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ABSTRACT

In this paper, we aim to study how to build a strong instance segmenter with min-
imal training time and GPUs, as opposed to the majority of current approaches
that pursue more accurate instance segmenter by building more advanced frame-
works at the cost of longer training time and higher GPU requirements. To achieve
this, we introduce a simple and general framework, termed Mask Frozen-DETR,
which can convert any existing DETR-based object detection model into a power-
ful instance segmentation model. Our method only requires training an additional
lightweight mask network that predicts instance masks within the bounding boxes
given by a frozen DETR-based object detector. Remarkably, our method outper-
forms the state-of-the-art instance segmentation method Mask DINO in terms of
performance on the COCO test-dev split (55.3% vs. 54.7%) while being over
10× times faster to train. Furthermore, all of our experiments can be trained using
only one Tesla V100 GPU with 16 GB of memory, demonstrating the significant
efficiency of our proposed framework.

1 INTRODUCTION
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Figure 1: Illustrating the comparison results with Mask2Former and Mask DINO on COCO instance segmen-
tation task. (a) our Mask Frozen-DETR outperforms the previous SOTA Mask DINO by +0.6%. (b) our Mask
Frozen-DETR speeds up the training by more than 10× times compared to Mask DINO.

Instance segmentation is one of the most fundamental but difficult computer vision tasks requiring
pixel-level localization and recognition in the given input image. Most advances in modern image
instance segmentation methods are heavily influenced by the latest state-of-the-art 2D object detec-
tion systems. For example, two representative leading instance segmentation approaches, including
Cascade Mask R-CNN (Cai & Vasconcelos, 2019) and Mask DINO (Li et al., 2022), are built by
adding a parallel segmentation branch to the strong object detection systems, specifically Cascade
R-CNN (Cai & Vasconcelos, 2018) and DINO (Zhang et al., 2022).

Despite the convergence of deep neural network architectures between object detection and instance
segmentation, most existing efforts still need independent training based on supervision signals of
different granularity, i.e., bounding boxes vs. instance masks. Training modern instance segmenta-
tion models from scratch is resource-intensive and time-consuming. For example, Using ResNet-
50 (He et al., 2016) and Swin-L (Liu et al., 2021) as backbone networks, Mask2Former (Cheng
et al., 2022a) requires over 500× and 1700× V100 GPU hours for training, respectively.

We show that the existing DETR-based object detection models can be efficiently converted into
strong instance segmentation models, unlike the previous efforts that train the instance segmen-
tation models from scratch. We start from the recent powerful 2D object detection models, i.e.,
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(a) DETR-based object detection framework

(b) DETR-based instance segmentation framework

(c) Our approach: Mask Frozen-DETR

Figure 2: Illustrating the overall pipelines of DETR-based object detectors (1-st row), instance segmenters
(2-ed row) based on DETR, and the proposed approach. Instead of training the instance segmentation models
from scratch, we propose a Mask Frozen-DETR that uses a frozen DETR-based object detector to generate the
bounding boxes and then trains a mask head to produce instance segmentation masks.

H-DETR (Jia et al., 2022) and DINO-DETR (Zhang et al., 2022). We propose two key innova-
tions: (i) design a light-weight instance segmentation network that effectively uses the output of
a frozen DETR-based object detector, including the object query and the encoder feature map, to
predict instance masks, and (ii) demonstrate the high training efficiency of our approach compared
to the previous state-of-the-art instance segmentation approaches while achieving competitive per-
formance under different model scales.

We conduct comprehensive comparison experiments on the COCO (Lin et al., 2014) instance seg-
mentation benchmark to verify the effectiveness of our approach. Our approach achieves strong
results with a very short learning time. For instance, with only 6× training epochs, our approach
slightly surpasses the state-of-the-art method Mask DINO. Remarkably, the entire training process
of our approach takes less than 140× GPU hours, while Mask DINO takes nearly 1600× GPU
hours. Consequently, our approach improves the training efficiency by more than 10×. We hope
our simple approach can enable broader research communities to contribute to advancing stronger
instance segmentation models.

2 RELATED WORK

Object Detection. Object detection is a fundamental research area that has produced a lot of excel-
lent work, such as Faster R-CNN (Ren et al., 2015), Cascade R-CNN (Cai & Vasconcelos, 2018),
YOLO (Redmon et al., 2016), DETR (Carion et al., 2020), and Deformable DETR (Zhu et al., 2020).
Recently, most of the exciting progress in object detection mainly comes from the developments of
various DETR-based approaches, including DINO-DETR (Zhang et al., 2022) and H-DETR (Jia
et al., 2022). The current state-of-the-art methods (Wang et al., 2022; Lin et al., 2023; Ma et al.,
2023; Liang et al., 2022; He et al., 2022) are also built based on them. In general, we can easily
access the weights of many DETR-based object detection models as most of them are open-sourced.
We show that our approach can be extended to these modern DETR-based detectors easily and
achieves strong performance while being more than 10× faster to train by exploiting the off-the-
shelf pre-trained weights on object detection tasks.

