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Large language models (LLMs) have garnered a great deal of attention for their exceptional
generative performance on commonsense and reasoning tasks. In this work, we investigate
LLMs’ capabilities for generalization using a particularly challenging type of statement: generics.
Generics express generalizations (e.g., birds can fly) but do so without explicit quantification.
They are notable because they generalize over their instantiations (e.g., sparrows can fly) yet
hold true even in the presence of exceptions (e.g., penguins do not). For humans, these generic
generalization play a fundamental role in cognition, concept acquisition, and intuitive reasoning.
We investigate how LLMs respond to and reason about generics.

To this end, we first propose a framework grounded in pragmatics to automatically generate
both exceptions and instantiations– collectively exemplars. We make use of focus – a pragmatic
phenomenon that highlights meaning-bearing elements in a sentence – to capture the full range
of interpretations of generics across different contexts of use. This allows us to derive precise
logical definitions for exemplars and operationalize them to automatically generate exemplars
from LLMs. Using our system, we generate a dataset of ∼370k exemplars across ∼17k generics
and conduct a human validation of a sample of the generated data.

We use our final generated dataset to investigate how LLMs’ reason about generics. Humans
have a documented tendency to conflate universally quantified statements (e.g., all birds can fly)
with generics. Therefore, we probe whether LLMs exhibit similar overgeneralization behavior
in terms of quantification and in property inheritance. We find that LLMs do show evidence of
overgeneralization, although they sometimes struggle to reason about exceptions. Furthermore,
we find that LLMs may exhibit similar non-logical behavior to humans when considering property
inheritance from generics.
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1. Introduction

Large language models (LLMs) have garnered a great deal of attention for their exceptional
performance on a range of reasoning tasks, including commonsense reasoning. In this work, we
investigate the ability of LLMs to reason about generalizations, using a particular type of statement
that is fundamental to human reasoning: generics. Generics express generalizations about the
world (e.g., birds can fly) but do so without explicit quantification (e.g., without quantifiers such
as “most”, “some”, “all”). Since generics generalize over their INSTANTIATIONS (e.g., sparrows
can fly) while holding true even in the presence of EXCEPTIONS (e.g., penguins cannot fly), they
are challenging to reason about. Our work investigates how LLMs reason about generics and how
this compares to human capabilities.

For humans, generalization is a fundamental component of cognition, knowledge acquisition,
and reasoning. And generics appear to be the default mechanism for this generalization; children
acquire generics earlier than explicitly quantified statements and, along with adults, fall back
on generics in cognitively challenging situations (Leslie 2007, 2008; Leslie and Gelman 2012;
Meyer, Gelman, and Stilwell 2011; Hollander, Gelman, and Star 2002). One benefit for humans of
generic generalizations is that they support flexible and efficient reasoning: they allow humans to
reason with incomplete information and draw inferences in novel situations (Asher and Morreau
1995). However, despite this, there has been limited investigation in NLP on the capabilities of
computational models to reason about generics. Since LLMs underlie most natural language
reasoning systems, it is crucial to understand whether they have similar flexible reasoning abilities
(e.g., about generics) to humans. Therefore, the goal of this work is to provide insights into how
LLMs process generics.

The present investigation is carried out in two stages. In the first stage, we propose a new
theoretically-grounded framework GenerIX that specifies logical-form based definitions for
multiple interpretations of generics and their INSTANTIATIONS and EXCEPTIONS (collectively,
henceforth EXEMPLARS). To incorporate contextually-sensitive interpretations into the definitions,
GenerIX uses the notion of pragmatic focus—a phenomenon that highlights meaning-bearing
elements in a sentence and relates to discourse context. We also introduce ExempliFI, a model
that operationalizes the formal definitions to automatically generate EXEMPLARS from LLMs. Our
focus-sensitive framework for generics provides us with flexibility and control over the generation
of EXEMPLARS with ExempliFI. For example, “birds can fly” expresses a generalization about
the kind birds, so EXCEPTIONS will be birds that cannot fly (e.g., penguins); with focus on
BIRDS, “BIRDS can fly” emphasizes birds in contrast to other animals that can fly (e.g., bats),
making those alternatives the EXCEPTIONS. By incorporating multiple focus interpretations, we
use ExempliFI to generate a diverse dataset of ∼370k EXEMPLARS for ∼17k generics covering
different usages. We validate the dataset’s quality using human evaluation on a subset of the
generated data. The generated EXEMPLARS include both knowledge-based (e.g., “ostriches can’t
fly”) and reasoning-based outputs (e.g., “a bird with a broken wing cannot fly”). The increased
quality and diversity of our EXEMPLARS dataset allows us to use the EXEMPLARS to probe LLM’s
reasoning about generics.

In the second stage of this work, we use our generated dataset to probe how LLMs reason about
generics. In particular, we concentrate on two human phenomena, namely, overgeneralization
and inheritance reasoning. The fundamental role of generics in human generalization has
been demonstrated through studies on the Generic OverGeneralization (GOG) effect (Leslie,
Khemlani, and Glucksberg 2011). The GOG effect is the documented tendency of humans to treat
universally quantified statements (e.g., all birds can fly) as generics and therefore compatible with
EXCEPTIONS (Khemlani et al. 2007; Meyer, Gelman, and Stilwell 2011; Leslie, Khemlani, and
Glucksberg 2011), when in fact, from a logical point of view, a universally quantified statement
cannot be true if there are exceptions to it. Therefore, using our EXEMPLARS dataset, we first probe
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whether LLMs exhibit similar overgeneralization behavior when reasoning about quantification.
We find that LLMs do show evidence of the GOG effect and EXCEPTIONS do not entirely eliminate
this effect.

Generic generalizations play an important role for humans in reasoning about property
inheritance (e.g., if Polly is a bird and we know birds can fly, can Polly fly?). Humans can draw
such inferences from generics, and, when presented with counterexamples (e.g., Bob is a penguin
and Bob cannot fly), may revise their conclusions to accommodate the new information (Elio
and Pelletier 1996; Pelletier and Elio 2005). We use our EXEMPLARS dataset to probe whether
LLMs exhibit similar behavior in reasoning about property inheritance. Our results show that
while LLMs do make property inheritance inferences based on generics, they are less consistent
about making adjustments in their reasoning when presented with new information.

Our contributions are as follows: (1) we propose a novel pragmatics-based computational
framework to define and represent generics and EXEMPLARS; (2) we operationalize our framework
and propose a system to automatically generate EXEMPLARS for a range of pragmatic and
contextual interpretations of generics; (3) we generate a large scale, high quality dataset of
EXEMPLARS, improving over prior work; (4) we investigate how LLMs reason about generics and
show that LLMs exhibit similar non-logical behavior to humans when considering quantification
and property inheritance. In the remainder of the paper, we first provide an overview and
background on generics and EXEMPLARS (§2). Next, we discuss our pragmatically grounded
framework GenerIX for EXEMPLARS (§3) and how we operationalize this in our system ExempliFI
to automatically generate EXEMPLARS (§4). Then we present our investigations into how LLMs
reason about generics (§5). Finally, we present the details of our generation system and the system
validation results (§6).

2. Generics and EXEMPLARS: An Overview

Generics are statements that express generalizations about the world (e.g., “tigers are striped”,
“ducks lay eggs”) and are notable for their lack of quantification. That is, a generic statement
(e.g., “birds can fly”) describes a relation between a concept and a property without explicit
quantification (e.g., quantifiers such as “all” or adverbs of quantification such as “normally” or
“usually”). Generics are challenging to analyze semantically for a number of reasons. First, the
truth of a generic is not related to prevalence of the property. For example, “ducks lay eggs” is
felicitous while “ducks are female” are is not, despite the relevant populations of ducks in both
instances being nearly identical (Leslie and Lerner 2016). Secondly, the lack of quantification
in generics allows them to have both INSTANTIATIONS (i.e., examples where the generic does
apply) and EXCEPTIONS (i.e., counterexamples to the generic)—collectively EXEMPLARS.

2.1 Analyzing Generics

Generics have been extensively studied in semantics and philosophy with the goal of developing
truth conditional semantic analyses (e.g., Lewis 1975; Carlson 1977, 1989; Krifka 1987).
Specifically, these works aim to provide formal methods to determine the circumstances under
which a generic is or is not true1. Many of these frameworks for analyzing generics propose a
special generic operator, which has a similar role to quantifiers like “all”. (Carlson 1977). However,
it is not clear what the precise semantics of this operator should be. While generics like “a cat

1 There is debate about whether generics should even have truth values (cf. Krifka et al. 1995). We do not take a side in
this debate and instead we use “true” for both the formal meaning (i.e., having a truth value) and the less formal
meaning (i.e., acceptable to people—“ducks lay eggs” is acceptable while “ducks are female” is not).
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has a tail” suggest that “most” would be an appropriate understanding of the generic operator, a
generic such as “mosquitoes carry malaria” makes such analyses untenable (Krifka et al. 1995)
since few mosquitoes actually carry malaria2. While our work makes use of a generic operator,
we do not make any claims about its semantics.

Probabilistic approaches handle some of the issues raised by a generic operator by considering
relative probabilities (Cohen 1996, 1999, 2004). For example, “mosquitoes carry malaria” would
be true because a mosquito is relatively more likely to carry malaria than a randomly chosen
insect. However, relative probabilities alone are not sufficient. Consider the example “bees are
sterile”, which is not an acceptable generic even though a randomly chosen bee is more likely to
be sterile than another randomly chosen insect3. Recently, improvements to such probabilistic
analyses have been proposed which make correct truth predictions for a larger number of generics.
In particular, van Rooij and Schulz (2019); Kochari, Van Rooij, and Schulz (2020) model a causal
link between the concept and property in a generic in order to predict a generic’s truth; Tessler
and Goodman (2019) propose a Bayesian model of belief updating for interpreting generics that
incorporates vagueness and context along with prevalence.

Additionally, studies from psychology have argued that generics are a default mode of
cognition (Leslie 2007, 2008). In particular, studies have shown that both children and adults
will often accept false quantified statements as true (i.e., “all cats have tails”) if they consider the
corresponding generic true, a phenomenon known as the Generic Overgeneralization Effect (Leslie,
Khemlani, and Glucksberg 2011; Khemlani et al. 2007; Meyer, Gelman, and Stilwell 2011).
This behavior continues, though in an attenuated form, even when people are presented with
evidence that contradicts the quantified statement (e.g., with EXCEPTIONS) (Leslie, Khemlani, and
Glucksberg 2011; Karczewski, Wajda, and Poniat 2020). For example, people who have recently
judged that male ducks do not lay eggs will nonetheless accept "all ducks lay eggs" on almost 20
percent of trials. If they are not prompted to consider whether male ducks lay eggs, the universal
claim "all ducks lay eggs" is accepted on approximately 50 percent of trials (Leslie, Khemlani,
and Glucksberg 2011).

Ralethe and Buys (2022) recently investigated this tendency in LLMs, providing preliminary
evidence that LLMs also exhibit a Generic Overgeneralization Effect. However, they considered
the use of existential quantifiers such as "some" to be evidence of the effect, even though
there is no overgeneralization involved in judging that some ducks lay eggs (instead, this
just is a straightforwardly true statement). In our work, we use EXEMPLARS to document the
overgeneralization effect in a large range of LLMs, and do so in a way that stays faithful to the
original psychology experiments by only considering genuine cases of overgeneralization (that is,
overgeneralizing from a generic to a universal).

2.2 Identifying Generics

Studies in NLP on generics typically focus on identifying generics within text. In particular,
models are trained to predict generic expressions using discrete features (Reiter and Frank 2010;
Friedrich et al. 2015; Friedrich and Pinkal 2015; Friedrich, Palmer, and Pinkal 2016; Govindarajan,
Durme, and White 2019) or rule-based approaches (Suh 2006; Bhakthavatsalam, Anastasiades,
and Clark 2020). Early works annotated and predicted whether an expression was a true generic
at both the clause and NP level (e.g., “cats” has a non-specific referent in “cats have tails”), often
within corpora for information extraction tasks, such as coreference resolution (Poesio 2004).
While these works follow linguistically-based annotation guidelines to label generics, the resulting

2 Only 7-9% of the females of the species Anopheles (only one of 3500 mosquito species) transmit malaria (CDC 2022).
3 The majority of bees in a colony are sterile worker bees (MAAREC 2011).
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corpora are relatively small (cf. Friedrich et al. 2015). On the other hand, more recent large-scale
corpora, extracted from real-world texts, aim to capture generalizations, regardless of whether
they are linguistically generics (Bhakthavatsalam, Anastasiades, and Clark 2020; Bhagavatula
et al. 2022). Our work makes use of the latter type of corpora in order to generate a wide range of
EXEMPLARS.

2.3 Generics EXEMPLARS

Although generics themselves have been studied extensively, there has been comparatively less
work on EXEMPLARS. From a formal perspective, the main approach to EXEMPLARS has been to
aim to formalize how generics tolerate EXCEPTIONS (Kadmon and Landman 1993; Greenberg
2007). Specifically, Greenberg (2007) proposed that EXCEPTIONS can be identified via a causal
relationship implicit in many generics. For example, according to this approach, “birds fly”
implies that some aspect of birds causes them to be able to fly (e.g., having functioning wings).
When the causal relationship is blocked in individuals (e.g., birds with broken wings, birds with
disproportionately small wings such as penguins) then they are EXCEPTIONS. Recent probabilistic
approaches lend support to this hypothesis since they include similar notions of causality (Kochari,
Van Rooij, and Schulz 2020; van Rooij and Schulz 2019). Although these mechanisms characterize
EXCEPTIONS, they are primarily theoretical and not readily operationalizable. In contrast, our
work aims to provide a framework that is computationally operationalized.

Recently, Allaway et al. (2023) proposed a theory-grounded computational approach to
generating generics EXEMPLARS. Specifically, they used categories of generics (Leslie 2007,
2008; Khemlani, Leslie, and Glucksberg 2009) to partition generics into three sets, each with a
distinct logical form. For example, categories include generics that describe principled connec-
tions (Prasada and Dillingham 2006, 2009; Haward et al. 2018) or definitions (Krifka et al. 2012).
They then defined EXEMPLARS as individuals that satisfy the logical form (INSTANTIATIONS)
or its negation (EXCEPTIONS) for each category. The generation was done using a constrained
decoding algorithm paired with GPT-2 and information extracted from GPT-3.

Our work here instead uses ideas from pragmatics (§3.1) to both specify logical forms for
generics EXEMPLARS and define prompts to generate EXEMPLARS. Although the constrained-
decoding approach from Allaway et al. (2023) outperforms their baseline, there are two difficulties
with their approach and we remedy these in our current work. First, assigning generics to categories
requires specifying an interpretation for each generic. Doing so is not only challenging (cf., Krifka
et al. 1995), it limits the scalability of the system, since all new generics must first be categorized.
Therefore, our current work assumes every generic has multiple interpretations. Secondly, the
logical forms proposed by Allaway et al. (2023) are too permissive in what is allowed as an
EXEMPLAR. For example, in the framework of Allaway et al. (2023), the generic “birds can fly”
has EXCEPTIONS that are either types of birds that cannot fly (e.g., penguins) or types of flight that
birds cannot do (e.g., fly above 20,000 feet4). But the latter EXCEPTIONS (i.e., types of flight) are
not intuitively exceptions, given our natural understanding of "birds can fly." To remedy this, we
define EXEMPLARS using linguistic structures to more carefully constrain the generated output.

One usage of EXEMPLARS in NLP is countering social biases. Psychology studies have
shown that generics influence and transmit social biases (Leslie 2014; Rhodes, Leslie, and Tworek
2012; Leshin, Leslie, and Rhodes 2021) and this can be particularly harmful in the case of
stereotypes, especially about dangerous qualities (Leslie 2017). Drawing on these results, recent
studies in NLP have investigated using EXEMPLARS to generics as a means of countering social
bias implications in hate-speech (Allaway et al. 2022; Mun et al. 2023). Rather than investigate

4 Most birds fly substantially lower than 20,000 feet except during migration (Ehrlich, Dobkin, and Wheye 1988).
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the use of EXEMPLARS, our work concentrates on developing a linguistically-founded framework
to generate high-quality EXEMPLARS.

Term Definition §
Concept K In a generic, usually a type or kind (e.g., “cats” in “cats are cute”). 3.1Property P In a generic, usually a quality or ability (e.g., “cute” in “cats are cute”).
QUD Question under discussion – what a discourse is centered around.

3.1.1

Focus Highlights prominent elements of a sentence. Marked with capitals in
our work.

φF=y An assertion with focus on y (e.g., φ = “CATS are cute” would be φF=CATS).
ALTF=y Focus-alternatives – alternatives to the focus-marked constituent y in a

sentence. Includes T itself.
Topic What a sentence is about, often the syntactic subject.
Tripartite

structure
Partitions the semantic material of a sentence into two parts, RESTRICTOR

and SCOPE, along with a quantifier. 3.1.2
RESTRICTOR Specifies the quantifier domain in a tripartite structure.
SCOPE Specifies the properties attributed to the domain in a tripartite structure.
Gen Generic operator, acts as an adverb of quantification in a tripartite structure.
Default Form Default interpretation of a generic which is without focus. 3.2.1Concept/Property-

Focused Form
The interpretation of a generic where the focus is on the concept or property.

