
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROTHENDIECK GRAPH NEURAL NETWORKS FRAME-
WORK: AN ALGEBRAIC PLATFORM FOR CRAFTING
TOPOLOGY-AWARE GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the structural limitations of Graph Neural Networks (GNNs), particularly
those relying on conventional neighborhoods, alternative aggregation strategies
have been explored to enhance GNN expressive power. This paper proposes a
novel approach by generalizing the concept of neighborhoods through algebraic
covers to overcome these limitations. We introduce the Grothendieck Graph Neu-
ral Networks (GGNN) framework, providing an algebraic platform for system-
atically defining and refining diverse covers for graphs. The GGNN framework
translates these covers into matrix representations, extending the scope of design-
ing GNN models by incorporating desired message-passing strategies. Based on
the GGNN framework, we propose Sieve Neural Networks (SNN), a new GNN
model that leverages the notion of sieves from category theory. SNN demonstrates
outstanding performance in experiments, particularly in differentiating between
strongly regular graphs, and exemplifies the versatility of GGNN in generating
novel architectures.

1 INTRODUCTION

Where is the birthplace of the concept of neighborhood for nodes? Does this birthplace have the po-
tential to generate other concepts as alternatives to neighborhoods to improve the expressive power
of Graph Neural Networks (GNNs)? Due to their inherited reasons, most of existing GNN methods
currently rely on neighborhoods as the foundation for message passing Gilmer et al. (2017). Several
reasons support this preference. First, neighborhoods provide comprehensive coverage of graphs,
encompassing all edges and directions, ensuring the entire graph participates in the message-passing
process. Second, working with neighborhoods is straightforward, facilitated by the adjacency ma-
trix. However, the localized perspective obtained from neighborhoods may result in shortcomings
in GNN methods, such as their limited expressive power, which is at most equivalent to that of the
Weisfeiler-Lehman (WL) test Sato (2020), Xu et al. (2019).

Extending the concept of neighborhoods or finding alternatives has been proposed as a way to ad-
dress these limitations. In this regard, the topological characteristic of graphs has motivated the
use of algebraic topology concepts. These concepts enable the examination of graphs from various
perspectives, such as dimensions, faces, and boundaries, to capture higher-order interactions Bod-
nar et al. (2021b), Bodnar et al. (2021a). Furthermore, analyzing specific patterns and subgraphs
provides the means for recognizing substructures as alternatives to neighborhoods Bouritsas et al.
(2023), Ai et al. (2022). However, since neighborhoods are derived from a precise definition rather
than a specific pattern, they cannot be represented effectively by the patterns.

We advocate that the algebraic viewpoint aligns more closely with the inherent nature of neighbor-
hoods than the patterns. In other words, neighborhoods, emerging from the connections between
edges, can be conceptualized as outcomes of an algebraic operation on edges. In this paper, we
aim to algebraically extend the concept of neighborhoods in a way that not only enhances efficiency
compared to neighborhood but also maintains simplicity of use. To this end, we explore the close
relationship between category theory MacLane (1978) and graphs. We also observe that methods
used to construct covers in category theory can serve as a schema for similar developments in graph

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

theory, where the concept of cover becomes meaningful with Grothendieck topologies MacLane &
Moerdijk (1994).

Our contributions in this paper can be summarized as follows. First, we introduce the Grothendieck
Graph Neural Networks (GGNN) framework, based on our interpretation of the Grothendieck topol-
ogy, to establish the context for defining the concept of covers for graphs, and then transforming
them into matrix forms for the message-passing process. The concept of covers in the GGNN
framework differs from the traditional view of graphs based on neighborhoods, enabling alternative
perspectives of the graph. In our proposed GGNN framework, a monoid Mod(G), generated by di-
rected subgraphs, is introduced as the birthplace for the concept of neighborhoods, providing us the
ability to generate various algebraic covers as alternatives to traditional neighborhood covers. Based
on the proposed GGNN framework, we design a novel GNN model called Sieve Neural Networks
(SNN), in which a graph G is covered by a collection of elements from Mod(G), analogous to sieves
in category theory MacLane & Moerdijk (1994).

2 GROTHENDIECK GRAPH NEURAL NETWORKS FRAMEWORK

In this section, we will move step by step to give meaning to the concept of cover for graphs and
interpret them as matrices. With this, the necessary materials will be in hand to introduce the GGNN
framework. By defining the matrix representation for a directed subgraph, we will provide a one-
to-one correspondence between them, turning it into a monoidal homomorphism by introducing
monoids generated by directed subgraphs and matrix representations. It will be proved that this
monoidal homomorphism is invariant up to isomorphism and gives an algebraic description of a
graph that will be the basis of our framework.

2.1 MATRIX REPRESENTATIONS OF DIRECTED SUBGRAPHS

This paper deals with undirected graphs; every graph has a fixed order on its set of nodes. We start
by defining directed subgraphs and their matrix representations. Let G = (V,E) be an undirected
graph with V as the set of nodes, E as the set of edges, and a fixed order on V .

Definition 2.1.1. (1) A path p from node vp1
to node vpm

is an ordered sequence
vp1

, ep1
, vp2

, ep2
, · · · , vpm−1

, epm−1
, vpm

, where epi
represents an edge connecting nodes

vpi
and vpi+1

.

(2) A directed subgraph D of G is a connected and acyclic subgraph of G in which every edge
of D has a direction.

A neighborhood is essentially a directed subgraph formed by combining directed edges leading to a
specific node, see Figure 4. Using the adjacency matrix, we can represent each neighborhood with a
matrix. In this representation, each column of the adjacency matrix corresponds to the neighborhood
of the respective node. To isolate the representation of that specific neighborhood, we set the rest of
the columns to zero. In the following definition, we expand this matrix representation to encompass
directed subgraphs as a more general concept.

Definition 2.1.2. For a directed subgraph D of G = (V,E), we define:

(1) ≤D to be a relation on V in which vi ≤D vj if, based on the directions of D, there is a
path in D starting with vi and ending at vj .

(2) the matrix representation for a directed subgraph D to be a |V | × |V | matrix in which the
entry ij is 1 if vi ≤D vj and 0 otherwise.

Proposition 2.1.1. The relation ≤D is transitive.

As stated in Definition 2.1.2, it is emphasized that a path within a directed subgraph must adhere
to the directions. Directed subgraphs, viewed as a broader concept than neighborhoods, can be re-
garded as strategies for effectively broadcasting messages within a graph (see Figure 1). These sub-
graphs establish specific paths for message propagation, offering alternatives to connections based
on neighborhoods. The matrix representation of a directed subgraph serves as a practical realization
of the directed subgraph, enabling the implementation of the strategy derived from it. Consequently,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Here are two examples of directed subgraphs, D̂ in the middle and D̄ on the right, of a
graph G on the left. X and Y are the matrix representations of D̂ and D̄ respectively. The directed
subgraphs D̂ and D̄ can be considered as strategies to broadcast the messages in the graph G, and
their matrix representations make these strategies implementable.

matrix representations can be considered as substitutes for traditional adjacency matrices. The def-
inition of matrix representation gives a map from the set of all directed subgraphs of G, denoted
by DirSub(G), to the set of |V | × |V | matrices, denoted by Mat|V |(R). Taking MatRep(G) as the
image of this map, we get the following surjective function.

