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Abstract— In this paper, we present KitchenVLA, a Vision-
Language-Action (VLA) framework for generating and op-
timizing executable robot actions from human instructional
videos. While recent advances in video understanding and step
generation have shown promising results, translating these steps
into robot-executable actions remains challenging, particularly
for complex, long-horizon tasks such as those in kitchen
environments. These challenges arise from domain discrepan-
cies between human videos and robotic settings, as well as
mismatches between human actions and robot capabilities. To
address these issues, we propose a zero-shot action planning
and correction framework, where a Vision-Language Model
(VLM) acts as an evaluator to analyze both the original human
video and the robot’s observations to detect domain mismatches.
The system assesses differences in object states and action
feasibility, and generates corrective actions to align the robot’s
execution with the intended task. By incorporating keyframe
selection, language-guided segmentation, and simulation-based
verification, KitchenVLA iteratively refines robotic plans to
ensure contextual accuracy and executability. Through domain-
aware evaluation and correction, our framework enhances the
adaptability and robustness of robotic task execution in kitchen
environments, advancing the integration of VLMs into robot
learning and executable plan correction.

Keywords: Robot action generation, Interactive error correction,
Human-robot collaboration, Multimodal scene understanding, Mul-
timodal LLM

I. INTRODUCTION

Learning robot action sequences from human videos is
a key problem in embodied intelligence, with broad ap-
plications such as household assistants and robotic chefs.
Recent advances in embodied AI have shown that Vision-
Language Models (VLMs) [1]–[3] and Multimodal Large
Language Models (MLLMs) [4], [5] can understand in-
structional videos and generate textual task steps, making
them promising candidates for the core reasoning modules
of Vision-Language-Action (VLA) frameworks.

However, directly applying VLMs to robot action gen-
eration and execution remains highly challenging. One ap-
proach is to extend VLMs with control-level action decoders,
but such monolithic solutions require large-scale annotated
datasets and expensive computational resources [6]–[8]. Al-
ternatively, hierarchical methods first generate high-level task
steps by VLMs or MLLMs, and then translate them into
robot-executable actions using a predefined skill library or
pretrained policy models [9], [10]. While this approach
reduces model complexity, it faces three critical challenges,
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Fig. 1. Bridging Human-Robot Instruction Gaps via VLM Corrections.
Given a human demonstration video, KitchenVLA first extracts a high-
level action sequence, which may fail in the robot environment due to
domain discrepancies (e.g., requiring sliced vs. whole tomato). The system
collects visual feedback from robot execution and compares it with the
human video using a VLM Evaluator. Detected mismatches are passed to
an LLM Planner, which generates corrective substeps that are translated into
executable actions. This process yields a refined action plan aligned with
the robot’s capabilities while preserving the original task intent.

which are environmental gap between human videos and the
robot workspace, embodiment gap between human actions
and robot capabilities, and the semantic loss due to the
abstraction of human demonstrations into text, often omitting
fine-grained contextual cues.

Existing frameworks typically adopt a one-pass execution
strategy, extracting action steps and executing them through
modules like LLM-based translators (e.g., code-as-policies
[11]), imitation or reinforcement learning policies [12], or
predefined action primitives (e.g., SayCan [9]). These meth-
ods focus on optimizing execution under the assumption of
environmental similarity, and often break down in complex,
long-horizon tasks with significant domain shifts, such as
cooking. Such tasks demand robots to adapt their actions
to the environment and correct execution failures. Previ-
ous research on action correction and failure recovery has
explored LLM-based plan editing [13], multimodal error
reasoning [14], and human-in-the-loop guidance [15]. How-
ever, most approaches are limited to single-step recovery or



robot-environment-based corrections and are not designed for
domain-level, sequence-wide adaptation of robot behaviors
across diverse environments.