�T Exotype – contextually-relevant alternatives to T that are not T itself
(i.e., �T = ALTF=T − T ).

3.3.1

Table 1: Glossary of terminology and symbols used in §3.

3. GenerIX: A Framework for EXEMPLARS

The interpretation of a generic depends on whether and how elements in it may be focused or
stressed. Intuitively, if a speaker utters "birds can fly" with no particular stress or emphasis, they
are making a general claim about birds, to the effect that they can fly. Compare, however, how the
natural interpretation shifts if the word "birds" is uttered with heavy emphasis: "BIRDS can fly".
Now the speaker may be naturally understood as making a claim about things that can fly, namely
that they are birds. (For example, "BIRDS can fly" might be naturally uttered to, say, correct a
child who has incorrectly asserted that squirrels can fly.)

This above example illustrates how EXEMPLARS for a generic correspondingly depend on how
it is interpreted. For example, a type of bird that cannot fly (e.g., penguin) is a valid EXCEPTION
to the generic “birds can fly” but not to the generic “BIRDS can fly”; for the latter, the speaker
is asserting that birds in particular can fly, as compared to other animals, and so EXCEPTIONS
will be other animals that can fly (e.g., bats, flying squirrels). Since generics can have diverse
interpretations, we aim to generate EXEMPLARS for multiple interpretations5. Therefore, we
develop our framework using ideas from pragmatics that allow us to use a cohesive formalism to
both represent multiple interpretations of a generic and derive the corresponding EXEMPLARS.

Our work draws on analyses of generics that argue that the semantic material of a generic
can be partitioned into two pieces and that varying this partition allows us to obtain different
interpretations of the generic (Carlson 1989). These analyses are formalized using two components:
tripartite structures and focus. In our work, we use tripartite structures as the mechanism

5 Determining the interpretation of a generic is a central, and unresolved, question in the literature on generics (cf.
Krifka et al. 1995).
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for representing the logical forms for generics and EXEMPLARS. Focus then maps a specific
interpretation to a logical form and is also used in the definitions of EXEMPLARS.

In the following, we will first briefly review the linguistic background on focus (§3.1.1) and
tripartite structures (§3.1.2). Then, we will discuss our framework GenerIX—Generics Reasoning
with Instantiations and eXceptions. Specifically, we will discuss how we construct logical forms
for generics (§3.2) and how we then use these to derive precise definitions and logical forms for
generics EXEMPLARS (§3.3). A summary of the definitions and terms used throughout this section
is provided in Table 1.

3.1 Linguistic Background

Our framework uses two ideas from pragmatics (focus and tripartite structures) which we
review here. Both ideas are related to the notion of information structure (Roberts 1996)—
how information is packaged in a sentence (for a review, see Krifka 2008). Focus is a means of
highlighting relevant meaning-bearing elements in a sentence (Kadmon 2001, originally from
Jackendoff (1972)); it marks the focus of attention within discourse (Grosz 1977; Sidner 1979;
Grosz, Joshi, and Weinstein 1983, 1995). For example, in English, stress is often used to mark
focus. The focus not only determines the question under discussion (QUD) in a particular context,
it also contributes to the partitioning of semantic material within a sentence. Such partitioning
can be formally represented using a tripartite structure. This tripartite structure represents the
sentence as specifying restricted quantification over a domain (Partee 1991). Since generics lack
quantification, work with tripartite structures in the generics literature proposes a special generic
operator, Gen, to fill the role of quantifier and which we use in our work. We review details of
these ideas below.

3.1.1 Focus and QUDs. Consider two speakers having a conversation. If speaker A says “cats
are cute” and speaker B says “dogs are cute”, there is no conflict between their statements (i.e.,
both assertions can easily be true). But if speaker A says “CATS are cute” and speaker B says
“DOGS are cute”, they are disagreeing with each other over which animals are cute. In the latter
case, focus is used (i.e., through emphasis) to indicate an implicit contrast. We note that while this
contrasting interpretation is not necessitated by focus, our discussion concentrates on it because
this interpretation with generics gives rise to EXCEPTIONS.

Notice, though, that speaker B only succeeds in disagreeing with speaker A if he gives an
example of something that is cute and relevant to the context of discussion. For example, if
speaker B asserts “HEADBANDS are cute” then, unless the context is very unusual, he does not
succeed in disagreeing with speaker A. Speaker A’s assertion was to the effect that, of the relevant
alternatives, cats are the ones that are cute. Here, the relevant alternatives would be naturally
understood as other animals.

More formally, focus on an element of a sentence leads the sentence to be interpreted against
a backdrop of alternatives (Rooth 1992)6. This contextually determined set contains the relevant
alternatives to the focused item. The sentence with focus then asserts that it is the focused element
(here “cats”) that has the attributed property (being cute) as opposed to the other members of the
set of alternatives (other animals). We will denote this set of focus-alternatives ALTF=y . 7

6 Although focus is often indicated through prosodic features (e.g., intonation, stress), determining focus is a complex
problem and we therefore assume it is given.

7 Note that ALTF=y is not a set of propositions. The focus set (i.e., set of alternative propositions) for the original
statement φ with focus on constituent y can be obtained as D = {φ(x) : x ∈ ALTy} where φ(x) is the original
statement with constituent y replaced with the variable x. For example, the set of alternative propositions for “CATS
are cute” is D = {x are cute : x ∈ ALTCATS}.

7
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The focus also indicates what a discourse is about. For example, “CATS are cute” would be
part of a discussion about which animals are cute. In fact, “DOGS are cute” would be a natural
“counterclaim” to the assertion that cats are the central cute animal. The primary question that
these assertions answer is the question under discussion (QUD) and it can be derived from the
focus of an assertion.

A question can be viewed formally as denoting as set of possible answers (i.e., the domain of
answers) (Hamblin 1973; Roberts 1996). This answer domain can be derived by replacing each
wh-element8 in the question with a variable x and then filling in each variable with its possible
values. For example, the question “who is cute?” corresponds to the answer domain containing
the propositions “x is cute” where x is a valid possible cute thing. From this, we observe that the
answer domain for a question can be constructed using the focus alternatives for an answer to
the question. To see why this is the case, note that the set of possible values for x is the set of
focus alternatives for any of the possible answers to the question (e.g., “CATS are cute”, “DOGS
are cute”, etc.). This is because each possible answer will have the focus on the constituent that
answers the question (i.e., replaces the wh-element) and so the focused constituent is the filled-in
value for x. The correspondence between QUD and focus means that, given the focus of an
assertion, we can obtain the QUD and vice versa.

In sentences without focus (e.g., “birds can fly”), the QUD can still be determined from the
sentence’s topic9, which indicates what the sentence is about (Vallduví and Engdahl 1996; Partee
1991). We will assume the topic is the syntactic subject when there is no focus10, since in English
this is often the case (Vallduví and Engdahl 1996; Von Fintel 1994). Intuitively, the QUD for an
assertion φT=t with topic t will be “what is true about t?”. For example, the sentence “cats are
cute” has the topic “cats” and therefore the QUD is “what is true about cats?”.

3.1.2 Tripartite Structures. One way of representing the partition of semantic material as
determined by focus (or topic) is a tripartite structure. Consider the sentence “all birds are
animals” which has no focus but whose topic is “birds”. This sentence can be partitioned into three
parts: a quantifier (“all”), the topic (“birds”), and the rest of the sentence (“are animals”). Tripartite
structures are used to formally represent this partition. In particular, a tripartite structure (Lewis
1975) has the form

Quantifier x [RESTRICTOR(x)] [SCOPE(x)] (1)

where the RESTRICTOR controls the domain of the quantifier and SCOPE11 specifies the properties
attributed to the quantified members of the domain. For example the partition of “all birds are
animals” would be represented as

All x [BIRD(x)] [ANIMAL(x)] ≈ “all birds are animals”. (2)

Here the quantifier is “All”, the domain specified by the RESTRICTOR is “birds” and the SCOPE
specifies that “quantifier birds” (i.e., “all birds”) have the property “is an animal”. A statement

8 Roberts (1996) restricts her analysis to only “who” and “what” questions.
9 As has been frequently noted, terminology surrounding the notion of “topic” is chaotic. In particular, the term has

been used to mean both a sentence topic and a discourse topic. Here topic means the sentence topic as related to
information structure.

10 A sentence can have both focus and topic and the resulting sentence partitionings may not align. For simplicity, we
partition the sentence only using the focus, unless there is no focus (or the entire sentence is in focus), in which case
we use the topic. For a more detailed discussion on the relationship between topic and focus, we refer the interested
reader to Chapter 2.3.4 of Von Fintel (1994).

11 Also called “nuclear scope” and “matrix” in the literature (e.g., Von Fintel 1994).
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Concept Focused

Property Focused

Default Form

What is x such that 
ALTK(x) and r(x,P) ?

What is x such 
that K(x) ?

What is x such that 
ALTP(x) and r(K,x) ?

Question Under Discussion (QUD) 
(Generics Interpretation)

WHAT do cats eat?

WHAT eats fish?

K(x) ∧ r(x, P) “Tabby cats eat fish”

“Dogs eat fish”

“Cats eat carrots”

Types of cat that eat fish

K(x) ∧ r(x, P)Types of cat that eat fish

Alt. to fish eaten by cats

Types of fish eaten by cats
r(K, x) ∧ P(x)

r(K, x) ∧ ≁ P(x)

Types of cat that sometimes 
can’t eat fish

GEN x [RESTRICTOR(x)][SCOPE(x)]

GEN x [K(x)][r(x, P)]

GEN x [ALTP(x) ∧ r(K, x)][P(x)]

GEN x [ALTK(x) ∧ r(x, P)][K(x)]

Generics Tripartite Structure

GEN x [ALTfish(x) ∧ eat(cats, x)][ fish(x)]

GEN x [cats(x)][eat(x, fish)]

GEN x [ALTcats(x) ∧ eat(x, fish)][cats(x)] Alt. to cats that eat fish ≁ K(x) ∧ r(x, P)

K(x) ∧ ¬r(x, P)

Cats eat fish

Cats eat fish

Cats eat fish

Cats eat fish

“Cats eat tuna”

“Cats except for the 
newborn ones eat fish”

Instantiations Exceptions&

Newborn ones don’t!

Exemplars Formulation

Cats eat fish

Yes! Tabby cats eat fish.

Cats eat fish

Cats eat carrots, too!

COUNTERS DEFAULT QUD SUPPORTS CONCEPT-FOCUSED QUD COUNTERS PROPERTY-FOCUSED QUD

K = concept, P = property, r = relation

(§3.2.1)(§3.2.2) (§3.3)

Figure 1: Overview of our GenerIX framework (§3).

represented with a tripartite structure is true if and only if Quantifier number of the members of
the RESTRICTOR domain satisfy the SCOPE property (e.g., Eq. 2 is true if and only if all birds are
animals).

Since generics do not have any explicit quantification, the generic quantifier Gen has been
proposed12, which acts as an adverb of quantification on a tripartite structure (Lewis 1975). For
example, the generic “Birds can fly” can be represented as

Gen x [BIRD(x)] [CANFLY(x)] True iff Gen birds can fly. (3)

The division of a generic into the RESTRICTOR and SCOPE is dependent on the focus
and topic. In particular, we saw that for a sentence with no focus, the topic is mapped to the
RESTRICTOR and the non-topic constituents to the SCOPE (e.g., as in Eq.3). If there is a focus,
then the non-focused constituents map to the RESTRICTOR and the focused element to the SCOPE.

3.2 Logical Forms for Generics

We now specify logical forms for generics using tripartite structures (§3.1.2). As just discussed,
the tripartite structure for a generic is dependent on the focus. Therefore, we specify logical forms
for generics both with and without focus. We also discuss the QUD that corresponds with each
logical form (§3.2.2). The QUD provides contextualization for interpreting generics and their
EXEMPLARS. The logical forms are summarized in Fig. 1.

Generics Terminology. Throughout the following sections, we will use the following terminology
for generics. Recall that a generic statement (e.g., “birds can fly”) describes a relation between
a concept and a property. Usually, a concept K is a type or kind (e.g., bird) while a property
P may be an ability (e.g., fly) or quality (e.g., feathered). Note that statements with explicit
quantification (e.g., “Most birds can fly”) are not considered generics and are excluded from this

12 We will refer to Gen as a quantifier for the purposes of this paper, though there are technical reasons to think it should
perhaps not be classified as one (e.g. Leslie 2007). Since these considerations do not impact anything in this paper, we
keep terminology simple by referring to Gen as a quantifier.
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study. Additionally, we assume that the concept K occurs in the subject position and that the
property P is part of the predicate13.

3.2.1 Tripartite Structures for Generics. We will consider three interpretations of generics. First,
we consider the default structure for a generic. Then we consider the interpretations of the generic
with focus on the concept and property respectively14. Although it is also possible for the focus
to be on the relation r, this is uncommon and therefore we will not consider these cases in our
analysis.

Default Form. The default tripartite structure for a generic simply maps the syntactic form directly
into the tripartite structure15. Specifically, we have

Gen x [K(x)] [r(x, P )] (Default Form)

where K is the concept and r(x, P ) is true if the relation r holds between individual x and
property P . Notice that Eq. 2 represents the default structure.

Focused Form. If a generic has a specific linguistic focus, the tripartite structure is determined by
the location of the focus.

Consider the example discussed above (“CATS are cute”) with the focus on the concept.
Recall that the example world contains cats, dogs, and headbands but the QUD is “which animals
are cute”. In the corresponding tripartite structure, we know that the focused element “CATS”
will be mapped to the SCOPE while the non-focused consituents are mapped to the RESTRICTOR
(§3.1.2). So initially the tripartite structure would seem to be

% Gen x [are(x,CUTE)] [CATS(X)]. (Incorrect Concept-Focused Form Example)

However, we also need to include in the RESTRICTOR the condition ALTCATS(x). This condition
lets us capture the fact that headbands are simply not relevant to the discourse at hand. It is
necessary because the relation itself (part of the non-focused constituents) does not specify that
x must be relevant; it is possible to say a headband is cute so therefore x = headbands satisfies
are(x,CUTE). The relevance of x is ensured by the restriction that x is in the set of focus
alternatives to “CATS” (i.e., “cats”, “dogs”). Therefore, the correct tripartite structure is

X Gen x [ALTCATS(x) ∧ are(x,CUTE)] [CATS(x)]. (Concept-Focused Form Example)

More generally, the tripartite structure for the concept-focused form is

Gen x [ALTK(x) ∧ r(x, P )] [K(x)]. (Concept-Focused Form)

Analogously, if the focus is instead on the property, the tripartite structure is

Gen x [ALTP (x) ∧ r(K,x)] [P (x)]. (Property-Focused Form)

13 Note that we consider the verb “to be” as the relation are. So “are feathered” would be are(x, FEATHERED)
14 For simplicity, we assume the generic does not have multiple foci and that the focus does not span multiple

components of the generic (e.g., the entire predicate r + P ).
15 Since the default form does not have focus, the topic determines the tripartite structure for the generic. Since by

default, we interpret the concept (e.g., “kittens”) as the topic the tripartite structure for the default form is as indicated.
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Emily Allaway Exceptions, Instantiations, and Overgeneralization

For example, the generic with property-focus “Elephants eat TREES” has the form
Gen x [ALTTREE(x) ∧ eats(ELEPHANT, x)] [TREE(x)].16

3.2.2 QUDs for Generics. For a generic, the QUDs provide natural language formulations of the
multiple interpretations. Specifically, recall that a generic with some interpretation is an answer
to the corresponding QUD. For example, the interpretation of a concept-focused generic can be
expressed as “what is X such the relation holds between X and the property P ?” (e.g., “what
is X such that X eats fish?”, or more colloquially “what eats fish?”, for the generic “CATS eat
fish”). We discuss how to obtain the QUD for each interpretation from the corresponding generic
tripartite structure since these are an important component of operationalizing the logical forms
for generics.

First, for a general tripartite structure the QUD is

What is x such that RESTRICTOR? (QUD)

where “what” can be replaced by “who” if the element in focus is human. Therefore, the QUD for
a generic with concept focus is

What is x such that ALTK(x) and r(x, P )? (Concept-focused QUD)

For example, if the relevant alternatives under discussions were animals, the QUD for the assertion
“ELEPHANTS eat trees” would be “what animal eats trees?”. Similarly, the QUD for for a
property-focused generic is

What is x such that ALTP (x) and r(K,x)? (Property-focused QUD)

For example, if the relevant alternatives are plants the QUD for “Elephants eat TREES” would be
“what plants do elephants eat?”.

Note that from the definition of QUD, for the default interpretation of a generic the QUD will
be “What is true about K(x)?” (from Default Form). While we use the focused QUDs in defining
focused INSTANTIATIONS and EXCEPTIONS, we do not use the default QUD; it is too vague.