Rep : DirSub(G) → MatRep(G)

The following theorem shows the uniqueness of matrix representations for directed subgraphs. So,
every directed subgraph can be determined completely by its representation.
Theorem 2.1.1. Rep is an isomorphism.

2.2 COVERING A GRAPH

While it is possible to cover a graph G with a collection of elements from DirSub(G), and their
matrix interpretation is accessible through Rep, it is important to note that DirSub(G) is relatively
small and lacks interaction among its elements. For example, the combination of D̂ and D̄, directed
subgraphs presented in Figure 1, does not constitute a directed subgraph due to the presence of
multiple paths between nodes. Consequently, its matrix interpretation does not exist, hindering its
implementation in a message-passing process. This limitation poses challenges in designing diverse
and meaningful strategies for message passing. To overcome this limitation and generate a more
comprehensive set of elements, a method for combining them is required. Aiming for a broader
space involves identifying an algebraic operation on DirSub(G). Pursuing a monoidal structure
for DirSub(G), a common approach when transforming a set into an algebraic structure, seems
appropriate. The operation

⊕
defined as follows can be a candidate. For C,D ∈ DirSub(G),

the directed multigraph C
⊕

D is formed by taking the union of the sets of nodes and the disjoint
union of the sets of directed edges. Thus, we have the commutative monoid (Mult(G),

⊕
), where

Mult(G) is defined as follows:

Mult(G) = {
k⊕

i=1

Di : for some k and D1, . . . , Dk ∈ DirSub(G)}

In a multigraph, where multiple edges can exist between two nodes, the edges traversed by a path
become crucial for specifying that path. This is why we highlight the edges between nodes in
Definition 2.1.1. Consequently, this definition of a path is applicable to multigraphs as well. The
combination of two directed subgraphs using the

⊕
operator results in an element that lacks sub-

stantial inheritance from its generators. The paths within the two generators play a limited role in
determining the paths of the resulting element. Instead, the generated element has all paths formed
by concatenating directed edges from its generators. Consequently, the

⊕
operation exhibits limited

capability to generate innovative strategies for message passing. To address this, there is a need for
an operation that demonstrates heightened sensitivity towards the paths within directed subgraphs.
The subsequent theorem introduces a monoidal operation that extends beyond

⊕
and emphasizes

the pivotal role of paths in strategy development. In this theorem and also throughout this paper, we
are influenced by category theory, choosing to use the term composition instead of concatenation
when referring to the amalgamation of two paths.
Theorem 2.2.1. Let SMult(G) = {(M,S) : M ∈ Mult(G), S ⊆ Paths(M)} and the operation •
be defined on SMult(G) as (M,S) • (N,T) = (M

⊕
N,S ⋆ T), where S ⋆ T is the union of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sets S, T , and the collection of paths constructed by the composition of paths in S followed by paths
in T . Then (SMult(G), •) is a non-commutative monoid.

Note that in the above theorem, since the directed edges of M
⊕

N are obtained from the disjoint
union of the directed edges of M and N , the sets S and T are disjoint sets of paths as the subsets
of Paths(M

⊕
N). The operation • that acts as composition in categories allows the creation of

the elements with allowed paths as desired. Non-commutativity of this operation comes from the
composition of paths in ⋆. If (M,S), (N,T) ∈ SMult(G) do not have composable paths, then
⋆ is reduced to the union of S and T , hence (M,S) • (N,T) = (N,T) • (M,S). Considering
(M,S) in SMult(G) as a strategy for message passing, a multigraph is determined by M , and S
provides information about the allowed paths in M for transferring messages. This monoid appears
to be the appropriate place to define a cover as a collection of message-passing strategies. However,
not all elements can be transformed into matrix form through an extension of Rep, and as a result,
implementing strategies becomes challenging. To address this, we focus on selecting elements that
can be transformed. By leveraging the fact that the set DirSub(G) can be embedded in SMult(G)
by associating a directed subgraph D with (D,Paths(D)), we construct a suitable monoid for our
objectives:
Definition 2.2.1. For a graph G = (V,E), we define the monoid of the directed subgraphs of G to
be the submonoid of SMult(G) generated by DirSub(G) and denote it by Mod(G).

Hence, for an object (M,S) in Mod(G), there are some directed subgraphs D1, . . . , Dk of G such
that (M,S) = D1 • · · · •Dk and so M =

⊕k
i=1 Di and S = Paths(D1) ⋆ · · · ⋆ Paths(Dk). In the

upcoming subsection, we aim to demonstrate that all elements belonging to the monoid Mod(G) can
be transformed into matrix forms through an extension of Rep. This characteristic makes the monoid
a valuable tool in achieving our goal of assigning meaning to the concept of covers for graphs. We
define a cover for a graph as follows:
Definition 2.2.2. A cover for a graph G is a collection of finitely many elements of Mod(G).

A cover, as defined, specifies a view of the graph and establishes some rules for its internal interac-
tions. Within each element of Mod(G) lies a set of allowed paths that describe a localized strategy
in transfers, and a cover as a collection of them can be seen as a collection of traffic rules. Benefiting
from •, the elements of a cover are capable of being integrated as well as interacting with each other.
We have not mentioned in the definition that a cover must coat all nodes or edges. This gives the
flexibility to select a cover suitable for a desired task.

With infinitely many elements and the noncommutative monoidal operation, Mod(G) greatly in-
creases our ability to convert different perspectives and message-passing strategies to the covers.
Also, the following theorem confirms the simplicity of making arbitrary elements and shows that
the set of all directed edges generates Mod(G), so these elements together with the monoidal op-
eration • are enough to construct suitable elements of the monoid Mod(G) to use in a cover. The
cover presented in the next section exemplifies applying this theorem. Before stating the theorem,
we show how the non-commutativity of • yields different elements by presenting a simple example.
Example 2.2.1. For directed edges d : u → v and e : v → w, the elements d • e and e • d are

distinct. While both share the same directed edges in d
⊕

e as illustrated in u
d // v

e // w ,
they differ in terms of allowed paths. d • e includes a path from u to w, whereas e • d lacks such
a path. This highlights that the order of composition matters, resulting in different sets of allowed
paths.
Theorem 2.2.2. Directed edges generate Mod(G).

2.3 MATRIX INTERPRETATION OF A COVER

In this section, our objective is to extend the morphism Rep to a monoidal homomorphism, en-
compassing Mod(G) as its domain. This extension plays a pivotal role in the GGNN framework,
transforming a cover into a collection of matrices. Since Mod(G) extends DirSub(G), we aim to
move beyond MatRep(G) and enter a broader realm where matrix transformations corresponding
to elements of Mod(G) reside. At first, we define the binary operation ◦ on Matn(R), the set of all
n× n matrices, as follows:

A ◦B = A+B +AB

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 2.3.1. (Matn(R), ◦) is a monoid.

Now we are ready to extend MatRep(G) to a monoid:
Definition 2.3.1. The monoid of matrix representations of a given graph G = (V,E) is defined to
be the submonoid of (Mat|V |(R), ◦) generated by MatRep(G), denoted by (Mom(G), ◦).