To address these challenges, we propose KitchenVLA, a
Vision-Language-Action framework for domain-aware evalu-
ation and correction of robot action sequences derived from
human instructional videos. At the core of our framework
is a feedback loop and replanning module, where VLMs
and LLMs act as agents to compare the object states and
task progressions in the human video with the robot’s obser-
vations after each action. When discrepancies are detected,
e.g., a robot is instructed to pick a sliced tomato but only
has access to a whole tomato, KitchenVLA generates and
inserts corrective steps, such as slicing, to align execution
with the intended goal. In addition to physical mismatches,
our system addresses semantic and logical issues such as
incorrect object references (e.g., confusing bacon and bread),
ambiguous instructions (e.g., interpreting add as place vs.
rotate+pour), and plan-level inconsistencies (e.g., improper
pick/place ordering for single-arm robots).

KitchenVLA integrates four components: 1) Action Map-
ping: VLM-generated steps are heuristically grounded to
robot-executable actions and objects using a semantic map-
ping procedure. 2) Robot Execution and Feedback: The robot
executes the mapped sequence and logs visual observations
and execution outcomes. 3) VLM-Based Evaluation and
LLM Replanning: Robot observations are compared with
video keyframes to identify domain gaps, and corrective steps
are generated. 4) Iterative Plan Refinement: Corrections are
compiled and translated into a new action sequence. This
process is repeated for multiple iterations to improve plan
feasibility.

By leveraging domain-aware multimodal feedback and
adaptive plan correction, KitchenVLA enables robots to per-
form human-demonstrated tasks more reliably in mismatched
or unseen environments.

In summary, our contributions are threefold:
• We propose a zero-shot automated error-correction

framework that learns from human instructional videos
to generate robot-executable plans.

• We enable effective action and skill adaptation for
long-horizon complex tasks across different workspaces,
addressing environment and embodiment mismatches.

• We introduce an iterative replanning loop based on
robot execution feedback to continuously refine action
sequences and improve execution robustness.

To this end, we present KitchenVLA to bridge vision-
language planning with domain-level correction, enabling
robust robotic execution in kitchen scenarios.

II. RELATED WORK

A. Vision-Language Action (VLA) Models and Frameworks

Vision-Language Models (VLMs) [1], [2], [16]–[18]
have demonstrated remarkable capabilities in bridging vi-
sual perception and natural language understanding, making
them well-suited for guiding robotic actions. OKAMI [19]

Fig. 2. Comparison of different methods for vision-language-action
planning. Unlike monolithic VLA models and one-shot VLM planners,
KitchenVLA introduces a feedback loop to iteratively refine robot action
sequences based on execution outcomes.

leverages VLMs for human motion retargeting, focusing
on mimicking arm motion based on SMPL-H models.
RoboMimic [20] presents a structured imitation learning
framework, providing valuable datasets and policies for
robotic skill acquisition. Hydra [21] integrates hierarchi-
cal imitation learning, which is beneficial for long-horizon
robotic tasks. Additionally, models such as OpenVLA [8]
enhance multimodal learning, improving robots’ ability to
interpret and act upon visual-language inputs.

Recent advancements such as DP-VLA [22] have demon-
strated VLA techniques in structured environments like
RoboCasa, enabling robots to execute predefined single-
stage tasks by utilizing OpenVLA’s latent space. Similarly,
SayCan [9] employs LLMs as planners to bridge low-
level behavior cloning (BC) with high-level reinforcement
learning (RL), showcasing the potential of VLA in long-term
mainpulation tasks.

B. Robotic Manipulation for Kitchen Tasks

Cooking robots require the integration of perception, plan-
ning, and action execution, often under significant constraints
imposed by real-world kitchen environments. YORI [23]
introduces a system with dual-arm robotic configurations
for kitchen tasks, incorporating state machines to manage
action sequences. SeeDo [24] follows a structured pipeline
approach to video understanding and action mapping in
kitchen environments, emphasizing task organization.

Alternatively, FOON [25] focuses on knowledge graph-
based representations of cooking tasks, while Cook2LTL [26]
explores logical task formulation using LTL. Research into
modular robotic frameworks, such as MOSAIC [27], pro-
vides insights into hierarchical control systems for cooking
automation. Notably, SliceIt [28] and LAVA [29] address
specific kitchen manipulation tasks like cutting and scoop-
ing, demonstrating the necessity for skill-specialized robotic
interventions in cooking environments.