3.3 Logical Forms for EXEMPLARS

We use the the tripartite structures for generics to derive precise logical forms for EXEMPLARS.
As discussed, the INSTANTIATIONS are examples that demonstrate the truth of the generic (e.g.,
“sparrows” for the generic “birds can fly”) and the EXCEPTIONS are examples where the generic
does not apply. Under the tripartite structure, the INSTANTIATIONS are then instances x that satisfy
both components of the tripartite structure and EXCEPTIONS are x that satisfy the RESTRICTOR
but not the SCOPE.

We will first define EXEMPLARS using a general tripartite structure (§3.3.1) and lay out
terminology necessary for more precise definitions (§3.3.2). Then we derive the precise logical
forms for INSTANTIATIONS (§3.3.3) and for focused and default EXCEPTIONS (§3.3.4).

16 If the focus is on the relation, the tripartite structure is derived analogously as

Gen x [ALTR(x) ∧ x(K,P )] [R(x)] (Relation Focused)

where R is the type of the relation r and ALTR is the set of alternative relations to r. For example, the generic with
focus “Cats PLAY WITH mice” has the form Gen x [ALTPLAY(x) ∧ x(CAT,MOUSE)] [PLAY(x)].
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3.3.1 Definitions.

Instantiations. In order for INSTANTIATIONS to demonstrate the truth of a generic, they must be
examples x that make both parts of the corresponding tripartite structure true. Specifically, x must
satisfy both RESTRICTOR and SCOPE:

x : RESTRICTOR(x) ∧ SCOPE(x) (INSTANTIATIONS)

For example, the INSTANTIATIONS for “birds can fly”, which is represented by
Gen x [BIRD(x)] [can(x, FLY)] (Eq. 3), are types of birds or individual birds x that can fly
(e.g., puffins, eagles, my pet parrot).

Another way to view INSTANTIATIONS is in relation to the generics QUD. In particular, since
a generic answers the QUD, the INSTANTIATIONS can be considered support for the generic
assertion. For example, consider the concept-focused generic “CATS are cute”, which has the
QUD “what animals are cute?”. Then, natural INSTANTIATIONS would specific cats that are cute
(e.g., kittens, Scottish Fold cats), which support the generic’s answer to the QUD.

Exceptions. EXCEPTIONS are examples where the property in SCOPE for the generic does not
apply. In particular, they must satisfy the domain restriction of the generic (i.e., RESTRICTOR) but
do not have the relevant property (i.e., do not satisfy SCOPE). That is, EXCEPTIONS to a generic
are

x : RESTRICTOR(x) ∧ ¬SCOPE(x) (EXCEPTIONS)

For example, in Eq. 3, birds that can’t fly (e.g., penguins, young albatrosses) satisfy the
RESTRICTOR but not the SCOPE and so are legitimate EXCEPTIONS. Notice that examples
that satisfy the SCOPE but not the RESTRICTOR are not valid EXCEPTIONS.

We can also view EXCEPTIONS in relation to the generic and QUD. Specifically, the EXCEP-
TIONS can be considered to counter the generic assertion. For example, with a concept-focused
generic “CATS are cute” (same QUD as above—“what animals are cute”) the EXCEPTIONS would
be other animals that are cute (e.g., puppies, hamsters); here there is a disagreement between the
assertion “CATS are cute” and some alternative (e.g., “PUPPIES are cute”).

3.3.2 Terminology. Before specifying the logical forms for EXEMPLARS, we must first lay out
some terminology.

T (x) Satisfaction. For some type T , we say that T (x) is satisfied when T is some individual, or
group of individuals, of type T (or one of its subtypes)17. For example, CAT(x) is satisfied by an
individual cat (e.g., my cat Mila) or a group of cats (e.g., house cats). Similarly, a relation r(x, y)
is satisfied by individuals x and y if it is true that x r’s y. For example, likes(x, SLEEP) is satisfied
if individual x likes sleep (e.g., if x is a cat). The negation of a relation ¬r is “not r”. Namely,
¬r(x, y) specifies that it is not true that x r’s y (e.g., ¬likes(x, SLEEP) is true if x does not like
sleep). Similarly, ¬T (x) is true if x does not satisfy T (x).

17 Although the literature (e.g., Krifka et al. 1995) often makes a distinction between a group of individuals and an
established kind, we treat these equally in our work. For example, we treat “house cats” meaning the group of
individuals of the kind Felius catus as the same as reference to the taxonomic kind Felius catus.
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Exotype of T . Additionally, we define the exotype of type T , denoted �T to be the set of
contextually relevant alternatives to T that are not T itself. Therefore, we know that �T (x) is true
if ¬T (x) is true and x is in ALTT . For example, in the example world discussed above (containing
only cats, dogs, and headbands) the exotype �CAT = {dogs}.

3.3.3 Logical Forms for INSTANTIATIONS.

Logical Form. Recall that INSTANTIATIONS must satisfy both the RESTRICTOR and SCOPE for
the generic (§3.3.1). By combining this with the tripartite structures for generics we can derive
the logical forms for INSTANTIATIONS. For the default interpretation of a generic, we use the
corresponding tripartite structure Gen x [K(x)] [r(x, P )] (Default Form, §3.2.1) to derive the
logical form for INSTANTIATIONS as

x :K(x) ∧ r(x, P ) (Default Form INSTANTIATIONS)

For concept-focused INSTANTIATIONS we use the corresponding tripartite structure for concept-
focused generics Gen x [ALTK(x) ∧ r(x, P )] [K(x)] (Concept-Focused Form, §3.2.1) to derive
the logical form as

x : K(x) ∧ ALTK(x) ∧ r(x, P ) = K(x) ∧ r(x, P ) (Concept-Focused INSTANTIATIONS)

where the simplification is due to the fact that specifying an alternative to K that is also K is
equivalent to only specifying K. This means that the default INSTANTIATIONS and concept-
focused INSTANTIATIONS are the same. For simplicity, we will refer to the concept- and
default-focused INSTANTIATIONS as concept-focused. We can derive the property-focused
INSTANTIATIONS analogously as

x : r(K,x) ∧ ALTP (x) ∧ P (x) = r(K,x) ∧ P (x) (Property-Focused INSTANTIATIONS)

QUD. As noted above (§3.3.1), INSTANTIATIONS support the generic’s answer to the
interpretation-based QUD. The logical forms for INSTANTIATIONS supply two restrictions that
make this relationship precise. For the concept-focused INSTANTIATIONS, these are: that x should
actually be a subtype of the concept and that the relation must hold between x and the property.
For example, specific types of cats that are cute, as discussed above, for the generic “CATS are
cute”.

Additionally, the INSTANTIATIONS can be directly related back to the QUD. This relationship
is crucial for operationalizing the definitions of INSTANTIATIONS in a computational framework.
Recall that the concept-focused interpretation of a generic is an answer to the corresponding QUD;
namely, it answers “What is x such that (i) x is in AltK and (ii) the relation r holds between x
and P?”(see Concept-focused QUD in §3.2.2). For example, a concept-focused generic such as
“CATS are cute” answers the question “what is in the set of relevant alternatives to the concept
(here perhaps the set of animals) and is cute?”. So, the second condition, (ii), in the QUD is the
same as the second condition for concept-focused INSTANTIATIONS. However, the first condition
for concept-focused INSTANTIATIONS is more specific than in the QUD. Therefore, enforcing
both conditions we arrive at the following:

Concept-focused INSTANTIATIONS: Concept-focused INSTANTIATIONS are specific
examples of the concept that also answer the QUD

Property-focused INSTANTIATIONS have an analogous relationship to the property-focused QUD.
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3.3.4 Logical Forms for EXCEPTIONS.

Logical Form for Focused Exceptions. From EXCEPTIONS above (§3.3.1), EXCEPTIONS must
satisfy the RESTRICTOR but not the SCOPE. So for a concept-focused generic, this means
that EXCEPTIONS must satisfy ALTK(x) ∧ r(x, P ) (RESTRICTOR) and not K(x) (SCOPE).
Specifically, concept-focused EXCEPTIONS are

x : ¬K(x) ∧ ALTK(x) ∧ r(x, P ) = �K(x) ∧ r(x, P ). (Concept-Focused EXCEPTIONS)

where �K is the exotype (i.e., the set of relevant alternatives to K that are not K itself; §3.3.1).
As with the INSTANTIATIONS, the logical form specifies two constraints: that x is in the exotype
of the concept and that the relation holds between x and the property P . To continue with our
example, the concept-focused EXCEPTIONS to “CATS are cute” would be contextually relevant
non-cats that are cute (e.g., adorable puppies).

QUD for Focused Exceptions. For focused EXCEPTIONS the relationship to the QUD is again
necessary for operationalizing the logical form. As with the INSTANTIATIONS above, the QUD
enforces the second condition. Furthermore, the first condition for concept-focused EXCEPTIONS
would be the same as that in the QUD if x is allowed to be the concept itself. So

Concept-Focused EXCEPTIONS: Concept-focused EXCEPTIONS are alternative an-
swers to the concept-focused QUD for a generic that are not the concept itself.

In other words, for a concept-focused generic the EXCEPTIONS are contextually relevant
alternative concepts (not the generic’s concept) with the same property as in the generic (e.g., other
furry animals that are cute). Similarly, if the generic is property-focused then the EXCEPTIONS are
contextually relevant alternative properties (not the generic’s property), for the same concept as in
the generic (e.g., other characteristics of cats such as playful). The property-focused EXCEPTIONS
are represented formally as

x : ¬P (x) ∧ ALTP (x) ∧ r(K,x) = �P (x) ∧ r(K,x). (Property-Focused EXCEPTIONS)

where �P is the exotype of the property (i.e., relevant alternative properties that are not P ).

Logical form for Default Exceptions. Unlike with the focused interpretation, the EXCEPTIONS to
the default interpretation of a generic are not alternative answers to the corresponding QUD. So

Default EXCEPTIONS: Default EXCEPTIONS are individuals where the relation does
not hold between the concept and property.

Specifically, the logical form (combining EXCEPTIONS and Default Form) are

x :K(x) ∧ ¬r(x, P ). (Default EXCEPTIONS)

For example, the default EXCEPTIONS to the unfocused generic “cats are cute” would be cats that
are not cute (e.g., hairless Sphynx cats, arguably)18.

18 In contrast, alternative answers to the default QUD (“what is true about [CONCEPT]?”) will be properties of the
concept as a whole. Although default EXCEPTIONS can be written this way (e.g., “Penguin’s can’t fly” “Birds that
are penguins can’t fly”), the wording is unnatural.
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Reading Generic INSTANTIATION EXCEPTION
Default “Birds can fly” “Owls can fly” “Penguins can’t fly”

K(x) ∧ r(x, P ) K(x) ∧ ¬r(x, P )
Concept-focus “Peru has alpacas” “The Andes in Peru have alpacas” “Chile has alpacas”

K(x) ∧ r(x, P ) �K(x) ∧ r(x, P )
Property-focus “Elephants eat trees” “Elephants eat Baobab trees” “Elephants eat grasses”

r(K,x) ∧ P (x) r(K,x) ∧�P (x)

Table 2: Focus is indicated by bold underline. K is the concept (blue), P is the property (pink), r
is the relation, and � is the exotype (§3.3). Note that as with Concept-Focused INSTANTIATIONS,
for Property-Focused INSTANTIATIONS ALTP (x) ∧ P (x) = P (x).

Sparrows can fly.
Hawks can soar high in the air.
Arctic terns can fly long distances.

Penguins cannot fly. 
Birds that are injured cannot fly. 
Baby bats cannot fly very well.
Ostriches can run to travel.

[ penguins 
  baby bats,
  ugly birds,
  birds that are 
       injured, … ] 

Default Exceptions for generic:

Prompt Composition (§4.1)

Generally, birds can fly. 
However, some birds cannot fly. These include:

Generation

Generally, [GENERIC]. 
However, some [CONCEPT] [NEGATED RELATION] 
[PROPERTY]. These include:

Prompt Template (Prompt-D1)

Prompt:

Constraint Filter

Truthfulness Filter

Filtering & Validation (§4.2)

Validity  
Discriminator

Candidate Generations:

Exemplars Dataset

[ Penguins cannot fly, 
  Baby bats cannot fly,
  Ugly birds cannot fly
  Birds that are injured cannot fly,… ] 

Birds can fly

[ Penguins cannot fly, 
  Baby bats cannot fly,
  Birds that are injured cannot fly,…]

[ Penguins cannot fly, 
  Birds that are injured cannot fly,…]

Birds can fly
Generic:

Ins

Instantiat’ns

Exceptions

Constraint 
Satisfaction 

(§4.2.1)

Truthfulness 
(§4.2.2)

default exceptions do not 
require validity checkFiltering & Validation

Focus + QUD  
based  

Prompt  
Composition  

(§4.1)

Exemplars 
Dataset 
(§4.3)

Validity 
Discriminator  

(§4.2.3)

Figure 2: Overview of pipeline for our system ExempliFI that generates EXEMPLARS. This figure
illustrates the generation of default EXCEPTIONS for the generic “Birds can fly”.

4. ExempliFI: A System to Generate INSTANTIATIONS and EXCEPTIONS

For a generic, we generate EXEMPLARS using a four step system ExempliFI—EXEMPLARS wIth
Focus Interpretations. First, we use our GenerIX framework for EXEMPLARS (§3) to construct
generation prompts for an LLM (§4.1). Specifically, we combine the QUDs for a generic (for
multiple interpretations, with and without focus) with logical forms for EXEMPLARS to define
prompts. After generating candidates from the LLM, we conduct two stages of filtering to ensure
that the generations meet EXEMPLARS constraints and are truthful and valid (§4.2). Finally, we
present our dataset for EXEMPLARS in section §4.3. The details and validation of our ExempliFI
system are discussed in §6; implementation details are included in Appendix A.2.

4.1 Prompt Construction for Generation

In order to generate EXEMPLARS that have a specific pragmatic relation to a generic without
requiring training, we prompt an LLM using instructions based on GenerIX. In particular, we
use the QUDs for generics and the logical forms for EXEMPLARS to construct prompts for
INSTANTIATIONS and EXCEPTIONS. In practice, determining focus (and therefore the QUD) is
a complex problem and beyond the scope of this work. Therefore, we assume that each generic
could be interpreted as having no focus, focus on the concept, or focus on the property. We then
generate EXEMPLARS for all these interpretations

Since we consider all interpretations of a generic, we construct six prompts for generating
INSTANTIATIONS and EXCEPTIONS. For the INSTANTIATIONS, we construct two prompts,
one each for the concept-focused and property-focused interpretations. Note that the default
INSTANTIATIONS are the same as the concept-focused INSTANTIATIONS (§3.3). Therefore, we
will only generate INSTANTIATIONS for the focused readings explicitly. For the EXCEPTIONS,
we construct four prompts, two prompts for the focused EXCEPTIONS and two prompts for the
default EXCEPTIONS. We discuss the details of the prompt construction below and show example
prompts in Table 3.
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Prompt Type Example Prompt
Prompt-IK List types of “birds” that can fly:
Prompt-IP List types of “trees” that elephants eat:
Prompt-EK List alternative answers to the question “where has alpacas”:

- Peru has alpacas.
Prompt-EP List alternative answers to the question “what elephants eat”:

- Elephants eat trees.
Prompt-D1 Generally, birds can fly.

However, some birds cannot fly. These include:
Prompt-D2 Generally, birds can fly.

However, sometimes birds cannot fly. For example when they:

Table 3: Example prompts for generating EXEMPLARS from an LLM for the generics in Table 2.
The concept is marked with blue and the property with pink italics.

Instantiations. Recall that INSTANTIATIONS are (i) answers to the generic’s focused QUD
and are (ii) specific examples of the focused element in the generic (see Concept-Focused
INSTANTIATIONS and Property-Focused INSTANTIATIONS in §3.3). We combine these two
conditions into a prompt that we use for generation:

List types of [Focused-element] that [QUD-no-wh]: (Prompt-I)

where the QUD has the wh-word removed. For example, the prompt for “CATS are cute” is
”List types of cats that are cute:”. We construct two prompts for INSTANTIATIONS: one for
concept-focused and default readings (Prompt-IK) and another for the property-focused reading
(Prompt-IP ). See examples in Table 3.

Focused Exceptions. As with INSTANTIATIONS, we use the QUD for a generic to generate focused
EXCEPTIONS. As discussed §3.3, focused EXCEPTIONS are alternative answers to the focused
QUD that are in the exotype for the focused element (i.e., are not the generic) (see Property-
Focused EXCEPTIONS and Concept-Focused EXCEPTIONS). However, the QUD alone in the
prompt does not enforce the constraint that the EXCEPTIONS are in the exotype. Therefore, we
supply the generic as the first answer to the QUD to indicate that the generated responses should
be alternatives to the focused constituent. Specifically, given a generic, the corresponding prompt
would be

List alternative answers to the question [QUD]:
- [GENERIC] (Prompt-E)

with the model expected to produce a bulleted list of EXCEPTIONS as alternative answers. For
example, concept-focused EXCEPTIONS to the generic “CATS are cute” might include “puppies are
cute” or “rabbits are cute”. For each generic, we have two prompts for the focused EXCEPTIONS:
one for concept-focused (Prompt-EK) and another for property-focused EXCEPTIONS (Prompt-
EP ). See examples in Table 3.