To define a monoidal homomorphism between the monoids (Mod(G), •) and (Mom(G), ◦) in such
a way that it is an extension of the morphism Rep, we need the following theorem which gives a
good explanation of the monoidal operation ◦.
Theorem 2.3.2. For A1, A2, · · · , Ak ∈ Matn(R) with k ∈ N we have:

A1 ◦A2 ◦ · · · ◦Ak =

k∑
i=1

Ai +
∑

σ∈O(k,2)

Aσ1Aσ2 + · · ·+
∑

σ∈O(k,j)

Aσ1 · · ·Aσj + · · ·+A1A2 · · ·Ak

where O(k, i) is the set of all strictly monotonically increasing sequences of i numbers of {1, · · · , k}

Now, we present the extension of Rep as a monoidal homomorphism, mapping elements of Mod(G)
to elements of Mom(G) while preserving the monoidal operations.
Theorem 2.3.3. The mapping Tr : Mod(G) −→ Mom(G)

(M,S) = D1 •D2 • · · · •Dk 7−→ A = A1 ◦A2 ◦ · · · ◦Ak

is a surjective monoidal homomorphism, where Di ∈ DirSub(G) and Ai = Rep(Di).

We refer to Tr(M,S) as the matrix transformation of (M,S). In the proof of Theorem 2.3.3, it
becomes evident that Tr functions as a path counter, assigning the number of paths in S between two
nodes vi and vj to the entry ij of the matrix Tr(M,S). This monoidal surjection interprets covers as
collections of matrices, establishing a relationship similar to that between the adjacency matrix and
neighborhoods. While our attempts to establish Tr as an isomorphism have not succeeded, its nature
as an extension of an isomorphism, coupled with its ability to characterize a graph up to isomorphism
(as we will show in the next subsection), reinforces the validity of the matrix transformations derived
from it for covers. Given the surjective nature of Tr, we have:
Corollary 2.3.1. Matrix representations of directed edges generate Mom(G).

Example 2.3.1. In Figure 1, two directed subgraphs, D̂ and D̄, of a graph G are illustrated with
their respective matrix representations, denoted as X and Y . We highlighted that these subgraphs
can be viewed as strategies for broadcasting messages within the graph. Through the operation •,
we can combine them to form new strategies, D̂•D̄ and D̄•D̂. Utilizing the matrix transformations
obtained via Tr, we can implement these combined strategies for the message-passing process.

Tr(D̂ • D̄) = Tr(D̂) ◦ Tr(D̄) = X ◦ Y and Tr(D̄ • D̂) = Tr(D̄) ◦ Tr(D̂) = Y ◦X

2.4 ALGEBRAIC DESCRIPTION OF A GRAPH

So far, for an arbitrary graph, two monoids and a monoidal homomorphism between them have
been presented. The question that arises now is how much these monoidal structures can describe a
graph. To answer this question, some preliminaries are needed. We define a special type of linear
isomorphism between vector space of matrices. A matrix A ∈ Matn(R) is actually a linear trans-
formation from Rn to itself. Reordering the standard basis of Rn changes the matrix representation
of the linear transformation in such a way that it will be obtained by reordering rows and columns
of matrix A. These actions change the indices of entries of A; so a change in the order of the stan-
dard basis of Rn gives a linear isomorphism from Matn(R) to itself. We call this kind of linear
isomorphism a Change-of-Order mapping, see Example B.0.1. The Change-of-Order mappings
are compatible with the monoidal structure of Matn(R) as shown in the following proposition:
Proposition 2.4.1. Suppose f : Matn(R) → Matn(R) is a Change-of-Order mapping. Then f
preserves ◦, matrix multiplication and element-wise multiplication.

Now, we want to investigate the effect of two isomorphic graphs on their corresponding monoidal
structures and vice versa. A graph isomorphism f : G → H is a change in the chosen order of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the nodes. So it induces a Change-of-Order mapping CO(f) : Mat|VG|(R) → Mat|VH |(R). The
following theorem shows that isomorphic graphs have isomorphic monoidal structures described in
Theorem 2.3.3.

Theorem 2.4.1. Every graph isomorphism f : G → H induces monoidal isomorphisms Mod(f) :
Mod(G) −→ Mod(H) and Mom(f) : Mom(G) → Mom(H) such that the Diagram 1 is commu-
tative, where ι represents the inclusions.

Mod(G)
TrG //

Mod(f)

��

Mom(G)

Mom(f)

��

ι // Mat|VG|(R)

CO(f)

��
Mod(H)

TrH

// Mom(H)
ι
// Mat|VH |(R)

(1)

The converse of Theorem 2.4.1 can be stated as follows:

Theorem 2.4.2. Suppose G and H are two graphs with |VG| = |VH | = n, and f : Matn(R) →
Matn(R) is a Change-of-Order mapping. If the restriction of f to Mom(G) yields an isomorphism
to Mom(H), then G and H are isomorphic.

2.5 DEFINITION OF THE GGNN FRAMEWORK

Theorems 2.4.1 and 2.4.2 lay the foundation for our framework. These theorems establish that
graphs G and H are isomorphic if and only if the vertical homomorphisms in Diagram 1 are isomor-
phisms. This crucially implies that altering the node order in a graph induces isomorphic changes in
both a cover and its matrix interpretation. Thus, the horizontal homomorphisms in Diagram 1 serve
as a complete determination of graphs, providing algebraic descriptions for them. Leveraging this
diagram, we define the GGNN framework as follows:

Definition 2.5.1. The Grothendieck Graph Neural Networks framework for a graph G = (V,E) is
defined to be the algebraic description:

Mod(G)
Tr // Mom(G)

ι // Mat|V |(R) (2)

The GGNN framework introduces various actions for creating, translating, and enriching a cover.
Mod(G) offers multiple choices of covers, serving as alternatives for cover of neighborhoods. The
transformation Tr converts these covers into collections of matrices, and, with the mapping ι, these
collections are transported to a larger space, providing an opportunity to enrich them using elements
of Mat|V |(R) and the allowed operation presented in Proposition 2.4.1. For more details see D. As
promised, the following theorem demonstrates that the GGNN framework can indeed be considered
the birthplace of neighborhoods:

Theorem 2.5.1. The collection of neighborhoods, which forms the basis for MPNNs, constitutes a
cover in the context of the GGNN framework and can be transformed into an adjacency matrix.

The GGNN framework provides the ability to create a cover through a precise definition that can
be applied to any arbitrary graph, similar to the definition of neighborhoods. In the next section,
we illustrate this capability by presenting a cover constructed using the precise definition of certain
elements of Mod(G).

