonality of initialization and post-training,
while O-LoRA focuses on the orthogonality of the updating process during training. Moreover, for
initialization, InfLoRA makes new A; lie at the intersection of input matrix and previous gradient
spaces M;, while SLAO extracts orthogonal basis from previous fine-tuned A; 1 as new A;; for
post-training, InfLoRA computes and stores all previous tasks’ orthogonal gradient spaces, while
SLAO uses the asymmetry of LoRA to obtain a merged B.

24

Under review as a conference paper at ICLR 2026

Table 14: Comparison of training cost across three standard CL benchmarks using Llama-2-7B-chat
(average cost across different task orders, FTBA-MBAOI: FTBA-MBA with orthogonal initialize A).

| Standard CL Benchmark | Large Number of Tasks | SuperNI Benchmark

Method Peak GPU GPU Peak GPU GPU Peak GPU GPU
Memory Walltime Memory Walltime | Memory Walltime

O-LoRA 35.71GB 01:21:49 37.55GB 02:47:06 38.06GB 02:48:34

InfLoRA 4521GB 01:47:48 57.66GB 04:57:22 | 58.99GB 05:01:01

FTBA-MBA 35.29GB 00:51:43 35.64GB 01:59:51 36.01GB 02:02:07
FTBA-MBAOI| 35.43GB 00:51:27 36.23GB 01:59:12 37.59GB 02:01:35
FTBA-MB 35.17GB 00:51:36 35.47GB 01:59:26 35.91GB 02:01:49
SLAO (ours) 35.24GB 00:50:58 35.61GB 01:59:00 35.94GB 02:00:08

E.12 DESCRIPTIONS OF TASK SEQUENCE ORDERS

We report task descriptions and their metrics used for our CL experiments across Llama models in
Table[T5]and Table[I6] And we show eight task orders in Table

Table 15: Descriptions of 15 datasets in Large Number of Tasks benchmark and first 5 datasets from
standard CL benchmark.

Dataset name Category Task Domain Metric

1. Yelp CL Benchmark Sentiment analysis Yelp reviews Accuracy
2. Amazon CL Benchmark Sentiment analysis Amazon reviews Accuracy
3. DBpedia CL Benchmark Topic classification Wikipedia Accuracy
4. Yahoo CL Benchmark Topic classification Yahoo Q&A Accuracy
5. AG News CL Benchmark Topic classification News Accuracy
6. MNLI GLUE Natural language inference Various Accuracy
7. QQP GLUE Paragraph detection Quora Accuracy
8. RTE GLUE Natural language inference News, Wikipedia ~ Accuracy
9. SST-2 GLUE Sentiment analysis Movie reviews Accuracy
10. WiC SuperGLUE Word sense disambiguation Lexical databases =~ Accuracy
11.CB SuperGLUE Natural language inference Various Accuracy
12. COPA SuperGLUE Question and answering Blogs,encyclopedia Accuracy
13. BoolQA SuperGLUE Boolean question and answering Wikipedia Accuracy
14. MultiRC ~ SuperGLUE Question and answering Various Accuracy
15. IMDB SuperGLUE Sentiment Analysis Movie reviews Accuracy

F RELATED WORKS

Continual Learning. Continual learning aims to retain knowledge of previously learned tasks
while adapting to new data. It faces two main challenges: (1) catastrophic forgetting (McCloskey &
Cohen, |1989), where the performance of the model on earlier tasks significantly degrades as it learns
new ones; and (2) knowledge transfer, where the model leverages previously acquired knowledge to
improve learning on new tasks. Existing approaches are divided into three categories to address the
issues:

(1) Rehearsal-based methods employ a memory buffer to store samples from previous tasks, enabling
joint training with new tasks. Dark Experience Replay (Buzzega et al., 2020) encourages consis-
tency with past knowledge by aligning the model’s current logits with those sampled earlier in the
optimization trajectory. CLEAR (Rolnick et al.l 2019), an experience replay method, effectively
mitigates catastrophic forgetting in multi-task reinforcement learning. Gradient episodic mem-
ory (Lopez-Paz & Ranzatol 2017) stores task-specific gradients and projects new gradients to avoid
interference with previous knowledge.

25

Under review as a conference paper at ICLR 2026

Table 16: Descriptions of 15 datasets in SuperNI benchmark.