Default Exceptions. The default EXCEPTIONS are individuals where the relation does not hold
between the concept and property (see Eq.Default EXCEPTIONS in §3.3) Therefore, for default
EXCEPTIONS we construct a prompt to generate such individuals. In particular, given a generic,
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EXEMPLAR Type Source Prompt Template
(a) Concept-Focused INST. Prompt-IK [___]SUBTYPE [r] [P ]
(b) Property-Focused INST. Prompt-IP [K] [r] [___]SUBTYPE

(c) Default EXCEP. Prompt-D1 [___]SUBTYPE [¬r] [P ]
(d) Prompt-D2 [K] that [___]SITUATION [¬r] [P ]

Table 4: Templates for constructing INSTANTIATIONS and default EXCEPTIONS using the
generated components. K (blue) is the concept, r is the relation, and P (pink) is the property.

the prompt would be

Generally, [GENERIC]. (Prompt-D1)
However, some [CONCEPT] [RELATION-negated] [PROPERTY]. These include:

where the negating the relation typically involves adding “not” with the verb.
While Prompt-D1 produces specific subtypes of the concept (e.g., “penguins” and “ostriches”

for the concept “birds”) many default exceptions arise from temporary conditions. For example,
“birds with a broken wing” cannot fly and are a valid default EXCEPTION to the generic “birds
can fly”, but this condition is temporary. Therefore, we use a second prompt to generate default
EXCEPTIONS arising from temporary circumstances,

Generally, [GENERIC]. (Prompt-D2)
However, sometimes [CONCEPT] [RELATION-negated] [PROPERTY]. For
example when they:

We use both prompts to construct default EXCEPTIONS. Additionally, notice that for both prompts,
we prefix the generic with the quantifying adverb “generally” (e.g., “generally, birds can fly”).
This encourages the model to remember that the generic does not apply to all members of the
concept. All of our prompts are constructed following our pragmatics-based GenerIX framework.
We use our prompts for generation as described below.

4.2 Generation and Output Filtering

We use the prompt templates to compose prompts for EXEMPLARS candidate generation as
described in §4.1. The prompts are used in a zero-shot open completion setting with the GPT-
3 (Brown et al. 2020) text-davinci-001 model (see A.2.1 for full details). We filter the output
generations through two stages of filtering process.

4.2.1 Completeness and Constraints Filtering. We first process the generations so that all the
candidates are complete sentences and fit the constraints of the corresponding EXEMPLAR’s logical
form. Focus EXCEPTIONS are generated as complete sentences. To ensure that they satisfy the
constraints of the logical form, we remove candidates that do not meet the following requirements.
For concept-focused EXCEPTIONS, the candidates must end with the generic’s property; for
property-focused EXCEPTIONS, candidates should begin with the generic’s concept.

In contrast to the focus EXCEPTIONS generations, we observe that prompts for default
EXCEPTIONS and INSTANTIATIONS produce either a list of subtypes (i.e., INST. Prompt-I’s and
default Prompt-D1) or a list of situations (default Prompt-D2). We process the generated lists
into complete sentences that abide by the specified logical constraints. For each prompt and
EXEMPLAR type, we craft a sentence template (see Table 4) that we deterministically fill using the
generated lists. Using the information from the type of prompt and its corresponding EXEMPLAR
type, we deterministically fill in sentence templates crafted for each exemplar type and source

17

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00530

© 2024 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/coli_a_00530/2463166/coli_a_00530.pdf by U
niversity of Edinburgh user on 11 Septem

ber 2024

https://doi.org/10.1162/coli_a_00530


Computational Linguistics Volume 1, Number 1

prompt (see Table 4). If a candidate doesn’t meet the requirements of the template, it is discarded.
The details of the template filling are available in Appendix A.2.2.

4.2.2 Filtering For Truthfulness. Next, we use an LLM to identify and remove false candidates.
Since pre-trained language models have a tendency to hallucinate facts (Rohrbach et al. 2018)
or produce non-specific output (e.g., “Birds can do things”), we apply a truth filtering step to
the ranked output generations. Recently, LLMs (e.g., ChatGPT) have been successfully used
to verify statements (Gilardi, Alizadeh, and Kubli 2023; Hoes, Altay, and Bermeo 2023)19. So,
we use an LLM (GPT-3.5-Turbo) to check the veracity of generated candidate EXEMPLARS.
To do this, we first convert each EXEMPLAR candidate into the singular and then ask the LLM
whether the singular form is true. If the singular form of the EXEMPLAR is true, then we say the
EXEMPLAR itself is true. The conversion to singular is done because the generated EXEMPLARS
are often themselves generics with bare plurals. From initial explorations we found that the LLM
struggles with determining the truthfulness of generic statements with bare plurals (further details
in Appendix A.2.3).

To validate this filter, we evaluate GPT-3.5-Turbo on a set of 500 EXEMPLARS generated
from AnimalG generics. The EXEMPLARS are human-annotated for truthfulness (see §6.2). The
average precision for instances labeled true is 0.89 and the recall for the false instances is 0.79.
This shows that most of the instances predicted as true by the LLM are in fact true (precision of
true) and that most of the false instances are identified and predicted as false (recall of false).

4.2.3 Validity Discrimination. The filtering process provides us with a list of true EXEMPLARS.
For true default EXCEPTIONS, they are fully valid because of how they are constructed. In
particular, the default EXCEPTIONS are constructed by combining generated subtypes with
the relation and property from the generic. Therefore, if they are true then they meet the
constraints to be valid default EXCEPTIONS. This does not hold true for focused EXCEPTIONS and
INSTANTIATIONS, where truthfulness does not necessarily indicate validity. For these cases we
run an additional filtering step to ensure validity.

In the case of focused EXCEPTIONS, invalid statements can occur when the generated
alternative concept is simply irrelevant (Ex.1) to the focused element. It can also occur in cases
where the generated concept is a subset (or a superset) of the generic concept, and therefore it
cannot be a valid alternative (Ex.2-Ex.4; see discussion §3.3.2). Additionally, true statements may
possess alternatives for the wrong component of the generic (i.e., for some element other than the
focused element; Ex.5). For example, given the concept-focused generic “BIRDS can fly”, the
following statements are all true but invalid concept-focused EXCEPTIONS:

Ex.1 % “airplanes can fly” (irrelevant alternative),
Ex.2 % “winged creatures can fly” (a superset of birds, not a valid alternative),
Ex.3 % “non-flightless birds can fly” (a subset of birds, not a valid alternative),
Ex.4 % “sparrows and pigeons can fly” (specific types of birds, not a valid alternative),
Ex.5 % “birds can sing” (alternative to “fly” instead of to “birds”).

Invalid cases for INSTANTIATIONS are less common, since they are constructed similarly to
the default EXCEPTIONS. However, we still find that LLMs can generate invalid but true candidate
INSTANTIATIONS and so benefit from an additional filtering step. For example, the statement

19 We note that some researchers have found tasks where LLMs do not perform well as evaluators (e.g., faithfulness in
summarizing short stories; Subbiah et al. 2024). However, we use LLMs to validate general knowledge, which LLMs
should be familiar with, and we find that the LLM filtering works well for our task (see above). See §7.1 for more
discussion of the limitations of this approach.
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# EXCEPTIONS # INSTANTIATIONS
#Gens Default ConceptF PropF Total ConceptF PropF Total Total

GGSmall 617 2718 2699 3522 8939 4831 3346 8177 17116
GGTest 1010 3392 6003 4864 14259 7999 4826 12825 27084
AnimalG 15028 38614 93587 75418 207619 61873 56143 118016 325635
All 16655 44724 102289 83804 230817 74703 64315 139018 369835

Table 5: Statistics of the dataset of EXEMPLARS generated by our ExempliFI system.

“binoculars are used to see things” is true but not a valid property-focused INSTANTIATION for the
generic “binoculars are used to VIEW LOCATIONS” because it just paraphrases the generic.

To select the valid focus EXCEPTIONS, we train a discriminator to predict whether a statement
is a valid focus EXCEPTION for a particular generic. We train a separate discriminator to
predict whether a statement is a valid INSTANTIATION. Discriminator details are provided in
Appendix A.2.4.

For the final output, focus EXCEPTIONS and INSTANTIATIONS are ranked using the relevant
trained discriminator. For the default EXCEPTIONS, we follow Allaway et al. (2023) and rank
generations by using the average of two ranks: perplexity and NLI. The NLI rank is determined
by the probability that the default EXCEPTION candidate contradicts the generic. We keep all valid
system generations in order to construct a large-scale dataset.

4.3 Generated EXEMPLARS Dataset

Using ExempliFI, we generate EXEMPLARS for the generics in the three datasets GGSmall,
GGTest, and AnimalG, which we detail below.

• GGSmall is a set of 617 generics sourced from Gen-Atomic (Bhagavatula et al. 2022).
Gen-Atomic is a dataset of 14M generated generics. It encompasses a wide range of
diverse everyday generalizations (e.g., “Bicycles have two wheels”, “Hammers are used for
construction”). For GGSmall, we use the same subset of the human-verified Gen-Atomic as
used by Allaway et al. (2023). This subset excludes generics with human referents as the
concept (e.g., nationalities, professions) due to social bias concerns.

• GGTest is sourced from Gen-Atomic’s test set and consists of 1010 generics. We obtain
this subset by excluding generics with a human referent (as with GGSmall) and filtering
using the discriminator published with GGTest. Specifically, we use the discriminator to
select only statements that both humans and the model agree are generics.

• AnimalG is a set of 15028 generics with animal referents. These generics are sourced
from the dataset of generics constructed by Ralethe and Buys (2022) for probing generic
processing in LLMs. The original dataset was extracted from GenericsKB using a fixed list
of animals (e.g., “reptiles”, “fish”, “birds”).

In total we generate 369, 835 EXEMPLARS across 16, 655 generics (Table 5). In particular,
we generate 230, 817 EXCEPTIONS and 139, 018 INSTANTIATIONS. Examples of the generated
data are shown in Table 6. We validate in §6 that ExempliFI generates high-quality EXEMPLARS.
Such a large and high quality dataset allows us to thoroughly probe the capabilities of LLMs to
reason about generics (§5).

In the analysis of our dataset, we observe that among the different types of EXEMPLARS,
ExempliFI is strongest at generating default EXCEPTIONS that go beyond knowledge-based
counter-evidence. For example, “family chapels are not open to public” is an acceptable knowledge-
based EXCEPTION to generics like “chapels are open to public” since it relies on general static
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Generic:

A Goq is a sparrow.  
A sparrow is a bird.

Setting 1:

Key:  
Goq is a nonce subtype of bird 
Sparrow is an intermediary subtype of bird 
EXCEPTION is introduced as a Distractor 
Taxonomic relationships of the intermediary  
   subtype and EXCEPTION are explicitly provided.

{Yes|No}

Hypothesis:
A Goq can fly.

A Goq is a sparrow.  
A sparrow is a bird. 
A penguin is a bird.  
A penguin can’t fly.   

BASICINHERIT

Premise:

COMPLEXINHERITSetting 2:
Premise:

Property InheritanceGoG Effect

[BLANK] birds can fly.
Basic Prompt: Prompt w/ EXCEPTION:

Birds can fly.  
However, penguins cannot fly.  
Therefore,  [BLANK] birds can fly.

Birds can fly

GoG positive indicators[all, every]

[many, some, 
most, etc ]

What are the best quantifiers to fill the blank?Question:

GoG negative indicators

Figure 3: Using dataset generated by ExempliFI, we test LM’s capabilities to reason with generics.

properties about a known kind (i.e., properties of family chapels). But ExempliFI is also able
to generate reasoning-based EXCEPTIONS that require access to non-static and counterfactual
knowledge about the generic. For example, for the same generic (“chapels are open to public”),
ExempliFI generates the default EXCEPTION “chapels that are closed for renovation are not open
to the public during regular hours”; this requires counterfactual reasoning about what might cause
a chapel to be temporarily closed.

These reasoning-based default EXCEPTIONS are often more compelling than knowledge-
based ones. This is because they do not simply enumerate factoids that may or may not be relevant
to a user. Instead, the reasoning-based EXCEPTIONS provide additional relevant information
that allows humans to contextualize and understand the generic. For example, “cats that live in
apartments or homes do not sleep in trees” is a more useful EXCEPTION to the generic “cats sleep
in trees” than “cheetahs do not sleep in trees” is; the average person may not know whether or not
cheetahs generally sleep in trees20.

Additionally, the reasoning-based EXCEPTIONS allow ExempliFI to produce default EXCEP-
TIONS for generics where the concept does not have any well-known subtypes (i.e., it is not
an established kind). For example, “scavenger hunt” does not have well-known subtypes but
ExempliFI can still generate default EXCEPTIONS using reasoning; it generates “a scavenger hunt
that is too difficult is not a fun way to spend an afternoon with friends” as an EXCEPTION to “a
scavenger hunt is a fun way to spend an afternoon with friends”. We see this increased coverage
reflected in how often the reasoning-based EXCEPTIONS are ranked highly. In particular, for the
AnimalG data ∼63% of the top ten default EXCEPTIONS are reasoning based. For GGSmall and
GGTest the proportions of reasoning-based EXCEPTIONS in the top ten default EXCEPTIONS are
∼73% and ∼17% respectively. The disparity between GGTest and the other two data sources may
be due to the fact that GGTest contains a large number of definitional or tautological generics
(e.g., “an outlet mall is a place”) for which it is difficult to come up with reasoning-based default
EXCEPTIONS. For example, while default EXCEPTIONS to “hot chocolates taste like cocoa” are
difficult to construct, since all hot chocolate will taste like cocoa, valid EXCEPTIONS still exist
(e.g., the property-focused EXCEPTION “hot chocolates taste like vanilla”). In the following
section, we will use the EXEMPLARS generated by ExempliFI, especially the default EXCEPTIONS,
to investigate how LLMs reason about generics.

5. Reasoning in Generics in LLMs

Theorists (Leslie 2008; Leslie, Khemlani, and Glucksberg 2011; Leslie and Gelman 2012;
Sutherland et al. 2015; Gelman, Tapia, and Leslie 2016) have proposed that generics represent

20 Unlike many other large cats, cheetahs tend to sleep under, not in, trees. See
https://cheetah.org/learn/about-cheetahs.
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AnimalG Data
(a) Generic: Cats sleep in trees

Default EXCEPTIONS:
• Cats that live in apartments or homes

do not sleep in trees.
• Cheetahs do not sleep in trees.

INSTANTIATIONS:
• Pumas sleep in trees.
• A lynx sleeps in trees.
• Cats sleep in the branches of a tree.

(b) Generic: Birds fly.
Default EXCEPTIONS:
• Ostriches are not able to fly.
• Birds that have a broken wing

are not able to fly.
• Birds that have their wings clipped

are not able to fly.

INSTANTIATIONS:
• A peregrine falcon is able to fly.
• A hummingbird is able to fly.
• Birds are able to glide for long

periods of time.
• Birds are able to hover in the air.

(c) Generic: Moose have winter coats.
Concept-Focused EXCEPTIONS:
• Rabbits have winter coats.
• Bears have winter coats.

Property-Focused EXCEPTIONS:
• Moose have hooves.
• Moose have big antlers.

(d) Generic: Deer live in meadows.
Concept-Focused EXCEPTIONS:
• Antelopes live in meadows.
• Rabbits live in meadows.

Property-Focused EXCEPTIONS:
• Deer live in the forest.
• Deer live in the mountains.

GGTest Data
(e) Generic: a scavenger hunt is a fun way to spend an afternoon with friends.

Default EXCEPTIONS:
• A scavenger hunt that is too difficult

is not a fun way to spend an afternoon
with friends.

• A scavenger hunt that is in an unsafe
location is not a fun way to spend
an afternoon with friends.

INSTANTIATIONS:
• A food scavenger hunt is a fun

way to spend an afternoon
with friends.

• A historical scavenger hunt is a fun
way to spend an afternoon
with friends.

(f) Generic: Binoculars are used to view location.
Concept-Focused EXCEPTIONS:
• A telescope is used to view location.
• A satellite is used to view location.

Property-Focused EXCEPTIONS:
• Binoculars are used to view stars.
• Binoculars are used to magnify objects.

GGSmall Data
(g) Generic: A rose is placed in a container with water.

Default EXCEPTIONS:
• Dried roses are not placed in a container

with water.
• Roses that are used as part of a garland

are not placed in a container with water.

INSTANTIATIONS:
• A rose is placed in a vase.
• A rose is placed in a bowl.
• A cut roses are placed in a container

with water.
(h) Generic: Cakes are made with a mix.

Concept-Focused EXCEPTIONS:
• Pancakes are made with a mix.
• Waffles are made with a mix.
• Brownies are made with a mix.

Property-Focused EXCEPTIONS:
• Cakes are made with eggs.
• Cakes are made with a cake pan.
• Cakes are made with an oven.