C. Failure Correction and Replanning in Robotics

Failure recovery in robotics is a crucial component in
ensuring robust and reliable performance in real-world sce-
narios. Traditional approaches often involve re-execution of



failed actions or predefined fallback strategies. However,
recent research has emphasized the importance of integrating
multimodal reasoning and feedback into the failure correc-
tion process.

Recently, methods such as CAPE [13] propose re-
prompting strategies for replanning upon execution failures,
aligning LLM-based approaches with classical task and mo-
tion planning (TAMP) paradigms. Similarly, REFLECT [14]
incorporates multimodal failure reasoning by integrating vi-
sual and audio sensory data to diagnose and correct errors in
robotic tasks. These frameworks underscore the need for a
multi-modal, context-aware failure recovery mechanism that
can adapt to various operational constraints.

D. Video Understanding for Robotics

Video understanding [30]–[33] is a crucial component
in enabling robots to learn from human demonstrations by
extracting meaningful task sequences and structuring them
into executable steps. Approaches such as VideoMME [34]
and AVBLIP [5], [35] use video-to-text transformations to
generate structured task representations for robotic execution.
In robotic learning, the challenge lies in converting raw video
demonstrations into a form that aligns with robotic capabili-
ties and keeping the object states the same between the two
domains. KitchenVLA builds upon these methodologies by
incorporating a VLM Evaluator to assess discrepancies be-
tween human demonstrations and robotic execution, ensuring
task feasibility and alignment within the robotic environment
(see Fig. 2).

III. PROBLEM DEFINITION

A. Generating Robotic Action Sequence from Human Videos

Human instructional videos, such as those in the YouCook
dataset [36], provide demonstrations of cooking tasks in
kitchen environments. Our goal is to generate feasible robotic
action steps to achieve the recipes while handling embodi-
ment and workspace differences. In this work, we utilize the
multimodal large language models (MLLM) to extract the
action sequence, represented as:

A0 = MLLM(V i,Au, Sp), A0 = [a00, a
1
0, ..., a

j
0], (1)

where V i, Au, and Sp represent the video, audio, and speech
modalities, respectively. The output A0 is a sequence of
j action steps, where each ai0 corresponds to an action
primitive such as pick, place, add, stir, or cut. We denote the
ground truth labels used to train the MLLM as A∗

0, which
were obtained by human annotators using Amazon MTurk
service as described in [5].

While the action sequences A0 and A∗
0 are accurate for hu-

man imitators, they are non-trivial to transfer to robots. This
is because the annotators focused solely on the human videos
without knowing the robotic embodiments and environments.
Therefore, when following those action sequences, robots
may fail to successfully reproduce the task demonstrated by
the humans.

Two common limitations of the human-based action se-
quences are: 1) ambiguity in actions, where different oper-
ations (e.g., adding water vs. adding egg mixture) are both
labeled as add; 2) mismatches in object conditions, such as
distinguishing between whole and sliced bread or tomatoes.
These gaps highlight the need for a method to correct and
adapt action sequences for robotic execution.

The objective of this work is to generate an executable
action sequence:

Afinal = [a0n, a
1
n, . . . , a

k
n], (2)

that enables the robot to successfully replicate the task
demonstrated by a human. This sequence is obtained through
an iterative process consisting of n loops, each involving
robot execution, action correction, and plan optimization. In
each iteration, the current plan Ai is refined and updated to
produce a new plan of variable length k.

IV. KITCHENVLA

In this section, we present our framework that enables
robots to bridge the domain gap between human instructional
videos and robotic execution through multimodal evaluation
and corrective planning. As illustrated in Fig. 3, the frame-
work comprises three main modules: heuristic object and
action mapping, robot execution with feedback collection,
and iterative correction via a feedback loop involving VLM
evaluation and LLM planning.