3 SIEVE NEURAL NETWORK, A MODEL BASED ON GGNN FRAMEWORK

Based on the concept of sieves in category theory, we will introduce a GNN model, called Sieve
Neural Networks (SNN), which will be constructed in the GGNN framework. In this model, each
node spreads its roots in the graph like a growing seed and tries to feed itself through these roots.
We mean this story by creating appropriate elements of Mod(G) for a graph G and considering their
collection as a cover for the graph. The connections resulting from this cover provide various ways
for message passing between nodes that lead to a knowledge of the graph topology. In the following,
we explain the process of creating the desired cover and introduce the model based on them.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Left: A graph G. Middle: Sieve(v, 3) = D3(v) • D2(v) • D1(v) for v ∈ G. Directed
edges in yellow, red and black specify D1(v), D2(v) and D3(v) recpectively. Right: A graph H .
CoSieve(u, 1) • Sieve(v, 2) as an element of Mod(H) determines the ways of establishing contact
between u and v in SNN(α, (1, 2))

3.1 CONSTRUCTING THE MODEL

Generating the desired elements of Mod(G): For node v, we create the sets Mk(v) as follows:

∗ N0(v) = {v}, M0 = ∅
∗ N1(v) = N(v), its neighborhood, M1(v) = {w → u : wu ∈ E,w ∈ N1(v), u ∈ N0(v)}
∗ and inductively for k ∈ N,

Nk(v) =
⋃

u∈Nk−1(v)

N(u)−
k−1⋃
i=0

Ni(v), Mk(v) = {w → u : wu ∈ E,w ∈ Nk(v), u ∈ Nk−1(v)}

The directed edges in Mi(v) are not composable. Therefore, disregarding the order and non-
commutativity of •, we define Di(v) := •e

e∈Mi(v)
and utilizing them to generate the elements

Sieve(v, k) := Dk(v) •Dk−1(v) • · · · •D1(v) •D0(v)

of Mod(G) in which D0(v) is the identity of Mod(G), see Figure 2. Obviously there is some k0
such that Mk0

̸= ∅ and ∅ = Mk0+1 = Mk0+2 = · · · . Then Sieve(v, k0) = Sieve(v, k0 + 1) = · · ·
We denote the element Sieve(v, k0) by Sieve(v,−1). To construct the opposite of Sieve(v, k), we
define Mop

i (v) as the set containing the edges in Mi(v) with the opposite directions. We then create
Dop

i (v) := •e
e∈M

op
i

(v)
. This results in new elements of Mod(G):

CoSieve(v, l) := Dop
0 (v) •Dop

1 (v) • · · · •Dop
l−1(v) •D

op
l (v)

.

The Cover of Sieves: So far, for a graph G, the following elements of Mod(G) have been selected
for every node v. Our desired cover for a graph G is the collection containing all these elements for
all nodes in G and we call it the cover of sieves.

Sieve(v, 0),Sieve(v, 1), · · · ,Sieve(v,−1) and CoSieve(v, 0),CoSieve(v, 1), · · · ,CoSieve(v,−1)

Matrix Interpretation of The Cover of Sieves: The mapping Tr gives the matrix interpretation of
the cover of sieves, transforming it into a collection of elements of Mom(G), denoted as follows:

Image(v, k) := Tr(Sieve(v, k)), CoImage(v, l) := Tr(CoSieve(v, l))

Since Tr is a monoidal homomorphism, Image(v, k) can be expressed as follows, providing insight
into its computational procedure:

Image(v, k) = Tr(Sieve(v, k)) = Tr(Dk(v) •Dk−1(v) • · · · •D0(v))

= Tr(Dk(v)) ◦ Tr(Dk−1(v)) ◦ · · · ◦ Tr(D0(v))
(3)

Therefore, to calculate Image(v, k), it is necessary to transform Di(v) into matrix form. As we
mentioned, directed edges in Mi(v) are not composable. Then Tr(e)Tr(c) = Tr(c)Tr(e) = 0 for
e, c ∈ Mi(v). Theorem 2.3.2 implies:

Tr(Di(v)) = Tr(•e
e∈Mi(v)

) = ◦Tr(e)
e∈Mi(v)

=
∑

e∈Mi(v)

Tr(e)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

So obtaining Tr(Di(v)) is achievable from the adjacency matrix of G based on the definition of Mi.
It is easy to verify that CoImage(v, l) is the transpose of Image(v, l). Therefore, computing one of
them is enough.

Building The Model: Based on the cover of sieves and its matrix interpretation, we present our
model, SNN, with varying levels of complexity as follows:

The version SNN(α, (l, k)): In the α version of SNN, Sieve(v, k) is considered as a receiver and
CoSieve(v, l) as a sender for a node v. For nodes vi and vj , the ways to transmit information from vi
to vj are the allowed paths from vi to vj in CoSieve(vi, l)•Sieve(vj , k) see Figure 2. The number of
these paths is ij entry of CoImage(vi, l) ◦ Image(vj , k). By dividing this number by the product of
the summation of entries in the i-th row of CoImage(vi, l) and the summation of entries in the j-th
column of Image(vj , k), we obtain the ratio of established paths between vi and vj to the maximum
expected paths. The matrix resulting from performing this process for all is and js is the output of
SNN(α, (l, k)) for graph G. The division step is a way for preserving additional information from
CoSieve(vi, l) • Sieve(vj , k) in the model’s output. Omitting this step results in denoting the model
as SNNo(α, (l, k)).

The version SNN(β, (l1, · · · , lt)): In the β version of SNN, we leverage Matn(R) by mapping the
collection of Images and CoImages into it. Here, additional operations become available, and we
choose summation. For li, if i is odd, we denote by Sui the summation (over nodes) of all matrices
CoImage(v, li) and if i is even, Sui is the summation of all matrices Image(v, li). Ultimately, the
matrix Su1 ◦ · · · ◦ Sut represents the output of SNN(β, (l1, · · · , lt)) for graph G.

With versions α and β of SNN, two approaches are introduced for integrating matrices from the
matrix interpretation of the cover of sieves to form a unified matrix. Utilizing the relationship
CoImage(vi, l) = Image(vi, l)

tr, we derive CoImage(vi, l) ◦ Image(vj , k) = (CoImage(vj , k) ◦
Image(vi, l))

tr. Consequently, the output of SNN(α, (l, k)) is the transpose of the output of
SNN(α, (k, l)). This symmetry implies that the output of SNN(α, (l, l)) is symmetric as well. How-
ever, this symmetry doesn’t hold for SNN(α, (l, k)) when l ̸= k (see Example B.0.2), and as a result,
the outputs of SNN(α, (l, k)) and SNN(α, (k, l)) may differ in general. Nonetheless, a comparative
analysis allows us to conclude that SNN(α, (l′, k′)) can capture more paths than SNN(α, (l, k)) if
l ≤ l′ and k ≤ k′.

Version β of SNN is designed to offer a more comprehensive representation of the cover of sieves.
The collection {Sieve(v, li)} (or {CoSieve(v, li)}) forms a subcover within the cover of sieves.
The matrix Sui can be seen as an interpretation of this subcover, representing all allowed paths
for the elements within it. By the element Su1 ◦ · · · ◦ Sut, we obtain a matrix that interprets a
specific combination of these subcovers. This resulting matrix represents the paths formed by the
composition of allowed paths from the mentioned subcovers, providing a distinct interpretation of
the cover of sieves.

The output of SNN can be viewed as a weighted graph representation, suitable as input for various
GNN methods that involve message passing. This implies that any GNN can leverage the cover
of sieves instead of the traditional cover of neighborhoods. The following theorem establishes the
invariance of SNN, highlighting its efficiency for utilization in graph classification tasks.

Theorem 3.1.1. SNN is invariant.

SNN in Practice: Most of the time, GNNs deal with featured graphs. In the case of SNN, Equation
3 is the point to incorporate edge features. For a featured graph G = (V,E, F) with edge features in
Rm, replacing 1s with the corresponding edge features in Tr(Di(v)) yields a matrix where entries
are sourced from m-dimensional vectors. Through the update operation ◦, employing element-wise
summation and multiplication for m-dimensional vectors, SNN acquires the ability to deal with
featured graphs. Additionally, by multiplying Tr(Di(v))s by a constant γ ∈ (0, 1], the model can be
enhanced in a manner that is sensitive to the length of paths.