Table 6: Examples of EXEMPLARS generated by ExempliFI.

a default way of thinking for humans. That is, generics are more cognitively fundamental than
quantified statements. This generics-as-default hypothesis has been supported by cognitive
science studies with both children and adults (cf. §2.1). Our generated EXEMPLARS allow us
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Top Quantifiers Probe Psychology-based Questions Probe
Base [blank] {birds can fly.}G

What are the 5 best quantifiers to fill in the blank?
{All}Q {birds can fly.}G Yes or No?

+ EXCEP. {Birds can fly.}G
However, {penguins cannot fly.}E
Therefore, [blank] {birds can fly.}G
What are the 5 best quantifiers to fill in the blank?

{Penguins cannot fly.}E Yes or No?

Table 7: Prompts used to probe LMs for the GOG effect. The braces ({}) indicate slots filled by
the generic (teal G), an EXCEPTION (orange E), or one of three quantifiers (pink Q). The three
possible quantifiers are: “all”, “some” or nothing (to obtain a generic statement).

to investigate whether LLMs exhibit similar behaviors by probing how they treat the semantic
relationship between generics and EXEMPLARS.

Since LLMs have been trained on large quantities of human-written text, we hypothesize
they will seem to treat generics as defaults, similarly to humans. Specifically, we investigate two
behaviors: overgeneralizing from generic statements to universals (i.e., accepting false universal
statements as true when the corresponding generic is true) and treating generic statements as
universals in property inheritance.

First, humans have a cross-culturally documented tendency to treat universally quantified
statements as generic (e.g., “all birds can fly” “birds can fly”) (Hollander, Gelman, and Star
2002; Khemlani et al. 2007; Mannheim et al. 2010; Meyer, Gelman, and Stilwell 2011; Tardif et al.
2012). That is, universally quantified statements are deemed true despite the presence of known
EXCEPTIONS. This has been termed the Generic OverGeneralization (GOG) effect and supports
the generics-as-default hypothesis. In particular, if understanding generics is more basic (i.e.,
default behavior) than understanding quantified statements, humans should (and do) sometimes
fall back on their interpretation of a generic when confronted with a universal (Leslie, Khemlani,
and Glucksberg 2011).

Second, when drawing inferences (e.g., in syllogistic reasoning), generics are often treated as
universally quantified (Khemlani, Leslie, and Glucksberg 2008, 2009). For example, the generic
“birds can fly” is often treated as the default rule “in general, if X is a bird then X can fly” and so
it can be inferred that a new bird, Y, can fly without knowing anything about Y. Such plausible
inferences have been documented in human interactions (Collins and Michalski 1989) and support
the hypothesis that generics are a default way of generalizing information.

In order to analyze whether LLMs show evidence of generics-as-defaults behavior, we first
probe the GOG effect in LLMs (§5.1) and then investigate property inheritance via generics
(§5.2).

5.1 Generics and Quantification

In humans, the GOG effect has primarily been demonstrated by asking study participants to
agree or disagree with statements that are either quantified or generic (e.g. Leslie, Khemlani, and
Glucksberg 2011). Specifically, in the first paper to investigate the effect, Leslie, Khemlani, and
Glucksberg (2011) asked human participants to respond with either yes or no, indicating their
agreement with various statements. Those statements were presented universally quantified (e.g.,
“all ducks lay eggs”), in generic form (e.g., “ducks lay eggs”) or existentially quantified (“some
ducks lay eggs”). Multiple participants responded to each statement. Of particular interest were
generics that are intuitively true, despite only ∼50% of the concept satisfying the property. For
example, “ducks lay eggs” is intuitively true, even though only mature, fertile, female ducks lay
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egg. For such generics, accepting a universally quantified version (e.g., “all ducks lay eggs”)
clearly constitutes an error that an educated adult human is in a position to spot and avoid.
Contrary to this, Leslie, Khemlani, and Glucksberg (2011) found evidence of the GOG effect
across multiple studies. That is, they found that educated adult humans have a tendency to treat
universals as though they are generics and will accept such universals a robust percentage of the
time, despite being aware of the exceptions (e.g., male ducks).

To examine whether LLMs overgeneralize and exhibit a GOG effect, we probe which
quantifiers are generated by LLMs for generic statements. We assess the quantifiers generated by
the LLM and, if either of the universal quantifiers “all” or “every” is generated, we count this as
evidence of the GOG effect. Note that there are many choices of quantifiers that do not constitute
the GOG effect (e.g., “many”, “most”, “some”, “few”), as well as adjectival modifiers, and so
LLMs have many options other than universal quantifiers. By supplying a universal quantifier to
modify the generic, the LLM provides evidence of a tendency to conflate universally quantified
statements and generics (i.e., evidence of a GOG effect).

Furthermore, we investigate whether a GOG effect in LLMs persists when counter evidence
to the generic is presented. To do this, we augment our probe to include EXCEPTIONS. This aims
to control for the possibility that any observed GOG effect is due to missing knowledge about
relevant exceptions in the LLM. Specifically, we follow Karczewski, Wajda, and Poniat (2020)
and include automatically generated default EXCEPTIONS in the generic’s context. In humans,
knowledge of EXCEPTIONS may reduce the GOG effect (Leslie, Khemlani, and Glucksberg 2011)
but it does not eliminate it; we expect LLMs to exhibit similar behavior.

5.1.1 Methods.

Probes. Our main probe (Top Quantifiers) asks LLMs to answer a fill-in-the-blank question about
how a generic statement should be quantified (see “Top Quantifiers Probe” column in Table 7).
The LLM is asked to respond with the top five options (quantifiers) to fill in the blank. We do this
to obtain variation in the models’ responses. While human studies on the GOG effect can collect
responses from multiple participants for each generic (described above; cf. Leslie, Khemlani,
and Glucksberg 2011), multiple generations from LLMs exhibit very little variation. Therefore,
a ranked list of quantifiers approximates multiple participant responses within the framework
of a single LLM. To measure the GOG effect from this probe, we compute the frequency of
the universal quantifiers “all” and “every” among the elicited quantifiers for each generic. For
each generic, we run this probe with and without EXCEPTIONS to investigate the impact of
EXCEPTIONS on the models’ behavior.

Additionally, we run a supplementary probe (Psychology-based Questions) that directly
follows psychology studies (e.g., Leslie, Khemlani, and Glucksberg 2011) on the GOG effect
in humans. Specifically, this probe consists of four questions asked to the LLM separately (see
“Psychology-based Questions Probe” column in Table 7). The model is asked to answer yes or no
to each. The first two questions each contain a quantified version of the generic. The quantifier is
either the universal “all” or the existential “some”. The third question contains the unquantified
generic (i.e., the generic as a generic). The fourth question asks whether the model endorses an
EXCEPTION. We then measure how often LLMs endorse both the universally quantified generic
(e.g., “all birds can fly”) and an EXCEPTION to the generic (e.g., “penguins cannot fly”).
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Details. We run our probes on generics from the AnimalG dataset21 for which our system generates
valid default EXCEPTIONS. For our main Top Quantifiers probe we use all 10488 generics with
valid default EXCEPTIONS. For the supplementary Psychology-based Questions probe we use
a random sample of 1000 of the 10488 generics with valid default EXCEPTIONS; this sample is
chosen such that each generic has at least three valid default EXCEPTIONS. For both probes we
use the top three valid default EXCEPTIONS for each generic in the probe; we average the results
across the EXCEPTIONS for each generic.

We investigate four LLMs22:

• GPT-3: A decoder-only transformer-based language model with 175B parameters and
trained for causal language modeling (Brown et al. 2020).

• GPT-3.5-Turbo and GPT-4: Transformer-based language models that substantially improve
performance over GPT-3 (OpenAI 2023). Both models are trained with reinforcement
learning from human feedback (RLHF) (Christiano et al. 2017) and are optimized for chat
purposes23. In RLHF, a reward function is learned from human preferences about generated
text. The resulting reward function is then used with reinforcement learning to fine-tune the
LLM.

• LLAMA-2: An open-source transformer-based language model trained using RLHF (Tou-
vron et al. 2023). We use the version with 7B parameters optimized for dialogue use
cases.

We choose these models to include both top-performing (GPT-4) and open-source (LLAMA-2)
models, along with the LLMs used in our ExempliFI system (GPT-3 and GPT-3.5-Turbo).24

5.1.2 Analysis. To examine the main Top Quantifiers probe, we use as a metric the percentage
of generics where a universal quantifier is generated by the LLM, both with and without default
EXCEPTIONS probe. For the Psychology-based Questions probe, we examine four slices of the
models’ responses. These are the percentage of generics where: (i) the LLM endorses both the
universally quantified generic and an EXCEPTION (i.e., a GOG response), (ii) the LLM does
not endorse the universally quantified generic but does endorse an EXCEPTION (i.e., responds
“correctly” and in a way that indicates knowledge of the generic’s EXCEPTIONS), (iii) the LLM
does endorse the universally quantified generic but does not endorse the EXCEPTIONS (i.e., the
response may be attributable to ignorance about the generic’ EXCEPTIONS), and (iv) neither the
universally quantified generic nor the EXCEPTIONS are endorsed by the LLM (i.e., the model
may be generally ignorant about the generic or it may be unable to respond to the prompt for
some other reason). Note that we include full results for the other questions in Psychology-based
Questions probe in Appendix B.1.2.

Our results from both probes show a non-zero GOG effect across all LLMs (Fig. 4) with the
level ranging from fairly negligible (present on <10% of generics) to substantial (present on over
90% of the generics). With the Top Quantifiers probe, overgeneralization actually increases for half
the LLMs (GPT-3.5-Turbo and LLAMA-2) when EXCEPTIONS are added to the prompt (Fig. 4a);
for GPT-4 the effect does substantially decrease in the presence of EXCEPTIONS. The results of
the Psychology-based Questions probe also show a GOG effect for all LLMs (Fig. 4b). For the

21 We use AnimalG data because it is the largest set of generics and because it consists of simple sentences that most
closely follow linguistic definitions of generics.

22 GPT-3—text-davinci-003; GPT-3.5-Turbo—gpt-3.5-turbo; GPT-4—gpt-4-0613;
LLAMA-2—meta-llama/Llama-2-7b-chat-hf.

23 https://platform.openai.com/docs/models
24 We do not use GPT-3 for the Psychology-based Questions probe experiments because GPT-3 has been deprecated by

OpenAI.
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Figure 4: Results of the GOG effect probes across LLMs.

GPT models, only ∼7.5 of the universal statement endorsements (∼2 of the total generics) can
potentially be attributed to ignorance of the generics’ EXCEPTIONS; the remaining portion indicate
overgeneralization. Note that although the GOG response from LLAMA-2 is minimal, this may
be attributable to the model failing to adequately process the probes’ prompts. Specifically, a large
portion (40%) of LLAMA-2’s responses fall into the “Other” category (i.e., neither the universally
quantified generic nor the EXCEPTIONS were endorsed by the model) and LLAMA-2 exhibits
a substantially lower rate of correct responses than the GPT models (26% compared to 71% for
the GPTs)25. Overall, regardless of whether we probe by asking the model a generation (i.e.,
free response – Top Quantifiers) or classification (i.e., yes or no – Psychology-based Questions)
question, a GOG effect is present across LLMs and the effect does not disappear in the
presence of EXCEPTIONS.

When comparing the two probes, recall that the way in which EXCEPTIONS are presented
to the LLMs is distinct. Specifically, in the Top Quantifiers probe, the default EXCEPTION is
presented together with the generic itself in one prompt (see Table 7). Hence the LLMs’ response
is generated conditioned on the EXCEPTION. In contrast, for the Psychology-based Questions
probe, the universally quantified version of the generic and the default EXCEPTION are presented
in separate prompts. This means that in the Psychology-based Questions probe the EXCEPTION
does not explicitly impact the response to the universal statement, and vice versa. This probe,

25 An additional 19% of LLAMA-2’s responses are not interpretable as a yes or no response (e.g., a string of only
newline characters).
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which does not explicitly require the model to reason about the relationship between the generic
and EXCEPTION, serves as a baseline indicator of GOG effect in LLMs. The observed increases
in the GOG effect with the Top Quantifiers probe may then be due in part to difficulties in
reasoning for the LLMs.

To better understand the universal quantifiers elicited by the Top Quantifiers, we examine the
LLMs’ consistency across varying EXCEPTIONS. That is, for generics where an LLM produces a
universal quantifier in the presence of at least one of the corresponding EXCEPTIONS, we compute
the proportion where the LLM produces universals for all EXCEPTIONS (i.e., where the LLM
is consistent in its decision to universally quantify the generic). We observe that the models for
which the GOG effect increases with EXCEPTIONS (i.e., GPT-3.5-Turbo and LLAMA-2)
have substantially more consistency than the models where the GOG effect decreases. That is,
GPT-3.5-Turbo/LLAMA-2 are consistent for 60.3% of cases on average while GPT-3/GPT-4 are
consistent for only 24.4% of cases on average. The low consistency with GPT-3/GPT-4 is likely
indicative of a further decrease in GOG effect: the LLMs not only produce universals for less
generics, they are also less confident even when they do.

Since the Top Quantifiers probe is essentially a free response question for the LLMs, the
generated quantifiers may not actually be grammatical quantifiers. For example, the LLMs may
generate adjectival modifiers (e.g., “old”, “female”). When we compare the modifiers produced
by the GPT models, we observe that both GPT-3 and GPT-4 produce nearly twice as many
unique modifiers (3633 and 4077 respectively) as GPT-3.5-Turbo and LLAMA-2 (1351 and
1589 respectively). That is, GPT-3/GPT-4 are better able to come up with complex modifiers
that qualify the generic without using a grammatical quantifier. In fact, GPT-4 produces 1505
multi-word modifiers (compared to only 617 from GPT-3.5-Turbo and 629 for LLAMA-226). For
example, GPT-4 produces 146 combinations of “only”+adjective (e.g., only matured, only female,
only domestic, only fertile, etc.), compared to less than 50 from GPT-3.5-Turbo/LLAMA-2.
Such varied and appropriate modifiers allow the model to qualify the generic assertion while
simultaneously accounting for the exceptions. Therefore, the observed differences in GOG
effect across LLMs may be partly attributable to differences in the LLMs’ ability to produce
appropriate, non-quantifier modifiers.

Overall, these results show that LLMs do exhibit a GOG effect. In particular, like, humans,
models conflate generics with universally quantified statements in multiple probe settings.
However, unlike in humans, this effect is sometimes increased in the presence of default
EXCEPTIONS. This could be due in part to difficulties for LLMs in reasoning over EXCEPTIONS
and generics together or to varying abilities of LLMs to generate appropriate, non-quantifier
modifiers for generics. We leave further discussion for §5.3 and now investigate whether the
conflation of generics and universals extends to property inheritance in LLMs.

5.2 Generics and Inheritance

Human reasoning about property inheritance often confounds generics with universally quantified
statements. For example, based on the generic “birds can fly” humans tend to infer that if Polly is
a bird then Polly can fly, unless they are provided with evidence to the contrary. In other words,
humans treat the generic “birds can fly” as universally quantified (“all birds can fly”) and therefore
applicable to all individual birds. However, when presented with counterexamples (e.g., “Bob is a
penguin and Bob cannot fly”), humans sometimes deviate from applying the default rule (i.e., not

26 We remove complete sentences that do not contain the concept from consideration as modifiers. For most models the
number of such instances is very small (16-22), although LLAMA-2 produces 475 instances.
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Subsest 2-Step? Distractor? Premises

BasicInherit
{Sheep have horns.}G A Yeb is a sheep.

X {Sheep have horns.}G A Yeb is {a bighorn sheep}S .
{A bighorn sheep}S is a sheep.

ComplexInherit
X {Sheep have horns.}G A Yeb is a sheep. Sheep that

have their horns removed for safety reasons are
sheep. {Sheep that have their horns removed for
safety reasons do not have horns. }E

X X {Sheep have horns.}G A Yeb is {a bighorn sheep}S
{A bighorn sheep}S is a sheep. Sheep that have
their horns removed for safety reasons are sheep.
{Sheep that have their horns removed for safety
reasons do not have horns. }E

Conclusions
Condition[+]: A Yeb has horns.
Condition[¬]: A Yeb does not have horns.

Table 8: Prompts for both property inheritance probe sets. Premises are shown in the top portion
and the conclusions for both conditions are provided in the bottom portion of the table. 2-
Step indicates the prompt question involves 2-step inheritance, Distractor indicates the prompt
question contains an EXCEPTION. The braces ({}) indicate slots filled by the generic (teal G), an
EXCEPTION distractor (orange E), or an INSTANTIATION’s subtype (magenta S).

inferring that Polly can fly). In this work, we probe how LLMs reason about property inheritance
with generics and how EXCEPTIONS impact this reasoning.

Property inheritance with generics has primarily been studied in formal methods for
nonmonotonic reasoning27. Early work in artificial intelligence investigated inheritance from
generalizations with exceptions (Hanks and McDermott 1986; Brewka 1987; Horty and Thomason
1988) and a number of formal logics have been proposed to facilitate reasoning with such
sentences (McCarthy 1980, 1986; Reiter 1978, 1980; Poole 1988; Delgrande 1988; Veltman 1996;
Collins and Michalski 1989). In an attempt to benchmark the success of nonmonotonic reasoning
systems, Lifschitz (1989) compiled a set of challenge problems. We use the inheritance reasoning
subset of these problems as inspiration for constructing probe questions for LLMs28.

