
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MERGE BEFORE FORGET: A SINGLE LORA CONTIN-
UAL LEARNING VIA CONTINUAL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient continual learning has emerged as a promising approach for
large language models (LLMs) to mitigate catastrophic forgetting while enabling
adaptation to new tasks. Current Low-Rank Adaptation (LoRA) continual learning
techniques often retain and freeze previously learned LoRAs or generate data repre-
sentations to overcome forgetting, typically utilizing these to support new LoRAs
learn new tasks. However, these methods not only ignore growing computational
memory with tasks and limited storage space but also suffer from potential task
interference due to the lack of effective LoRA merging mechanisms. In this paper,
we propose a novel continual learning method that orthogonally initializes and
sequentially merges LoRAs updates into a single unified LoRA. Our method lever-
ages orthogonal basis extraction from previously learned LoRA to initialize the
learning of new tasks, further exploits the intrinsic asymmetry property of LoRA
components by using a time-aware scaling mechanism to balance new and old
knowledge during continual merging. Our approach maintains constant memory
complexity with respect to the number of tasks, minimizes interference between
past and new tasks via orthogonal basis initialization, and improves performance
over asymmetric LoRA merging via adaptive scaling. We provide theoretical
analysis to justify our design and conduct extensive experiments across diverse
continual learning benchmarks using various Llama models, demonstrating the
effectiveness and efficiency of our method.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al., 2020; Achiam et al., 2023; Touvron et al., 2023) have
been growing as the cornerstone of modern machine learning, achieving remarkable performance
across a wide range of downstream tasks. However, despite their impressive capabilities, LLMs
still suffer from catastrophic forgetting (McCloskey & Cohen, 1989; Zhu et al., 2024a; Yang et al.,
2024) when fine-tuning sequential tasks, and their huge model capacity makes full fine-tuning
computationally expensive and memory-intensive (Zhao et al., 2024a). These challenges have led
to increasing attention in parameter-efficient continual learning, particularly via techniques such as
LoRA (Low-Rank Adaptation) (Hu et al., 2022), that injects trainable low-rank matrices A and B into
pre-trained models, enabling task adaptation with minimal additional parameters. Existing methods
have shown progress in mitigating forgetting in LLMs through LoRA-based continual learning.
For example, O-LoRA (Wang et al., 2023) freezes previously learned LoRAs and incrementally
learns new tasks in their orthogonal subspace; InfLoRA (Liang & Li, 2024) preserves prior LoRAs
and uses task-dependent input matrices to define orthogonal subspaces for initializing new ones;
SAPT-LoRA (Zhao et al., 2024b) retains earlier LoRAs and leverages generated previous tasks’
data to align new LoRA learning with shared modules; SD-LoRA (Wu et al., 2025) incrementally
decouples the learning of magnitude and direction in LoRA components while preserving directions
learned from previous tasks. However, these methods either keep and freeze previously learned
LoRAs, resulting in parameter growth of the form [B1A1, . . . ,BtAt], or generate and maintain
task-specific data representations, leading to (i) linear growth in memory usage with the number of
tasks, (ii) limited scalability due to constrained storage space, and (iii) potential task interference in
the absence of principled LoRA merging mechanisms. These limitations motivate the question:

Can we enable continual learning only using a single shared LoRA, without learning or storing
task-specific LoRAs or data representations?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) LoRA A (q) (b) LoRA B (q) (c) LoRA A (v) (d) LoRA B (v)

Figure 1: Cosine similarity between 15 tasks from the large number of tasks benchmark for fine-tuned
q and v attention LoRA A and B in the last layer (32nd) of Llama-2-7B-chat.

To address this question, we take inspiration from model merging (Garipov et al., 2018; Draxler et al.,
2018; Wortsman et al., 2022), an emerging paradigm that aims to combine multiple task-specific
models into a single unified model without retraining (Stoica et al., 2024; Ilharco et al., 2023; Yadav
et al., 2023; Ortiz-Jimenez et al., 2023). By extending this idea, we frame continual learning as a
sequential model merging problem, where the objective shifts from keeping all task-specific LoRAs or
data to continually integrating their updates into a single shared LoRA as new tasks arrive. Recently,
model merging has successfully been extended to the LoRA regime: KnOTS (Stoica et al., 2025)
leverages singular value decomposition to project LoRA updates into a shared latent space, where
existing merging methods can be applied; LoRA-LEGO (Zhao et al., 2025) decomposes LoRAs into
minimal semantic units via grouping and clustering, enabling a reconstruction of multiple LoRAs into
one. However, these LoRA merging methods generally assume concurrent access to all task-specific
LoRAs fine-tuned from the same pre-trained model, which limits their applicability to the continual
merging scenarios (Dziadzio et al., 2025), where tasks arrive sequentially. In such settings, the
order of merging becomes critical and may degrade the performance of the final model. Moreover,
continual LoRA merging remains underexplored in existing literature. While in the full-model setting,
continual merging has received more attention, e.g., OPCM (Tang et al., 2025) sequentially projects
new model updates onto subspaces orthogonal to the previously merged model and uses adaptive
scaling to mitigate interference. However, these methods are not designed for LoRA, and the objective
of merging differs from that of continual learning (Ortiz-Jimenez et al., 2023). These challenges lead
to the following question we aim to answer:

How can we enable continual learning through LoRA-based continual merging?

We answer this question by maintaining a single pair of low-rank matrices {A,B}, shared across tasks.
Achieving this necessitates addressing key challenges, including how to initialize and continually
update the shared LoRA to effectively balance the trade-off between forgetting and generalization.
Moreover, in contrast to full-model continual merging, A and B play different roles in continual
merging with LoRA. For instance, prior works (Zhu et al., 2024b; Sun et al., 2024; Zhang et al., 2023b;
Kopiczko et al., 2024) have shown that in LoRA fine-tuning, training B (initialized to zero) is critical
for the performance, even randomly initialized A often suffices, but reversing the roles of A and B
substantially decreases performance. To further investigate the asymmetry of LoRA components,
we separately fine-tune 15 tasks from a standard large number of tasks benchmark (Wang et al.,
2023) in continual learning using 15 independent LoRAs on Llama-2-7B-chat (Touvron et al., 2023),
and compute cosine similarity of A and B across 15 tasks using their last layer LoRA. Figure 1
shows that A exhibits significantly higher similarity across tasks compared to B, suggesting that
LoRA components follow inherently different learning dynamics. This motivates us to treat A and
B differently in continual merging.

To address the above questions, we propose a novel parameter-efficient continual learning method via
continual merging into a single LoRA, which initializes new task learning in an orthogonal subspace
and sequentially merges LoRA updates. We name this method SLAO (Single LoRA continual
learning with Orthogonal initialization via continual merging). Specifically, SLAO initializes each
new task learning LoRA using orthogonal basis extracted from previously learned LoRA components,
and exploits the asymmetric roles of A and B by applying a time-aware scaling mechanism that
balances knowledge retention and plasticity during continual merging. As shown in Figure 2, our
approach ensures constant memory overhead regardless of the number of tasks. Additionally, it
reduces interference between past and new tasks via orthogonal basis initialization and enhances
performance through adaptive continual merging that considers LoRA asymmetry.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of SLAO and O-
LoRA memory usage of large number of
tasks benchmark via Llama-2-7B-chat.

Summary of contributions. This paper makes the follow-
ing key contributions: (1) A novel parameter-efficient con-
tinual learning method for LLMs that continually merges
new task LoRAs into a single LoRA via orthogonal basis
initialization and a time-aware scaling mechanism, reduc-
ing catastrophic forgetting and improving generalization.
(2) A theoretical analysis of how our design mitigates for-
getting and improves intransigence. (3) Comprehensive
experiments on various continual learning benchmarks
using Llama models and Qwen models of varying sizes,
demonstrating effectiveness and efficiency of our proposed
method.

2 BACKGROUND AND MOTIVATION

Problem setup. Let fW0
: X → Y denote a pre-trained model parameterized by W0 ∈ Rm×n, which

remains frozen throughout the continual learning (CL) process. Here, X and Y represent the input
and output spaces, respectively. We consider a sequence of T tasks. For each task t ∈ {1, 2, . . . , T},
the model is continually fine-tuned using the LoRA algorithm based on its associated training dataset
Dt = {(Xt,i,Yt,i)}Ni=1, and evaluated on a separate test dataset D′

t = {(X ′
t,i,Y

′
t,i)}N

′

i=1, where N
and N ′ denote the number of training and testing samples, respectively. The goal is to continually
learn a single set of LoRA parameters, specifically, matrices B ∈ Rm×r and A ∈ Rr×n with
r ≪ min(m,n) such that the resulting merged LoRA model remains competitive with models
optimized for expected risk (multi-task objective):

min
B,A

∑T

t=1

∑
(Xt,Yt)∈D′

t

Lt(fW0+BA(Xt),Yt), (1)

where Lt denotes the empirical risk (e.g., cross-entropy or mean squared error) for task t.

In the single shared LoRA setting for CL, we are restricted to maintaining only one pair of LoRA
parameters, denoted by At

merge and Bt
merge, across all tasks. When task t arrives, we fine-tune on

its training data, possibly initialized with current merged models {At−1
merge,B

t−1
merge}, to obtain task-

specific LoRA parameters Bft,t ∈ Rm×r and Aft,t ∈ Rr×n. The fine-tuned model for task t is
represented as fW0+Bft,tAft,t(·). After fine-tuning, we merge the previously accumulated LoRA
parameters Bt−1

mergeA
t−1
merge with the new task-specific parameters Bft,tAft,t, resulting in an updated

merged representation Bt
mergeA

t
merge. Due to the inherent asymmetry in LoRA components, the

merging of the LoRA components is performed separately for B and A as formalized below:

Bt
merge = ContinualMerge B(Bt−1

merge;Bft,t), A
t
merge = ContinualMerge A(At−1

merge;Aft,t), t ≥ 2

where Bft,0 = 0 and Aft,0 is initialized using a Gaussian distribution, following the standard LoRA
initialization (Hu et al., 2022). B1

merge = Bft,1 and A1
merge = Aft,1 are initialized as the first task

fine-tuned LoRA, and Bt
mergeA

t
merge is to optimize Equation 1.