3.2 COMPARING WITH MPNN

For a node v, its neighborhood can be described by the element Sieve(v, 1). Consequently,
SNNo(α, (0, 1)) and SNNo(α, (1, 0)) correspond to the adjacency matrix, signifying their utiliza-
tion of neighborhoods for message passing. This is equivalent to MPNNs. Hence, SNN can be

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Accuracy on TUD datasets. The top three are highlighted by First, Second, Third. ⋆Graph
Kernel Methods

Dataset MUTAG PTC NCI1 IMDB-B IMDB-M
WL kernel⋆ Shervashidze et al. (2011) 90.4±5.7 59.9±4.3 86.0±1.8 73.8±3.9 50.9±3.8

GNTK⋆ Du et al. (2019) 90.0±8.5 67.9±6.9 84.2±1.5 76.9±3.6 52.8±4.6
GIN Xu et al. (2019) 89.4±5.6 64.6±7.0 82.7±1.7 75.1±5.1 52.3±2.8

PPGNs Maron et al. (2019) 90.6±8.7 66.2±6.6 83.2±1.1 73.0±5.8 50.5±3.6
GSN Bouritsas et al. (2023) 92.2±7.5 68.2±7.2 83.5±2 77.8±3.3 54.3±3.3

TL-GNN Ai et al. (2022) 95.7±3.4 74.4±4.8 83.0±2.1 79.7±1.9 55.1±3.2
SIN Bodnar et al. (2021b) N/A N/A 82.8 ± 2.2 75.6 ± 3.2 52.5 ± 3.0
CIN Bodnar et al. (2021a) 92.7 ± 6.1 68.2 ± 5.6 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1

SNN 96.11±3.3 77.3±4.1 83.6±1.2 80.5±3 54.53±2.23

considered as a generalization of MPNNs. In Example B.0.2, two graphs are considered that MPNN
can not distinguish, yet SNN can. This example illustrates how a shift in perspective, resulting from
a change in cover, reveals the topological properties of graphs.

3.3 COMPLEXITY

According to Equation 3, Image(v, k) can be computed by executing k iterations matrix multiplica-
tion and summation. Consequently, the time complexity of it for all nodes is O(kn4 + kn3) where
n is the number of nodes. Assume l ≤ k. Equation 3 implies:

Image(v, k) = Tr(Dk(v)) ◦ · · · ◦ Tr(Dl+1(v)) ◦ Image(v, l)

Therefore in the process of computing Image(v, k), we simultaneously obtain Image(v, l) for all
l ≤ k. As previously mentioned, CoImage(v, l) is the transpose of Image(v, l). Consequently,
in computation of SNN(α, (l, k)), the time complexity of all Image(v, k) and CoImage(v, l) is
O(kn4 + kn3 + n3). The operations ◦ between Images and CoImages contributes n4 + n3 to the
complexity, resulting in O((k+1)n4 + kn3 +2n3). Then the time complexity of SNN(α, (l, k)) is
O(n4). For version β of the model, set l0 = Max(l1, · · · , lt). The time complexity of Image(v, l0)
for all nodes is O(l0n

4+l0n
3). Similar to version α, computing CoImages adds (t/2)n3 to the com-

plexity. Additionally computing Suis and Su1 ◦Su2 ◦ · · · ◦Sut adds 2tn3 + tn2 to the complexity,
resulting in O(l0n

4 + (l0 + (5/2)t)n3 + tn2) for time complexity. Therefore, the time complexity
of SNN(β, (l1, · · · , lt)) is O(n4). If the adjacency matrix is sparse, both cases can be reduced to
O(|E| · |V |2) by leveraging sparse matrix operations.

3.4 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of SNN across various datasets. In the
first experiment, we assess SNN’s capability to differentiate between graphs, providing a practical
benchmark against the WL test. In this experiment, we employ robust versions β of the model. In
the second experiment, we extend the evaluation to classical datasets designed for graph classifi-
cation. Here, considering the potential risk of overfitting, we adopt version α levels of the model
that are slightly more potent than MPNN to ensure a smooth performance in the experiment. These
experiments demonstrate the flexibility of SNN in handling diverse tasks and datasets.

SR: To assess the discriminative capability of SNN in identifying non-isomorphic graphs,
we utilized all the publicly available collections of Strongly Regular graphs accessible at
http://users.cecs.anu.edu.au/ bdm/data/graphs.html. Strongly Regular graphs pose challenges for
graph isomorphism, given that the 3-WL test fails to conclusively differentiate pairs of such graphs
Bodnar et al. (2021b). As SNN is invariant, our focus lies on the model’s outputs for graphs. In
this experiment, where overfitting is not discussed, we employed a potent level of SNN. By apply-
ing SNN(β, (−1,−1,−1)) to graphs within each collection and computing Mean and Var on the
output matrices and their diagonals, a 4-dimensional vector associated with each graph is obtained,
forming an embedding. Given SNN’s invariance, isomorphic graphs share identical embeddings.
Our observations reveal that the model can effectively differentiate between all graphs within each
collection.

CSL: We also evaluate SNN on the Circular Skip Link dataset (CSL) as a benchmark to assess the
expressivity of GNNs Murphy et al. (2019), Dwivedi et al. (2023). CSL comprises 150 4-regular

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

graphs categorized into 10 different isomorphism classes. Applying SNN(β, (−1)) to graphs in the
dataset, we compute Sum on the resulting matrices, forming a function. Due to SNN’s invariance,
isomorphic graphs yield the same value. Our observations reveal that this variant of SNN success-
fully distinguishes the 10 different isomorphism classes, with graphs within the same class sharing
identical values.

TUD datasets: We evaluate SNN on five datasets: MUTAG, PTC, NCI1, IMDB-B, and IMDB-M
from the TUD benchmarks, comparing against various GNNs and Graph Kernels. For all datasets
except NCI1, we employ SNN(α, (1, 1)). Recognizing the need for a more complex version for
NCI1, we utilize SNN(α, (1, 2)). Both versions of SNN are slightly more potent than MPNN,
equivalent to SNN(α, (0, 1)). For datasets MUTAG and PTC, which have edge features, we replace
1s with the corresponding edge features in Tr(Di(v)), and in all cases, we enhance SNN by multi-
plying Tr(Di(v)) by the constant γ = 0.5 to increase sensitivity to the length of paths. We treat the
output of SNN as a weighted graph for datasets lacking edge features and an edge-featured graph for
datasets with edge features. We utilize GNN operators GraphConv and GINEConv provided by
PyTorch Geometric Fey & Lenssen (2019), based on GNNs introduced in Morris et al. (2019) and
Hu et al. (2020), respectively. Tenfold cross-validation is performed. In Table 1, we report the accu-
racies and compare them against a collection of Graph Kernels and GNNs. The results demonstrate
that SNN has achieved good performance across this diverse set of datasets.