To investigate inheritance reasoning in LLMs, we construct a set of probe questions that
ask the model whether an assertion about property inheritance is valid. For example, an LLM is
asked whether the assertion “A Goq can fly” is valid given the premises “birds can fly” (a generic)
and “a Goq is a bird” (a statement that connects the queried subtype, Goq, to the concept in the
generic). By using generics rather than explicitly quantified statements (e.g., “all birds can fly”),
we probe whether LLMs treat consider generics as default inference rules. Additionally, we probe
how LLMs reason about inheritance in the presence of EXCEPTIONS to the generic.

5.2.1 Methods.

27 In deductive logic, it would be invalid to conclude that the hypothesis below follows from the premises:

Premises: Polly is a bird. Birds can fly
Hypothesis: Polly can fly.

However, humans and machines tend to employ more flexible reasoning and formal methods for nonmonotonic
reasoning attempt to capture some of this flexibility (cf. Ginsberg 1987). Following nonmonotonic logics, it is valid to
infer the hypothesis from the premises.

28 Specifically, problems B1 and B2.
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Setup. We construct two probe sets of inheritance questions using generics and the EXEMPLARS
generated by ExempliFI. Each question is centered around a property generalization (e.g., “sheep
have horns”). The model is then asked to determine the validity of a conclusion about property
inheritance: whether the specified property is inherited by a subtype (e.g., “a Yeb”). We use
nonsense words for the subtype in the conclusion in order to ensure that the model does not rely
on prior knowledge in determining validity. We construct questions with both positive (e.g., “A
Yeb has horns”) (Condition[+]) and negative (e.g., “A Yeb does not have horns”) (Condition[¬])
conclusions. In contrast to prior work, which compares the log-likelihood of sentence pairs to
measure LLM’s ability to do property inheritance reasoning (Misra, Ettinger, and Rayz 2021), we
use direct questions for evaluation. This formulation is better suited to decoder-only LLMs (e.g.,
GPT series) which are trained to follow task instructions.

Our first probe set, BasicInherit, contains questions with two components. The first is a
generic (e.g., “sheep have horns”), which provides a generalization that a concept (e.g., “sheep”)
has a property (e.g., “have horns”); the second component is a set of premises consisting of the
relevant taxonomic relations between the subtype and the concept (e.g., “A Yeb is a sheep”). In
contrast to prior work (Talmor et al. 2020; Misra, Ettinger, and Rayz 2021), we explicitly include
both the property generalization (i.e., the generic) and taxonomic relations. First, by including the
property generalization in the question, we ensure that decisions by the LLM cannot be attributed
to a lack of knowledge (e.g., not knowing that sheep have horns). Secondly, the taxonomic
relations enable us to use nonsense words as the subtype in the conclusion. Furthermore, the
taxonomic relations also mean that the model is actually being evaluated on whether it endorses a
property inheritance assertion, and not on whether it can also connect the nonsense word to the
concept.

Our second probe set, ComplexInherit, probes property inheritance behavior in the presence
of potentially conflicting information. Namely, each question includes a distractor—an example
of the concept that does not have the property (e.g., “sheep that have had their horns removed
for safety reasons”). These questions additionally include the same components as the questions
in BasicInherit. The distractor is included as part of the premises in the question, along with the
taxonomic relations. As distractors, we use generated default EXCEPTIONS to the generic in each
question.

For both probe sets, we construct both single and 2-step inheritance questions. The single-step
inheritance questions probe inheritance to a direct subtype of the concept. For example, given
“sheep have horns” and “a Yeb is a sheep”, the model is asked to determine whether “a Yeb has
horns” is valid (in Condition[+]). In the 2-step inheritance questions, an intermediate subtype is
introduced between the conclusion and the concept. For example, for the Condition[+] conclusion
“a Yeb has horns”, the premises “sheep have horns”, “bighorn sheep are sheep”, and “a Yeb
is a bighorn sheep” illustrate 2-step inheritance (i.e., sheep→ bighorn sheep→ Yeb). We use
generated INSTANTIATIONS to a question’s generic as the intermediate subtypes.

Details. We use a subset of 1000 randomly selected generics from the AnimalG dataset29 to
construct our evaluation questions. Each question has the following format:

Premises:
[premises]
Conclusion: Therefore, [conclusion].
Does the conclusion logically follow from the premises?
(yes/no)

29 We use AnimalG because it was created to contain only generics about animals. So it is well suited for investigating
property inheritance to subtypes. In contrast, the generics in GGSmall and GGTest describe concepts that do not
necessarily have subtypes and would not make sense in an inheritance setting.
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Condition[+] Condition[¬] All
Inherits Doesn’t Inherits Doesn’t Inherits Doesn’t

GPT-3.5 0.885 0.115 0.889 0.107 0.887 0.113
GPT-3 0.944 0.057 0.969 0.032 0.956 0.044
GPT-4 0.985 0.016 0.999 0.001 0.992 0.008

(a) Results on the BasicInherit probe questions.

Condition[+] Condition[¬] All
Inherits Doesn’t Inherits Doesn’t Inherits Doesn’t

GPT-3.5 0.116 0.884 0.417 0.582 0.267 0.733
GPT-3 0.164 0.837 0.554 0.447 0.359 0.642
GPT-4 0.727 0.274 0.964 0.037 0.845 0.155

(b) Results on the ComplexInherit probe questions.

Table 9: Percentage of property inheritance probe questions where the model did or did not
endorse the property inheritance conclusion. In Condition[+], “yes” indicates endorsement while
in Condition[¬] “no” indicates endorsement.

The premises consist of the property generalization (the generic), relevant taxonomic relations,
and potentially a distractor (an EXCEPTION) as discussed above (see examples in Table 8). We
use the wording “logically follow” to instruct the model to do deductive inference30. As a result,
if the model endorses property inheritance (e.g., responding “yes” to the Condition[+] conclusion
in Table 8) we know that it has treated the generic in the premises (e.g., “sheep have horns”) as if
it were universally quantified (e.g., “all sheep have horns”), since that is the only way for such a
conclusion to be deductively valid.

Given a generic, we construct premises for both BasicInherit and ComplexInherit. In
particular, we first construct single and 2-step inheritance premises for BasicInherit, using the top
ranked concept-focused INSTANTIATION as the intermediate subtype in 2-step inheritance. Then,
we add a distractor and connecting taxonomic information to each set of premises in BasicInherit,
making the premises for ComplexInherit. We use the top ranked default EXCEPTION as the
distractor. This results in four sets of premises. Note that the nonsense subtypes are randomly
chosen from a set of five nonsense words and the same nonsense word is used across all premises
for a generic.

The probe questions for a generic are constructed by combining each set of premises with the
conclusions for both conditions. Namely, each set of premises produces two questions, one for
Condition[+] and one for Condition[¬]. Therefore, for each generic we have eight questions and so
our final probe sets consist of 4000 questions each.

We probe property inheritance in three LLMs31: GPT-3, GPT-3.5-Turbo, and GPT-4 (see
§5.1.1 for descriptions of the models).

5.2.2 Results and Analysis. As a metric, we measure the percentage of questions on which each
LLM endorses property inheritance (Table 9).

30 We validate that the models behave correctly in response to this wording with a manually constructed set of sample
questions. See Appendix B.2 for details.

31 We do not include LLAMA-2 in this analysis because the model generates almost exclusively a single response (“no”
for 91.5% of the instances) and so its behavior corresponds to randomly assigning yes or no.
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First, we observe that with BasicInherit, all three LLMs endorse property inheritance with
very high frequency (94.8% on average, see Table 9a). Furthermore, we observe minimal variation
between Condition[+] and Condition[¬]. This indicates that the models do tend to treat generics
as default inference rules for straightforward property inheritance, and that negation does not
impact the models’ behavior. Since endorsing property inheritance here means judging that the
argument is valid, we take this as further evidence that LLMs, like humans, treat generics as akin
to universally quantified statements in a reasoning context.

In contrast, on the ComplexInherit probe questions, endorsement of the property inheritance is
substantially lower. In other words, the presence of distractors (EXCEPTIONS) has a substantial
impact on how often models support property inheritance. For example, an LLM would likely
assert that some bird X cannot fly because an example is provided of a bird that cannot fly (e.g.,
penguins). Unlike with BasicInherit, there is a clear difference between the two conditions. In
particular, property endorsement is more frequent with ComplexInherit in Condition[¬] across all
models. By responding “no” to the conclusion in Condition[¬] (e.g., “a Yeb does not have horns”),
one interpretation is that the model is implicitly endorsing the opposite (i.e., that a Yeb does have
horns). This means the models are more likely to implicitly endorse property inheritance, rather
than explicitly. An alternative interpretation is that the models do a better job in this condition of
recognizing that, in fact, neither conclusion follows deductively from the premises.

Looking more closely at ComplexInherit, we observe that GPT-4 endorses property in-
heritance substantially more than GPT-3.5-Turbo and GPT-3; in Condition[+] the latter two
models support property inheritance in only ∼300 instances. This difference may be due in
part to substantial increases in GPT-4’s reasoning performance (e.g., as demonstrated by large
improvements on academic exams; OpenAI 2023), which may allow the LLM to better reason
about the semantic relationship between generics and their EXCEPTIONS.

If we set aside questions of deductive validity and focus on non-monotonic patterns of
inference, in human discourse, considering EXCEPTIONS relevant to possible property
inheritance is not unreasonable. Following Gricean maxims (Grice 1975), if a speaker asserts
something, then other participants may assume that that thing is relevant. So in this case, the
model might reasonably assume that the default EXCEPTION is relevant to whether the property is
inherited to the subtype; the assertion of an EXCEPTION may imply the final subtype is also an
EXCEPTION. Although this contrasts with patterns of formal nonmonotonic reasoning (Lifschitz
1989), it is supported by studies with humans. In particular, human studies on default reasoning
have found evidence that factors such as the choice of EXCEPTION and the number of EXCEPTIONS
influence whether humans deem that a property is inherited from a generic to a subtype (Elio
and Pelletier 1996; Pelletier and Elio 2005). Given that LLMs are trained from vast quantities
of human language, we hypothesize that as with quantification (cf. §5.1.2) certain LLMs (e.g.,
GPT-3.5 Turbo) may have adopted some of the pyschologism that Pelletier and Elio (2005)
argue impacts human inheritance reasoning. Our large generated dataset of generics EXCEPTIONS
facilitates further investigations into this question.

Overall, our results show the LLMs do treat generics as default inference rules in simple
property inheritance scenarios. LLMs also seem to exhibit similar inference patterns as humans in
complex inheritance reasoning. In particular, when EXCEPTIONS are present, LLMs may consider
them relevant to potential inheritance.

5.3 Discussion

Based on our results, we offer the following insights into how LLMs reason about generics.

Do LLMs show evidence of overgeneralization with generics? Our analyses using generics and
EXEMPLARS show that LLMs do exhibit evidence of the GOG effect. First, we find that across

30

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00530

© 2024 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/coli_a_00530/2463166/coli_a_00530.pdf by U
niversity of Edinburgh user on 11 Septem

ber 2024

https://doi.org/10.1162/coli_a_00530


Emily Allaway Exceptions, Instantiations, and Overgeneralization

LLMs, universal quantifiers are generated to modify generic statements, even when EXCEPTIONS
to the generic are present. This indicates that quantified statements and generics are conflated
by LLMs (§5.1.2). Additionally, LLMs treat generic statements as default rules about property
inheritance (§5.2.2). That is, LLMs treat generics as universally quantified by reasoning that, as a
matter of deductive logic, properties are inherited from them.

What differences do we observe between how LLMs and humans reason about generics? Unlike
humans, some LLMs demonstrate a greater degree of conflation between generics and universally
quantified statements when EXCEPTIONS are presented (§5.1.2). That is, some LLMs (GPT-3.5-
Turbo and LLAMA-2) produce more universal quantifiers for generics that are presented along
with their EXCEPTIONS.

On the one hand, the GOG effect (see above) is evidence that LLMs do not process the
universal quantifier “all” in a strictly logical sense, and therefore are not expected to always adjust
the quantifiers in their response (e.g., no longer generate “all”) when EXCEPTIONS are presented.
On the other hand, the increase in GOG effect with some models suggests that factors other than
quantifier treatment (i.e., non-logical handling of “all”) are impacting the models’ responses to
EXCEPTIONS. One such factor may be that EXCEPTIONS require more complex reasoning from
the LLMs. Specifically, EXCEPTIONS require LLMs to relate multiple sentences (the generic and
the EXCEPTION) and further require that the internal semantic representations of concepts account
for EXCEPTIONS. Determining whether this is indeed the case in LLMs is beyond the scope of
this work. Therefore, further investigations are needed to better understand the source of LLMs’
behavior in response to generic EXCEPTIONS.

Additionally, LLM behavior may differ from humans’ reasoning due to non-human-like
errors. For one, LLMs are known to be sensitive to the contents of their prompts and so differences
in length between prompts with and without EXCEPTIONS may impact how the LLMs respond.
Additionally, humans typically understand the type of response required of them when answering
a prompt. In contrast, LLM responses do not always adhere to basic syntactic or commonsense
constraints. For example, LLMs may generate an entire sentence with a new concept as a modifier
for a generic (see discussion §5.1). Finally, synthetic data may result in a small number of
malformed inputs (e.g., with incorrectly conjugated verbs). While humans would likely be able
to understand what the input should have been and then respond accordingly, LLM behavior in
response to such inputs is unpredictable.

What are our insights into how LLMs reason about generics? Our investigations with generics
and EXEMPLARS show that LLMs exhibit patterns of non-logical (i.e., non-deductive) reasoning
with similarities to how humans actually reason. Specifically, LLMs show evidence of conflating
generics and universally quantified statements. This behavior aligns with the human tendency to
treat generic statements as a default mechanism for generalization, a behavior that is argued to
be cognitively fundamental (Leslie 2007). Although LLMs are not humans, they are trained on
massive corpora of human language. Therefore, it remains to be seen how GOG-effect-influenced
behavior benefits (or harms) LLM performance in various downstream tasks (e.g., question-
answering). The implications for bias and stereotyping are particularly important. That is, the
GOG effect may be indicative of a bias towards associating a property with all members of a
particular group, which could potentially be harmful.

It should be noted that LLM behavior does not entirely align with humans. Specifically,
LLMs do not consistently adjust their responses when presented with contradictory evidence (i.e.,
obvious counterexamples) and further studies are needed to identify the source of this behavior.
For example, we observe discrepancies between models trained with (e.g., GPT-4) and without
(GPT-3) RLHF but further investigations are needed to determine the specific impact of RLHF.
Such investigations are important because EXCEPTIONS are crucial for many applications that
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reason with generics (e.g., robot object retrieval using generic rules about where objects are
normally located; Sridharan et al. 2015). Studies from philosophy and psychology on how humans
actually use and acquire generics, and their EXCEPTIONS, may help in identifying ways to improve
LLM reasoning about EXCEPTIONS. Finally, different approaches to prompting (e.g., chain-of-
thought; Wei et al. 2022) may help clarify LLMs responses when reasoning about generics and
EXEMPLARS.

6. Validation and Details of the ExempliFI System

In this section we discuss details of our ExempliFI system and validation experiments: the data
sources (§6.1), annotation procedures (§6.2), and baselines used for comparison (§6.3). We also
present the results of a human evaluation of the data generated by ExempliFI (§6.4). We show
that ExempliFI generates high-quality EXEMPLARS.

6.1 Data

We source generics from three datasets in our experiments, as described in §4.3. Additionally,
we use the EXEMPLARS annotated by Allaway et al. (2023), GGSmall-Exemplars, as additional
training data for our discriminators (§4.2.3). Full details of the datasets used and their processing
can be found in Appendix A.1.

6.2 Annotations

We collect annotations for: (i) training and evaluating the quality of our validity discriminators
used in §4.2.3, (ii) evaluating the truthfulness filter in §4.2, and (iii) conducting human evaluation.
All annotations are done using Amazon Mechanical Turk with three annotators per HIT (paid
at $15/hour on average). For each annotation tasks, annotators must first pass a corresponding
qualification task consisting of five questions. We report the full agreement measures across all
tasks in Appendix A.3.

6.2.1 Validity Annotations. We use three separate annotation tasks to annotate the validity
of candidate EXEMPLARS, one each for the INSTANTIATIONS, the default, and the focused
EXCEPTIONS. All three tasks are framed as a debate between two students, where one students
(Student A) asserts the generic and the other (Student B) replies with an EXEMPLAR. We use
this framing since, as discussed in §3.3, EXEMPLARS provide alternative answers to the same
QUD that the generic answers. Concretely, in the INSTANTIATION task, the annotators are asked
to assess whether the responses are valid corroborating evidence for the corresponding generic.
For EXCEPTIONS task, the annotators are asked to assess whether the responses are countering
evidence for the corresponding generic, taking into account the focus. Full details, instructions,
and examples are provided in Appendix A.3.1.