2.1 OPPORTUNITIES AND CHALLENGES IN CONTINUAL LEARNING VIA CONTINUAL
MERGING

Storage and memory efficiency is one of the core advantages of continual merging for CL. Unlike
existing continual learning methods that benefit from freezing and retaining previously fine-tuned
LoRAs, using continual merging after fine-tuning task t only requires storing a fixed number of
LoRAs: (1) the current merged LoRA and (2) the fine-tuned LoRA to be merged. This strategy
results in a constant memory complexity of O(|B|+ |A|) = O((m+ n)r), where |B|+ |A| denote
the parameter sizes of a single LoRA. Critically, this memory requirement remains independent
of the number of sequential tasks T . In contrast, as shown in Figure 2, existing freezing-based
continual learning methods require storing all LoRAs, incurring a linear memory complexity of
O(T (|B|+ |A|)), which is O(T (m+ n)r), growing linearly with the number of tasks.
Training efficiency is an evident advantage of continual merging for CL. Prior works do not simply
keep previous tasks’ LoRAs without any operations. Instead, when training new tasks, prior works

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

use these multiple LoRAs during training through constraints, i.e., making new task LoRA parameters
orthogonal to all previous LoRAs, heavily increasing computational cost during training. However,
continual merging in CL would only use the parameters of a single previously fine-tuned LoRA to
initialize new task LoRA parameters before training, avoiding extra computation during training.
Difference between continual learning and merging is mainly in the objective. In the context of
multi-task model merging, the task arithmetic property, as defined by Ortiz-Jimenez et al. (2023),
refers to the ability to add task-specific vectors without interfering with performance on other tasks.
However, in CL, the objective extends beyond retention: the model must both preserve previously
acquired knowledge and generalize effectively to unseen data. Hence, while merging can support CL,
its underlying objectives are not entirely equivalent to those of CL, leading to fundamental differences
in both theoretical analysis and algorithmic design.

2.2 ORTHOGONAL INITIALIZATION MOTIVATED BY LORA NTK ANALYSIS

To inform our algorithmic design, we evaluate the performance of CL using LoRA by two key metrics,
forgetting error (Lin et al., 2023) and intransigence error (Li et al., 2023), defined as below:
(1) Forgetting error: It measures how much knowledge of old tasks has been forgotten after learning
the current task. Specifically, after learning task t ∈ [2, T], the average forgetting over all old tasks
i ∈ [1, t− 1] is defined as:

Ft =
∑t−1

i=1

(
Li(W0 +BtAt)− Li(W0 +BiAi)

)
(2)

In Equation 2, Li(W0 +BtAt) − Li(W0 +BiAi) denotes the performance difference between
BiAi (result after training task i) and BtAt (result after training task t) on test data of task i.
(2) Intransigence error: It evaluates the ability of the algorithm to adapt to a new task after having
already adapted to a sequence of old tasks.

It =
∑t

i=1

(
Li(W0 +BiAi)− Li(W0 +B∗

i A
∗
i)
)

(3)

In Equation 3, Li(W0 +BiAi)− Li(W0 +B∗
i A

∗
i) denotes the performance difference between

B∗
i A

∗
i (optimal result of training task i) and BiAi (result after training task i) on test data of task i.

To examine these errors, we draw on the empirical observation (Malladi et al., 2023) that, when
prompt-based fine-tuning is employed (Schick & Schütze, 2021; Gao et al., 2021), the fine-tuning
of a pre-trained language model tends to remain within the Neural Tangent Kernel (NTK) regime.
Specifically, under the NTK regime, assuming Dt = {(Xi,Yi)}i∈{1,...,N}, the empirical risk for task
t using LoRA can be approximated as (Jang et al., 2024)

Lt =
1

N

∑N

i=1
ℓi
(
fW0

(Xi) + ⟨∇W fW0
(Xi),BiAi⟩,Yi

)
(4)

As detailed in Appendix C (Lemma 1), by extending the analysis in Jang et al. (2024); Maurer (2016),
we show that, under the NTK regime, the term in forgetting error can be bounded as follows:

Li(W0 +BtAt)− Li(W0 +BiAi) ≤ G∥⟨BtAt −BiAi,∇W fW0
(Xi)⟩∥2

≤ G

√√√√ K∑
j=1

∥BtAt −BiAi∥2F ∥∇W f
(j)
W0

(Xi)∥2F ≤ G

√√√√ K∑
j=1

∥BtAt −BiAi∥2FR2 (5)

where K is output dimension and ∥∇W f
(j)
W0

(Xi)∥F ≤ R. Thus, to minimize Equation 2, we should
make ∥BtAt−BiAi∥F as small as possible. Similarly, to minimize Equation 3, ∥BiAi−B∗

i A
∗
i ∥F

should be minimized. Thus, the term in forgetting-intransigence decomposition can be written as:

∥BtAt −BiAi∥F + ∥BiAi −B∗
i A

∗
i ∥F

≤∥Bt(At −Ai)∥F + ∥(Bt −Bi)Ai∥F + ∥Bi(Ai −A∗
i)∥F + ∥(Bi −B∗

i)A
∗
i ∥F (6)

Algorithmic motivation. From above bound, we observe that forgetting-intransigence error in CL
with LoRA depends asymmetrically on the choice of frozen and trainable components. For example,
freezing A and fine-tuning B is at least as effective, if not better, than the reverse (Zhu et al.,
2024b). However, if we apply freezing A in CL, then ∥At − Ai∥F = 0 but ∥Ai − A∗

i ∥F may

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

be unintentionally increased due to random Ai. Instead, if we propose to fine-tune Ai and extract
orthogonal basis Qi−1 from Ai−1, where Qi−1Q

⊤
i−1 = Ir, to initialize A

(0)
i via Qi−1, then we

have A
(0)
i (A

(0)
i)⊤ = Ir where i ∈ [1, . . . , t]. This orthogonal structure not only keeps geometric

consistency across tasks but also allows Aj (t ≥ j > i), to remain well-aligned with previous Ai,
i.e. E[AjA

⊤
i] ≈ Ir, thereby minimizing both ∥At −Ai∥F and ∥Ai −A∗

i ∥F . This motivates our
design of orthogonal initialization. The complete derivation is in Appendix C.1.

2.3 CONTINUAL MERGING MOTIVATED BY LORA ASYMMETRY ANALYSIS

To provide the analysis of merging B, we consider a scenario where a single LoRA is continually
fine-tuned for sequential tasks, which means each task starts from the previous task’s fine-tuned
LoRA. We initialize task 1 as B0 = 0 and A0 ∼ N (0, σ2) (Hu et al., 2022). After fine-tuning with
T steps, we obtain its parameters:

W0 + (B0 +∆B1)(A0 +∆A1) = W0 +∆B1A0 +∆B1∆A1 (7)

Since B0 = 0, we have that

∥(∆B1)
⊤B0∥F = 0, ∥A0(∆A1)

⊤∥F ̸= 0 (8)

Based on theorem in Hao et al. (2024), we write task 1 fine-tuned LoRA:

B1 = ηfB(T)A
⊤
0 , A1 = A0 + ηA0fA(T) (9)

Using recursion, for task i where i ≥ 2, the orthogonality measures become:

∥∆B⊤
i Bi−1∥F ≈ ∥(ηfB(T)A⊤

i−1)
⊤(ηfB(T)A

⊤
i−2)∥F = η2∥Ai−1fB(T)

⊤fB(T)A
⊤
i−2∥F (10)

∥Ai−1∆A⊤
i ∥F ≈ ∥(Ai−2 + ηAi−2fA(T))(ηAi−1fA(T))

⊤∥F
= η∥Ai−2fA(T)

⊤A⊤
i−1 + η ·Ai−2fA(T)fA(T)

⊤A⊤
i−1∥F (11)

Our insight is that the second term in Equation 11 has a smaller magnitude when learning rate is
not large, since when η ≪ 1/L, limt→∞ η∥fA(t)∥ ≪ 1 (Hao et al., 2024), thus the second term is
significantly smaller than the first term, and ∥∆B⊤

i Bi−1∥F < ∥Ai−1∆A⊤
i ∥F . Hence, the update

of B is more orthogonal to its initialization than the update of A is to its initialization. Based on
the findings in Wei et al. (2025), task vectors in model merging are inherently close orthogonal to
minimize interference, which indicates that in our case, merging B rather than merging A provides
better task isolation and reduced interference, motivating our choice to perform merging B.
Then, for the operation of merging B, we build on parameter-efficient module linear arithmetic
composition, including addition and negation. Linear connectivity implies that model parameters
fine-tuned from the same pretrained checkpoint can be added to improve generalization (Wortsman
et al., 2022), a property that extends to PEFT adapters, whose small updates likewise allow linear
composition (Zhang et al., 2023a). Hence, we can write merging operations on B using task vectors

Bmerge = Bmerge + λ · (Bnew −Bmerge) (12)

This makes the foundation of the operation of merging B in continual merging.

3 METHODOLOGY

3.1 SLAO: SINGLE LORA CONTINUAL LEARNING

Based on the above analysis, we propose our method, SLAO, to utilize continual merging into a
single LoRA to minimize task interference and improve generalization for CL. SLAO is motivated
by four key insights: (1) Orthogonal Retention: To minimize forgetting error and intransigence error,
it is crucial to maintain orthogonality in the LoRA components across tasks; (2) Continual Merging:
To reduce memory usage in LoRA-based CL, continually merging new task fine-tuned LoRA updates
into a single merged LoRA is a highly efficient strategy; (3) Asymmetry of LoRA: Given the distinct
learning roles of LoRA components A and B, they should be handled separately; and (4) Time-aware
Scaling: To retain prior knowledge while adapting to new tasks, the merging process for new LoRA
updates should be scaled in a time-aware manner that reflects its training trajectory.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 SLAO: Single LoRA Continual Learning

1: Initialize B1
merge = Bft,1, A1

merge = Aft,1, scaling factor λ(1) = 1, number of tasks T .
2: for i = 2 to T do
3: QiRi = QR((Aft,i−1)

⊤), Qi = Qi · sign(diag(Ri))
⊤ // Extract orthogonal basis of Aft,i−1

4: A
(0)
ft,i = Q⊤

i , B(0)
ft,i = Bft,i−1 // Initialize Aft,i and Bft,i for task i

5: Bft,iAft,i ← fine-tune(W0,B
(0)
ft,iA

(0)
ft,i) // Fine-tune Aft,i and Bft,i for task i

6: Ai
merge = Aft,i

7: Bi
merge = Bi−1

merge + λ(i)(Bft,i −Bi−1
merge)

8: Use merged LoRA Bi
mergeA

i
merge for inference until new task comes

9: end for
10: return BT

mergeA
T
merge

The SLAO consists of two main operations: (1) Initialize each new task learning LoRA by extracted
orthogonal basis from the previous task’s fine-tuned LoRA; (2) After fine-tuning on the new task,
we utilize the asymmetry of LoRA components to employ adaptive time-varying scaling for new
LoRA updates to merge into the merged LoRA. The complete procedure is outlined in Algorithm 1
and illustrated in Figure 4. Starting with the first task’s fine-tuned LoRA Bft,1Aft,1 by standard fine-
tuning, our method iteratively integrates LoRA updates of subsequent tasks in a continual fashion.
Orthogonal basis extraction for initialization. For new task i, we first extract orthogonal basis of
previous fine-tuned Aft,i−1, use that to initialize A

(0)
ft,i , making A

(0)
ft,i (A

(0)
ft,i)

⊤ = Ir. We utilize QR
decomposition to extract orthogonal matrix from Aft,i−1, which is:

QiRi = QR((Aft,i−1)
⊤) → Qi = Qi · sign(diag(Ri))

⊤ → A
(0)
ft,i = Q⊤

i (13)

As a result, the initialization A
(0)
ft,i has orthogonal rows. For B, we directly initialize B

(0)
ft,i by Bft,i−1

which is the fine-tuned B of previous task i− 1.
Asymmetrically merging LoRA via time-aware scaling. After fine-tuning task i, we merge its
LoRA updates into {Bi−1

merge,A
i−1
merge}. Due to the intrinsic asymmetry of B and A in LoRA, we

update Ai
merge = Aft,i, and we merge B by time-aware coefficient λ(i) for new task updates:

Bi
merge = Bi−1

merge + λ(i) · (Bft,i −Bi−1
merge) (14)

where λ(i) is introduced to maintain a consistent magnitude of the merged B’s deviation from
previous tasks throughout the merging process. In our method, the scaling factor can be set to
λ(i) = 1√

i
, which follows the continual merging method proposed in Tang et al. (2025). The findings

in Ilharco et al. (2023); Tang et al. (2024) indicate that task vectors from different tasks tend to be
approximately orthogonal, and since Bs across tasks are approximately orthogonal to each other,
as shown in Figure 1, which indicates that B task vectors are approximately orthogonal. This
orthogonality makes λ(i) = 1√

i
a natural choice for the scaling factor, since it helps maintain the

magnitude of parameter changes across merging steps Tang et al. (2025).

