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ABSTRACT

Despite the urgent need for high bio-activity peptides in novel biomedical ther-
apies, the de novo design of such peptides, especially those with dual targets,
remains an unsolved challenge. Here, we introduce ORIDTP, a few-shot active
learning pipeline that integrates in silico peptide generation with in vitro experi-
mental feedback for de novo design of both single-target and dual-target peptides
with high bio-activity. ORIDTP involves single-target or dual-target oriented pep-
tide de novo generation, binding affinity maturation, and iterative reinforcement of
bio-activity based on wet-laboratory feedback. Using ORIDTP, we successfully
designed high bio-activity peptides targeting GLP-1R after four iterative rounds,
achieving EC50 (half maximal effective concentration) values ranging from 35.1
pM to 8.1 pM, which outperform the natural peptide with the highest known bio-
activity of 40.8 pM. Furthermore, ORIDTP successfully designed de novo dual-
target peptides for activating GLP-1R (EC50 values ranging from 53.4 pM to 8.2
pM) and GCGR (EC50 values ranging from 0.82 nM to 0.21 nM) after four itera-
tive rounds. The best dual-target peptide outperformed two natural peptides with
the highest known bio-activity for their respective target proteins (8.2 pM versus
40.8 pM for GLP-1R, and 0.24 nM versus 1.4 nM for GCGR). ORIDTP represents
a significant advancement in the rapid and effective design of dual-target peptides
for therapeutic applications.

1 INTRODUCTION

Dual-target peptides, capable of simultaneously interacting with two distinct therapeutic target pro-
teins to yield additive or synergistic effects (Liu et al. (2024)), present a promising avenue for the
development of novel therapeutics for complex diseases, such as cancers (Zha et al. (2021)) and
chronic conditions (Pan et al. (2021)). The ability to engineer dual-target peptide binders exhibit-
ing high bio-activity for diverse dual-target systems opens up numerous diagnostic and therapeutic
opportunities. Traditionally, the development of dual-target peptides necessitates a comprehensive
understanding of the biological characteristics and binding sites of both target proteins, coupled
with extensive experimental assessments (Muttenthaler et al. (2021)). This process is not only time-
consuming, costly, and labor-intensive, but also requires substantial expertise from practitioners.
More importantly, it poses a challenge to concurrently achieve high bio-activity against both target
proteins, even when dual-target peptides are successfully developed.

Recent advancements in de novo design of protein binders (Cao et al. (2022); Vázquez Torres et al.
(2024)), such as RFdiffusion (Watson et al. (2023)), have significantly facilitated the development of
de novo protein-binding peptide design (Wang et al. (2023); Chen et al. (2024); Wang et al. (2024)).
While existing methods have shown promising results in the design of novel peptide binders, they
often overlook the improvement of peptide bio-activity, hampering the development of peptides they
designed as medicines. In contrast, recent studies that integrate computational generation with ex-
perimental feedback have successfully developed promising mutated enzymes and antibodies (Jiang
et al. (2024)), inspiring us to explore new strategies for the de novo design of peptides with high
bio-activity. However, the aforementioned methods have limitations when directly applied to de
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novo design of dual-target peptide. Unlike single-target peptides that only necessitate consideration
of a single optimization direction, dual-target peptides require simultaneous consideration of two
different target proteins to achieve high bio-activity for both. This presents a greater challenge due
to the extreme scarcity of dual-target peptide data and the complexity of optimization directions.

We reasoned that an effective iterative feedback algorithm, oriented towards dual targets, could sig-
nificantly enhance model optimization and facilitate the continuous improvement of the biological
activity of generated peptides for both target proteins. We developed ORIDTP, a dual-target-oriented
few-shot active learning pipeline that integrates in silico generation with in vitro experiments for de
novo design for high bio-activity peptides targeting dual targets. The effectiveness of ORIDTP in
designing de novo high bio-activity peptide binders for both single and dual target proteins has been
demonstrated through in vitro experiments.