We use this annotation process for gathering data for discriminator training and evaluation
(§4.2.3), and for evaluating ExempliFI generations (§6.4). For discriminator use, we have
annotators label 4100 randomly selected INSTANTIATIONS and focused EXCEPTIONS across
613 generics selected from both the GGTest and AnimalG datasets. The average Fleiss’ κ is
0.2903.

For conducting a human evaluation of system generations (§6.4), we collect annotations for
EXEMPLARS from 96 generics from GGSmall for which our system and both baseline systems
(i.e., the system proposed by Allaway et al. (2023) and the corresponding GPT-3 baseline; see
§6.3 for more details) each produce five EXCEPTIONS and five INSTANTIATIONS. That is, we have
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annotators label a total of 1440 EXCEPTIONS and 1440 INSTANTIATIONS. The average Fleiss’ κ
is 0.3056.

We note that while all the validity annotation tasks achieve moderate inter-annotator
agreement, these tasks are difficult for annotators. Firstly, annotators must determine the validity
of an EXEMPLAR in relation to a specific QUD. This requires detailed and complex instructions
(see Appendix A.3). Additionally, determining EXEMPLARS validity requires nuanced judgements
about object category boundaries. In particular, for the focused EXCEPTIONS annotators are
asked two questions: whether a candidate answers a specific QUD, and whether it includes a
relevant alternative (i.e., whether the concept or property is in the exotype; §3.3.2). The second
question (determining relevance of alternatives) is substantially more difficult than the first
question with an average Fleiss’ κ of 0.259, compared to 0.405 for the first question. As an
example, consider whether “a phone” is a valid alternative to the concept “cameras” for the
generic “cameras are used to take pictures”; since many phones have cameras the two categories
overlap, which makes the validity of the alternative ambiguous. Our annotation procedures are
a substantial improvement compared to prior work (see Appendix B.3 for analysis), but the
continuing challenges of annotating EXEMPLARS highlight the importance of future work in this
area.

6.2.2 Truthfulness Annotations. To evaluate the truthfulness filter (§4.2), we collect annotations
on the truthfulness of generated EXEMPLARS. We use one annotation task, in which annotators are
provided with four sentences (EXEMPLARS) and asked to judge whether each is either “generally
true” or “generally false”. Annotators are asked to mark nonsensical statements as false. Full
instructions and examples are provided in Appendix A.3.2.

We have annotators label a set of 500 EXEMPLARS for generics from the AnimalG dataset:
100 randomly selected from each type (concept- and property-focused EXCEPTIONS, default
EXCEPTIONS, concept- and property-focused INSTANTIATIONS). The Fleiss’ κ is 0.4407.

6.3 Generation Baselines

As generation baselines, we use the constrained decoding system (ConstraintDec) and a prompt-
based GPT-3 baseline from Allaway et al. (2023). Both systems assign generics to categories
based on their semantic behavior (e.g., “birds can fly” is categorized as principled because there is
a strong association between “birds” and “fly”) and use templates to control the output form and
content. In order to evaluate the baseline generations using our proposed annotation setup (§6.2.1),
we deterministically map (see Table 10) baseline templates to our five types of EXEMPLARS
(default EXCEPTIONS, concept- and property-focused EXCEPTIONS, and concept- and property-
focused INSTANTIATIONS). Note that the baselines systems do not generate concept-focused
EXCEPTIONS. Full details of the systems are given in Appendix A.4.

6.4 Human Evaluation

To quantitatively evaluate ExempliFI, we conduct a human evaluation by collecting validity
annotations on a subset of generated EXEMPLARS (§6.2) and computing precision at k (for k = 1
and k = 5).

ExempliFI substantially outperforms both baselines by a large gap (average of 20.63
points) for EXCEPTIONS (Table 11). For the INSTANTIATIONS, ExempliFI performs the same as
ConstraintDec while outperforming the GPT-3 baseline by an average of 12.93 points. Comparing
the three systems, we observe that the INSTANTIATIONS are less difficult to generate than the
EXCEPTIONS; the baseline performance is 17.08 points higher on average for the INSTANTIATIONS
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EXEMPLAR Type Input Template Output Template In Ours? Mapped Type

INST.
[KSUBTYPE + r] [___]P X ConceptF (i)
[K + r] [___]SUBTYPEP

X PropertyF (ii)
[KSUBTYPE + r] [___]SUBTYPEP

% PropertyF (iii)

EXCEP.

[KSUBTYPE + ¬r] [___]P X Default (iv)
[K + ¬r] [___]SUBTYPEP

% Default (v)
[K + r] [___]�P X PropertyF (vi)
[KSUBTYPE + r] [___]�P % PropertyF (vii)

Table 10: Templates used for generation by the baseline systems. The Input Template is used to
construct the prompt and the Output Template is used to control the output. K is the concept,
P is the property, r is the relation, and � indicates the exotype. Xindicates ExempliFI uses an
analogous template for generation while%indicates it does not. Mapped Type is the mapping
used for evaluating the baseline generations under our annotation setup.

EXCEPTIONS INSTANTIATIONS
P@1 P@5 P@1 P@5

GPT-3-baseline 0.6250 0.6437 0.7812 0.7437
ConstraintDec 0.6667 0.7062 0.9271 0.8729
ExempliFI 0.8750 0.8583 0.9167 0.8667

Table 11: Precision at k (P@k) results from human evaluation.

EXCEPTIONS INSTANTIATIONS
ConceptF PropertyF Default ConceptF PropertyF

GPT-3-baseline 0.6389288 0.6584442 0.491559 0.7678211 0.7249269

ConstraintDec – 0.7325456 0.208324 0.8922232 0.8548248

ExempliFI 0.8701254 0.8190326 0.9416154 0.8845251 0.8472249

Table 12: Precision of generated EXEMPLARS by type.

than the EXCEPTIONS. Therefore, the large improvement on EXCEPTIONS highlights the quality
and usefulness of our system.

We further examine precision by EXEMPLAR type. Note that ConstraintDec does not generate
concept-focused EXCEPTIONS (see Table 10 for a summary of the baseline generation patterns).
For all types of EXCEPTIONS, ExempliFI outperforms the baselines (Table 12). This improvement
is particularly large for the default EXCEPTIONS. Not only does ExempliFI increase the precision
of default EXCEPTIONS by an average of 59.15 points, it also generates around 4.5 times as many
valid default EXCEPTIONS. Since these EXCEPTIONS address the default interpretation of the
generic they are particularly important to generate.

The ability of ExempliFI to produce reasoning-based default EXCEPTIONS (§4.3) also means
that it produces default EXCEPTIONS for a wider range of generics than the baselines. For example,
consider the output generations from our system and from ConstraintDec:

Generic: Chapels are open to the public during regular hours.
ConstraintDec candidates:
• {wedding chapels, a wedding chapel, funeral chapels, chapels} are open to members
of the clergy.
ExempliFI candidates:
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• Chapels are open to the public by appointment.
• Chapels that are closed for renovation are not open to the public during regular
hours.
• Chapels that are closed for repairs are not open to the public during regular hours.
• Chapels that are being used for a funeral are not open to the public during regular
hours.
• Chapels are open to the public by special arrangement.

While all of the top generations from ConstraintDec are property-focused EXCEPTIONS, Exem-
pliFI produces three valid default EXCEPTIONS in the top five generations.

When examining the property-focused EXCEPTIONS, we observe that ExempliFI is able to
produce better alternatives than the baselines. Consider the following example

Generic: a coyote should be considered a wild animal.
ConstraintDec candidates:
• a coyote pup should be kept in a cage.
• a coyote pup should be kept in a home.
ExempliFI candidates:
• a coyote is considered a member of the dog family.
• a coyote is considered a danger to people and pets.

Here, the alternatives generated by ConstraintDec (“kept in a cage” and “kept in a home”) are
not relevant to the generic. They are physical rather than abstract considerations about coyotes.
In contrast, ExempliFI generates alternative thoughts to have about coyotes, better addressing
the original generic. This is likely due to the way the focused EXCEPTIONS are generated in
ExempliFI. Specifically, the LLM is prompted to not only address the QUD arising from the
generic (here, “what coyotes should be considered”) but also to provide an alternative to the
property given in the generic. The alternative is encouraged by providing the actual generic as the
first answer to the QUD. The example illustrates the strength of this approach.

Overall, our results show that ExempliFI generates high-quality EXEMPLARS. When evaluated
by humans, ExempliFI substantially outperforms baselines from prior work. The improvement is
particularly large for default EXCEPTIONS. Not only are default EXCEPTIONS the most natural
EXCEPTIONS to a generic, they are also challenging for LLMs to reason about.

7. Conclusion

In this work, we investigate how LLMs process and reason about generics by automatically
generating EXEMPLARS and using them to probe specific capabilities in LLMs. To generate EX-
EMPLARS, we propose a computational framework GenerIX that uses the pragmatic phenomenon
of focus to capture a range of interpretations for a generic across contexts of use. Our GenerIX
framework provides precise logical-form based definitions for EXEMPLARS that we operationalize
in a generation system ExempliFI.

We use ExempliFI to automatically generate a dataset of ∼370k EXEMPLARS across ∼17k
generics. Human validation of our dataset shows that, in comparison to prior work, ExempliFI
generates substantially higher quality EXCEPTIONS (with an average improvement of 20.6
precision points). While the INSTANTIATIONS generated by ExempliFI are comparable to
prior work, it should be noted that generating EXCEPTIONS is more difficult than generating
INSTANTIATIONS. Despite this, ExempliFI improves the generation of EXCEPTIONS such that
they are of comparable quality to the INSTANTIATIONS. Additionally, ExempliFI generates more
diverse EXCEPTIONS than in prior work by including not only knowledge-based examples but
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also examples based on reasoning about temporary situations. Our large, high-quality dataset of
generated EXEMPLARS allows us to effectively probe how LLMs reason about generics.

We use our validated dataset to probe how LLMs process and reason about generics.
Specifically, we investigate the GOG effect (i.e., Generic Overgeneralization; cf. §5) in relation to
LLMs. In humans, the GOG effect supports the generics-as-default hypothesis: that generics are
a default way of thinking (e.g., Leslie, Khemlani, and Glucksberg 2011; Khemlani, Leslie, and
Glucksberg 2008). By probing LLMs for the GOG effect, we examine how LLM reasoning is
similar to human reasoning when processing a simple but fundamental type of statement (generics).
We find that LLMs do show evidence of a GOG effect when reasoning about both quantifiers
and property inheritance. This behavior is similar to how humans exhibit the GOG effect. For
example, LLMs have similar patterns of non-logical reasoning as humans when considering
property inheritance. However, we also find that LLMs struggle to reason about the relationship
between generics and EXEMPLARS. This indicates the challenges and importance of further studies
into reasoning about generics and EXEMPLARS.

7.1 Limitations

GenerIX Framework. Our GenerIX framework makes simplifying assumptions about generics.
First, our framework operates only with generics in the active voice. Secondly, we assume that all
three interpretations (default, concept-focused, and property-focused) have valid EXEMPLARS for
each generic. However, for certain generics this may not hold but our system will still attempt
to generate all types of EXEMPLARS. For example, the generic “squares have four sides” has
no default EXCEPTIONS since there are no squares without four sides. Third, GenerIX relies on
a restricted set of potential foci within a generic. In particular, the focus is either on the entire
subject of the sentence (i.e., the concept) or the entire predicate without the verb (i.e., the property).
Finally, we assume that the focus is given. Future work should investigate how to determine the
focus from the generic’s context.

Data. In this work, we source generics from three existing datasets, all exclusively in English.
Therefore, our approach may not be suited to all generics in all languages. For example, our
system requires that generics do not have a complex syntactic structure (e.g., as in nested generics).
Additionally, the generic statements we use are not guaranteed to be linguistically generics (e.g.,
“young gazelle break vertebrae” is in AnimalG but is questionably a generic).

As in Allaway et al. (2023), we do not generate EXEMPLARS for generics involving human
referents (e.g., professions, nationalities). While our ExempliFI system could be used with generics
involving human referents, additional care should be taken in such cases to check that stereotypes
or social biased statements are not deemed valid output. Checking for this is beyond the scope of
this work but is an important future step.

ExempliFI System. Our ExempliFI system uses an LLM to evaluate the truthfulness of the system
generated candidates (§4.2). Although LLMs have been successfully used to verify statements in
recent works (e.g., Gilardi, Alizadeh, and Kubli 2023; Hoes, Altay, and Bermeo 2023), they have
also been shown to hallucinate (Rohrbach et al. 2018). Therefore, using an LLM to check for
veracity may result in errors. Additionally, the LLM may only be able to determine the veracity
of statements that appeared in (or are similar to) their training data. As a result, the generated
data that passes the truthfulness filter may be limited in coverage, with true but unseen statements
being deemed false. We discuss the implications of potential overlap between LLMs’ training
data and generated data below.

We also note that both our ExempliFI system itself and our system validation experiments
rely on human annotations of EXEMPLARS validity (§6.2). While all the validity annotation tasks
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achieve moderate inter-annotator agreement, these tasks are difficult for annotators and we discuss
reasons for the difficulty in §6.2. The difficulty of the annotation tasks, and resulting moderate
inter-annotator agreement, means that noise may be introduced. Specifically, the precision of both
our system and the baselines (§6.4) may be inflated by noise in the annotations. For example,
if annotators are biased towards marking default EXCEPTIONS as valid, this would inflate the
precision of ExempliFI for generating EXCEPTIONS, since our system generates nearly three times
as many default EXCEPTIONS as the baselines. Work using our system to generate additional
data could consider applying additional filters (e.g., NLI as in Allaway et al. 2023) to ensure data
quality. Additionally, future work should investigate improvements to the annotation procedures
for validating EXEMPLARS.

Experiments. In our probing experiments into how LLMs reason about generics (§5), we do not
do extensive prompt tuning. In particular, we use only two prompts for our main probes on the
GOG effect (§5.1) and a single prompt for our probes on property inheritance (§5.2). However,
recent works have shown that LLMs can be sensitive to features of the prompts, including
formatting (Sclar et al. 2023), how the task is presented (Hu and Levy 2023), and the provided
context for the model (Kassner and Schütze 2020; Lampinen 2023; Misra, Ettinger, and Mahowald
2024). Changes to the prompts used for probing may impact the scale of the results we observe.
However, we note that the goal of our probing experiments is to determine whether any GOG
effect is ever exhibited by LLMs. While measuring the scale of the GOG effect (as opposed
to whether or not it is present) is interesting, constructing such prompts would require careful
interdisciplinary crafting of prompts (e.g., incorporating both cognitive psychology and linguistics)
and is a compelling direction for future investigations.

Additionally, our probing experiments all use only zero-shot evaluation. We choose to do
this so as not to bias the models’ outputs. In particular, we do not want to inadvertently prime
the models, through few-shot examples, to generate specific quantifiers (e.g., “all”) or to exhibit
certain inheritance reasoning behavior. However, we acknowledge that the LLMs may behave
differently under few-shot evaluation, compared to zero-shot evaluation. We think that few-shot
overgeneralization analysis is a promising future direction. Furthermore, differences in how
models behave in the two settings may help clarify what kinds of generalization information
models learn from text.

As mentioned above, we use automatically generated EXEMPLARS for our probing experi-
ments in §5. This data is generated using generics sourced in part from ConceptNet (Speer, Chin,
and Havasi 2017) and GenericsKB (Bhakthavatsalam, Anastasiades, and Clark 2020). Since the
LLMs used in our experiments were trained on data scraped from the internet through at least
202132, it is likely that many of our generics appeared in some way in the LLMs’ pre-training data.
Consequently, our probing experiments use examples that the model has seen in some capacity.
This could result in noise in the results we observe. In particular, we may observe an artificially
lower GOG effect with probes that contain only a generic (i.e., only examples the model has
already seen), compared to the probes containing EXCEPTIONS. Furthermore, the model may be
biased towards a particular response (e.g., only generating “most” as a quantifier for a particular
generic) depending on what data was present in pre-training. Further experiments should be done
to understand what data the LLMs have seen, especially which EXEMPLARS, and how this impacts
their responses.

Finally, our probe experiments only examine generics in isolation. In particular, they do
not evaluate how LLMs reason about generics within real texts. Although this aligns closely
with human studies on the GOG effect (e.g., Leslie, Khemlani, and Glucksberg 2011), the

32 See https://platform.openai.com/docs/models
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observable impacts of how LLMs treat generics will likely be in downstream tasks (i.e., texts
with contextualized generics). Therefore, future work should explore additional methods to probe
LLMs’ reasoning with generics within texts.

A. Experimental Details

A.1 Data

GGSmall and GGTest. We use two sets of generics sourced from Gen-Atomic (Bhagavatula
et al. 2022). The set GGSmall contains 617 generics that are human-verified. These generics
are the generics used by Allaway et al. (2023) for which their system generates both valid
INSTANTIATIONS and EXCEPTIONS.