3.2 DYNAMICS OF SLAO

To better understand the effectiveness of SLAO, inspired by the analysis of Hao et al. (2024), in the
following theorem we analyze the dynamics of task-specific parameters’ update in CL scenario.
Theorem 1. Let the parameters A and B be updated using SGD at each step s for task i as follows:

As+1
i = As

i − η(Bs
i)

⊤(∇WLs
i), Bs+1

i = Bs
i − η(∇WLs

i)(A
s
i)

⊤ (15)

where η is the learning rate. We assume As
i = A

(0)
i +ηA

(0)
i fA(s) and Bs

i = B
(0)
i +ηfB(s)(A

(0)
i)⊤

holds with such functions fA and fB for 1, . . . , s, and ∥
∑S

s=1∇WL(s)
i ∥F ≤ L for every S during

training task i, which implies that the model stays within a finite Euclidean ball. If we assume
A

(0)
i (A

(0)
i)⊤ = Ir, in this case, the dynamics of Ai satisfies ∥fA(s)∥2 ≤ ηL2(1−(η2L2)s)

1−η2L2 , and

the dynamics of B satisfies fB(s) = −
∑s−1

j=0(∇WLj
i)(ηf

⊤
A (j) + I). When η is small, we have

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

fB(s) ≈ −
∑s−1

j=0(∇WLj
i). Thus BS

i = ηfB(S)(A
(0)
i)⊤, and total update for Bi is ∆Bi =

−η
(∑S

s=0(∇WLs
i)
)
(A

(0)
i)⊤.

The proof is deferred to Appendix C. This analysis, under the orthogonal initialization of A, suggests
that B may update across different initialization subspaces, effectively increasing the rank of B and
thereby aiding generalization. We note that the key difference between ours and Hao et al. (2024) lies
in the initialization of LoRA: while they use standard initialization with B

(0)
i = 0, we initialize B

using the previously fine-tuned LoRA parameters, resulting in B
(0)
i ̸= 0, complicating the analysis.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and datasets. We evaluate our approach across three Llama models: Llama-2-7B-chat,
Llama-2-13B-chat, and Llama-3-2-3B, and two Qwen models: Qwen2.5-3B and Qwen2.5-7B. All
experiments are conducted on NVIDIA A100 GPUs utilizing DeepSpeed repository. We consider
three continual learning benchmarks: (1) Standard CL benchmark: AG News, Amazon, Reviews,
Yelp Reviews, DBpedia, and Yahoo Answers. (2) Large number of tasks: five standard CL bench-
mark tasks, four GLUE tasks (MNLI, QQP, RTE, SST-2), five SuperGLUE tasks (WiC, CB, COPA,
MultiRC, BoolQ), and IMDB movie reviews. Following O-LoRA (Wang et al., 2023), each task
uses 1000 randomly sampled training samples and 500 validation samples per class. (3) SuperNI
Benchmark (Wang et al., 2022a): A diverse collection of NLP tasks with expert-written instructions,
covering dialogue generation, information extraction, question answering, summarization, and sen-
timent analysis. We follow task selection and ordering in SAPT (Zhao et al., 2024b), using 1,000
training instances and 100 for validation/testing per task.
Baselines. We compare our method SLAO with the following baselines: (1) Continual learn-
ing baselines: SeqLoRA: sequentially fine-tunes a single LoRA on multiple tasks without con-
straints; IncLoRA: incrementally adds a new LoRA per task while freezing previous LoRAs; O-
LoRA (Wang et al., 2023); InfLoRA (Liang & Li, 2024); SAPT-LoRA (Zhao et al., 2024b);MTL:
a single model is trained jointly on all tasks; LoRM (Salami et al., 2025); CorDA (knowledge-
preserved adaptation) (Yang et al., 2024); Magmax (Marczak et al., 2024). (2) LoRA merging
baselines: LoRA-LEGO (Zhao et al., 2025); KnOTS (Stoica et al., 2025). (3) Continual merging
baseline: OPCM (Tang et al., 2025). To fairly evaluate existing merging methods in LoRA-based
continual learning, we extend full-model merging methods to LoRA and equally treat components of
LoRA, and all merging methods are achieved sequentially.
Evaluation metrics. To evaluate our proposed approach, we employ three key metrics: (1) av-
erage accuracy (AA), calculated as the mean accuracy across all tasks after training on the last
task: 1

T

∑T
i=1 ai,T , where ai,T is accuracy for classification tasks and Rouge-L for other tasks; (2)

backward transfer (BWT) (Lin et al., 2022), defined as 1
T−1

∑T−1
i=1 (ai,T − ai,i), and experimental

results are shown in Appendix E.4; (3) maximum order-normalized performance disparity (MOPD)
and average order-normalized performance disparity (AOPD) (Yoon et al., 2020), which evaluate
order-robustness, and experimental results are shown in Appendix E.5.

4.2 OVERALL RESULTS

Continual learning performance results analysis As shown in Table 1, our method consistently
outperforms all data-free baselines across three benchmarks using Llama-2-7B-chat. LoRA-Based
continual learning: SeqLoRA performs worst among LoRA-based methods, as unconstrained
continual fine-tuning on a single LoRA causes severe forgetting. IncLoRA improves by freezing prior
learned LoRAs to isolate subspaces, though its subspace separation is simple. InfLoRA outperforms
O-LoRA in standard CL benchmark due to orthogonal input-based subspaces, but drops on large
number of tasks and SuperNI benchmark, due to sensitivity to manually tuned DualGPM threshold.
SAPT-LoRA achieves the highest average performance among LoRA-based methods, but relies on
generated previous task pseudo samples, unrealistic in many LLM scenarios, and is more order-
sensitive than ours. LoRM-BA (begin with freezing B) and LoRM-AB yield nearly identical results,
suggesting that the freezing order of LoRA components in CL matters little. CorDA performs

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Testing performance (%) on three CL benchmarks using Llama-2-7B-chat across different
task orders, where each result is run three random times, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Method O1 O2 O3 avg O4 O5 O6 avg O1 O2 avg
SeqLoRA 73.3 76.2 78.4 76.0 69.1 66.0 71.1 68.7 18.4 26.8 22.6
IncLoRA 75.3 77.3 78.3 77.0 72.2 71.6 73.8 72.5 22.0 25.6 23.8
O-LoRA 76.1 76.3 79.2 77.2 74.0 72.0 74.6 73.5 23.3 28.4 25.9
InfLoRA 78.4 80.4 79.9 79.6 69.4 67.4 72.5 69.8 16.5 22.1 19.3
SPAT-LoRA 82.9 81.8 78.7 81.1 84.7 78.9 82.2 81.9 53.2 48.5 50.9

LoRM-BA 76.0 76.8 78.3 77.0 71.4 69.0 70.3 70.2 25.6 18.7 22.2
LoRM-AB 77.5 74.7 75.9 76.0 71.0 69.5 70.2 70.2 25.6 23.7 24.7

CorDA 78.4 79.3 80.0 79.2 73.4 72.7 74.0 73.4 20.9 16.0 18.5
MagMax 80.1 80.6 80.3 80.3 72.3 73.5 74.5 73.4 15.3 7.0 11.2

KnOTS 67.9 65.9 70.8 68.2 61.5 60.1 58.0 59.9 34.6 30.1 32.4
LoRA-LEGO 68.3 66.0 70.9 68.4 58.8 58.7 53.2 56.9 32.8 26.7 29.8

OPCM 61.9 62.0 56.7 60.2 51.9 52.8 46.9 50.5 11.6 12.3 12.0

SLAO(ours) 80.1 80.8 80.4 80.4 75.0 74.4 75.1 74.8 38.7 35.7 37.2

Multi-Task 80.9 78.1 45.2

Table 2: Comparison of initialization strategies on testing performance across three standard CL
benchmarks using Llama-2-7B-chat under different task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Initialization O1 O2 O3 avg O4 O5 O6 avg O1 O2 avg
Random (Zero) 66.4 62.4 68.4 65.7 61.4 60.3 57.2 59.6 33.3 28.9 31.1
Last-Merge 80.1 80.8 80.1 80.3 74.7 72.8 75.0 74.2 37.4 30.5 34.0
Last-FT (ours) 80.1 80.8 80.4 80.4 75.0 74.4 75.1 74.8 38.7 35.7 37.2

well on standard CL benchmark and large number of tasks, but drops significantly on SuperNI
benchmark, likely due to relying on nullspace selection from pretrained models and lacking time-
aware merging. MagMax performs comparably to ours on standard CL benchmark, slightly worse
on large number of tasks, but underperforms on SuperNI benchmark, where task similarity is lower,
thus only keeping weights which have the largest absolute value would cause forgetting. LoRA
merging baselines: KnOTS and LoRA-LEGO perform similarly in the standard CL benchmark, but
KnOTS outperforms in the large number of tasks and SuperNI. KnOTS may benefit from flexible
SVD-merging mechanism so that we apply time-aware scaling on merging, while LoRA-LEGO treats
tasks equally, lacks prioritization, and is ineffective in complex CL contexts. Continual merging
approaches: since OPCM is designed for full model, directly applying it to LoRA by treating its
two components identically leads to suboptimal performance. The results under Llama-2-13B-chat,
Qwen2.5-3B, and Qwen2.5-7B are shown in Appendix E.