A. Heuristic Object and Action Mapping

Bridging the domain gap between human instructional
videos and robotic execution lies in the discrepancies of
objects and action capabilities. Objects that appear in human
demonstrations often differ in form, availability, or granular-
ity compared to the robotic environment. Likewise, human
actions may not directly correspond to the robot’s available
skill library, therefore, we design a heuristic mapping proce-
dure comprising object mapping and action mapping.

1) Object Mapping: Given the object set Ohuman extracted
from the human video and the robot’s known object set
Orobot, we employ a LLM to perform semantic matching.
For each object oh ∈ Ohuman, we identify the most similar
object or ∈ Orobot based on textual similarity, producing a
mapping with an associated similarity score:

mapO(oh) = arg max
or∈Orobot

ϕ(oh, or), (3)

where ϕ(·, ·) denotes the similarity function computed by the
LLM.

2) Action Mapping: Human demonstrations often involve
complex, unstructured actions that must be adapted into
primitive robot skills. To achieve this, we first parse the
textual descriptions of human action steps and perform
frequency analysis across the dataset to identify the most
common action verbs, as shown in Fig. 4.

Based on this analysis, we manually construct a mapping
between high-frequency human actions and available robot



Fig. 3. Overall architecture of KitchenVLA. The top panel illustrates the initial plan generation process, where a multimodal LLM processes human
video to produce an action sequence. This sequence is grounded into robot-executable actions via object and action mapping and executed in the robot
environment. The bottom panel depicts the feedback-driven correction loop: visual keyframes from the human video and observations from the robot are
compared by a VLM evaluator to detect domain mismatches. An LLM planner then generates corrective actions, which are translated into an updated
sequence. This iterative process enables KitchenVLA to adapt human demonstrations to the robot environment with improved executability.

skills. Formally, given a human action step ai0 ∈ A0, we
define the action mapping as:

mapA(a
i
0) = ai1, (4)

where ai1 ∈ A1 denotes one or more corresponding robot
skills selected from the robot’s predefined action library.

3) Initial Action Sequence Generation: By applying the
object and action mappings, we generate an initial robot-
executable action sequence A1 from the extracted human
plan A0:

A1 = map(A0) =
[
mapA(a

1
0),mapA(a

2
0), . . .

]
, (5)

where each mapped action is grounded to the most similar
object according to mapO.

This heuristically generated sequence A1 serves as the
starting point for KitchenVLA’s feedback-driven iterative
refinement process described in the following sections.

B. Robot Execution with Feedback Collection

Although the initial action sequence A1 is heuristically
constructed through object and action mappings, successful
execution in a robotic environment is not guaranteed. Due
to differences in embodiment, environment, and the MLLM
annotators’ lack of awareness of robotic environment, robots
may encounter execution failures even when following ac-
curate human instructions (such as the human labels of the
cooking videos).

During the execution of each action in A1, the robot

collects feedback that supports downstream correction and
replanning. Failures can typically be attributed to three types
of mismatches: 1) Object Condition Mismatch: the object
in the robot’s environment may differ in type, condition,
or appearance from the corresponding object in the human
video. 2) Robotic Action Limitation: the robot may be
unable to perform the intended action due to its ambiguous
description or being unavailable in the robot skill library.
3) Logical Inconsistency: The action sequence may violate
capability logic, such as attempting to place an object before
picking it when using a single-arm robot. These issues often
result from a combination of object mismatches and action
misinterpretations.

According to these possible mismatches, we collect multi-
modal feedback after each action execution. Specifically, for
each executed action ai, we record a tuple:

fi = (si, ei, Ii) , (6)

where si is the similarity score from object/action mappings,
ei is a binary success flag from the skill execution interface,
and Ii is the post-execution RGB observation captured by the
robot camera. These signals are used by the VLM Evaluator
to detect discrepancies and guide subsequent plan correction.

C. Iterative Action Corrections with VLM Evaluation

To correct the action sequences for achieving the task goal
of human videos, we incorporate an iterative feedback-driven
planning loop to refine actions based on observed execution



results and the original videos. This loop, visualized in Fig. 3,
and detailed in Algorithm 1, forms the core of our frame-
work’s ability to adapt the actions to robotic environments.