Dataset number Dataset name Task Metric
1. task639 multi-woz-user-utterance-generation dialogue generation Rouge-L
2. task1590 diplomacy-text-generation dialogue generation Rouge-L
3. task1729 personachat-generate-next dialogue generation Rouge-L
4. task181 outcome extraction information extraction Rouge-L
5. task748 glucose-reverse-cause-event-detection information extraction Rouge-L
6. task1510 evaluation-relation-extraction information extraction Rouge-L
7. task002 quoref-answer-generation question answering Rouge-L
8. task073 commonsenseqa-answer-generation question answering Rouge-L
9. task591 scig-answer-generation question answering Rouge-L
10. task511 reddit-tifu-long-text-summarization summarization Rouge-L
11. task1290 Xsum-summarization summarization Rouge-L
12. task1572 samsum-summary summarization Rouge-L
13. task363 sst2-polarity-classification sentiment analysis Accuracy
14. task875 emotion-classification sentiment analysis Accuracy
15. task1687 sentiment140-classification sentiment analysis Accuracy
Table 17: Eight different task orders
Order Model Task Sequence
Llama-2-7B-chat,
1 Llama-2-13B-chat, dbpedia— amazon — yahoo — ag
Llama-3-2-3B
Llama-2-7B-chat,
2 Llama-2-13B-chat, dbpedia— amazon — ag— yahoo
Llama-3-2-3B
Llama-2-7B-chat,
3 Llama-2-13B-chat, yahoo — amazon — ag — dbpedia
Llama-3-2-3B
Llama-2-7B-chat, . . .
4 Llama-2-13B-chat mnli — cb — wic — copa — qqp — boolqa — rte —imdb —
Llama-3-2-3B > yelp — amazon — sst-2 — dbpedia — ag —multirc — yahoo
Llama-2-7B-chat, . . .
multirc — boolga — wic — mnli — cb — copa — qqp — rte
5 Llama-2-13B-chat, imdb —s sst-2 —s dbpedia) h
Llama-3-2-3B — im sst-2 — dbpedia — ag — yelp — amazon —yahoo
Llama-2-7B-chat, . .
6 Llama-2-13B-chat, yelp — amazon — mnli — cb — copa —> qqp — rte —>1me—>
Llama-3-2-3B sst-2 — dbpedia — ag — yahoo — multirc —boolqa — wic
Llama-2-7B-chat, task1572 — task363 — task1290 — task181 — task002
(SuperNT) Llama-2-13B-chat, —task1510 — task639 — task1729 — task073 — task1590 —
Llama-3-2-3B task748 — task511 — task591 — task1687 — task875
Llama-2-7B-chat, task748 — task073 — task1590 — task639 — task1572 —
(SuperNI) Llama-2-13B-chat, task1687 — task591 — task363— task1510— task1729 —

Llama-3-2-3B task181 — task511 — task002 — task1290 — task875

(ii) Regularization-based methods utilize constraints on the parameters of the model to prevent model
updates of new tasks from interfering with knowledge acquired on previous tasks. Elastic weight
consolidation, EWC (Kirkpatrick et al., 2017), uses Fisher Information Matrix to identify and protect
parameters critical for previous tasks. Orthogonal Gradient Descent, OGD (Farajtabar et al., [2020),

26

Under review as a conference paper at ICLR 2026

projects gradients of new tasks onto a subspace that preserves model outputs on previous tasks, while
ensuring the direction remains effective for learning new tasks.

(iii) Architecture-based methods dynamically adjust the structure of the model to isolate task-specific
weights or expand model capacity (Mallya & Lazebnikl [2018; [Wang et al.,[2022b). Packnet (Mallya
& Lazebnik, 2018) performs iterative pruning and network re-training. Progressive Prompts (Raz;
daibiedina et al., 2023 mitigate forgetting by maintaining a growing sequence of soft prompts, where
each new task contributes an additional prompt.

Parameter-efficient continual learning. LoRA-based continual learning has emerged as a practical
and parameter-efficient technique for adapting LLMs to sequential tasks. O-LORA (Wang et al.,[2023)
freezes previously learned LoRAs and incrementally learns new tasks in their orthogonal subspace;
InfLORA (Liang & Li, 2024)) preserves prior LORAs and uses task-dependent input matrices to define
orthogonal subspaces for initializing new ones; SAPT-LORA (Zhao et al., [2024b) retains earlier
LoRAs and leverages generated previous tasks’ data to align new LoRA learning with shared modules;
SD-LoRA (Wu et al} [2025) incrementally decouples the learning of magnitude and direction in
LoRA components while preserving directions learned from previous tasks.

Merging and Continual Merging. Model merging (Garipov et al.l [2018; [Draxler et al., 2018
Wortsman et al., [2022)) has emerged as an efficient paradigm that combines multiple task-specific
models into a single unified model without retraining (Stoica et al.|[2024; Tlharco et al., 2023} |Yadav
et al., [2023; |Ortiz-Jimenez et al., 2023). This idea has recently extended to LoRA-based adaptation:
KnOTS (Stoica et al., 2025) leverages singular value decomposition to project LoORA updates into a
shared latent space, where existing merging methods can be applied; LORA-LEGO (Zhao et al.,[2025)
decomposes LoRAs into minimal semantic units via grouping and clustering, enabling a reconstruc-
tion of multiple LoRAs into one. However, both LORA merging and full model merging generally
assume simultaneous access to all task-specific LoORA or model fine-tuned from the same initial
pre-trained model, which limits their applicability to the continual merging scenarios (Dziadzio et al.,
2023])), where tasks arrive sequentially. Moreover, continual LoORA merging remains underexplored in
existing literature. While in full-model settings, continual merging has received more attention, i.e.,
OPCM (Tang et al., 2025) mitigates interference by sequentially projecting new model updates onto
subspaces orthogonal to the previously merged model, combined with adaptive scaling.

27

	Introduction
	Background and Motivation
	Opportunities and Challenges in Continual Learning via Continual Merging
	Orthogonal Initialization Motivated by LoRA NTK Analysis
	Continual merging motivated by LoRA asymmetry analysis

	Methodology
	SLAO: Single LoRA Continual Learning
	Dynamics of SLAO

	Experiments
	Experimental Setup
	Overall Results

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Theoretical Analysis
	The forgetting-intransigence error decomposition under NTK
	Dynamics of low-rank adapters updated by SLAO

	Overview of SLAO
	Experiments Details
	Overall Results on Llama-2-13B-chat
	Results in Qwen2.5 models
	Impact of initialization strategies for existing LoRA merging methods
	Continual learning performance on backward transfer
	Continual learning performance on Order-normalized Performance Disparity
	Choice of orthogonal decomposition strategy
	Asymmetry of LoRA
	Impact of learning rate
	Impact of the rank of LoRA
	Comparison of Training cost
	Comparison of orthogonality among LoRA-based CL methods
	Descriptions of Task Sequence Orders

	Related Works