2 FEW-SHOT ACTIVE LEARNING FOR de novo PEPTIDE DESIGN

ORIDTP is a few-shot active learning pipeline that combines a target-guided diffusion model for
de novo peptide generation, a reinforcement learning model for affinity maturation, and an affinity
model for peptide candidate screening. As shown in Figure 1a, in each round of single-target peptide
design, ORIDTP actively selects the most promising candidates for experimental determination. The
measured results are subsequently fed back into the models to refine the single-target bio-activity
landscape, facilitating the next round for peptide evolution aimed at the single protein. As shown in
Figure 1b, in each round of dual-target peptide design, ORIDTP selects the candidates that show the
greatest potential for both target proteins for experimental validation. The results for both targets
are then fed back into the models to enhance the dual-target bio-activity landscape, guiding the next
round for peptide evolution targeting dual proteins.

3 RESULTS

Iterative de novo design of high bio-activity single-target peptides. We first designed de novo
peptide binders targeting a single protein. We selected glucagon-like peptide-1 receptor (GLP-1R)
as our target protein due to its significant role in glucose metabolism and its therapeutic potential
in the treatment of type 2 diabetes and obesity (Fujita et al. (2014)). Upon activation by agonists,
GLP-1R promotes the synthesis and release of insulin, thereby lowering blood glucose in the human
body. In each round, we employed ORIDTP for de novo peptide generation, affinity maturation,
and candidate screening. ORIDTP actively selected the most promising peptides for experimental
testing. Top 15 peptides were selected for synthesis and experimental validation in each round. The
bio-activity was assessed by the median effect concentration (EC50).

In the first round, five peptides exhibited sub-nanomolar biological activity with EC50 values rang-
ing from 276.2 nM to 101.3 nM (Figure 2a, colored blue). The best peptide (GA-Single.R1.S5) in
this round demonstrated a promising performance (EC50 = 101.3 nM, Figure 2b, colored blue). In
the second round, five of selected peptides exhibited increased biological activity, with EC50 values
ranging from 3.3 nM to 198.7 pM (Figure 2a, colored green). The best peptide in this round, GA-
Single.R2.S5, exhibited an impressive EC50 of 198.7 pM (Figure 2b, colored green). In the third
round, four peptides achieved further enhancement in biological activity, with EC50 values ranging
from 80.3 pM to 44.6 pM (Figure 2a, colored pink). Notably, the best-performing peptide in this
round, GA-Single.R3.S4, exhibited biological activity (EC50 = 44.6 pM, Figure 2b, colored pink)
comparable to that of the known strongest natural peptide, GLP-1 (EC50 = 40.8 pM, Figure 2b,
colored gray). This promising results motivated us to proceed to the next iteration, aiming to design
de novo peptides with bio-activity surpassing that of natural peptides. Remarkably, in the fourth
round, four peptides demonstrated increased biological activity, all outperforming the natural pep-
tide GLP-1, with EC50 values ranging from 35.1 pM to 8.1 pM (Figure 2a, colored red). The best
peptide, GA-Single.R4.S4, exhibited an extraordinarily high biological activity (EC50 = 8.1 pM,
Figure 2b, colored red). The significant improvement demonstrated the effectiveness of ORIDTP in
de novo design of high bio-activity single-target peptides by leveraging wet-lab feedback.

Iterative de novo design of high bio-activity dual-target peptides. After demonstrating ORIDTP’s
ability to design high bio-activity single-target peptides, we sought to explore its potential to design
dual-target peptides. Building open the successful design of peptides targeting GLP-1R, we selected

2



Published at the GEM workshop, ICLR 2025

Figure 1: ORIDTP is a few-shot active learning pipeline that integrates in silico generation with in
vitro experiments for de novo design of single-target peptides and dual-target peptides. a) ORIDTP
consists of a target-guided diffusion model (TPDiffusion) for de novo peptide generation, a rein-
forcement learning model for peptide affinity maturation, and an affinity model for peptide screen-
ing. Experimental results of the selected peptides are fed back into the models to learn the bio-
activity landscape, leading to the next round of iteration. b) To effectively design dual-target pep-
tides, ORIDTP employs a dual-target oriented peptide generation, reinforcement, and screening.

the glucagon receptor (GCGR) as another target (Zhang et al. (2018)). The simultaneous modulation
of both GLP-1R and GCGR could yield synergistic effects, enhancing therapeutic outcomes for
conditions such as type 2 diabetes and obesity (Campbell et al. (2023)). In each round, we employed
ORIDTP for dual-target-oriented de novo peptide generation, affinity maturation, and candidate
screening. ORIDTP actively selected the most promising peptides in simultaneous activating GCGR
and GLP-1R. Top 15 peptides were selected for synthesis and experimental validation in each round.
The bio-activity targeting GCGR and GLP-1R was assessed by EC50.