4 RELATED WORK

The research on improving Message Passing Neural Networks (MPNNs) in Graph Neural Networks
(GNNs) focuses on enhancing the neighborhood-based message-passing process. Various methods
aim to either transform the graph representation or augment node and substructure information to
increase MPNN expressiveness. Gilmer et al. (2017) proposes that classical GNN methods can be
unified under MPNNs. Many follow-up works aim to expand beyond simple neighborhood-based
interactions. In Gasteiger et al. (2021), Directed Line Graphs (DirMPNN) replace the original graph
with a directed line graph where nodes represent directed edges, enhancing message-passing accu-
racy. Ai et al. (2022) introduces Topology-aware GNNs (TLGNN), which use an additional visual-
ization graph to capture structural features, enabling more informed message passing. In Bouritsas
et al. (2023), Graph Substructure Networks (GSNs) analyze specific graph patterns to add structure-
based features, while Feng et al. (2022a) introduces KerGNNs that use graph filters, inspired by
convolutional neural networks, to capture local subgraphs for more precise node feature updates.
Methods like You et al. (2021) and Feng et al. (2022b) focus on improving node representations by
considering extended neighborhoods and ego networks, with the latter introducing new kernel-based
methods for K-hop neighbor aggregation. Vignac et al. (2020) enhances node features by incorpo-
rating local context matrices that reflect a node’s surrounding topology, improving tasks like cycle
detection. The method in Papp et al. (2021) introduces random node removal with low probability,
running MPNNs on slightly altered graphs to propagate results and preserve graph topology. These
methods demonstrate varied strategies for making MPNNs more expressive and capable of capturing
complex graph topologies.

5 CONCLUSION

In this paper, the concept of cover for graphs is defined as an algebraic extension of neighborhoods,
and a novel framework is introduced that paves the way for the design of various models for GNN
based on the desired cover. An algebraic platform for transforming the covers into collections of
matrices adds to the simplicity of the framework’s designed models. Also, based on this framework,
we build a novel model for GNN, which makes working with the framework clearer, in addition to
good results in experiments. Looking ahead, our future work aims to delve deeper into the power
and potential applications of the GGNN framework. We plan to conduct a more comprehensive
theoretical comparison between SNN and the Weisfeiler-Lehman test.

REFERENCES

Xing Ai, Chengyu Sun, Zhihong Zhang, and Edwin R. Hancock. Two-level graph neural network.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14, 2022. doi: 10.1109/

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

TNNLS.2022.3144343.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 2625–2640. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lió, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial net-
works. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
1026–1037. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/
bodnar21a.html.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph ker-
nels. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023. URL http://jmlr.org/papers/v24/22-0567.html.

Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. Kergnns: Interpretable
graph neural networks with graph kernels. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(6):6614–6622, Jun. 2022a. doi: 10.1609/aaai.v36i6.20615. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/20615.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How pow-
erful are k-hop message passing graph neural networks. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 4776–4790. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Johannes Gasteiger, Chandan Yeshwanth, and Stephan Günnemann. Directional message
passing on molecular graphs via synthetic coordinates. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 15421–15433. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neu-
ral message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 1263–1272. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/gilmer17a.html.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2020.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.mlr.press/v139/bodnar21a.html
https://proceedings.mlr.press/v139/bodnar21a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf
http://jmlr.org/papers/v24/22-0567.html
https://ojs.aaai.org/index.php/AAAI/article/view/20615
https://ojs.aaai.org/index.php/AAAI/article/view/20615
https://proceedings.neurips.cc/paper_files/paper/2022/file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas W. Hungerford. Algebra. Springer New York, NY, 1980.

Saunders MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer, 2nd edition, 1978. doi: 10.1007/978-1-4757-4721-8.

Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to
Topos Theory. Universitext. Springer, 1994. doi: 10.1007/978-1-4612-0927-0.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural net-
works. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–4609, Jul.
2019. doi: 10.1609/aaai.v33i01.33014602. URL https://ojs.aaai.org/index.php/
AAAI/article/view/4384.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4663–4673. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/murphy19a.html.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Ran-
dom dropouts increase the expressiveness of graph neural networks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 21997–22009. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):
2539–2561, 2011. URL http://jmlr.org/papers/v12/shervashidze11a.html.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equiv-
ariant graph neural networks with structural message-passing. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 14143–14155. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10737–10745,
May 2021. doi: 10.1609/aaai.v35i12.17283. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17283.

A DEFINITIONS

The definition of a monoid is as follows Hungerford (1980):
Definition A.0.1. A monoid is a non-empty set M together with a binary operation · on M which

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://proceedings.mlr.press/v97/murphy19a.html
https://proceedings.mlr.press/v97/murphy19a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf
http://jmlr.org/papers/v12/shervashidze11a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://ojs.aaai.org/index.php/AAAI/article/view/17283
https://ojs.aaai.org/index.php/AAAI/article/view/17283

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

1) is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ M and

2) contains identity element e ∈ M such that a · e = e · a = a

If, for all a, b ∈ M, the operation satisfies a · b = b · a, then we say that M is a commutative monoid.

B EXAMPLES

Example B.0.1. Considering a Change-of-Order mapping f : Mat3(R) → Mat3(R), obtained by
reordering the standard basis {e1, e2, e3} to the basis {e3, e2, e1}. For a given matrix A, we get the
matrix f(A) as follows:

A 7−→ f(A)

(e1 e2 e3
e1 a11 a12 a13
e2 a21 a22 a23
e3 a31 a32 a33

)
�f :e1↔e3//

(e3 e2 e1
e3 a33 a32 a31
e2 a23 a22 a21
e1 a13 a12 a11

)

Example B.0.2. The graphs in Figure 3 are not distinguishable by MPNN Sato (2020) because they
are locally the same. Applying SNNo(α, (1, 1)), a level of version α of SNN that is slightly more

Figure 3: The graph G, the left one, and H , the right one, are not distinguishable by MPNN

potent than MPNN, we get the following symmetric matrices X and Y for G and H respectively as
the outputs of the model for these graphs.

X =

2 2 1 2 2 0
2 3 2 2 2 2
1 2 2 0 2 2
2 2 0 2 2 1
2 2 2 2 3 2
0 2 2 1 2 2

Y =

2 3 1 0 3 0
3 3 2 1 3 1
1 2 3 3 1 3
0 1 3 2 0 3
3 3 1 0 2 0
0 1 3 3 0 2

The entry ij in these matrices corresponds to the count of paths between nodes vi and vj in
CoSieve(vi, 1) • Sieve(vj , 1) and wi and wj in CoSieve(wi, 1) • Sieve(wj , 1). The disparity be-
tween these matrices highlights the differences between the graphs. This dissimilarity becomes
more apparent when applying the set function Var, while Sum and Mean yield identical values.
When SNNo(α, (1, 2)), a more complex level of SNN, is applied, we obtain the following nonsym-
metric matrices, denoted as Z and W , for graphs G and H . Applying all three set functions results
in distinct outputs, further emphasizing the dissimilarity between the graphs.

Z =

2 4 2 4 4 3
5 3 5 4 6 4
2 4 2 3 4 4
4 4 3 2 4 2
4 6 4 5 3 5
3 4 4 2 4 2

W =

2 3 3 1 3 1
4 3 4 2 4 2
2 4 3 4 2 4
1 3 3 2 1 3
3 3 3 1 2 1
1 3 3 3 1 2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREMS

C.1 PROOF OF PROPOSITION 2.1.1

Proof. Let vi ≤D vj and vj ≤D vk, so there are paths in D from vi to vj and vj to vk; hence the
concatenation of these paths is a path in D from vi to vk and then vi ≤D vk.

