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Abstract

We study the online contextual inventory control problem with perishable goods.
We consider a more realistic—and more challenging—setting where the demand
depends linearly on observable features (as is standard), but the (residual) noise
distribution depends non-parametrically on the features. Surprisingly, little is
known when the noise is context-dependent, which captures the heteroskedastic
uncertainty in demand that is important in inventory control. Unfortunately, the
optimal inventory quantity in this more general setting is no longer a linear function
of features (as is the case in the standard setting), making online gradient descent—
the gold standard therein—inapplicable. We first present a minimax regret lower
bound Ω(

√
dT +T

p+1
p+2 ), which characterizes the fundamental limit of this learning

problem. Here d is the feature dimension, and p ≤ d is an underlying dimension
that captures the intrinsic complexity of the noise distribution. Further, we propose
an algorithm achieves the near-optimal regret Õ(

√
dT+T

p+1
p+2 ). Additionally, under

mild regularity conditions on the noise, we can achieve the improved Õ(
√
dT +

p
√
T ) regret. To our best knowledge, our results provide the first minimax optimal

characterization for online inventory control with context-dependent noise.

1 Introduction

Inventory control under uncertain demand is a central problem in operations management. In many
real-world systems, a decision-maker (DM) must repeatedly choose inventory levels over a time
horizon, facing random demand and incurring overstocking or understocking costs [9]. A widely
used modeling approach assumes that the demand at time t takes the form Dt = θ⊤

∗ xt + ϵt, where
θ∗ ∈ Rd is an unknown parameter, xt ∈ Rd the observable features (context), and ϵt an i.i.d. random
noise independent of context [2, 3, 5]. However, to derive regret guarantees, previous results crucially
rely on that the optimal context-dependent solution is linear in the context under i.i.d. noise, allowing
them to compute the loss gradient and apply OSGD. This fails as soon as ϵt is not i.i.d.

Additionally, despite its statistical simplicity and interpretability, this linear model can fail in practice.
In many applications, the variability of demand depends strongly on the context. For example, in
e-commerce platforms, demand uncertainty can vary with user types, geographic regions, or temporal
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factors such as holidays or promotions. Such heteroskedasticity is well-documented in the empirical
inventory literature [8, 6, 7], yet this cannot be captured by the standard homoskedastic model.

To gain more insights on when the heteroskedasticity will occur, consider a natural e-commerce
setting where customer-level purchase decisions are modeled as independent Bernoulli events: at
time t, the demand arises from n independent customers, each purchasing with probability p(xt)
depending on the context xt. Then the aggregate demand Dt follows a Binomial distribution with
mean np(xt) and variance np(xt)(1− p(xt)), both of which are context-dependent. For instance, if
we consider the sales of umbrellas, when there is zero precipitation, p(xt) is close to 0 and the demand
is almost deterministic. When the precipitation level is intermediate, p(xt) can be at a constant
level, leading to an O(n) variance. Nonetheless, this simple example is not captured by the standard
demand model even if np(xt) is linear in xt, and failing to properly capture the heteroscedasticity
can lead to significant additional loss, as highlighted by the empirical studies above.

In this paper, we study online inventory control with a context-aware demand distribution, in a general
semi-parametric framework. We assume that the demand mean is linear in xt ∈ Rd, while the noise
distribution may vary with context through a lower-dimensional mapping ψ(xt) ∈ Rp. Here p ≤ d
reflects the intrinsic complexity of the distributional dependence of noise on the context. Note p = 1
in the Binomial model above. Our primary contributions are:

• We formalize the setting of online contextual inventory control with context-aware demand
distributions, and characterize the minimax regret lower bound Ω(

√
dT + T

p+1
p+2 ).

• We propose an algorithm that achieves the near-optimal regret Õ(
√
dT + T

p+1
p+2 ). Under mild

regularity conditions on noise, the regret guarantee is improved to Õ(
√
dT + p

√
T ).

2 Problem Formulation

Over a time horizon t ∈ [T ], the DM observes a context vector xt ∈ Rd and chooses an inventory
level ct ∈ [0,M ]. Then a random demand Dt ∈ [0,M ] is realized, and the DM incurs a loss:

ℓt(ct) = hE
[
(ct −Dt)

+ ∣∣xt]+ bE
[
(Dt − ct)+

∣∣xt].
At the end of each period t, any amount of overstocking perishes, and the DM observes demand
realization Dt. The DM’s objective is to minimize the cumulative loss over T periods. We assume
that the demand satisfies Dt = θ⊤

∗ xt+ ϵt, where θ∗ ∈ Rd is an unknown parameter with ∥θ∗∥2 ≤ 1,
and ϵt is a mean-zero noise. Crucially, we allow the distribution of ϵt to depend on the context xt: let
Qt(·) := Q(·; zt) denote the conditional CDF of ϵt given the context xt, where zt = ψ(xt) ∈ Rp is
a transformed feature with p ≤ d.