In the first round, three peptides demonstrated effective simultaneous activation of both GCGR and
GLP-1R. The EC50 values for activating GCGR ranged from 29.9 nM to 6.5 nM (Figure 3a left,
colored blue), while the EC50 values for GLP-1R ranged from 276.5 pM to 102.0 pM (Figure 3a
right, colored blue). Despite the demonstrated bio-activity of these peptides against both GLP-1R
and GCGR, their activities were lower than those of the known strongest natural peptides for each
target. Specifically, Glucagon, which targets GCGR, has an EC50 of 1.4 nM (Figure 3b left), while
GLP-1, which targets GLP-1R, has an EC50 of 40.8 pM (Figure 3b right). This indicates that design-
ing de novo dual-target peptides capable of simultaneously binding both proteins while maintaining
high bio-activity is challenging. In the second round, five peptides exhibited increased biological
activity. The EC50 values for activating GCGR ranged from 4.6 nM to 1.5 nM (Figure 3a left, col-
ored green), while the EC50 values for GLP-1R ranged from 355.3 pM to 60.7 pM (Figure 3a right,
colored green). Notably, several dual-target peptides in this round demonstrated comparable efficacy
to their single-target natural peptides. For instance, GA-Dual.R2.S1 showed comparable activity to
Glucagon in activating GCGR (1.5 nM verse 1.4 nM), while GA-Dual R2.S5 exhibited comparable
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Figure 2: De novo iterative design and characterization of high bio-activity peptides in activat-
ing GLP-1R using ORIDTP. a, In four rounds of iterative design, each round generates peptides
that exhibit higher biological activity against GLP-1R than those from the previous round. The de
novo designed peptides with the highest bio-activity in rounds 1, 2, 3, and 4 have EC50 values of
101.3 nM, 198.7 pM, 44.6 pM, and 8.1 pM, respectively. In the fourth round, four peptides demon-
strated activities ranging from 35.1 pM to 8.1 pM, all of which outperform the known strongest nat-
ural peptide, GLP-1 (EC50: 40.8 pM). b, Activity profile the first evolved peptide GA-Single.R1.S5
(EC50: 101.3 nM, colored blue), the second evolved peptide GA-Single.R2.S5 (EC50: 198.7 pM,
colored green), the third evolved peptide GA-Single.R3.S4 (EC50: 44.6 pM, colored pink), the
fourth evolved peptide GA-Single.R4.S4 (EC50: 8.1 pM, colored red), and the natural peptide GLP-
1 (EC50: 40.8 pM, colored gray) over HEK293 cells stably expressing GLP-1R and CRE-luciferase.

activity to GLP-1 in activating GLP-1R (60.7 pM verse 40.8 pM, Figure 3b right). In the third
round, five of selected peptides achieved further enhancements in biological activity. The EC50

values for activating GCGR ranged from 1.05 nM to 0.28 nM (Figure 3a left, colored pink), while
the EC50 values for GLP-1R ranged from 228.4 pM to 44.0 pM (Figure 3a right, colored pink).
Among these, the best-performing peptide, GA-Dual.R3.S3, not only demonstrated comparable ef-
ficacy to GLP-1 in activating GLP-1R (44.0 pM verse 40.8 pM, Figure 3b right), but also exhibited
higher bio-activity in activating GCGR compared to Glucagon (0.32 nM verse 1.4 nM, Figure 3b
left). These promising results motivated us to pursue the next iteration to design a dual-target pep-
tide with higher bio-activity than both GLP-1 and Glucagon. Remarkably, in the fourth round,
three peptides, GA-Dual.R4.S2, GA-Dual.R4.S3, and GA-Dual.R4.S4, achieved this challenging
goal (Figure 3a, colored by red). In particular, GA-Dual.R4.S4 demonstrated an EC50 of 8.2 pM
for targeting GLP-1R (Figure 3b right, colored red), which is a 5.0-fold increase in activity than
GLP-1. Meanwhile, it exhibited an EC50 of 0.24 nM for targeting GCGR (Figure 3b left, colored
red), representing a 5.8-fold increase in activity compared to Glucagon. These findings highlight the
potential of GA-Dual.R4.S2, GA-Dual.R4.S3, and GA-Dual.R4.S4 as prime candidates for dual-
target therapeutic applications, as both effectively combines the desirable properties of both natural
peptides while enhancing their individual activities. The above observations not only demonstrate
the effectiveness of ORIDTP in designing de novo dual-target peptides with high biological activity,
but also highlight ORIDTP’s ability to continuously improve the bio-activity of designed peptides
through wet-laboratory feedback and iterative refinement.