C.2 PROOF OF THEOREM 2.1.1

Proof. Since Rep is surjective, it suffices to demonstrate that Rep is also injective, meaning that if
Rep(D) = Rep(D′), then D = D′. According to the matrix representation definition, ≤D=≤D′ .
For an edge vi

e // vj in D, it implies vi ≤D vj , and consequently, vi ≤D′ vj . Suppose

vi
e // vj is not a directed edge in D′. In that case, there must be a path in D′ traversing a node

vk different from vi and vj . This implies vi ≤D′ vk and vk ≤D′ vj , and consequently, vi ≤D vk and
vk ≤D vj . Thus, there is a path in D from vi to vj traversing vk. However, this path is distinct from

vi
e // vj , contradicting the definition of directed subgraphs. Therefore, e is a directed edge in

D′. Similarly, we can demonstrate that every edge in D′ also belongs to D with the same direction.
Thus, D = D′.

C.3 PROOF OF THEOREM 2.2.1

Proof. The empty graph is its identity element, and the associativity of • comes from the associa-
tivity of the composition of paths. The non-commutativity is explained in Example 2.2.1.

C.4 PROOF OF THEOREM 2.2.2

Proof. Since directed subgraphs, together with the operation • generate the monoid Mod(G), we
just need to show that every directed subgraph can be formed by its directed edges using the opera-
tion •. We will prove this by induction based on the number of edges. Let D be a directed subgraph
of G. There is nothing to prove if D has just one directed edge. Suppose the number of edges in
D is m, and the statement is true for every directed subgraph with edges less than m; Our task is to
show that the statement holds for D as well.

Let VD be the set of nodes of D. According to Theorem 2.1.1, (VD,≤D) can be seen as a partially
ordered set, implying the existence of maximal elements. A node is considered maximal if it is not
the starting point of any path. Now, let v be a maximal node; we choose a directed edge w

e // v
in D and remove it. The following three situations may occur:

1) producing one directed subgraph D′: D and D′⊕ e have the same directed edges. Since v
is maximal, the paths of D that pass e have this directed edge as their terminal edge. Then

Paths(D) = Paths(D′) ⋆ e

This follows D = D′ • e. Based on the assumption, D′ can be created by its edges. Then,
the statement is true for D.

2) producing two components where one of them is an isolated node, and the other one is a
directed subgraph D′: in this case, we first remove the isolated node and then, similar to
the first case, we conclude that the statement is true for D.

3) producing two directed subgraphs D′ and D′′ where w ∈ D′ and v ∈ D′′: obviously D
and D′⊕ e

⊕
D′′ have the same directed edges. With an argument similar to the first part,

the maximality of v implies
Paths(D) = Paths(D′) ⋆ {e} ⋆ Paths(D′′)

and then D = D′ • e •D′′. Now, by the assumption that D′ and D′′ can be created by their
edges, the statement is true for D.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.5 PROOF OF THEOREM 2.3.1

Proof. Since the summation and multiplication of matrices are associative, the operation ◦ is asso-
ciative. The zero matrix is the identity element of Matn(R) with respect to ◦.

C.6 PROOF OF THEOREM 2.3.2

Proof. We prove the statement by induction on k. For k = 2, there is nothing to prove, which is
clear from the definition. Let the statement be true for k; We will show it is true for k + 1. The
associativity of ◦ and the induction hypothesis imply:

A1 ◦A2 ◦ · · · ◦Ak ◦Ak+1 = (A1 ◦A2 ◦ · · · ◦Ak) ◦Ak+1 =

(A1 ◦A2 ◦ · · · ◦Ak) +Ak+1 + (A1 ◦A2 ◦ · · · ◦Ak)Ak+1 =
k∑

i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1A2 · · ·Ak+

Ak+1+

(
k∑

i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1 · · ·Ak)Ak+1

=

k+1∑
i=1

Ai + (

k∑
i=1

AiAk+1 +
∑

σ∈O(k,2)

Aσ1
Aσ2

) + · · ·+

(
∑

σ∈O(k,j−1)

Aσ1
· · ·Aσj−1

Ak+1 +
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

)+

· · ·+A1 · · ·AkAk+1 =
k+1∑
i=1

Ai +
∑

σ∈O(k+1,2)

Aσ1
Aσ2

+ · · ·+
∑

σ∈O(k+1,j)

Aσ1
· · ·Aσj

+

· · ·+A1A2 · · ·AkAk+1

Therefore the statement is true for k + 1.

C.7 PROOF OF THEOREM 2.3.3

Proof. Considering that S = Paths(D1) ⋆ · · · ⋆Paths(Dk), let p = p0p1 · · · pm ∈ S be a path from
vi to vj that is obtained by composition of subpaths p0 ∈ Paths(Di0), · · · , pm ∈ Paths(Dim) and
1 ≤ i0 ≨ · · · ≨ im ≤ k. The number of all such paths from vi to vj equals the ij entry of the
matrix (Ai0 · · ·Aim) that is a summand of A as explained in Theorem 2.3.2. So the number of all
paths from vi to vj in S equals the ij entry of A. Therefore, the definition of Tr just depends on S
and is independent of the choice of Dis. Then Tr is well-defined. Based on the definition, Tr is a
monoidal homomorphism.

Suppose B ∈ Mom(G), then there are some matrix representations B1, · · · , Bl in MatRep(G) such
that B = B1◦· · ·◦Bl. Since Rep is an isomorphism, there exist some directed subgraphs C1, · · · , Cl

such that Rep(Ci) = Bi. Now, by choosing C = C1 • · · · • Cl, we obtain Tr(C) = B, establishing
that Tr is surjective.

C.8 PROOF OF PROPOSITION 2.4.1

Proof. As we explained, f changes the order of rows and columns. Thus, it preserves element-wise
and matrix multiplications. Since f is also linear, we have

f(A ◦B) = f(A+B +AB)

= f(A) + f(B) + f(AB)

= f(A) + f(B) + f(A)f(B)

= f(A) ◦ f(B)

and then f preserves the operation ◦ and this property establishes f as a monoidal isomorphism.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.9 PROOF OF THEOREM 2.4.1

Proof. Since f is a change in the order, it induces bijections DirSub(f) and MatRep(f) such that
Diagram 4 commutes.

DirSub(G)
Rep //

DirSub(f)

��

MatRep(G)

MatRep(f)

��
DirSub(H)

Rep
// MatRep(H)

(4)

Also, f induces monoidal isomorphism SMult(f) : SMult(G) → SMult(H) that sends (M,S) 7→
(f(M), f(S)). According to the commutativity of the squares in Diagram 5, isomorphisms
Mod(f) : Mod(G) → Mod(H) and Mom(f) : Mom(G) → Mom(H) can be obtained by re-
stricting SMult(f) to Mod(G) and CO(f) to Mom(G).

DirSub(G)
DirSub(f)//

��

DirSub(H)

��
SMult(G)

SMult(f)
// SMult(H)

MatRep(G)
MatRep(f)//

��

MatRep(H)

��
Mat|VG|(R)

CO(f)
// Mat|VH |(R)

(5)

The commutativity of the right square in Diagram 1 directly follows from the definition of Mom(f).
As illustrated in Diagram 4, the left square in Diagram 1 is shown to be commutative for the gener-
ators of monoids, establishing the commutativity of this square.