Impact of initialization strategies. We compare three different initialization strategies for learning
new tasks: (1) random (zero) initialization, (2) initialization from last merging point, (3) initialization
from last fine-tuning point (ours). As shown in Table 2, initializing from last fine-tuning point
consistently outperforms other two strategies across all three benchmarks. Using last merging point
performs slightly worse, while random (zero) initialization performs the worst. The performance gap
is due to how initialization affects LoRA’s learning trajectory and merging way. Random initialization
places A far away from optimal task-specific A∗, making intransigence worse. Initialization from last
merging point fixes time coefficients after merging back to a single LoRA, limiting its flexibility, while
initialization from last fine-tuning point allows the merged LoRA to implicitly reweight previous
tasks’ updates when merging. This adaptive adjustment yields better CL performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of merging strategies on testing performance on three standard CL benchmarks
using Llama-2-7B-chat across different task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Merging O1 O2 O3 avg O4 O5 O6 avg O1 O2 avg
FREB-MA 77.7 78.0 76.2 77.3 70.8 66.1 72.1 69.7 13.9 25.4 19.7
FREA-MB 78.7 79.3 78.0 78.7 72.3 73.0 73.5 72.9 23.7 29.2 26.5

FTBA-MA 76.2 79.0 79.9 78.4 71.6 69.5 74.1 71.7 21.1 30.7 25.9
FTBA-MBA 79.7 80.4 80.2 80.1 73.2 73.9 74.5 73.9 33.8 32.7 33.3
FTBA-MB 79.3 80.8 80.1 80.1 74.1 74.0 74.8 74.3 32.4 35.2 33.8

SLAO (ours) 80.1 80.8 80.4 80.4 75.0 74.4 75.1 74.8 38.7 35.7 37.2

Table 4: Comparison of model variants and sizes on testing performance across three standard CL
benchmarks using Llama-2-7B-chat in different task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Model O1 O2 O3 avg O4 O5 O6 avg O1 O2 avg
Llama-3-2-3B 74.3 75.8 75.3 75.1 73.3 72.5 74.9 73.6 32.7 34.6 33.7

Llama-2-7B-chat 80.1 80.8 80.4 80.4 75.0 74.4 75.1 74.8 38.7 35.7 37.2
Llama-2-13B-chat 80.8 81.1 81.1 81.0 76.5 75.9 76.0 76.1 42.3 42.2 42.3

Asymmetry in LoRA merging. To investigate the asymmetry in LoRA merging, we compare
different continual merging strategies for LoRA: (1) Freeze A Merge B (FREA-MB), (2) Freeze
B Merge A (FREB-MA), (3) Fine-tune BA Merge A (FTBA-MA), (4) Fine-tune BA Merge BA
(FTBA-MBA), (5) Fine-tune BA Merge B (FTBA-MB). As shown in Table 3, only FTBA-MB
consistently outperforms other strategies, except ours. FTBA-MBA has comparable performance
compared to FTBA-MB, but FTBA-MA yields the poorest performance among fine-tuning LoRA
methods. When freezing one component of LoRA, FREA-MB is better than FREB-MA, consistent
with Zhu et al. (2024b) that freezing A and fine-tuning B is at least better than the reverse. It
highlights asymmetry in LoRA components and the importance of asymmetric merging based on
their fundamental roles in adaptation.

Effect of model variants and sizes. We evaluate our method on three LLM variants: Llama-2-7B-
chat, Llama-2-13B-chat, Llama-3-3B. The results in Table 4 indicate that model variants and model
size play crucial roles in average performance across different task orders and benchmarks. Llama-
3-3B performs the worst, while in same generation of Llama, larger models consistently achieve
better accuracy: Llama-2-13B-chat relatively has higher accuracy compared to Llama-2-7B-chat.
This trend suggests that increased model capacity enhances both reducing catastrophic forgetting
and improving generalization in continual learning. Moreover, we observe that larger models exhibit
greater robustness to task order variations compared to smaller models.

(a) Standard CL Benchmark-7B (b) Large Number of tasks-7B (c) SuperNI Benchmark-3B

Figure 3: Comparison of model performance across time coefficients.

Time-varying coefficient analysis. To evaluate impact of adaptive time-varying scaling in continual
merging for CL, we compare it against fixed factors {0.1, 0.5, 0.9} on three benchmarks via Llama-
2-7B-chat and Llama-3-2-3B. As shown in Figure 3, adaptive strategy consistently achieves highest

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

average accuracy with lower variance across task orders and models. For simpler standard CL
benchmark, larger fixed value 0.9 outperforms smaller one 0.1, while for more complex or long
benchmarks, smaller values perform better; 0.5 is relatively stable but consistently suboptimal.

5 CONCLUSION

In this work, we proposed a novel parameter-efficient continual learning based on continual merging
of LoRA, enabling no additional training or access to any data representations. Our approach
leverages the orthogonal basis from previous fine-tuned LoRA to initialize for new task learning and
constructs a single shared merged LoRA via time-aware scaling, thus ensuring constant memory usage
regardless of task number. Through comprehensive experiments, we demonstrated the effectiveness
and efficiency of our method across multiple benchmarks and model scales.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape. In International conference on machine learning, pp. 1309–1318.
PMLR, 2018.

Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel
Albanie, and Matthias Bethge. How to merge multimodal models over time? In ICLR 2025
Workshop on Modularity for Collaborative, Decentralized, and Continual Deep Learning, 2025.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International conference on artificial intelligence and statistics, pp. 3762–3773.
PMLR, 2020.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3816–3830. Association for Computational Linguistics, August 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In Forty-first International Conference on Machine Learning, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in
optimizing deep linear networks. In International Conference on Learning Representations, 2020.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations, 2023.

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. LoRA training in the NTK regime has no spurious
local minima. In Forty-first International Conference on Machine Learning, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
continual learning. In Conference on Lifelong Learning Agents, pp. 513–533. PMLR, 2023.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638–23647, 2024.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning with
backward knowledge transfer. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR,
2023.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning. In European Conference on Computer
Vision, pp. 379–395. Springer, 2024.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Algorithmic
Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016,
Proceedings 27, pp. 3–17. Springer, 2016.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36:66727–66754, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
Progressive prompts: Continual learning for language models. arXiv preprint arXiv:2301.12314,
2023.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Jacopo Bonato, Luigi Sabetta, and Simone
Calderara. Closed-form merging of parameter-efficient modules for federated continual learning.
In The Thirteenth International Conference on Learning Representations, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 255–269. Association for
Computational Linguistics, April 2021.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoff-
man. Zipit! merging models from different tasks without training. In The Twelfth International
Conference on Learning Representations, 2024.

George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
merging with SVD to tie the knots. In The Thirteenth International Conference on Learning
Representations, 2025.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving loRA in privacy-preserving federated
learning. In The Twelfth International Conference on Learning Representations, 2024.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter-efficient multi-task model fusion with partial linearization. In The Twelfth International
Conference on Learning Representations, 2024.

Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
on the fly without retraining: A sequential approach to scalable continual model merging. arXiv
preprint arXiv:2501.09522, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149, 2022b.

Yongxian Wei, Anke Tang, Li Shen, Zixuan Hu, Chun Yuan, and Xiaochun Cao. Modeling multi-task
model merging as adaptive projective gradient descent. In Forty-second International Conference
on Machine Learning, 2025.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. SD-loRA: Scalable decoupled low-rank adaptation for class
incremental learning. In The Thirteenth International Conference on Learning Representations,
2025.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon Song, Jianlong Wu, Liqiang Nie, and
Bernard Ghanem. CorDA: Context-oriented decomposition adaptation of large language models
for task-aware parameter-efficient fine-tuning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust contin-
ual learning with additive parameter decomposition. In International Conference on Learning
Representations, 2020.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589–12610,
2023a.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, 2024a.

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao, Bing Qin, Xuanyu Zhang, Qing Yang,
Dongliang Xu, and Wanxiang Che. Sapt: A shared attention framework for parameter-efficient
continual learning of large language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11641–11661, 2024b.

Ziyu Zhao, Tao Shen, Didi Zhu, Zexi Li, Jing Su, Xuwu Wang, and Fei Wu. Merging loRAs like
playing LEGO: Pushing the modularity of loRA to extremes through rank-wise clustering. In The
Thirteenth International Conference on Learning Representations, 2025.

Didi Zhu, Zhongyisun Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Chao Wu, and Kun
Kuang. Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In
Forty-first International Conference on Machine Learning, 2024a.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Forty-first International Conference on
Machine Learning, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

The appendix is organized as follows:

• Appendix B is the use of LLMs.

• Appendix C provides theoretical analysis.

• Appendix D provides the overview of SLAO.

• Appendix E provides more experimental setup details and additional experimental results.

– Overall Results on Llama-2-13B-chat E.1
– Results on Qwen2.5 models E.2
– Impact of initialization strategies for existing LoRA merging methods E.3
– Continual learning performance on backward transfer E.4
– Continual learning performance on Order-normalized Performance Disparity (MOPD

and AOPD) E.5
– Choice of orthogonal decomposition strategy E.6
– Asymmetry of LoRA E.7
– Impact of learning rate E.8
– Impact of the rank of LoRA E.9
– Comparison of training cost E.10
– Comparison of orthogonality among LoRA-based CL methods E.11
– Descriptions of task sequence orders E.12

• Appendix F provides related works.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize LLMs to polish the paper writing.

C THEORETICAL ANALYSIS

C.1 THE FORGETTING-INTRANSIGENCE ERROR DECOMPOSITION UNDER NTK

Lemma 1. (Jang et al., 2024; Maurer, 2016) Assume D is i.i.d N random samples sampled from
probability distribution P . Let AD = {Xi → fW0

(Xi) + ⟨∇W fW0
(Xi), δ⟩ ∈ RK : ∥δ∥∗ ≤

D, δ ∈ Rm×n} is class of affine predictors with bounded nuclear norm D. For 1 ≤ j ≤ K, suppose
∥∇W f

(j)
W0

(X)∥F ≤ R almost surely with respect to the random data Xi ∼ P . For 1 ≤ i ≤ N ,
suppose ℓi = ℓ(·,Yi) is G-Lipschitz continuous on A on the first argument (with respect to the
Euclidean norm) for almost surely with respect to the random data Xi ⊆ D ∼ P . That is

|ℓi(a(X1))− ℓi(a
′(X2))| ≤ G∥a(X1)− a′(X2)∥2 for any a, a′ ∈ A,X1,X2 ⊆ D ∼ P (16)

Proof. First, let g : X → R be a function satisfying the following property with c > 0:

|g(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,XN)− g(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,XN)| ≤ c (17)

for all X1, . . . ,XN ,X ′
i ∈ X . Then, for all ϵ > 0,

P(|g(X1, . . . ,XN)− E[g(X1, . . . ,XN)]| ≥ ϵ) ≤ exp

(
− 2ϵ2

Nc2

)
(18)

Take g to be g = sup∥δ∥≤D(L̂(δ0)− L̂(δ)− L(δ0) + L(δ)), which is a function of X1, . . . ,XN .
Since ∥δ∥∗ ≤ D implies ∥δ∥F ≤ D and by the Lipschitz continuity of ℓ(·,Yi), we have the following
for any (Xi,Yi) ∈ D:

|ℓ(fW0(Xi) + ⟨G(Xi), δ0⟩,Yi)− ℓ(fW0Xi) + ⟨G(Xi), δ⟩,Yi)| ≤ G∥⟨δ0 − δ,G(Xi)⟩∥2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

≤ G

√√√√ K∑
j=1

∥δ0 − δ∥2F ∥G(j)(Xi)∥2F

≤ G

√√√√ K∑
j=1

∥δ0 − δ∥2∗∥G(j)(Xi)∥2F

≤ G

√√√√ K∑
j=1

4D2 ·R2

= 2GRD
√
K. (19)

Thus, from this lemma, we apply it to LoRA-based continual learning and have

Li(W0 +BtAt)− Li(W0 +BiAi) ≤ G∥⟨BtAt −BiAi,∇W fW0(Xi)⟩∥2

≤ G

√√√√ K∑
j=1

∥BtAt −BiAi∥2F ∥∇W f
(j)
W0

(Xi)∥2F

≤ G

√√√√ K∑
j=1

∥BtAt −BiAi∥2FR2 (20)

where K is the output dimension. From this, we can see that to minimize forgetting error, we should
make ∥BtAt −BiAi∥F as small as possible. Similarly, to minimize intransigence error, ∥BiAi −
B∗

i A
∗
i ∥F should be also small. Besides, it’s evident that Lt(W0 +BtAt)− Lt(W0 +BtAt) = 0.