The transformation mapping ψ reflects the DM’s heuristic/prior on the complexity and contextual
dependencies of the noise distributions. In the worst case, the DM can choose ψ(x) = x be the
identity to incorporate arbitrary dependence on context. The better heuristic/prior the DM has,
the better bound we will obtain, since the transformed dimension p appears in T

p+1
p+2 in the regret

guarantees.
Assumption 1 (Lipschitz CDF). The noise CDF Q(u;ψ(x)) is L-Lipschitz in both u and ψ(x).
Assumption 2 (Transformed features). The transformed space ψ(X ) remains in the unit ball. Also,
with x ∼ fx, the density of ψ(x), denoted by fψ , is Lψ-Lipschitz and is upper bounded by fψ .

Besides the Lipschitzness assumptions above, we also assume stochastic contexts. However, we do
not require the density lower bound fψ(z) ≥ c > 0 nor the eigenvalue lower bound on the covariance
matrix of Fx, i.e. Ex∼Fx [xx

⊤] ⪰ λI . These assumptions are common in the literature of online
learning with contexts to guarantee uniform convergence over the entire space [1, 3, 4]. In this work,
we bypass them by showing convergence along the directions of the realized contexts.
Assumption 3 (Stochastic contexts). The contexts xt ∈ X are generated i.i.d. from an underlying
distribution with density fx. For simplicity, we assume X lies in the unit ball, i.e. ∥xt∥2 ≤ 1.

To formalize the learning objective, we compete against the optimal time-varying oracle that has
full knowledge of θ∗ and Q, i.e. the regret is defined as Reg(π) := E

[∑T
t=1 ℓt(ct)− ℓt(c∗t )

]
,
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Algorithm 1: Contextual online inventory control under context-aware noise
1 Input: Time horizon T , choice space C = [0,M ], unit costs b, h > 0, Lipschitz constant L > 0.
2 for t = 1, 2, . . . , T do
3 Observe the context vector xt ∈ Rd.
4 Solve Ridge regression with At ← I +

∑
τ<t xτx

⊤
τ and bt ←

∑
τ<tDτxτ .

5 Compute the estimator θ̂t ← A−1
t bt.

6 Estimate conditional CDF Q̂t from {(ϵτ , zτ )}τ<t and zt via the NW estimator in (1).
7 Compute the loss estimator ℓ̂t(c) as in (2) for every c ∈ C.
8 Order the inventory quantity ct ← argmaxc∈C ℓ̂t(c) and observe the realized demand Dt.
9 Compute the estimated noise term ϵt ← Dt − x⊤

t θ̂t.

where ct is the inventory decision made by the DM’s policy π, and c∗t := argminc∈[0,M ] ℓt(c) =

θ⊤
∗ xt +Q−1

(
b

b+h ;ψ(xt)
)

is the optimal decision for inventory control.

3 Main Results

3.1 Minimax Regret Lower Bound

We start by establishing a regret lower bound that demonstrates the fundamental hardness of contextual
inventory learning with context-aware noise. The inherent statistical complexity of this problem
naturally arises from two aspects: (1) the estimation of the parametric model Et[Dt] = θ⊤

∗ xt, and (2)
the non-parametric dependence of noise CDF Q on ψ(xt). We remark that the difficulty of learning
does arise from estimating θ∗ and Q, rather than the structure of ψ or fx. Indeed, our lower bound
construction will only involve a simple linear ψ and a uniform fx over a finite support.

Theorem 1 (Lower bound). When T ≥ d2, it holds that

inf
π

sup
θ∗,Q,ψ,fx

Reg(π) = Ω
(
(b+ h)M

(√
dT + T

p+1
p+2

))
,

where inf is taken over all possible policies, and sup is taken over the problem parameters that satisfy
∥θ∗∥2 ≤ 1 and Assumptions 1–3.

3.2 An Algorithm with Matching Upper Bound

Now we introduce and analyze our algorithm for contextual inventory control. At each period t, we
estimate Qt via Kernel regression and θ∗ via Ridge regression respectively. The core of our analysis
is to address the mutual dependence between these two estimations and guarantee convergence along
"high-probability directions" without strong assumptions on the density.

First, we solve the Ridge regression for θ̂t in Line 6 of Algorithm 1. The following lemma character-
izes the performance of our Ridge estimator.

Lemma 3.1. With probability at least 1− T−2, |x⊤
t θ̂t − x⊤

t θ∗| ≤ (
√
log(2T ) + 1)∥xt∥A−1

t
.