C.10 PROOF OF THEOREM 2.4.2

Proof. We begin by demonstrating that f establishes a one-to-one correspondence between the
edges of G and H . It is evident that a matrix with a single non-zero entry in either Mom(G) or
Mom(H) corresponds to a matrix transformation of an element in Mod(G) or Mod(H), respec-
tively, each representing a single directed edge.

For an edge vi vj in G, let e be the directed edge vi → vj ∈ Mod(G); then A = TrG(e) has
one non-zero entry, and since f is a linear isomorphism, f(A) has one non-zero entry, and, based
on the assumption, it belongs to Mom(H). So f(A) is a matrix transformation of a directed edge
c : uk → ul in Mod(H). Similarly, let B ∈ Mom(G) be the matrix transformation of e′ : vj → vi
and then f(B) ∈ Mom(H) is a matrix transformation of some directed edge c′ : ul′ → uk′ in
Mod(H). Since e can be followed by e′, e • e′ has three paths. This implies TrG(e • e′) has three
non-zero entries. On the other hand, TrG(e • e′) = TrG(e) ◦ TrG(e

′) = A ◦ B = A + B + AB;
then AB ̸= 0 and consequently f(A)f(B) = f(AB) ̸= 0. The equation

TrH(c • c′) = TrH(c) ◦ TrH(c′)

= f(A) ◦ f(B)

= f(A) + f(B) + f(A)f(B)

says that the matrix transformation corresponding to c • c′ has three non-zero entries and so c • c′

contains three paths. Then c must be followed by c′ and this yields ul = ul′ . Similarly, uk = uk′

can be shown. Therefore, f gives a one-to-one mapping between the edges of G and H .

To prove the correspondence between the nodes of two graphs, let vx be a node in G, connected
to vi in which j ̸= x and C and f(C) be the matrix transformations of a : vi → vx ∈ Mod(G)
and b : uy → uz ∈ Mod(H), respectively. Since e′ is followed by a in Mod(G), with the same
reasoning as above, c′ must be followed by b in Mod(H) and this means uk = uy . So f also
gives a one-to-one mapping between nodes of graphs compatible with edges. Then, G and H are
isomorphic.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.11 PROOF OF THEOREM 2.5.1

The role of neighborhoods in MPNN is like a sink such that messages move to the center of the sink.
For a node vk with neighborhood Nk containing vk1

, vk2
, · · · , vkm

, we depict this sink in Figure 4
by denoting directed edge from vki

to vk by ei : vki
→ vk. This sink can be considered as a directed

Figure 4: Visualizing a neighborhood by representing it as a directed subgraph

subgraph. As an element of Mod(G), it can be represented as follows:

Sk = e1 • e2 • · · · • em
Since the directed edges ei and ej appearing in Sk are not composable, we observe ei • ej =
ej • ei, rendering the order in Sk unimportant. The cover obtained by Sks is exactly the cover of
the neighborhoods. Let Tk = Tr(Sk) and Ai = Tr(ei). Thus Ai has 1 in the entry kik and 0 for all
other entries. The matrix transformation of ei • ej has just two non-zero entries and Tr(ei • ej) =
Ai +Aj +AiAj . Then AiAj = 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ m. Theorem 2.3.2 implies

Tk = Tr(Sk) = A1 ◦A2 ◦ · · · ◦Am

= A1 +A2 + · · ·+Am

As a result, the column k of Tk aligns with the column k of the adjacency matrix of graph G, while
the remaining columns are filled with zeros. Transforming the cover {Sk} yields a collection of
|V | matrices, each containing a single column from the adjacency matrix. In the GGNN framework,
summation is an allowed operation, enabling the construction of the adjacency matrix by performing
the summation on this matrix collection. Hence, neighborhoods can function as a cover within the
framework of GGNN, with the adjacency matrix serving as an interpretation of this cover.

C.12 PROOF OF THEOREM 3.1.1

Proof. Since the definition of sets Mi(v)s is based on the neighborhoods, for a graph isomorphism
f : G → H , f(Mi(v)) = Mi(f(v)). This follows Mod(f)(Di(v)) = Di(f(v)). Since Mod(f) is
a monoidal homomorphism, we get:

Mod(f)(Sieve(v, k)) = Mod(f)(Dk(v) • · · · •D0(v))

= Mod(f)(Dk(v)) • · · · •Mod(f)(D0(v))

= Dk(f(v)) • · · · •D0(f(v))

= Sieve(f(v), k)

Based on Theorem 2.4.1, Mom(f)(Image(v, k)) = Image(f(v), k). Also, CO(f) preserves the rest
of the computations in the algorithm, so SNN is invariant.

D EXPLANATION FOR CONSTRUCTING A MODEL IN GGNN FRAMEWORK

The process of designing a GNN model within this framework is outlined as follows:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1) For a given graph G, the process involves selecting a collection CG of elements from
Mod(G) to serve as a cover for G. These elements can be generated using DirSub(G)
and the binary operation •. Notably, Theorem 2.2.2 ensures the ability to create any suit-
able and desired elements by leveraging directed edges and the operator •.

2) Next, the chosen cover is transformed into a collection of matrices within Mom(G). During
this transformation, the operation ◦ and other elements of Mom(G) can be employed to
convert the original collection into a new one. The resulting output at this stage is denoted
by AG.

3) By utilizing ι, the collection obtained in the second stage transitions into a larger and more
equipped space, a suitable environment for enrichment. This stage leverages all the opera-
tions outlined in Proposition 2.4.1 to complete the model’s design. Following the process-
ing of AG in this stage, we obtain a new collection of matrices denoted by MG, represent-
ing the model’s output.

Hence, a model is a mapping that associates a collection of matrices MG with a given graph G.
MG plays a role akin to the adjacency matrix and provides an interpretation of the chosen cover
for use in various forms of message passing. While the second and third stages can be merged, we
prefer to emphasize the significance of Tr in this process.

This construction of a model is appropriate for tasks such as node classification. For graph classifica-
tion, we need an invariant construction. Based on Theorem 2.4.1, a graph isomorphism f : G → H
transform the triple (CG,AG,MG) to a triple (C′

H ,A′
H ,M′

H) for graph H and this may be dif-
ferent from (CH ,AH ,MH). So a model constructed in the GGNN framework is invariant if for
every graph isomorphism f : G → H , the maps Mod(f), Mom(f) and CO(f) induce one-to-one
correspondences between CG and CH , AG and AH , and MG and MH , respectively. The model
SNN is an example of an invariant model.

18

	Introduction
	Grothendieck Graph Neural Networks Framework
	Matrix Representations of Directed Subgraphs
	Covering a Graph
	Matrix Interpretation of a Cover
	Algebraic Description of a Graph
	Definition of the GGNN Framework

	Sieve Neural Network, A model Based on GGNN framework
	Constructing the model
	Comparing with MPNN
	Complexity
	Experiments

	Related Work
	Conclusion
	Definitions
	Examples
	Proof of Theorems
	Proof of Proposition 2.1.1
	Proof of Theorem 2.1.1
	Proof of Theorem 2.2.1
	Proof of Theorem 2.2.2
	Proof of Theorem 2.3.1
	Proof of Theorem 2.3.2
	Proof of Theorem 2.3.3
	Proof of Proposition 2.4.1
	Proof of Theorem 2.4.1
	Proof of Theorem 2.4.2
	Proof of Theorem 2.5.1
	Proof of Theorem 3.1.1

	Explanation for constructing a model in GGNN framework