After executing the action sequence An, the robot collects
the feedback triplet fi for each executed step ain. These
feedbacks are then passed to the VLM Evaluator, which
compares the robot observation Ii and the corresponding
keyframe from the human video. The evaluator outputs
domain gap analysis and the action step similarity scores:

(Tgap, Rscore) = Feval(a
i
n, a

i+1
n , Iv, Ir). (7)

In this process, the VLM will output as the following format:

Gaps:

1. Object coherence: The objects involved are similar

(bacon and bread), but the plate and additional

objects differ.

2. Motion feasibility: The human uses hands while

the robot uses a gripper, leading to potential

differences in manipulation.

3. Sequence logic correctness: The sequence of

actions is consistent between the human and the

robot.

Score: 0.5

The LLM Replanner then takes the analysis, scores, and
an action window to replan the current step accordingly:

Acorr
i = Freplan(a

i
n, a

i+1
n , Tgap, Rscore). (8)

The corrected sub-sequences are collected into Acorr, and
translated into a new full sequence for the next iteration:

An+1 = Ftranslate(Acorr). (9)

act_trans: [

{ "action": "pick", "object": "bacon", "preposition":

"from", "location": "plate" },

{ "action": "place", "object": "bacon",

"preposition": "on", "location": "bread" },

...]

This process is repeated for a maximum of k iterations
and then the final action sequence Afinal is taken as Ak+1.

V. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed framework
in bridging the gap between human demonstrations and
robotic execution. This section presents the experimental
setup, analysis, and results across a wide range of kitchen
videos.

A. Experimental Setups

Environment and Dataset. Our robotic experiments is
conducted in the RoboCasa simulation environment [37]
using a mobile manipulator equipped with a Franka Emika
Panda arm and a pseudo suction gripper. The robot performs
task executions based on human instructions extracted from

Algorithm 1 Iterative Corrections with VLM Evaluation
Require: Video v, Initial Sequence A0 = [a00, a

1
0, a

2
0, . . . ],

Initial mapping map, Max Iterations k
Ensure: Final Action Sequence Afinal
A1 ← map(A0)
for n = 1 to k do
Acorr ← [ ]
for ain in An do

rob.exec(ain)
Iv ← fkeyframe(v)
Ir ← rob.get_obs(ti)
(Tgap, Rscore)← Feval(a

i
n, a

i+1
n ,Iv,Ir)

Acorr
i ← Freplan(a

i
n, a

i+1
n , Tgap, Rscore)

Acorr ← Acorr
⋃
Acorr

i

An+1 ← Ftranslate(Acorr)

return Afinal ← Ak+1

Fig. 4. Distribution of action verbs in the dataset. We filtered to show
actions with frequency > 0.1%. The task space is dominated by primitive
actions like pick, place, and add. This long-tail distribution reflects the
complexity of kitchen tasks and motivates our correction approach.

the YouCook dataset [36], which offers diverse cooking
demonstrations. In this work, we use 867 videos (filtered
by the available robot skill library) for our evaluation. We
further utilize fine-grained robot action annotations of the
YouCook videos from the AVBLIP-2 work [5] to support
instruction-to-execution comparisons.

Evaluation Metrics. Since ground-truth corrected action
sequences for robot execution are not available due to the
need for human annotation (which we consider as ongoing
work) and the YouCook dataset does not provide action
labels transferable to a specific robotic environment, we
adopt three evaluation metrics:

• LLM-based Judgment: We provide a large language
model (LLM) with the goal of the cooking task, such
as "prepare a pair of buns", and prompt it to judge
which action sequence better fulfills the task. The result
is denoted as:

ScoreLLM = JudgeLLM(Goal, A) (10)



Fig. 5. Action sequence before correction. This figure shows the action
sequence: pick bacon from plate, place bacon on bread, pick tomato from
plate, place tomato on bacon.