Thus, if we makes ∥BtAt −BiAi∥F ≤ D and ∥BiAi −B∗
i A

∗
i ∥F ≤ D, then we have

Ft + It

=
∑t−1

i=1

(
Li(W0 +BtAt)− Li(W0 +BiAi)

)
+
∑t

i=1

(
Li(W0 +BiAi)− Li(W0 +B∗

i A
∗
i)
)

=
∑t

i=1

(
Li(W0 +BtAt)− Li(W0 +BiAi)

)
+
∑t

i=1

(
Li(W0 +BiAi)− Li(W0 +B∗

i A
∗
i)
)

=
∑t

i=1

(
Li(W0 +BtAt)− Li(W0 +BiAi)

)
+
(
Li(W0 +BiAi)− Li(W0 +B∗

i A
∗
i)
)

≤
∑t

i=1
G

√√√√ K∑
j=1

∥BtAt −BiAi∥2FR2 +G

√√√√ K∑
j=1

∥BiAi −B∗
i A

∗
i ∥2FR2

= GR
∑t

i=1

√√√√ K∑
j=1

∥BtAt −BiAi∥2F +

√√√√ K∑
j=1

∥BiAi −B∗
i A

∗
i ∥2F

≤ 4DGR
∑t

i=1

√
K (21)

To make both ∥BtAt −BiAi∥F and ∥BiAi −B∗
i A

∗
i ∥F minimized, the forgetting-intransigence

decomposition can be written as:

∥BtAt −BiAi∥F + ∥BiAi −B∗
i A

∗
i ∥F

≤∥Bt(At −Ai)∥F + ∥(Bt −Bi)Ai∥F + ∥Bi(Ai −A∗
i)∥F + ∥(Bi −B∗

i)A
∗
i ∥F (22)

Algorithmic motivation. From the above bound, we observe that generalization error in CL with
LoRA depends asymmetrically on the choice of frozen and trainable components. Interestingly,
this insight contrasts with standard fine-tuning practices. For example, as concluded in (Zhu et al.,
2024b), freezing A and fine-tuning B is at least as effective, if not better, than the reverse. However,
if we apply freezing A in CL, it implies ∥At − Ai∥F = 0, which may unintentionally increase
∥Ai −A∗

i ∥F due to limited task-specific expressiveness. In Hu et al. (2022), A is initialized to a
random Gaussian matrix satisfying E[A(0)(A(0))⊤] = Ir. Instead, if we propose to fine-tune Ai

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

while extracting orthogonal basis Qi−1 from Ai−1, where Qi−1Q
⊤
i−1 = Ir, to initialize A

(0)
i via

Qi−1, then we will have A
(0)
i (A

(0)
i)⊤ = Ir where i ∈ [1, . . . , t]. This orthonormal structure not

only keeps geometric consistency across tasks but also allows Aj (t ≥ j > i), to remain well-aligned
with previous Ai, i.e. E[AjA

⊤
i] ≈ Ir, thereby minimizing both ∥At −Ai∥F and ∥Ai −A∗

i ∥F .
This motivates our design of continual merging with orthogonal initialization to reduce forgetting and
maintain adaptability.

C.2 DYNAMICS OF LOW-RANK ADAPTERS UPDATED BY SLAO

We analyze the dynamics of As
i and Bs

i in continual learning setting. This analysis, under the
orthogonal initialization of A, suggests that B may update across different initialization subspaces,
effectively increasing the rank of B and thereby aiding generalization.
Theorem 2. Let the parameters A and B be updated using SGD at each step s for task i as follows:

As+1
i = As

i − η(Bs
i)

⊤(∇WLs
i), Bs+1

i = Bs
i − η(∇WLs

i)(A
s
i)

⊤ (23)

where η is the learning rate. We assume As
i = A

(0)
i +ηA

(0)
i fA(s) and Bs

i = B
(0)
i +ηfB(s)(A

(0)
i)⊤

holds with such functions fA and fB for 1, . . . , s, and ∥
∑S

s=1∇WL(s)
i ∥F ≤ L for every S during

training task i, which implies that the model stays within a finite Euclidean ball. If we assume
A

(0)
i (A

(0)
i)⊤ = Ir, in this case, the dynamics of Ai satisfies ∥fA(s)∥2 ≤ ηL2(1−(η2L2)s)

1−η2L2 , and

the dynamics of B satisfies fB(s) = −
∑s−1

j=0(∇WLj
i)(ηf

⊤
A (j) + I). When η is small, we have

fB(s) ≈ −
∑s−1

j=0(∇WLj
i). Thus BS

i = ηfB(S)(A
(0)
i)⊤, and total update for Bi is ∆Bi =

−η
(∑S

s=0(∇WLs
i)
)
(A

(0)
i)⊤.

Proof. We start by noting the fact that for Task 1, when s = 0, fA(0) = fB(0) = 0. For s > 0,
assume As

1 = A0 + ηA0fA(s) and Bs
1 = ηfB(s)A

⊤
0 . Since the first task training is the same as the

LoRA fine-tuning in Hao et al. (2024) for the dynamics of A and B we have:

As+1
1 = As

1 − η(Bs
1)

⊤(∇W0
Ls
1)

= A0 + ηA0fA(s)− η2A0f
⊤
B (s)(∇W0

Ls
1)

= A0 + ηA0fA(s+ 1) (24)

and

Bs+1
1 = Bs

1 − η(∇W0
Ls
1)(A

s
1)

⊤

= ηfB(s+ 1)A⊤
0 (25)

Thus, by rearranging the terms, we have:

fA(s) = −η
s−1∑
j=0

f⊤
B (j)(∇W0

Lj
1) (26)

fB(s) = −
s−1∑
j=0

(∇W0
Lj
1)(ηf

⊤
A (j) + I) (27)

Since W0 +BA ≈W0 +∆BA0 when learning rate η is small, the change in B dominates the
final weight update. Thus, if freezing A, we obtain

∆B1 ≈ −η

(
S∑

s=1

∇W0
Ls
1

)
A⊤

0 (28)

and

fB(s) ≈ −
s−1∑
j=0

∇W0
Lj
1 (29)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Task i (i > 1): when s = 0, fA(0) = fB(0) = 0.
For s > 0: Assume As

i = A
(0)
i + ηA

(0)
i fA(s) and Bs

i = B
(0)
i + ηfB(s)(A

(0)
i)⊤ hold with such

functions fA and fB for 1, . . . , s. Then, for s+ 1, we have

As+1
i = As

i − η(Bs
i)

⊤(∇W0
Ls
i)

= A
(0)
i + ηA

(0)
i fA(s)− η(B

(0)
i + ηfB(s)(A

(0)
i)⊤)⊤(∇W0Ls

i)

= A
(0)
i + ηA

(0)
i fA(s)− η((B

(0)
i)⊤ + ηA

(0)
i f⊤

B (s))(∇W0
Ls
i)

= A
(0)
i + ηA

(0)
i (fA(s)− ηf⊤

B (s)(∇W0
Ls
i))− η(B

(0)
i)⊤(∇W0

Ls
i) (30)

We would like to express As+1
i as

As+1
i = A

(0)
i + ηA

(0)
i fA(s+ 1) (31)

So compare both sides:

ηA
(0)
i fA(s+ 1) = ηA

(0)
i (fA(s)− ηf⊤

B (s)(∇W0
Ls
i))− η(B

(0)
i)⊤(∇W0

Ls
i) (32)

Divide both sides by η, rearrange:

A
(0)
i fA(s+ 1) = A

(0)
i (fA(s)− ηf⊤

B (s)(∇W0
Ls
i))− (B

(0)
i)⊤(∇W0

Ls
i) (33)

Since by our initialization A
(0)
i (A

(0)
i)⊤ = Ir, then we have

A
(0)
i fA(s+ 1) = A

(0)
i (fA(s)− ηf⊤

B (s)(∇W0
Ls
i))− Ir(B

(0)
i)⊤(∇W0

Ls
i) (34)

A
(0)
i fA(s+ 1) = A

(0)
i (fA(s)− ηf⊤

B (s)(∇W0
Ls
i)− (A

(0)
i)(A

(0)
i)⊤(B

(0)
i)⊤(∇W0

Ls
i) (35)

fA(s+ 1) = fA(s)− ηf⊤
B (s)(∇W0

Ls
i)− (A

(0)
i)⊤(B

(0)
i)⊤(∇W0

Ls
i) (36)

fA(s+ 1) = −η
s∑

j=0

(
f⊤
B (j)− (A

(0)
i)⊤(B

(0)
i)⊤

)
(∇W0

Lj
i) (37)

For B, we have:

Bs+1
i = Bs

i − η(∇W0
Ls
i)(A

s
i)

⊤

= B
(0)
i + ηfB(s)(A

(0)
i)⊤ − η(∇W0

Ls
i)(A

(0)
i + ηA

(0)
i fA(s))

⊤

= B
(0)
i + η(fB(s)(A

(0)
i)⊤ − (∇W0

Ls
i)(A

(0)
i + ηA

(0)
i fA(s))

⊤)

= B
(0)
i + η(fB(s)(A

(0)
i)⊤ − (∇W0

Ls
i)(A

(0)
i)⊤ − η(∇W0

Ls
i)f

⊤
A (s)(A

(0)
i)⊤)

= B
(0)
i + η

(
fB(s)− (∇W0

Ls
i)− η(∇W0

Ls
i)f

⊤
A (s)

)
(A

(0)
i)⊤ (38)

Thus,

fB(s+ 1) = fB(s)− (∇W0Ls
i)− η(∇W0Ls

i)f
⊤
A (s)

= fB(s)− (∇W0
Ls
i)(ηf

⊤
A (s) + I)

= −
s∑

j=0

(∇W0
Lj
i)(ηf

⊤
A (j) + I) (39)

Then, we have:

∥fA(s)∥F =

∥∥∥∥∥∥η
s−1∑
j=0

(
j−1∑
m=0

(ηfA(m) + I)(∇W0
Lm
i)⊤ + (A

(0)
i)⊤(B

(0)
i)⊤

)
(∇W0

Lj
i)

∥∥∥∥∥∥
F

≤η2
∥∥∥∥∥∥

s−2∑
m=0

(fA(j))(∇W0
Lm
i)⊤

s−1∑
j=m+1

(∇W0
Lj
i)