Instance Segmentation. Instance segmentation is a computer vision task that requires an algo-
rithm to assign a pixel-level or point-level mask with a category label for each instance of interest
in an image, video or point cloud. Most existing methods follow the R-CNN (Girshick et al., 2014)
paradigm, which first detects objects and then segments them. For example, Mask R-CNN (He et al.,
2017) extends Faster R-CNN (Ren et al., 2015) with a fully convolutional mask head, Casacde Mask
R-CNN combines Casacde R-CNN (Cai & Vasconcelos, 2018) with Mask R-CNN, and HTC (Chen
et al., 2019) improves the performance with interleaved execution and mask information flow. Some
recent methods propose more concise designs such as SOLO (Wang et al., 2020) that segments
objects by locations without bounding boxes or embedding learning, QueryInst (Fang et al., 2021)
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that performs end-to-end instance segmentation based on Sparse RCNN (Sun et al., 2021), Mask-
Former (Cheng et al., 2021b) and Mask2Former(Cheng et al., 2022a) that use a simple mask classi-
fication based on DETR (Carion et al., 2020), and Mask-DINO (Li et al., 2022) that extends DINO
by adding a mask prediction branch which supports all image segmentation tasks using query em-
beddings and pixel embeddings. Moreover, the very recent Mask3D (Schult et al., 2022) and SP-
Former (Sun et al., 2022) have built state-of-the-art 3D instance segmentation systems following the
design of Mask2Former.

Discussion. Most of the existing efforts train the instance segmentation models from scratch without
using the off-the-shelf object detection model weights, thus requiring very expensive training. Our
approach uses the weights of frozen DETR-based models and introduces a very efficient instance
segmentation head design with high training efficiency. Figure 2 illustrates the differences between
the existing methods and our approach. For example, the very recent state-of-the-art Mask DINO
is trained from scratch while we simply freeze the existing object detector and train a very light
instance mask decoder. We empirically show the great advantages of our approach on the COCO
instance segmentation task with experiments under various settings. Notably, our approach sets new
records on the challenging COCO instance segmentation task while accerating the training speed by
more than 10×.

3 OUR APPROACH

3.1 BASELINE SETUP
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Figure 3: Mask Frozen-DETR baseline: both RoIAlign and
MaskHead are non-parametric operations.

We use a strong object detec-
tor H-DETR+ResNet50 with
AP=52.2 as our baseline for the
following ablation experiments
and report the results based on
stronger H-DETR+Swin-L and
DINO-DETR+FocalNet-L for the
system-level comparisons. The
entire H-DETR+ResNet50 model
is pre-trained on Object365 (Shao
et al., 2019) and then fine-tuned on
COCO for higher performance.

To build a simple baseline for in-
stance segmentation without extra
training, we first sort the object
queries output by the last Trans-
former decoder layer of the object de-
tection model according to the decreasing order of their classification scores, and select the top ∼100
object queries for mask prediction. Then we multiply the object queries {qi|qi ∈ Rd}Ni=1 and the
image features F ∈ R HW

16 ×d at 1/4-resolution to get the instance segmentation masks as follows:

F = C1 + interpolate(E),

Mi = interpolate(reshape(Sigmoid(qiF
⊤))),

(1)

where C1 ∈ R HW
16 ×d represents the feature map output by the first stage of the backbone. E ∈

R HW
64 ×d represents the 1/8-resolution feature map from the Transformer encoder. H, W, and d rep-

resent the image height, image width, and feature hidden dimension, respectively. Mi ∈ RHW

represents the final predicted probability mask with the same resolution as the input image.

Next, we compute the confidence scores that reflect the quality of masks following:

si = ci ×
sum(Mi[Mi > 0.5])

sum([Mi > 0.5])
, (2)

where ci represents the classification score associated with the i-th object query predicted by the last
Transformer decoder layer of the object detection model.
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Table 1: Effect of each factor within our baseline that requires no training. RoIAlign: use RoIAlign to
pool the region features according to the predicted boxes. 1/4 feat.: fuse the 1/4-resolution feature maps output
by the stage-1 of backbone with the up-sampled 1/4-resolution feature maps output by the Transformer encoder.
We use ▲ to mark the additional increased number of parameters and FLOPs in all the following tables.