Fig. 6. Action sequence after correction (ours). This figure shows the
action sequence: pick bacon from plate, place bacon on bread, pick knife,
slice tomato, place knife, pick sliced tomato, place sliced tomato on bacon

• VLM-based Judgment: In addition to the goal de-
scription, we provide a vision-language model (VLM)
with an initial image of the robot environment (where
all necessary objects are placed on the counter). The
model then evaluates which action sequence is more
appropriate for that context:

ScoreVLM = JudgeVLM(Goal, Iinit, A) (11)

• Human Evaluation (AMT): We collect corrected ac-
tion sequences from human annotators on Amazon
Mechanical Turk (AMT) and compare them with the
model-generated sequences. The similarity is measured
using standard NLP metrics, BLEU-4, METEOR, and a
custom Task Completion Ratio (TCR), which represents
the percentage of video clips where the generated plan
matches the human-corrected sequence completely.

In addition, we qualitatively compare the textual action
sequences and visualize the robot execution results through
image snapshots to showcase the effectiveness of our frame-
work.

Implementation Details. We use GPT-4o [1] as both the
VLM and LLM agents in our framework. LanguageSAM
[38] is employed for language-guided object segmentation,
and the MLLM component leverages the AVBLIP-2 work
[5]. Robot control relies on a predefined skill library and
an operational space controller (OSC). All experiments are
conducted on an A10 GPU server.

B. Analysis of Domain Gap

To better understand the challenges of transferring human
demonstrations to robot-executable plans, we analyze the
distribution of action verbs in the YouCook dataset. As
shown in Fig. 4, the videos exhibit a wide variety of actions,

reflecting the inherent complexity of kitchen tasks. However,
due to the limitations of the robot’s skill library, we adopt
a predefined mapping strategy augmented with feedback-
driven correction and refinement to improve the robustness
of action transfer.

TABLE I
EVALUATION SCORES OF ACTION SEQUENCES BY LLM AND VLM

JUDGES

Action Sequence LLM Judge VLM Judge

A1 (before replan) 0.45 0.35
A2 (after replan) 0.67 0.65

We observe that the action distribution follows a long-
tail pattern, where a small number of primitive actions, such
as pick, place, and add, account for the majority of steps.
This distribution motivates our design: focusing on reliable
execution of high-frequency actions can already cover a large
portion of real-world tasks.

Nonetheless, we also find that execution failures still occur
even for seemingly simple actions like pick and place. These
failures often stem not from the action type itself, but from
discrepancies in object state between the video and the robot
environment (e.g., sliced vs. whole ingredients). This high-
lights the necessity of addressing object state mismatches in
order to enable accurate and robust skill transfer.

C. Effectiveness Evaluation of Feedback Loop

To further assess the effectiveness of our feedback-based
corrections, we compare the quality of action sequences
before and after iterative refinement. As shown in Table I,
we report evaluation scores from both an LLM and a VLM
acting as external judges. The original action sequence A1

is derived directly from the video demonstration without
correction, while A2 is the refined version produced by
KitchenVLA after iterative feedback and replanning.

Both the LLM and VLM judges consistently rate A2

higher than A1, indicating that our framework improves the
semantic and contextual alignment of the action plan with
the intended task. In particular, the improvement in LLM-
based scores (from 0.45 to 0.67) suggests enhanced task-
level reasoning, while the VLM-based improvement (from
0.35 to 0.65) reflects better consistency between the corrected
plan and the robot environment. These results highlight the
effectiveness of incorporating multimodal feedback to bridge
domain gaps and optimize robot actions.

D. Human Evaluation and Importance of Keyframe Quality

To evaluate the quality of action sequence generation,
Amazon Mechanical Turk (AMT) workers corrected the
action sequence generated using KitcheVLA. We evaluated
the sequence similarity between before and after the human
correction. As shown in Table III, BLEU-4, METEOR, and
Task Completion Ratio (TCR), were applied as quantitative
metrics. TCR stands for the number of the video clips
achieves 100% correct action sequence generation. VLM_IS



TABLE II
COMPARISON OF ORIGINAL AND CORRECTED ACTION SEQUENCES

Video Id Sequence Type Action Sequence

s99K_WyajB8 Original Sequence pick onion, place onion to pan

Corrected Sequence (Ours) pick onion, place onion to cutting board, pick knife, cut onion, place knife, pick onion, place onion to pan, press start