∥∥∥∥∥∥
F

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

+ η

∥∥∥∥∥∥
s−1∑
j=0

j−1∑
m=0

(∇W0
Lm
i)⊤(∇W0

Lj
i)

∥∥∥∥∥∥
F

+ η

∥∥∥∥∥∥
s−1∑
j=0

(A
(0)
i)⊤(B

(0)
i)⊤(∇W0

Lj
i)

∥∥∥∥∥∥
F

≤η2L

∥∥∥∥∥
s−2∑
m=0

(fA(j))(∇W0Lm
i)⊤

∥∥∥∥∥
F

+ ηL2 + η2L2s∥(A(0)
i)⊤(B

(0)
i)⊤∥F (40)

∥(A(0)
i)⊤(B

(0)
i)⊤∥F = ∥(B(0)

i A
(0)
i)⊤∥F =

√√√√ r∑
p=1

σ2
p(B

(0)
i A

(0)
i) ≤

√
r (41)

If ∥fA(s)∥ ≤ as =
ηL2(1−(η2L2)s)

1−η2L2 , then

∥fA(s)∥F ≤ η2L2as−1 + ηL2 + η2L2s
√
r

= η2L2 ηL
2(1− (η2L2)s)

1− η2L2
+ ηL2 + η2L2s

√
r + η2L2s

√
r

=
η3L4(1− (η2L2)s) + ηL2 − η3L4 + η2L2s

√
r − η4L4s

√
r

1− η2L2

=
ηL2(1− (η2L2)s) + η2L2s

√
r(1− η2L2)

1− η2L2
(42)

We have

∥fA(s)∥2 ≤ ∥fA(s)∥F (43)

If η ≪ 1/L,

η∥fA(s)∥F ≤ η
ηL2(1− (η2L2)s) + η2L2s

√
r(1− η2L2)

1− η2L2

≤ η
ηL2(1− (η2L2)s)

1− η2L2

≤ ηas (44)

Thus, we have η∥fA(s)∥ ≤ ηas. The dynamics are:

fA(s) = −η
s−1∑
j=0

f⊤
B (j)(∇W0

Lj
i), fB(s) = −

s−1∑
j=0

(∇W0
Lj
i)(ηf

⊤
A (j) + I) (45)

In our algorithm, we fine-tune A
(0)
i in our algorithm and we have η∥fA(s)∥ ≪ I , then

fA(s) = −η
s−1∑
j=0

(
−

j−1∑
m=0

(∇W0
Lm
i)

)⊤

(∇W0
Lj
i), fB(s) = −

s−1∑
j=0

(∇W0
Lj
i) (46)

Therefore, we have

∆Bi ≈ −η

(
S∑

s=0

∇W0
Ls
i

)
(A

(0)
i)⊤ (47)

D OVERVIEW OF SLAO

We show the detailed overview of SLAO in Figure 4. It presents a framework where fine-tuned
LORA and merged LoRA are processed over time, and specializes key components: (1) orthogonal
initialization, and (2) time-aware continual merging.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 4: Overview of SLAO. Left area is a framework where fine-tuned LoRA (orange) and merged
LoRA (gray) are processed over time. Right area (2 blue boxes) highlights key components: (1)
Orthogonal initialization for new task i+ 1 learning LoRA, where orthogonal basis is extracted from
Aft,i to initialize Aft,i+1 such that A(0)

ft,i+1(A
(0)
ft,i+1)

⊤ = Ir and Bft,i+1 is initialized by previous
Bft,i; (2) Time-aware continual merging for Bft,i+1 and Bi

merge, and update Ai+1
merge via Aft,i+1.

E EXPERIMENTS DETAILS

Our experiments are conducted on 4 NVIDIA A100 GPUs using the DeepSpeed repository. We
evaluate three LLMs: Llama-2-7B-chat, Llama-2-13B-chat, and Llama-3-2-3B. Each individual
experiment (e.g., running a single task order from the large number of tasks benchmark on Llama-2-
13B-chat) can be executed on a single A100 GPU. We apply LoRA to the query and value projection
matrices in the attention modules of each Llama model, with a fixed rank of 8. Each task order is
evaluated over 3 random seeds.
For Standard CL benchmark and the large number of tasks benchmark on Llama-2-7B-chat and
Llama-2-13B-chat, we follow the setting in Wang et al. (2023), and train the models with one epoch,
a constant learning rate of 1e-4, the training batch size is 1, and the gradient accumulation step is 8.
And for Standard CL benchmark and the large number of tasks benchmark on Llama-3-2-3B, we set
the learning rate as 1e-4. For SuperNI benchmark using Llama-2-7B-chat and Llama-2-13B-chat, we
follow the learning rate, training batch size, and gradient accumulation steps in Zhao et al. (2024b),
and we use 5e-5 and train the models with five epochs with a training batch size of 2, and gradient
accumulation steps of 4. And for SuperNI benchmark on Llama-3-2-3B, we set the learning rate as
5e-5.

E.1 OVERALL RESULTS ON LLAMA-2-13B-CHAT

Continual learning performance analysis. As shown in Table 5, our method consistently outper-
forms all data-free baselines across two benchmarks using Llama-2-13B-chat model.
LoRA-Based continual learning: IncLoRA improves upon SeqLoRA by freezing previously learned
LoRAs to isolate subspaces, though its subspace separation is simplistic. SeqLoRA performs a little
better than O-LoRA in the standard CL benchmark, since we use the hyperparameter λ = 0.5 in the
orthogonal loss in O-LoRA that may be adjusted along with the different models and datasets, while
O-LoRA outperforms SeqLoRA and IncLoRA in large number of tasks benchmark. SAPT-LoRA
achieves the highest average performance among LoRA-based methods, but it relies on generated
previous task pseudo samples, unrealistic in many LLM scenarios, and is more sensitive to task order-
ing than our method. LoRM-BA (from second task, begin with freezing B) and LoRM-AB (from
second task, begin with freezing A) yield nearly identical results in large number of tasks benchmark,
suggesting that the order of alternating LoRA components in learning sequential tasks does not
significantly affect outcomes, but LoRM-BA outperforms LoRM-AB in standard CL benchmark.
CorDA performs well in standard CL benchmark and large number of tasks, but both of them are
lower than our method. MagMax performs comparably to our approach on standard CL benchmark,
and slightly worse on large number of tasks, thus only keeping the weights which have the largest
absolute value would cause catastrophic forgetting.
LoRA merging baselines: KnOTS and LoRA-LEGO perform similarly in the standard CL bench-
mark, but KnOTS outperforms in the large number of tasks. KnOTS may benefit from flexible
SVD-merging mechanism so that we apply time-aware scaling on merging, while LoRA-LEGO
treats tasks equally, lacks prioritization, and is ineffective in complex CL contexts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Testing performance (%) on three CL benchmarks using Llama-2-13B-chat across different
task orders, where each result is run three random times, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks
Method O1 O2 O3 avg O4 O5 O6 avg
SeqLoRA 77.1 77.4 78.6 77.7 74.1 74.2 74.5 74.3
IncLoRA 78.3 79.6 79.5 79.1 74.2 76.1 75.1 75.1
O-LoRA 76.1 77.1 78.5 77.2 75.5 75.5 74.8 75.3
SPAT-LoRA 83.2 82.4 80.1 81.9 83.9 80.2 82.3 82.1

LoRM-BA 78.4 80.2 80.4 79.7 74.9 71.9 70.5 72.4
LoRM-AB 76.2 74.1 75.3 75.2 74.3 70.1 72.3 72.2

CorDA 79.1 80.4 80.6 80.0 75.9 75.8 72.9 74.9
MagMax 80.9 80.6 80.7 80.7 73.7 73.4 76.0 74.4

KnOTS(zero init) 71.9 73.1 73.9 73.0 66.8 65.5 66.0 66.1
LoRA-LEGO 73.0 72.3 72.9 72.7 64.3 63.3 64.0 63.9

OPCM 68.8 63.6 61.6 64.7 57.6 60.2 58.8 58.9

SLAO (ours) 80.8 81.1 81.1 81.0 76.5 75.9 76.1 76.2

Multi-Task 81.4 79.2

Table 6: Comparison of merging strategies on testing performance on two CL benchmarks using
Llama-2-13B-chat across different task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks
Method O1 O2 O3 avg O4 O5 O6 avg
FREB-MA 77.7 77.5 76.4 77.2 69.1 68.2 69.3 68.9
FREA-MB 79.4 79.2 78.9 79.2 73.2 73.8 73.2 73.4
FTBA-MA 79.2 80.1 80.8 80.0 75.1 75.0 75.8 75.3
FTBA-MBA 80.7 80.9 80.8 80.8 75.4 75.4 76.0 75.6
FTBA-MB 80.6 80.9 80.9 80.8 75.8 75.7 76.0 75.8
SLAO(ours) 80.8 81.1 81.1 81.0 76.5 75.9 76.1 76.2

Continual merging approaches: since OPCM is designed for full model, directly applying it to
LoRA by treating its two components identically leads to suboptimal performance.

Asymmetry in LoRA merging. To investigate the asymmetry in LoRA merging, we compare
different continual merging strategies for LoRA: (1) Freeze A, merge B (FREA-MB), (2) Freeze
B, merge A (FREB-MA), (3) Fine-tune BA, merge A (FTBA-MA), (4) Fine-tune BA, merge BA
(FTBA-MBA), (5) Fine-tune BA, merge B (FTBA-MB). As shown in Table 6, only fine-tuning
LoRA and merging B consistently outperforms other strategies, except ours. Fine-tuning LoRA
and merging BA has comparable performance compared to fine-tuning LoRA and merging B, but
fine-tuning LoRA and merging A yields the poorest performance among fine-tuning LoRA methods.
When freezing one component of LoRA during training, freezing A and merging B is much better
than freezing B and merging A, consistent with conclusion in Zhu et al. (2024b) that freezing A and
fine-tuning B is at least better than freezing B and fine-tuning A. This highlights the asymmetry in
LoRA components and the importance of asymmetric merging based on their fundamental roles in
adaptation.

E.2 RESULTS IN QWEN2.5 MODELS

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Comparison of testing performance on SuperNI benchmark using Qwen2.5-3B and Qwen2.5-
7B models across two different task orders.