RoIAlign 1/4 feat. #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

✗ ✗ 1.49 G 0.0 M 0.0 0.1 0.0 0.0 0.0 0.1
✓ ✗ 0.53 G 0.0 M 4.4 14.8 1.3 2.7 4.6 7.5
✗ ✓ 1.50 G 0.0 M 0.0 0.1 0.0 0.0 0.0 0.1
✓ ✓ 0.54 G 0.0 M 5.1 17.0 1.5 3.2 4.9 8.4

We illustrate the modifications when using RoIAlign operation (He et al., 2017) as follows. Instead
of using the entire image features F ∈ R HW

16 ×d, we use the RoIAlign to gather the region feature
maps located within the predicted bounding boxes:

Ri = reshape(RoIAlign(reshape(F),bi)), (3)

where Ri ∈ Rhw×d, bi represents the predicted bounding box of qi. We set h and w as 32 by
default. Then we compute the instance segmentation masks as follows:

Mr
i = paste(interpolate(reshape(Sigmoid(qiR

⊤
i )))), (4)

where we first reshape and interpolate the predicted regional instance masks to be the same size
as the real bounding box size in the original image and then paste the resized ones to an empty
instance mask of the same size as the original image. We compute the confidence scores based on
Mr

i following a similar manner. We illustrate the overall pipeline in Figure 3

Results. Table 1 shows the comparison results on the effect of fusing the 1/4-resolution feature maps
output by the first stage of the backbone and using the RoIAlign to constrain the computation focus
only within the predicted bounding boxes. According to the reported results, we find that directly
multiplying the object queries with the image feature maps performs very poorly, i.e., the best setting
achieves a mask AP score 5.1%. Notably, we also report the additional increased computational cost
and number of parameters in all ablation experiments by default.

Figure 4: Coarse instance segmentation with the Mask frozen-
DETR baseline. We visualize the predicted probability maps and
the color indicates the confidence scores: red for high and blue for
low.

We aim to make minimal modifica-
tions to boost the segmentation per-
formance based on the above base-
line setting. We show how to im-
prove the system from three main
aspects, including image feature en-
coder design, box region feature en-
coder design, and query feature en-
coder design, in the following discus-
sions. We conduct all the following
ablation experiments by freezing the
entire object detection network and

only fine-tuning the additional introduced parameters for ∼6 epochs on COCO instance segmen-
tation task.

Experiment Setup. We use AdamW (Loshchilov & Hutter, 2017) optimizer with an initial learning
rate 1.5 × 10−4, β1 = 0.9, β2 = 0.999 and a weight decay of 5 × 10−5 is employed. We train
the models for 88, 500 iterations (i.e. 6 epochs), and divide the learning rate by 10 at 0.9 and
0.95 fractions of the total number of the training iterations. We adhere to the data pre-processing
approach outlined in Deformable DETR (Zhu et al., 2020). Our experiments employ a batch size
of 8, utilizing V100 GPUs equipped with 16GB of memory. Remarkably, we also present results
achieved with a significantly reduced batch size of 2, which not only yields superior outcomes but
also demands the utilization of only one V100 GPU. We report a set of COCO metrics including AP,
AP50, AP75, APS , APM and APL.

3.2 IMAGE FEATURE ENCODER

We first study how to improve the previous baseline setting by introducing a trainable image feature
encoder to transform the image feature maps into a more suitable feature space for instance segmen-
tation tasks. Figure 5 shows the overall pipeline. We apply the image feature encoder on feature
map E from the Transformer encoder. We simply modify Equation 1 as follows:
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Table 2: Effect of image feature encoder design.

block type # layers #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

None 0 0.54 G 0.0 M 5.1 17.0 1.5 3.2 4.9 8.4
deformable. 1 14.71 G 0.76 M 30.8 58.2 29.5 13.5 32.7 49.0
deformable. 2 28.88 G 1.51 M 32.9 60.0 32.4 14.9 35.3 52.1
deformable. 3 43.04 G 2.27 M 33.7 60.5 33.7 15.1 36.3 53.4
Swin Trans. 1 14.20 G 0.80 M 30.0 58.0 28.0 13.8 32.3 46.3
Swin Trans. 2 27.86 G 1.59 M 31.6 59.2 30.4 14.5 34.2 48.6
Swin Trans. 3 41.51 G 2.39 M 32.2 59.6 31.3 14.9 34.8 49.5
ConvNext. 1 8.12 G 0.54 M 27.5 55.9 24.4 12.7 29.8 42.1
ConvNext. 2 15.70 G 1.08 M 30.0 58.1 27.8 13.9 32.4 46.0
ConvNext. 3 23.27 G 1.62 M 30.7 58.5 28.9 14.3 33.2 46.9

F = C1 + interpolate(Fe(E)), (5)
where the Fe(·) represents the image feature encoder that refines the image feature map for all object
queries simultaneously. We study the following three kinds of modern convolution or transformer
blocks.