TFJ6oR89Vb8 Original Sequence pick egg from plate, add egg on pan

Corrected Sequence (Ours) pick egg from plate, crack egg into bowl, whisk egg mixture, pour egg mixture into pan

vZ7Pz9jM7zk Original Sequence pick chicken breast, place chicken breast in egg mixture

Corrected Sequence (Ours) pick chicken breast, place chicken breast in egg mixture, press chicken breast in egg mixture

Xp2HNiLabRI
Original Sequence pick butter stick from plate, place butter stick on bread, pick bread from plate, place bread on pan

Corrected Sequence (Ours) pick butter stick from plate, place butter stick on bread, pick knife from drawer, spread butter on bread,
pick bread from plate, place bread on pan, press start button on stove

8lqdPpg3w08
Original Sequence pick egg from plate, place egg on grill, pick bottled_water, add bottled_water on grill

Corrected Sequence (Ours) pick spatula, pick egg with spatula, place egg on grill, place spatula back, pick bottled_water, move_to grill,
pour bottled_water on grill, place bottled_water on table

TABLE III
QUALITY OF GENERATED ACTION SEQUENCE.

TCR: TASK COMPLETION RATIO

All Aligned

BLEU-4 METEOR TCR BLEU-4 METEOR TCR

VLM_IS 0.496 0.388 0.27 0.591 0.431 0.28

refers to our full method, where both the action step texts
and keyframe image are used for VLM-based evaluation and
correction. Although we tested 867 video clips in total, there
remained key frame selection errors. We separately evaluated
the 357 video clips where the key frame selection was correct
and the given steps were aligned with the key frame images.
The quality using the aligned key frames outperformed in
every metric. This indicates the accurate key frame selection
is essential.

E. Textual Comparison of Action Correction

To qualitatively evaluate the improvements introduced by
our correction framework, we present side-by-side compar-
isons of original and corrected action sequences in Table II.
Each example shows the output before and after feedback-
driven refinement, based on video demonstrations from the
YouCook dataset.

We observe that the corrected sequences generated by
KitchenVLA include additional actions that are necessary
for successful task execution but are missing from the
original video-derived sequences. For example, in the first
row, actions such as “pick knife from drawer”, “spread butter
on bread”, and “press start button on stove” are inserted,
reflecting both object-state awareness and task completeness.
In another example, the system automatically inserts interme-
diate steps like “place onion to cutting board”, “pick knife”,
and “cut onion”, demonstrating its capacity to reason about
physical prerequisites and proper tool usage. These results
highlight KitchenVLA’s ability to adapt high-level plans to
the robot’s operational context and resolve implicit gaps in
human instructions.

F. Visualization of Action Sequence Refinements

To visually illustrate the effectiveness of our feedback
loop, we provide a demonstration comparing the robot’s
performance in two consecutive execution loops, as shown in
Fig. 5 and Fig. 6. The first execution follows the initial action
sequence directly inferred from video demonstrations, often
leading to execution failures due to domain discrepancies.
The second execution incorporates our framework’s correc-
tions, demonstrating improved task alignment and success
rates. This comparison highlights the system’s ability to
refine robotic behavior iteratively and adapt to environment
variations.

VI. CONCLUSIONS

In this work, we proposed KitchenVLA, a vision-
language-action framework that bridges the gap between
human instructional videos and robotic execution through
object/action mapping, visual feedback, and iterative plan
refinement. By integrating VLM-based evaluation and LLM-
guided replanning, our system dynamically adapts robotic
action sequences to real-world constraints while preserving
the semantics of the original human demonstrations. Prelim-
inary results suggest the potential of KitchenVLA for robust
execution in kitchen environments.

In future work, we will extend KitchenVLA to real-world
robotic platforms and explore its generalization to other long-
horizon manipulation domains beyond kitchen environments.
We also plan to investigate more robust keyframe selection
and grounding mechanisms to further improve the reliability
of feedback-based plan correction.
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