Qwen2.5-3B Qwen2.5-7B
Method O1 O2 avg O1 O2 avg
O-LoRA 31.1 29.8 30.5 34.3 32.6 33.4
InfLoRA 35.6 25.6 30.6 43.5 31.0 37.3

SLAO 37.8 32.4 35.1 41.0 35.5 38.3

Table 8: Comparison of initialization strategies for existing LoRA merging methods on testing
performance on two CL benchmarks using Llama-2-7B-chat and Llama-2-13B-chat across different
task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks
Init Model Method O1 O2 O3 avg O4 O5 O6 avg

Random (Zero) 7B KnOTS 67.9 65.9 70.8 68.2 61.5 60.1 58.0 59.9
Random (Zero) 7B LoRA-LEGO 68.3 66.0 70.9 68.4 58.8 58.7 53.2 56.9

Last-FT 7B KnOTS 79.7 80.7 79.9 80.1 74.0 72.5 75.0 73.8
Last-FT 7B LoRA-LEGO 78.8 79.8 79.5 79.4 72.2 70.4 74.2 72.3

Random (Zero) 13B KnOTS 71.9 73.1 73.9 73.0 66.8 65.5 66.0 66.1
Random (Zero) 13B LoRA-LEGO 73.0 72.3 72.9 72.7 64.3 63.3 64.0 63.9

Last-FT 13B KnOTS 80.1 79.6 80.3 80.0 75.4 74.9 75.8 75.4
Last-FT 13B LoRA-LEGO 79.8 80.0 80.2 80.0 75.3 73.8 76.0 75.0

To evaluate the performance of our SLAO using state-of-the-art LLMs, we use Qwen2.5-3B and
Qwen2.5-7B to compare with the other two LoRA-based continual learning baselines on the SuperNI
benchmark.

When evaluating SuperNI benchmarks, SLAO is consistently better than other two baselines and
achieves the best average performance on both Qwen2.5-3B and Qwen2.5-7B models, demonstrating
its robustness on Qwen2.5 model sizes. Also, the performance of SLAO on Qwen2.5-3B is better
than that on Qwen2.5-7B.

E.3 IMPACT OF INITIALIZATION STRATEGIES FOR EXISTING LORA MERGING METHODS

We compare the testing performance of different initialization strategies for existing LoRA merging
methods in Table 8, where we compare two strategies: random (zero) initialization and the last
fine-tuning point of previous tasks. For zero initialization for new tasks, when using Llama-2-7B-chat
and Llama-2-13B-chat, KnOTS and LoRA-LEGO perform similarly in the standard CL benchmark,
but KnOTS outperforms in the large number of tasks. For last fine-tuning point initialization, KnOTS
and LoRA-LEGO perform similarly in the standard CL benchmark and the large number of tasks,
while KnOTS is slightly over LoRA-LEGO. All results in the last fine-tuning point initialization
are significantly better than the zero initialization. These results show that our last fine-tuning point
initialization has better performance than zero initialization in continual merging scenarios.

E.4 CONTINUAL LEARNING PERFORMANCE ON BACKWARD TRANSFER

We evaluate the performance of backward transfer (BWT) using Llama-2-7B-chat on the large
number of tasks benchmark. As shown in Table 9, SLAO demonstrates strong backward transfer
ability. Among all methods, SeqLoRA performs the worst due to its lack of mechanisms to prevent
forgetting. KnOTS and LoRA-LEGO also underperform, as they are primarily designed for model
merging rather than continual learning. IncLoRA exhibits limited BWT performance, while O-
LoRA achieves better results by enforcing orthogonality during learning. InfLoRA slightly trails
O-LoRA, and CorDA performs worse, possibly due to its reliance on nullspace projection without
time-aware updates. SAPT-LoRA achieves the best BWT overall, though it benefits from synthetic

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Testing performance (%) of the average of backward transfer (BWT) on large number of
tasks using Llama-2-7B-chat across different task orders.

Method BWT Method BWT
SeqLoRA -17.2 LoRM-BA -6.7
IncLoRA -9.6 LoRM-AB -4.1
O-LoRA -4.0 MagMax -3.8
InfLoRA -4.9 OPCM -3.9
SAPT-LoRA -2.9 KnOTS (zero init) -14.1
CorDA -4.5 LoRA-LEGO -15.6
SLAO (Ours) -3.5

Table 10: Comparison of MOPD and AOPD on testing performance across three standard CL
benchmarks using Llama-2-7B-chat in different task orders.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Method MOPD AOPD MOPD AOPD MOPD AOPD
O-LoRA 9.84% 5.79% 17.87% 8.53% 22.16% 11.63%
SAPT-LoRA 8.75% 5.69% 18.94% 9.65% 25.28% 12.38%
InfLoRA 8.23% 2.54% 19.58% 10.01% 23.42% 11.46%
SLAO(ours) 1.72% 1.30% 15.17% 7.16% 18.94% 10.76%

data from previous tasks, which may not be feasible in realistic settings. Between the two variants of
LoRM, LoRM-BA slightly outperforms LoRM-AB. Finally, MagMax and OPCM show comparable
performance, both designed to balance update integration during continual merging.

E.5 CONTINUAL LEARNING PERFORMANCE ON ORDER-NORMALIZED PERFORMANCE
DISPARITY

We evaluate the performance of Order-normalized Performance Disparity (Yoon et al., 2020) using
Llama-2-7B-chat on three benchmarks. Order-normalized Performance Disparity is used to evaluate
order-sensitivity for each task t, defined as the disparity between its performance on R random task
sequences:

OPDt = max(P
1

t , . . . , P
R

t)−min(P
1

t , . . . , P
R

t) (48)

where P
r

t denotes the performance of task t to the task sequence r. The Maximum OPD is de-
fined as MOPD = max(OPD1, . . . , OPDt) and the Average OPD is defined as AOPD =
1
T

∑T
t=1 OPDt, to evaluate order-robustness on the whole task set. Lower scores of both metrics

indicate higher robustness.

Table 10 shows the performance of MOPD and AOPD on three benchmarks with their task sequences.
Our SLAO shows the most stable performance across different task orders, indicating that it handles
order sensitivities better compared to other baselines. While SAPT-LoRA achieves higher scores in
Table 1, it heavily depends on past tasks’ data information, so that SAPT-LoRA suffers from greater
variation in different task orders, mostly due to its past pseudo-sample generation.

E.6 CHOICE OF ORTHOGONAL DECOMPOSITION STRATEGY

In our algorithm, SLAO, we use QR decomposition to extract the orthogonal basis from previous
LoRA A. To evaluate the effectiveness of QR decomposition, we compare it against orthogonal bases
derived from (1) singular value decomposition (SVD), where the product UV ⊤ forms an orthogonal
approximation, and (2) randomized SVD, where the product QU forms an orthogonal approximation.
As shown in Table 11, QR initialization performs similarly to the SVD approach on standard CL
benchmark and large number of tasks, but the performance of QR on SuperNI benchmark is better
than that of SVD. The performance of randomized SVD is not better than SVD and QR across these

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Comparison of orthogonal decomposition strategies on testing performance on two CL
benchmarks using Llama-2-7B-chat across different task orders, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Method O1 O2 O3 avg O4 O5 O6 avg O1 O2 avg

Randomized SVD 72.6 69.1 73.3 71.7 52.3 62.5 57.8 57.5 11.8 22.8 17.3
SVD 79.9 80.8 80.2 80.3 75.3 74.4 75.1 74.9 36.9 33.7 35.3
QR 80.1 80.8 80.4 80.4 75.0 74.4 75.1 74.8 38.7 35.7 37.2

three benchmarks. This suggests that SLAO is robust to the choice of orthogonal decomposition
technique.

E.7 ASYMMETRY OF LORA

We separately fine-tune 15 tasks from the SuperNI benchmark using 15 LoRAs on Llama-2-7B-
chat (Touvron et al., 2023), and compute cosine similarity of A and B across 15 tasks using the last
layer LoRA. Figure 5 shows that A exhibits significantly higher similarity across tasks compared to
B, suggesting that LoRA components follow inherently different learning dynamics.

(a) LoRA A (q) (b) LoRA B (q) (c) LoRA A (v) (d) LoRA B (v)

Figure 5: Cosine similarity between 15 tasks from SuperNI benchmark for fine-tuned q and v attention
LoRA A and B in the last layer (32nd) of Llama-2-7B-chat.

E.8 IMPACT OF LEARNING RATE

To assess the effect of different learning rates, we evaluate SeqLoRA on the standard CL benchmark
using Llama-2-7B-chat with learning rates of 1e-3, 1e-4, and 1e-5. As shown in Table 12, a learning
rate of 1e-4 achieves the best performance, while 1e-3 performs the worst, significantly degrading
the overall results. This highlights the importance of careful learning rate selection in LoRA-based
continual learning.

Table 12: Impact of learning rate on testing performance of SeqLoRA using Llama-2-7B-chat across
three task orders in Standard CL Benchmark, where Oi denotes ith task order.

Standard CL Benchmark
learning rate O1 O2 O3 avg

1e− 3 6.0 0.0 19.7 8.6
1e− 4 73.3 76.2 78.4 76.0
1e− 5 73.6 71.8 76.0 73.8

E.9 IMPACT OF THE RANK OF LORA

We assess the effect of different LoRA rank values in our algorithm by comparing three rank settings
on both the standard CL benchmark and the large number of tasks benchmark using Llama-2-13B-
chat. As shown in Table 13, a rank of 8 yields the best performance on the standard CL benchmark,
while a rank of 4 performs best on the large number of tasks benchmark. Overall, the performance

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

differences across the three ranks are relatively small, suggesting that our method is robust to the
choice of rank.

Table 13: Impact of the rank of LoRA on testing performance of SLAO using Llama-2-13B-chat
across Standard CL Benchmark and large number of tasks, where Oi denotes ith task order.

Standard CL Benchmark Large Number of Tasks
rank O1 O2 O3 avg O4 O5 O6 avg
r = 4 80.6 81.0 81.1 80.9 77.2 76.3 77.1 76.9
r = 8 80.8 81.1 81.1 81.0 76.5 75.9 76.1 76.2
r = 16 80.3 80.9 80.9 80.7 76.9 75.5 75.9 76.1

E.10 COMPARISON OF TRAINING COST

We compare the training cost among several baselines in Table 14. We use a single NVIDIA A100
GPU to fine-tune Llama-2-7B-chat. It shows that our SLAO is both memory usage efficient and
training efficient, since we only compute one-time QR matrix factorization at initialization, avoiding
additional computational cost during training. Besides, we observe that the walltime under orthogonal
initialization is often smaller than the walltime without orthogonal initialization. There is a similar
conclusion in Hu et al. (2020), which proves that drawing the initial weights from the orthogonal
group can speed up convergence. Therefore, SLAO provides an ideal balance between performance,
memory usage, and training speed.

E.11 COMPARISON OF ORTHOGONALITY AMONG LORA-BASED CL METHODS

• Initialization:
(a) O-LoRA: New task’s LoRA BiAi is randomly initialized and is not orthogonal to

previous tasks’ LoRAs {B1A1, . . . ,Bi−1Ai−1}.
(b) InfLoRA: Use all of new task i data to compute its input matrix Hi on current full

model parameters, and use all previous i− 1 tasks’ gradient spaces which denote as
Mi to make new Ai ∈ Rr×d lie in Ni ∩M⊥

i where Ni is the subspace spanned by
the columns of Hi. Bi ∈ Rd×r is initialized as zero.

(c) SLAO: Extract orthogonal basis from previous fine-tuned Ai−1 ∈ Rr×d as new task’s
Ai, which makes AiA

⊤
i = Ir. Bi ∈ Rd×r is initialized as previous fine-tuned Bi−1.