Deformable encoder block (Zhu et al., 2020). We follow the multi-scale deformable encoder
design and stack multiple multi-scale deformable encoder blocks to enhance the multi-scale feature
map E following:

E = [E1,E2,E3,E4],

Fe(E) = MultiScaleDeformableEnc([E1,E2,E3,E4]),
(6)

where E1, E2, E3, and E4 represent the feature maps of different scales from the Transformer
encoder of the object detection system. Each multi-scale deformable encoder block is implemented
with MSDeformAttn → LayerNorm → FFN → LayerNorm. FFN is implemented as Linear →
GELU → Linear by default. MSDeformAttn represents the multi-scale deformable attention.
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Figure 5: Add image feature encoder to Mask Frozen-DETR. We
insert an additional image feature encoder to enhance the image
feature maps.

Swin Transformer encoder
block (Liu et al., 2021) We fol-
low the Swin Transformer to apply
a stack of multiple Swin Transformer
blocks on the feature map E1 with
highest resolution as follows:
Fe(E1) = SwinTransformerEnc(E1),

(7)
where each Swin Transformer block
is implemented as LayerNorm →
W-MSA → LayerNorm →
FFN. W-MSA represents the win-
dow multi-head self-attention opera-
tion. We apply shifted W-MSA in the
successive block to propogate infor-
mation across windows following Liu
et al. (2021).

ConvNext encoder block (Liu et al., 2022) We follow the ConvNext to apply the proposed combi-
nation of large-kernel convolution and inverted bottleneck on the Transformer encoder feature map
E1 following:

Fe(E1) = ConvNextBlock(E1). (8)
where each ConvNext block is implemented as DWC → LayerNorm → FFN. DWC represents a
depth-wise convolution with large kernel size, i.e., 7× 7.

Results. In Table 2, we compare different choices of the image feature encoder architecture de-
sign. We observe that: (i) All three image feature encoder implementations improve the instance
segmentation performance. (ii) More image feature encoder layers leads to better performance,
e.g., 3× deformable encoder layers: AP=32.9% vs. 1× deformable encoder layer: AP=30.8%.
(iii) Under similar computation budget, Deformable encoder block performs better, e.g., 2× de-
formable encoder layers: AP=32.9%/FLOPs=28.88G vs. 2× Swin transformer encoder layers:
AP=31.6%/FLOPs=27.86G vs. 3× ConvNext encoder layers: AP=30.7%/FLOPs=23.27G. We use
2× deformable encoder layers as the image feature encoder in the following experiments as it has a
better trade-off between performance and computational cost.
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Table 3: Effect of box feature encoder design.

block type # layers #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

None 0 28.88 G 1.51 M 32.9 60.0 32.4 14.9 35.3 52.1
deformable. 1 98.55 G 2.46 M 44.4 67.6 48.0 24.5 47.7 62.8
deformable. 2 168.23 G 3.14 M 44.9 67.7 48.6 24.9 48.2 63.4
deformable. 3 237.91 G 3.82 M 45.1 67.8 48.9 25.2 48.4 63.7
Swin Trans. 1 112.84 G 2.31 M 42.5 66.3 45.4 23.0 45.5 61.2
Swin Trans. 2 196.81 G 3.10 M 43.7 66.9 46.8 23.8 46.8 62.3
Swin Trans. 3 280.77 G 3.89 M 44.3 67.3 47.6 24.4 47.6 62.8
ConvNext. 1 83.90 G 2.05 M 40.9 65.8 43.4 21.4 43.8 59.9
ConvNext. 2 138.92 G 2.59 M 43.0 66.9 46.0 23.4 46.1 61.7
ConvNext. 3 193.95 G 3.13 M 43.7 67.2 47.1 23.9 47.0 62.1

Table 4: Effect of hidden dimension after channel mapper.

# hidden dim. #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

256 168.23 G 3.14 M 44.9 67.7 48.6 24.9 48.2 63.4
128 66.60 G 2.07 M 44.7 67.6 48.2 24.8 48.1 63.2
96 50.76 G 1.87 M 44.6 67.5 48.2 24.7 47.9 63.2
64 39.11 G 1.71 M 44.5 67.5 48.0 24.7 47.9 63.0

3.3 BOX FEATURE ENCODER
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Figure 6: Add box feature encoder to Mask Frozen-DETR. We
insert a feature encoder to enhance the bounding box region fea-
tures.

Now we study the influence of im-
proving the box region features with
an additional box feature encoder de-
sign. We illustrate the modification
in Figure 6. we simply apply addi-
tional transformation Fb on Ri be-
fore Equation 4 following:

Ri = Fb(Ri), (9)

where we study different choices of
the box feature encoder implementa-
tion following the study on the image
feature encoder design.

Channel mapper. To build an effi-
cient box feature encoder, we propose
to use a channel mapper as a simple
Linear layer to decrease the channel
dimension of F ∈ R HW

16 ×d and apply the box region feature encoder on the updated feature map with
smaller channels.