Non-parametric Regression with Measurement Errors To estimate the context-dependent CDF,
we propose to use the Nadaraya-Watson (NW) kernel regression and derive its corresponding error
bound δt: for u ∈ C and zt = ψ(xt), define

Q̂t(u; zt) :=

t−1∑
τ=1

Kat(zτ − zt)1
[
Dτ − x⊤

τ θ̂τ ≤ u
]

∑
τ<tKat(zτ − zt)

(1)

where K is a smoothing kernel (e.g. Gaussian kernel), at > 0 the bandwidth parameter, and Kat
is the rescaled kernel. Different from the standard kernel regression, we do not observe the target
quantities {ϵτ}τ<t, i.e. the noise realizations. Rather, we only have access to Dτ − x⊤

τ θ̂τ as an
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approximate measurement whose error is determined by the performance of θ̂τ . Instead of θ̂t, θ̂τ
are used for technical reasons. Let fat(z) =

1
t−1

∑
τ∈[t−1]Kat(zτ − z) be the kernel-smoothed

estimator for fψ(z).

Lemma 3.2. Under Assumptions 1–3, with probability at least 1− T−2,∣∣∣Q̂t(u; z)−Q(u; z)
∣∣∣ ≤ C0 log(T )

3
2

fat(z)

(
L
√
d/t+ t−

1
p+2

)
=: δt(z)

for every u ∈ C and z ∈ ψ(X ), with the constant C0 depends on K and fψ .

This conditional bound δt(z) is crucial to removing the density lower bound commonly required
in the literature (e.g. [4, Assumption 4.2]). Clearly, our estimation is worse and potentially broken
for new context zt with small probability. Yet since we consider the cumulative expected regret, it
turns out sufficient to achieve the optimal regret with an error bound scaling inversely with fat(zt).
To give a high-level idea, we can show fat(zt) = Θ(fψ(zt)) when fψ(zt) = Ω(L

√
d/t+ t−

1
p+2 ).

Consequently, the expected estimation error introduced by (1) at time t can be bounded by

Et[δt] ≤ C0 log(T )
3
2O

(
Pt
(
fψ(zt) = o(L

√
d/t+ t−

1
p+2 )

)
+ Et

[
(L

√
d/t+ t−

1
p+2 )/fψ(zt)

])
≤ C0 log(T )

3
2O

(
|ψ(X )|(L

√
d/t+ t−

1
p+2 )

)
.

Finally, based on the estimators Q̂t and θ̂t, we define a plug-in loss estimator for the conditional
expected loss ℓt as:

ℓ̂t(c) = h

∫ c

0

Q̂t(y − θ̂
⊤
t xt)dy + b

∫ M

c

[
1− Q̂t(y − θ̂

⊤
t xt)

]
dy. (2)

Theorem 2. Under Assumptions 1–3, with Gaussian kernel K and bandwidth at ≍ t−
1

p+2 ,

Reg(Alg 1) = O
(
(b+ h)M(L+ 1) log(T )

3
2

(√
dT + T

p+1
p+2

))
= Õ

(√
dT + T

p+1
p+2

)
.

3.3 Breaking the Curse of Dimensionality with Benign Distributions

Although the result in Theorem 2 is minimax optimal, it suffers from the curse of dimensionality due
to the term T

p+1
p+2 . This section takes inspiration from [4] and provides an arguably mild regularity

condition on fψ, under which we achieve Õ(
√
dT + p

√
T ) regret. Assumption 4 asks the Fourier

coefficients of the feature density fψ(z) and the unconditional probability Q(u; z)fψ(z) (for fixed
u ∈ [0,M ]) to decay at a fast rate.
Assumption 4. There exist constants cFT , CFT , ω > 0 such that for every v ∈ Rp and u ∈ C,

max{|T [Q(u; ·)fψ(·)](v)|, |T [fψ](v)|} ≤ CFT exp(−cFT ∥v∥ω2 )

where T [f ](v) =
∫
Rp f(z)e

−iv⊤zdz denotes the Fourier Transform of f .
Lemma 3.3. Under Assumptions 1–4, there exists an infinitely smooth kernel K such that with
probability at least 1− T−2,∣∣∣Q̂(u; z)−Q(u; z)

∣∣∣ ≤ γ′

fat(z)

(
L
√
d/t+ p/

√
t
)
=: δt(z)

for every u ∈ C and z ∈ ψ(X ), with γ′ = O
(
log(T )

p
ω log log(T )

1
2 + log(T )

3
2

)
.1

Consequently, we arrive at the following improved regret guarantee for Algorithm 1 by replacing
Lemma 3.2 with Lemma 3.3 in the analysis:

Theorem 3. Under Assumptions 1–4, it holds that Reg(Alg 1) = Õ
(√

dT + p
√
T
)

.
1We remark that this kernel K is problem-independent, while the bandwidth at uses the knowledge of the

constants cFT and ω in Assumption 4.
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