• Training:
(a) O-LoRA: Compute orthogonal loss to make new task’s Ai ∈ Rr×d orthogonal to all

previous tasks’ A, and update Ai and Bi.
(b) InfLoRA: Compute standard cross entropy loss and update Bi ∈ Rd×r.
(c) SLAO: Compute standard cross entropy loss and update Bi ∈ Rd×r and Ai ∈ Rr×d.

• Post-Training:
(a) O-LoRA: Store all tasks’ LoRA {B1A1, . . . ,BiAi}.
(b) InfLoRA: Use new task i data to compute new task input matrix Ri on new learned

BiAi, then compute new gradient orthogonal bases memory Mi through DualGPM,
where Mi represents the gradient space of all i tasks. Then, integrate BiAi to Wi−1

and store the updated gradient space Mi of all i tasks.
(c) SLAO: Merge Bi to previously merged Bi−1 and keep fine-tuned Bi, merged Bi, and

fine-tuned Ai.

Overall, InfLoRA and SLAO both focus on the orthogonality of initialization and post-training,
while O-LoRA focuses on the orthogonality of the updating process during training. Moreover, for
initialization, InfLoRA makes new Ai lie at the intersection of input matrix and previous gradient
spaces Mi, while SLAO extracts orthogonal basis from previous fine-tuned Ai−1 as new Ai; for
post-training, InfLoRA computes and stores all previous tasks’ orthogonal gradient spaces, while
SLAO uses the asymmetry of LoRA to obtain a merged B.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Comparison of training cost across three standard CL benchmarks using Llama-2-7B-chat
(average cost across different task orders, FTBA-MBAOI: FTBA-MBA with orthogonal initialize A).

Standard CL Benchmark Large Number of Tasks SuperNI Benchmark
Method Peak GPU

Memory
GPU

Walltime
Peak GPU
Memory

GPU
Walltime

Peak GPU
Memory

GPU
Walltime

O-LoRA 35.71GB 01:21:49 37.55GB 02:47:06 38.06GB 02:48:34
InfLoRA 45.21GB 01:47:48 57.66GB 04:57:22 58.99GB 05:01:01
FTBA-MBA 35.29GB 00:51:43 35.64GB 01:59:51 36.01GB 02:02:07
FTBA-MBAOI 35.43GB 00:51:27 36.23GB 01:59:12 37.59GB 02:01:35
FTBA-MB 35.17GB 00:51:36 35.47GB 01:59:26 35.91GB 02:01:49
SLAO (ours) 35.24GB 00:50:58 35.61GB 01:59:00 35.94GB 02:00:08

E.12 DESCRIPTIONS OF TASK SEQUENCE ORDERS

We report task descriptions and their metrics used for our CL experiments across Llama models in
Table 15 and Table 16. And we show eight task orders in Table 17.

Table 15: Descriptions of 15 datasets in Large Number of Tasks benchmark and first 5 datasets from
standard CL benchmark.

Dataset name Category Task Domain Metric
1. Yelp CL Benchmark Sentiment analysis Yelp reviews Accuracy
2. Amazon CL Benchmark Sentiment analysis Amazon reviews Accuracy
3. DBpedia CL Benchmark Topic classification Wikipedia Accuracy
4. Yahoo CL Benchmark Topic classification Yahoo Q&A Accuracy
5. AG News CL Benchmark Topic classification News Accuracy
6. MNLI GLUE Natural language inference Various Accuracy
7. QQP GLUE Paragraph detection Quora Accuracy
8. RTE GLUE Natural language inference News, Wikipedia Accuracy
9. SST-2 GLUE Sentiment analysis Movie reviews Accuracy
10. WiC SuperGLUE Word sense disambiguation Lexical databases Accuracy
11. CB SuperGLUE Natural language inference Various Accuracy
12. COPA SuperGLUE Question and answering Blogs,encyclopedia Accuracy
13. BoolQA SuperGLUE Boolean question and answering Wikipedia Accuracy
14. MultiRC SuperGLUE Question and answering Various Accuracy
15. IMDB SuperGLUE Sentiment Analysis Movie reviews Accuracy

F RELATED WORKS

Continual Learning. Continual learning aims to retain knowledge of previously learned tasks
while adapting to new data. It faces two main challenges: (1) catastrophic forgetting (McCloskey &
Cohen, 1989), where the performance of the model on earlier tasks significantly degrades as it learns
new ones; and (2) knowledge transfer, where the model leverages previously acquired knowledge to
improve learning on new tasks. Existing approaches are divided into three categories to address the
issues:

(i) Rehearsal-based methods employ a memory buffer to store samples from previous tasks, enabling
joint training with new tasks. Dark Experience Replay (Buzzega et al., 2020) encourages consis-
tency with past knowledge by aligning the model’s current logits with those sampled earlier in the
optimization trajectory. CLEAR (Rolnick et al., 2019), an experience replay method, effectively
mitigates catastrophic forgetting in multi-task reinforcement learning. Gradient episodic mem-
ory (Lopez-Paz & Ranzato, 2017) stores task-specific gradients and projects new gradients to avoid
interference with previous knowledge.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Descriptions of 15 datasets in SuperNI benchmark.

Dataset number Dataset name Task Metric
1. task639 multi-woz-user-utterance-generation dialogue generation Rouge-L
2. task1590 diplomacy-text-generation dialogue generation Rouge-L
3. task1729 personachat-generate-next dialogue generation Rouge-L
4. task181 outcome extraction information extraction Rouge-L
5. task748 glucose-reverse-cause-event-detection information extraction Rouge-L
6. task1510 evaluation-relation-extraction information extraction Rouge-L
7. task002 quoref-answer-generation question answering Rouge-L
8. task073 commonsenseqa-answer-generation question answering Rouge-L
9. task591 sciq-answer-generation question answering Rouge-L
10. task511 reddit-tifu-long-text-summarization summarization Rouge-L
11. task1290 xsum-summarization summarization Rouge-L
12. task1572 samsum-summary summarization Rouge-L
13. task363 sst2-polarity-classification sentiment analysis Accuracy
14. task875 emotion-classification sentiment analysis Accuracy
15. task1687 sentiment140-classification sentiment analysis Accuracy

Table 17: Eight different task orders

Order Model Task Sequence

1
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B
dbpedia→ amazon→ yahoo→ ag

2
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B
dbpedia→ amazon→ ag→ yahoo

3
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B
yahoo→ amazon→ ag→ dbpedia

4
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B

mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→imdb→
yelp→ amazon→ sst-2→ dbpedia→ ag→multirc→ yahoo

5
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B

multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte
→ imdb→ sst-2→ dbpedia→ ag→ yelp→ amazon→yahoo

6
Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B

yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→imdb→
sst-2→ dbpedia→ ag→ yahoo→ multirc→boolqa→ wic

1
(SuperNI)

Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B

task1572→ task363→ task1290→ task181→ task002
→task1510→ task639→ task1729→ task073→ task1590→
task748→ task511→ task591→ task1687→ task875

2
(SuperNI)

Llama-2-7B-chat,
Llama-2-13B-chat,

Llama-3-2-3B

task748→ task073→ task1590→ task639→ task1572→
task1687→ task591→ task363→ task1510→ task1729→
task181→ task511→ task002→ task1290→ task875

(ii) Regularization-based methods utilize constraints on the parameters of the model to prevent model
updates of new tasks from interfering with knowledge acquired on previous tasks. Elastic weight
consolidation, EWC (Kirkpatrick et al., 2017), uses Fisher Information Matrix to identify and protect
parameters critical for previous tasks. Orthogonal Gradient Descent, OGD (Farajtabar et al., 2020),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

projects gradients of new tasks onto a subspace that preserves model outputs on previous tasks, while
ensuring the direction remains effective for learning new tasks.

(iii) Architecture-based methods dynamically adjust the structure of the model to isolate task-specific
weights or expand model capacity (Mallya & Lazebnik, 2018; Wang et al., 2022b). Packnet (Mallya
& Lazebnik, 2018) performs iterative pruning and network re-training. Progressive Prompts (Raz-
daibiedina et al., 2023) mitigate forgetting by maintaining a growing sequence of soft prompts, where
each new task contributes an additional prompt.

Parameter-efficient continual learning. LoRA-based continual learning has emerged as a practical
and parameter-efficient technique for adapting LLMs to sequential tasks. O-LoRA (Wang et al., 2023)
freezes previously learned LoRAs and incrementally learns new tasks in their orthogonal subspace;
InfLoRA (Liang & Li, 2024) preserves prior LoRAs and uses task-dependent input matrices to define
orthogonal subspaces for initializing new ones; SAPT-LoRA (Zhao et al., 2024b) retains earlier
LoRAs and leverages generated previous tasks’ data to align new LoRA learning with shared modules;
SD-LoRA (Wu et al., 2025) incrementally decouples the learning of magnitude and direction in
LoRA components while preserving directions learned from previous tasks.

Merging and Continual Merging. Model merging (Garipov et al., 2018; Draxler et al., 2018;
Wortsman et al., 2022) has emerged as an efficient paradigm that combines multiple task-specific
models into a single unified model without retraining (Stoica et al., 2024; Ilharco et al., 2023; Yadav
et al., 2023; Ortiz-Jimenez et al., 2023). This idea has recently extended to LoRA-based adaptation:
KnOTS (Stoica et al., 2025) leverages singular value decomposition to project LoRA updates into a
shared latent space, where existing merging methods can be applied; LoRA-LEGO (Zhao et al., 2025)
decomposes LoRAs into minimal semantic units via grouping and clustering, enabling a reconstruc-
tion of multiple LoRAs into one. However, both LoRA merging and full model merging generally
assume simultaneous access to all task-specific LoRA or model fine-tuned from the same initial
pre-trained model, which limits their applicability to the continual merging scenarios (Dziadzio et al.,
2025), where tasks arrive sequentially. Moreover, continual LoRA merging remains underexplored in
existing literature. While in full-model settings, continual merging has received more attention, i.e.,
OPCM (Tang et al., 2025) mitigates interference by sequentially projecting new model updates onto
subspaces orthogonal to the previously merged model, combined with adaptive scaling.

27

	Introduction
	Background and Motivation
	Opportunities and Challenges in Continual Learning via Continual Merging
	Orthogonal Initialization Motivated by LoRA NTK Analysis
	Continual merging motivated by LoRA asymmetry analysis

	Methodology
	SLAO: Single LoRA Continual Learning
	Dynamics of SLAO

	Experiments
	Experimental Setup
	Overall Results

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Theoretical Analysis
	The forgetting-intransigence error decomposition under NTK
	Dynamics of low-rank adapters updated by SLAO

	Overview of SLAO
	Experiments Details
	Overall Results on Llama-2-13B-chat
	Results in Qwen2.5 models
	Impact of initialization strategies for existing LoRA merging methods
	Continual learning performance on backward transfer
	Continual learning performance on Order-normalized Performance Disparity
	Choice of orthogonal decomposition strategy
	Asymmetry of LoRA
	Impact of learning rate
	Impact of the rank of LoRA
	Comparison of Training cost
	Comparison of orthogonality among LoRA-based CL methods
	Descriptions of Task Sequence Orders

	Related Works