Results. We compare the effect of box feature encoder architecture design in Table 3. We notice
significant computational cost increase for all settings, mainly due to two reasons: (i) the large
number of bounding box region features, i.e., 100 box predictions during inference; and (ii) the high-
resolution of the bounding box feature map, i.e., 32×32. We study the impact of different resolutions
of the region feature maps in the ablation experiments. We find similar conclusions as Table 2: all
methods improve the performance, more encoder layers lead to better performance, and deformable
encoder block performs the best. Therefore, we use deformable encoder blocks for the box feature
encoder. To reduce the expensive computational cost, we use the channel mapper to decrease the
hidden dimension. The results are in Table 4. We observe that lower hidden dimension reduces
computational cost with little performance loss. Considering the trade-off between performance and
overhead, we use 128 hidden dimensions for subsequent experiments.

3.4 QUERY FEATURE ENCODER

After studying the influence of adding the image feature encoder and box region feature encoder,
we further investigate how to design a suitable query feature encoder to refine the object queries
originally designed for detecting the boxes for instance segmentation tasks.
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Table 5: Effect of each factor within the query feature encoder. O2O: object-to-object attention module. B2O:
box-to-object attention module.

FFN O2O B2O #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

✗ ✗ ✗ 66.60 G 2.07 M 44.7 67.6 48.2 24.8 48.1 63.2
✓ ✗ ✗ 66.63 G 2.33 M 44.7 67.6 48.3 24.9 48.0 63.2
✓ ✓ ✗ 66.65 G 2.53 M 43.9 67.1 47.3 24.4 47.3 61.8
✓ ✗ ✓ 73.40 G 2.46 M 44.8 67.6 48.4 24.9 48.1 63.4

Object-to-object attention. The proximity of objects to each other may results in a situation where
multiple instances lie within one bounding box. We add object-to-object attention to help object
query representations distinguish instances. Specifically, we use multi-head self-attention mecha-
nism to process the queries as follows:

[q1,q2, · · · ,qN ] = SelfAttention([q1,q2, · · · ,qN ]). (10)
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Figure 7: Add object query encoder to Frozen DETR. We apply a
query feature encoder to enhance the object query representations.
This is the complete framework of our Mask Frozen-DETR.

Box-to-object attention. In the
frozen DETR-based object detector,
the object queries are used to per-
form object detection and process the
whole image feature instead of a box
region feature. The discrepancies be-
tween the usage of object queries in
the frozen detector and MaskHead
may lead to sub-optimal segmenta-
tion results. Therefore, we introduce
box-to-object attention to transform
the queries and adapt them to the seg-
mentation task as follows:

qi = CrossAttention(qi,Ri),
(11)

where the object queries are updated
by refering to the information in the
box region feature.

FFN. The feed forward network (FFN) block is a widely employed element in Transformers. It is
usually integrated after an attention layer to transform individual tokens. In Table 5, we investigate
the efficacy of this block in adjusting object query representations for segmentation.

Results. Table 5 shows the comparison results on the effect of different modifications to the query
feature encoder architecture design. We find no performance improvement when only using FFN to
enhance the object queries and a minor gain (+0.1) when using FFN and the box-to-object attention
module. We think this is because the enhanced box features are already strong for instance segmen-
tation, so using the original object query representations from the frozen detection model is enough.
Moreover, using object-to-object attention reduces the performance, as the interaction between ob-
ject queries might mix the semantic information of different objects. In general, we conclude that
transforming the object queries is unnecessary and simply using the original ones to interact with
the refined box region features achieves strong results. We only adopt FFN and the box-to-object
attention design in the qualitative analysis experiments.

We also have boosted our system through additional enhancements, including mask loss on sampled
pixel points, a refined mask scoring scheme, and a redesigned neck for backbone features. Further
details are available in the supplementary materials.

4 COMPARISON WITH SOTA SYSTEMS

To compare our system with state-of-the-art instance segmentation methods, we construct a series of
strong Mask Frozen-DETR models based on different Frozen DETR-based detector weights. These
include Mask Frozen-H-DETR + ResNet-50, which uses H-DETR + ResNet-50 with APbox of
52.2%; Mask Frozen-H-DETR + Swin-L, which uses H-DETR + Swin-L with APbox of 62.3%;
and Mask Frozen-DINO-DETR + Swin-L, which uses DINO-DETR + FocalNet-L with APbox of
63.2%.
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Table 6: Comparison with SOTA instance segmentation methods on COCO val.

method backbone #epochsObject365APboxAPmaskAPmask
50 APmask

75 APmask
S APmask

M APmask
L GPU Hours

K-Net-N256 (Zhang et al., 2021) R50 36 ✗ − 38.6 60.9 41.0 19.1 42.0 57.7 −
QueryInst (Fang et al., 2021) Swin-L 50 ✗ 56.1 48.9 74.0 53.9 30.8 52.6 68.3 −
Mask2Former (Cheng et al., 2021a)R50 50 ✗ − 43.7 − − 23.4 47.2 64.8 502