4 DISCUSSION

Here, we have developed ORIDTP, an innovative few-shot active learning pipeline that combines
computational peptide design and wet-laboratory feedback to design high bio-activity peptides for
single targets or dual targets. ORIDTP is composed of a target-guided diffusion model for de
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Figure 3: De novo iterative design of dual-target peptides with high bio-activity in activating
GLP-1R and GCGR using ORIDTP. a, In four rounds of dual-target-oriented iterative design,
each round generated peptides that exhibited increased biological activity targeting both receptors
compared to the previous round. The known strongest natural peptides targeting GLP-1R and GCGR
are GLP-1 (EC50: 40.8 pM) and Glucagon (EC50: 1.4 nM), respectively. In the third round, GA-
Dual.R3.S3 demonstrated an activation effect on GLP-1R comparable to that of GLP-1 (44.0 pM
verse 40.8 pM), while it activated GCGR more effectively than Glucagon (0.32 nM verse 1.4 nM).
In the fourth round, three peptides, including GA-Dual.R4.S2 (EC50: 0.82 nM for GCGR and 18.3
pM for GLP-1R), GA-Dual.R4.S3 (EC50: 0.21 nM for GCGR and 21.7 pM for GLP-1R), and GA-
Dual.R4.S4 (EC50: 0.24 nM for GCGR and 8.2 pM for GLP-1R), exhibited higher bio-activities
in activating GCGR and GLP-1R compared to their natural counterparts. b, Activity profile of the
first evolved peptide GA-Dual.R1.S1 (EC50: 17.6 nM for GCGR and 0.18 nM for GLP-1R, colored
blue), the second evolved peptide GA-Dual.R2.S5 (EC50: 4.6 nM for GCGR and 60.7 pM for GLP-
1R, colored green), the third evolved peptide GA-Dual.R3.S3 (EC50: 0.32 nM for GCGR and 44.0
pM for GLP-1R, colored pink), and the fourth evolved peptide GA-Dual.R4.S4 (EC50: 0.24 nM for
GCGR and 8.2 pM for GLP-1R, colored red) in activating GCGR (left) and GLP1R (right).

novo peptide generation, a reinforcement learning model for affinity maturation, and a geometric
graph model for candidate screening. During each iterative round, ORIDTP actively selected the
most promising peptides for experimental validation, the results of which were then fed back into
ORIDTP for optimization, facilitating the next round of iteration. Using ORIDTP, we successfully
designed high bio-activity peptides that activate GLP-1R. After three iterative rounds, ORIDTP was
able to design de novo peptides with bio-activity comparable to that of the most potent known natural
peptide, GLP-1 (44.6 pM verse 40.8 pM). Remarkably, after four iterative rounds, ORIDTP designed
novel peptides that outperform the bio-activity of GLP-1, with EC50 ranging from 35.1 pM to 8.1
pM. This demonstrates the significant potential of ORIDTP in the rapid and efficient design of highly
bioactive peptides for therapeutic applications. Moreover, after four rounds of dual-target-oriented
iterations, we successfully designed high bio-activity dual-target peptides, capable of simultaneously
activating GLP-1R and GCGR. In comparison to the strongest known natural peptides for each re-
spective target, two de novo designed dual-target peptides demonstrated superior bio-activity. The
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most promising peptide GA-Dual.R4.S4 demonstrated an EC50 of 8.2 pM for GLP-1R, which is
5.0-fold increase in activity than GLP-1. Meanwhile, it exhibited an EC50 of 0.24 nM for GCGR,
representing a 5.8-fold increase in activity compared to Glucagon. We anticipate ORIDTP will fa-
cilitate the rapid design of high bio-activity single-target and dual-target peptides, accelerating the
development of peptides for a wide range of functional applications.
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