Mask2Former (Cheng et al., 2021a)Swin-L 100 ✗ − 50.1 − − 29.9 53.9 72.1 1, 700

Mask DINO (Li et al., 2022) R50 50 ✗ 50.5 46.0 68.9 50.3 26.0 49.3 65.5 1, 404

Mask DINO (Li et al., 2022) Swin-L 50 ✗ 58.3 52.1 76.5 57.6 32.9 55.4 72.5 2, 400

Mask Frozen-H-DETR R50 6 ✗ 49.9 44.1 66.2 47.8 24.4 47.0 62.6 49

Mask Frozen-H-DETR Swin-L 6 ✗ 59.1 51.9 75.8 57.2 31.6 55.1 71.6 179

ViT-Adapter-L (Chen et al., 2022) ViT-L 8 ✓ 61.8 53.0 − − − − − 1, 068

Mask DINO (Li et al., 2022) Swin-L 24 ✓ − 54.5 − − − − − 1, 600

Mask Frozen-H-DETR R50 6 ✓ 52.2 45.7 67.5 49.8 25.6 48.9 64.1 49

Mask Frozen-H-DETR Swin-L 6 ✓ 62.3 54.0 77.9 59.5 35.6 57.4 73.0 172

Mask Frozen-DINO-DETR FocalNet-L 6 ✓ 63.2 54.9 78.9 60.8 37.2 58.4 72.9 136

Table 7: Comparison with SOTA instance segmentation methods on COCO test-dev.

method backbone #epochs Object365 APbox APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

K-Net-N256 (Zhang et al., 2021) R101 36 ✗ - 40.6 63.3 43.7 18.8 43.3 59.0

SOLQ (Dong et al., 2021) Swin-L 50 ✗ 56.5 46.7 - - 29.2 50.1 60.9

SOIT (Yu et al., 2022) Swin-L 36 ✗ 56.9 49.2 74.3 53.5 30.2 52.7 65.2

QueryInst (Fang et al., 2021) Swin-L 50 ✗ 56.1 49.1 74.2 53.8 31.5 51.8 63.2

Mask2Former (Cheng et al., 2021a) Swin-L 100 ✗ - 50.5 74.9 54.9 29.1 53.8 71.2

Mask DINO (Li et al., 2022) Swin-L 24 ✓ - 54.7 - - - - -

Mask Frozen-DINO-DETR FocalNet-L 6 ✓ 63.2 55.3 79.3 61.4 37.8 58.4 70.4

Table 6 presents the detailed comparison results on COCO val set. We can see that, with Object365
object detection pre-training, our approach surpasses the very recent state-of-the-art Mask-DINO by
a clear margin (ours: 54.9% vs. Mask DINO: 54.5%). This result is remarkable considering that
the strong object detector DINO-DETR achieves even better object detection performance than the
DINO-DETR + FocalNet-L that we use. The most important advantage of our approach is the
significantly reduced training time, e.g., we can complete the training of DINO-DETR + FocalNet-
L within 17× hours while training a Mask DINO + Swin-L takes more than 8× days when using
8× V100 GPUs.

We also provide the detailed comparison results for Mask Frozen-H-DETR + ResNet-50 and Mask
Frozen-H-DETR + Swin-L. In general, our approach achieves competitive results across various
model sizes and different DETR-based frameworks. We further compare Mask Frozen-DINO-
DETR to the state-of-the-art methods in instance segmentation on COCO test-dev in Table 7. Mask
Frozen-DINO-DETR with FocalNet-L achieves an AP of 55.3%. This result surpasses the recent
state-of-the-art method, Mask DINO, by +0.6 AP.

5 ABLATION EXPERIMENTS AND ANALYSIS

Effect of batch size. Table 8 shows the effect of batch size. We observe that reducing the batch
size from 8 to 4 or 2 even brings slight improvements in performance (+0.2 AP). It is worth noting
that our method can run on a single V100 GPU with 16G memory when the batch size is 2. This
highlights the effectiveness and computational resource efficiency of our approach.

Effect of training epochs. Table 9 shows the effect of training epochs. We notice that doubling the
number of training epochs only brings +0.3 gain in AP. This result suggests that our model achieves
convergence promptly, which can effectively reduce the required training time.
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Table 8: Effect of batch size.

batch size APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

2 45.9 67.7 50.0 25.7 49.0 64.2
4 45.9 67.6 49.9 25.8 49.0 64.3
8 45.7 67.5 49.8 25.6 48.9 64.1

Table 9: Effect of training epochs.

epoch APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

6 45.7 67.5 49.8 25.6 48.9 64.1
12 46.0 67.7 50.3 25.9 49.1 64.3

Table 10: Effect of RoIAlign output size.

output size #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

16× 16 46.09 G 2.97 M 44.8 67.5 49.1 25.4 48.0 62.0
32× 32 82.09 G 3.26 M 45.7 67.5 49.8 25.6 48.9 64.1
64× 64 225.86 G 4.44 M 45.9 67.6 50.2 25.8 49.1 64.4

Table 11: Effect of fine-tuning the whole DETR (fine-tune) or only the transformer encoder & decoder within
DETR (partial fine-tune). During fine-tuning, we set the learning rate of the original DETR parameters as 1/10
of the ones of the additional new parameters.

detector method image feat.
enc.

box feat.
enc.

query feat.
enc. partial finetune finetune APmask GPU Hours

H-DETR+R50

✓ ✓ ✓ ✗ ✗ 45.7 49
✗ ✗ ✗ ✓ ✗ 43.8 92
✗ ✗ ✗ ✗ ✓ 43.9 99
✓ ✓ ✓ ✓ ✗ 45.6 100
✓ ✓ ✓ ✗ ✓ 46.0 108

H-DETR+Swin-L
✓ ✓ ✓ ✗ ✗ 54.0 172
✓ ✓ ✓ ✓ ✗ 54.1 406
✓ ✓ ✓ ✗ ✓ 54.1 532

DINO-DETR+FocalNet
✓ ✓ ✓ ✗ ✗ 54.9 136
✓ ✓ ✓ ✓ ✗ 54.9 218
✓ ✓ ✓ ✗ ✓ 55.0 319

Effect of RoIAlign output size. Table 10 shows the influence of RoIAlign output size. We ob-
serve that (i) Enlarging the RoIAlign output size significantly increases GFLOPs. (ii) Increasing
RoIAlign output size can improve instance segmentation performance. Specifically, we observe a
0.9 improvement in AP by increasing the output size from 16 × 16 to 32 × 32. (iii) Instance seg-
mentation performance saturates beyond a RoIAlign output size of 32× 32. Taking into account the
trade-off between performance and computational cost, we set RoIAlign output size as 32 × 32 by
default.

Effect of fine-tuning DETR: We further ablate the effect of fine-tuning the DETR-based object de-
tector either entirely or partially in Table 11. Accordingly, we observe that (i) fine-tuning DETR
brings consistent, albeit marginal, gains while significantly increasing the overall training GPU
hours; (ii) our method achieves the best trade-off between performance and training cost.

Furthermore, we investigate the impact of several factors in the supplementary material, including
but not limited to the usage of large scale jittering, the architectural design of the instance mask
head, the depth of both the image feature encoder and the box feature encoder, and various other
aspects.

6 CONCLUSION

In this work, we have presented the detailed techniques for converting an existing off-the-shelf
DETR-based object detector into a strong instance segmentation model with minimal training time
and resources. Our approach is remarkably simple yet effective. We verify the effectiveness of our
approach by reporting state-of-the-art instance segmentation results while accelerating the training
by more than 10× times. We believe our simple approach can inspire more research on advancing
the state-of-the-art in instance segmentation model design.
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A OTHER IMPROVEMENTS

Table 12: Effect of other improvements including sampled pixel supervision, mask scoring, and neck design.

neck samp. pixel
sup.

mask
scoring #FLOPs▲ #params▲ APmask APmask

50 APmask
75 APmask

S APmask
M APmask

L

✗ ✗ ✗ 73.40 G 2.46 M 44.8 67.6 48.4 24.9 48.1 63.4
✓ ✗ ✗ 77.07 G 2.53 M 45.2 67.8 48.9 25.3 48.5 63.8
✓ ✓ ✗ 77.07 G 2.53 M 45.3 67.8 49.2 25.4 48.6 64.1
✓ ✓ ✓ 82.09 G 3.26 M 45.7 67.5 49.8 25.6 48.9 64.1

Mask loss on sampled pixel points. Inspired by implicit PointRend (Cheng et al., 2022b) that shows
a segmentation model can be trained with its mask loss computed on N sampled points instead of
the entire mask, we compute the mask loss with sampled points in the the final loss calculation.
Specifically, given number of points N , oversample ratio k (k > 1) and importance sample ratio β
(β ∈ [0, 1]), we randomly sample kN points from the output mask and select βN most uncertain
points from the sampled points. Then we randomly sample other (1 − β)N points from the output
mask and compute loss only on these N points.

Mask scoring. Since the classification scores predicted by the frozen DETR cannot reflect the qual-
ity of segmentation masks, we introduce mask scoring (Huang et al., 2019) to our method to adjust
the score, making it able to describe the quality of segmentation masks more precisely. Specifically,
the mask scoring head takes the output mask and box region features as input and uses them to
predict the iou score between the output mask and ground truth following:

ioui = MLP(Flatten(Conv(Cat(Mi,Ri)))), (12)

where Cat, Conv and MLP refer to concatenation, covolution layers and multilayer perceptron, re-
spectively. The iou score predicted by the mask scoring head is then used to adjust the classification
score as follows:

si = ciioui, (13)

where si is the confidence score of the output mask.

Neck for backbone feature. The feature map output by the first stage of backbone C1 ∈ R HW
16 ×d

may not contain sufficient semantic information for accurate instance segmentation. Therefore, we
introduce a simple neck block to encode more semantic information into the high resolution feature
map C1. The neck block can be described using the following formula:

C1 = GN(PWConv(C1)), (14)

where GN and PWConv refer to group normalization (Wu & He, 2018) and point-wise convolution,
respectively.

Results. In Table 12, we attempt to further improve the results by integrating a neck block design,
using sampled pixel supervision, and using mask scoring. We observe that all three designs bring
consistent gains in AP scores. For example, using the neck block improves AP from 44.8% to
45.2% and using mask scoring improves AP from 45.3% to 45.7%. Notably, while sampled pixel
supervision reduces the number of the points for training supervisions by 75%, it still brings a slight
gain in AP (+0.1%). Therefore, we use all three designs in the following experiments.

12



Under review as a conference paper at ICLR 2024

B ADDITIONAL ABLATION EXPERIMENTS AND ANALYSIS

Large scale jittering. Table 13 shows the effect of large scale jittering. We observe that using large
scale jittering achieves a 0.3 AP improvement and increase the training GPU hours by 28.6%. In
light of the trade-off between training time and performance, we do not utilize large scale jittering
in other experiments.

Table 13: Effect of large scale jittering.

LSJ GPU Hour APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

✗ 49 45.7 67.5 49.8 25.6 48.9 64.1

✓ 63 46.0 67.7 50.1 26.1 49.1 64.0

Instance mask head design. We compare the effect of mask head design in Table 14. Compared
with segmenter head (Strudel et al., 2021) that contains linear projection and normalization, our
simple dot product design achieves comparable AP scores with lower FLOPs and fewer number of
parameters.

Table 14: Effect of instance mask head design.

mask head #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

dot product 82.09 G 3.26 M 45.7 67.5 49.8 25.6 48.9 64.1

segmenter head 83.77 G 3.29 M 45.7 67.6 49.9 25.6 48.9 64.1

Layer index of the encoder feature map. We compare the encoder feature map E from different
layers of the Transformer encoder in Table 15. We notice that using the encoder feature map from
shallower layers outperforms using that from the last layer of the encoder. We think this is because
the feature maps from the last layer of the encoder contain task-specific information relevant to
detection, while feature maps from shallower layers contain more generalized object information
that may facilitate segmentation. Therefore, we use the encoder feature map from layer#4 by default.

Table 15: Layer index of the encoder feature map E.

layer# APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

2 45.7 67.5 49.8 25.7 48.9 64.0

4 45.7 67.5 49.8 25.6 48.9 64.1

6 45.5 67.5 49.3 25.6 48.7 63.7

Effect of the depth of the image feature encoder and the box feature encoder Table 16 shows
the influence of the depth of the image feature encoder and the box feature encoder on Mask Frozen-
DINO-DETR with FocalNet-L as backbone. We observe that: (i) The instance segmentation perfor-
mance of Frozen-DINO-DETR reaches saturation when the depth of the box feature encoder is 2,
and further increasing its depth does not result in a performance gain. (ii) Increasing the depth of
image feature encoder from 2 to 3 leads to a 0.1 increase in AP. Nevertheless, the performance satu-
rates when the depth of image feature encoder is 3. Given these findings, we select the depth of the
image feature encoder to be 3 and the depth of the box feature encoder to be 2 for the comparisons
with state-of-the-art instance segmentation methods on the COCO test-dev.

C QUALITATIVE RESULTS

Figure 8 shows the instance segmentation probability maps based on our approach. We notice that
the probability maps precisely capture the object boundaries, which supports the strong performance
of our approach on instance segmentation tasks.
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Table 16: Effect of the depth of the image feature encoder and the box feature encoder on DINO + FocalNet-
L.

# img. enc. layers # box enc. layers #FLOPs▲ #params▲ APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

2 2 262.27 G 3.24 M 54.9 78.9 60.8 37.2 58.4 72.9

2 3 326.65 G 3.62 M 54.9 78.9 60.7 37.0 58.5 72.9

3 2 320.44 G 4.03 M 55.0 78.9 60.9 37.1 58.5 73.0

3 3 384.82 G 4.40 M 55.0 78.9 60.9 37.2 58.5 73.1

4 4 507.38 G 5.56 M 55.0 78.9 60.8 37.2 58.4 73.2

Figure 8: Visualizing the segmentation probability maps of our approach.
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