The set GGTest contains 1010 generics sourced from Gen-Atomic’s test set. The full Gen-
Atomic test set consists of 2254 generics deemed true by humans. From these, we remove
temporal generics (i.e., beginning with “before”, “after”, “while”), generics relating to necessity
(i.e., beginning with ‘in order to”), and generics with verbs of consideration (i.e., consider, posit,
suppose, suspect, think). We then run the discriminator published with Gen-Atomic and keep only
generics that the discriminator predicts as true with confidence at least 0.7. Finally, we removed
generics with human referents (e.g., professions, nationalities) using a manually compiled list.

We preprocess both GGSmall and GGTest by removing adverbs of quantification (i.e., usually,
typically, generally). We also convert hedging statements to more explicit forms (e.g., “may have
to be” to “must be”).

AnimalG Data. These generics are sourced from GenericsKB by Ralethe and Buys (2022) for
a fixed list of animals. The generics are separated into two categories: majority characteristic
generics (i.e., true about the majority of the kind) and minority characteristic generics (i.e., true
for only a minority of the kind). We combine and use both categories.

We preprocess these generics by removing modifier clauses (e.g., “frogs are active at night,
which is when the air is more humid”→ “frogs are active at night”). This removes unnecessary
information from the generics, including potential EXCEPTIONS (e.g., “lizards have legs, but some
are legless”→ “lizards have legs”).

A.2 ExempliFI System Details

We describe here the implementation details of our ExempliFI system and the tools used. We first
use a spacy dependency parser to identify text spans for the concept, relation, and property in a
generic. We use inflect to obtain plural and singular word forms and mlconjug333 to conjugate
verbs34.

A.2.1 Generation. To construct the QUDs used in the generation prompts (§4) we follow 3.2.2.
Specifically, we use three templates to construct the QUDs, one each for concept-focused, property-

33 Additional conjugations were added to increase coverage and fix errors. These will be available with the data.
34 https://spacy.io/; https://pypi.org/project/inflect/;

https://pypi.org/project/mlconjug3/
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focused, and default. The templates are

[wh-word] [relation] [PROPERTY] (Concept-Focused QUD Template)
[wh-word] [CONCEPT] [relation] (Property-Focused QUD Template)
What is true about [CONCEPT] (Default QUD Template)

For the concept-focused QUDs, we use “what” as the wh-word for all generics, since the
replacement for the wh-word (i.e., the focused element) is a kind. For example, for the generic
“cats are cute” the concept-focused QUD is“what is cute”. However, in the property-focused QUDs,
the replacement for the wh-word can be a location (e.g., “tigers live in the jungle”). Therefore,
we use Wordnet (Fellbaum 2000) to identify location-related (i.e., needing “where”) properties.
In particular, we check for specific keywords in the set of hypernyms35 for each property, which
we obtain with nltk36. Since properties my be multiple words, we extract hypernyms for the root
word of the property.

We generate EXEMPLARS using GPT-3 (Brown et al. 2020). Specifically, we use the text-
davinci-001 model with temperatue 0.9 and a max length of 100 tokens in the output. We use the
best of 5 sequences for all generations.

A.2.2 Output Processing. While the prompts for focused EXCEPTIONS are designed to produce
full sentences (i.e., complete EXEMPLARS), the prompts for default EXCEPTIONS and INSTANTI-
ATIONS produce either a list of subtypes (i.e., INST. Prompt-I’s and default Prompt-D1) or a list
of situations (default Prompt-D2). Therefore, to obtain the complete set of generated candidate
EXEMPLARS we use the generations from the INSTANTIATION and default EXCEPTION prompts
to fill templates.

For the INSTANTIATIONS, we have two INSTANTIATION templates. The first uses the
generated subtypes from Prompt-IK to construct concept-focused and default INSTANTIATIONS
(Table 4(a)) while the second uses generations from Prompt-IP to construct property-focused
INSTANTIATIONS (Table 4(b)). For the default EXCEPTIONS we also have two templates, one that
directly uses subtypes generated from Prompt-D1 (Table 4(c)) and another that converts generated
situations from Prompt-D2 into subtypes (Table 4(d)).

Since the focus EXCEPTIONS are generated as complete sentences, we need to ensure
separately that they satisfy the constraints of the logical form. This means that for concept-focused
EXCEPTIONS, the candidates end with the generic’s property; for property-focused EXCEPTIONS,
candidates should begin with the generic’s concept. We remove any candidate EXCEPTIONS that
do not fit these requirements.

A.2.3 Filtering for Truthfulness. We use GPT-3.5-Turbo (Ouyang et al. 2022) to predict whether
each candidate generation is true or false. To do this, we first convert each EXEMPLAR into the
singular, using the following prompt,

Put the following sentence into the singular: [EXEMPLAR].

We then ask the LLM whether the singular form is true with the following prompt

True or false: [EXEMPLAR-singular]?

For converting candidates to singular, we take only 1 generation from the LLM. For determining
the truth of the singular candidates we take the majority vote of 5 responses. A response indicates

35 The hypernym set consists of the hypernyms for the primary synset of the target word and for three levels up.
Keywords for location-related properties: “building”, “geographical region”.

36 https://www.nltk.org/

39

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00530

© 2024 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/coli_a_00530/2463166/coli_a_00530.pdf by U
niversity of Edinburgh user on 11 Septem

ber 2024

https://www.nltk.org/
https://doi.org/10.1162/coli_a_00530


Computational Linguistics Volume 1, Number 1

GGSmall GGTest AnimalG
Train Dev Test Train Dev Test Train Dev Test

Focus EXCEPTIONS 485 57 51 916 123 129 172 113 128
INSTANTIATIONS 840 76 62 1258 123 182 162 113 122

Table 13: Statistics for the data used to train the validity discriminators.

the input is true if the text “true” is in the first non-empty, lowercased string of the response.
Otherwise, the input candidate is predicted to be false.

A.2.4 Validity Filtering. After removing false candidate EXEMPLARS, we conduct a final filtering
step to obtain a final set of valid EXEMPLARS. To filter the focused EXCEPTIONS, we train a
discriminator to predict whether a statement is a valid focused EXCEPTION; we train an analogous
discriminator for the INSTANTIATIONS. For each discriminator we fine-tune a RoBERTA-large
model using training data annotated using the procedures described below (§A.3). The training
data consists of EXEMPLARS generated for each of the three sources of generics used in our work
(see §6.1 and §A.1). Dataset statistics are shown in Table 13.

For each discriminator, we conduct a hyperparameter search to obtain the best performing
model. The selected hyperparameters, along with the respective model’s accuracy and precision
are shown in Table 14. Since the discriminators are used as filters, we prioritize minimizing the
number of statements that are incorrectly predicted as valid when they are not (i.e., the precision
of the “valid” class).

Hyperp. GGSmall GGTest AnimalG
B LR Acc. Prec(1) Acc. Prec(1) Acc. Prec(1)

Focus EXCEP. Dev 24 1e-5 0.5614 0.5208 0.8374 0.8446 0.8407 0.8710
Test 0.6667 0.7180 0.8372 0.8571 0.7890 0.8119

INST. Dev 32 3e-5 0.7895 0.8438 0.7840 0.8167 0.8350 0.8866
Test 0.7419 0.7097 0.7857 0.8099 0.7623 0.8046

Table 14: Hyperparameters and evaluation results on the development and test sets for the validity
discriminators.

We remove all focused EXCEPTION and INSTANTIATION candidates predicted invalid by their
respective discriminators. Finally, we rank the valid candidates. For the focused EXCEPTIONS
and INSTANTIATIONS we use the trained discriminators to rank candidates. For the default
EXCEPTIONS, we use a combination of perplexity and NLI contradiction probability to rank
the candidates. We use GPT2-XL (Radford et al. 2019) to obtain perplexity ranking and a
RoBERTa (Liu et al. 2019) model fine-tuned on MNLI37 to obtain the NLI ranking.

A.3 Annotations
A.3.1 Validity Annotation.

Annotation Task. We use three separate annotation tasks to annotate the validity of candidate
EXEMPLARS, one each for the INSTANTIATIONS (Fig. 5) and for the default (Fig. 6) and the
focused (Fig. 7) EXCEPTIONS. All three tasks are framed as a debate between two students, where
one students (Student A) asserts the generic and the other (Student B) replies with an EXEMPLAR.

37 https://huggingface.co/roberta-large-mnli
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Instructions (click to expand/collapse)

Thanks for participating in this HIT!

You will be given 1 mini debate. For each debate, your task is to determine whether one argument successfully
supports the other.

Our purpose is identify methods that, given a generalization, can produce both examples where the generalization
holds and counterexamples where it does not.

Consent Notice:
By continuing to work on this task you con�rm that you are (1) 18 years or older and (2) agree to participate in this
study.
You may e-mail questions about this study to eallaway@cs.columbia.edu. If you have any questions about your rights or
responsibilities as a research participant, please contact the Columbia University Human Research Protection O�ce at:
Phone 212-305-5883; Email askirb@columbia.edu.
You are free to release/quit the HIT at any time, and refusing to be in the experiment or stopping participation will
involve no penalty or loss of bene�ts to which you are otherwise entitled. To save a copy of the consent form and
instructions, you can save/print this webpage.

The Task:

In this HIT, Suppose you observe a debate class. Two students, Student A and Student B, are on the same side of a
debate.
Given one assertion by each student, your task is to determine whether Student B successfully supports Student A's
argument.

In particular, you will answer the following question about Student B's assertion

Does the assertion provide an example that supports Student A's generalization?

Answer Yes  or No  to the following questions.

1. Does Student B's assertion provide an example that supports Student A's generalization? :

An example must be a relevant individual (or group) that follows the rule from Student A's
generalization.

Student A: Birds can �y.

Student B: Sparrows can �y.

Yes  Sparrows are a speci�c type of bird that does follow the rule (are able to �y).

Student B: Birds can �y in formations.

Yes  A speci�c type of �ight that birds are able to do.

Student B: Migratory birds can �y long distances.

Yes  A type of bird that follows the rule by being able to do some type of �ight.

Student B: Emus can �y

Yes  Regardless of whether the statement is true, the assertion provides an example of a

bird and claims the bird can �y.

Student B: Sparrows are small.

No  The rule is about �ying. The size of a particular bird doesn't tell us whether or not

they can �y.

Student B: Penguins can't �y

No  We want examples of birds that can �y. A bird that cannot �y is not a relevant

example.

Student B: Sparrows can speak English.

No  Regardless of whether the assertion is true, the rule is about birds and �ight. Flight is

not mentioned. It does not matter whether birds can do other things.

Student B: Airplanes can �y.

No  The rule is about birds and birds are not mentioned. It does not matter if somethigng

else is able to �y.

Examples (click to expand/collapse)

Example

(a) Instructions
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Student B: Airplanes can �y.

No  The rule is about birds and birds are not mentioned. It does not matter if somethigng

else is able to �y.

Examples (click to expand/collapse)

Example

Student A:  forests have trees.

Student B:

pine forests have trees.
Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

Yes, it gives a type of forest that has trees.

Student B:

cedar forests have undergrowth.
Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

Forests having undergrowth does not provide an

example of trees in forests.

Example

Student A:  forests have trees.

Student B:

clear-cut forests have old trees.
Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

Regardless of the truth, this does give an example

of a type of tree that forests have.

Student B:

forests don't have bonsai trees.
Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

The rule is about forests having trees. However,

this gives an example of trees not found in a forest

so it does not follow the rule.

Example

Student A:  forests have trees.

Student B:

public parks have trees.
Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

The rule is about forests and trees so both should

be mentioned. However, a park is not a type of

forest so this is not a relevant example.

Student B:

forests of palm trees grow in the
arctic.

Yes No Explanation

Does Student B's assertion provide an

example that follows the rule in Student

A's generalization?

Regardless of the truth, forests growing in the artic

does not tell us anything about the trees that

forests have.

Yes No

Does Student B's assertion provide an example that follows the

rule in Student A's generalization?

Task:

Student A:  ${generic}

Student B:  ${exemplar}

(Optional) Please let us know if anything was unclear, if you experienced any
issues, or if you have any other feedback for us.

(b) Examples

Figure 5: Annotation task for INSTANTIATIONS.
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Instructions (click to expand/collapse)

The Task:

In this HIT, suppose you observe a debate class. Two students, Student A and Student B, are asked to debate and
disagree on a debate question.
Given one assertion by each student, your task is to determine whether Student B successfully challenges Student A's
argument.

In particular, you will answer the following question about Student B's assertion

Does the assertion provide a counterexample to Student A's generalization?

When answering the above question, pay attention to the relationship between the debate question and Student
B's statement. Please read all the examples carefully because the relationship can be subtle.

Answer Yes  or No  to the following question.

1. Does Student B's assertion provide an exception to the rule in Student A's generalization? :

A counterexample must be a speci�c individual (or group) that does not follow the rule from
Student A's generalization.

NOTE: Student B MUST include a speci�c example of the category mentioned in the debate question.
Restating the original category is not su�cient.

debate question: what is true about birds?

Student A: Birds can �y.

Student B: Penguins can't �y.

Yes  Penguins are a speci�c type of

bird that does not follow the rule
(being able to �y).

Student B: My pet bird can't �y.

Yes  This is a speci�c individual bird

that doesn't follow the rule.

Student B: Birds can't �y as fast as

airplanes.
No  Since the debate question is about

birds, Student B MUST give an
example of a bird where the rule fails.
However, none is given.

Student B: Sparrows can �y.

No Sparrows do follow the rule

because they can �y.

Student B: Birds can sing.

No  A speci�c example of a bird is not

given ("birds" is not a type of bird).
Birds singing does not tell us whether
or not they can �y.

Student B: Airplanes can �y.

No  The debate question is about

birds and birds are not mentioned
here. It does not matter if other things
can also �y.

Student B: Cats can't �y.

No  The debate question is about

birds and birds are not mentioned. It
does not matter if something else can't
�y.

debate question: what is true about �ying?

Student A: Birds can �y.

Student B: Penguins can't �y.

No  Since the debate question is about

"�ying", a speci�c example of �ying
must be given.

Student B: My pet bird can't �y.

No  The debate question is about

"�ying" but this only gives a speci�c
type of bird, not a type of "�ying".

Student B: Birds can't �y as fast as

airplanes.
Yes  Gives a speci�c type of �ying that

birds cannot do.

Notice the answers in this column ⇧ are
di�erent from the left-hand column because
the debate question is di�erent

Examples (click to expand/collapse)

Example

(a) Instructions
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does not matter if something else can't
�y.

Examples (click to expand/collapse)

Example

Debate question:  what is true about forests?

Student A:  forests have trees.

Student B:

clear-cut forests don't have trees.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

Yes, it gives a type of forest without trees.

Student B:

cedar forests have trees.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

Although cedar forests are a type of forest, they

are not an exception because they do follow the

rule.

Example

Debate question:  what is true about forests?

Student A:  forests have trees.

Student B:

oceans have trees.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

Regardless of the truth, oceans are not a type of

forest.

Student B:

forests don't have bonsai trees.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

No type of forest is provided. This gives only a type

of tree not found in the forest, so it is not an

exception to the rule.

Example

Debate question:  what is true about forests?

Student A:  forests have trees.

Student B:

pine forests don't have trees.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

Regardless of truth, this does give an example of a

type of forest that does not have trees.

Student B:

forests have undergrowth.
Yes No Explanation

Does Student B's assertion provide a type

of "forest" that is an exception to the rule

in Student A's generalization?

A speci�c type of forest is not provided. Forests

having undergrowth tells us nothing about

whether forests have trees.

Yes No

Does Student B's assertion provide a type of "${concept}" that is an

exception to the rule in Student A's generalization?

Task:

Debate question:  ${qud}

Student A:  ${generic}

Student B:  ${exemplar}

(b) Examples

Figure 6: Annotation task for default EXCEPTIONS.

41

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00530

© 2024 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/coli_a_00530/2463166/coli_a_00530.pdf by U
niversity of Edinburgh user on 11 Septem

ber 2024

https://doi.org/10.1162/coli_a_00530


Computational Linguistics Volume 1, Number 1

9/16/23, 11:35 AM Task.valid_exemplars.Focus.html

file:///Users/emilyallaway/Library/CloudStorage/OneDrive-Personal/Columbia/Research/gen-exemplars/embods_data/AMT/html/Task.valid_exemplars.Focus.html 1/3

Instructions (click to expand/collapse)

Thanks for participating in this HIT!

You will be given 1 mini debate; your task is to determine whether one argument successfully challenges the other.

Our purpose is identify methods that, given a generalization, can produce both examples where the generalization
holds and counterexamples where it does not.

Consent Notice:
By continuing to work on this task you con�rm that you are (1) 18 years or older and (2) agree to participate in this
study.
You may e-mail questions about this study to eallaway@cs.columbia.edu. If you have any questions about your rights or
responsibilities as a research participant, please contact the Columbia University Human Research Protection O�ce at:
Phone 212-305-5883; Email askirb@columbia.edu.
You are free to release/quit the HIT at any time, and refusing to be in the experiment or stopping participation will
involve no penalty or loss of bene�ts to which you are otherwise entitled. To save a copy of the consent form and
instructions, you can save/print this webpage.

The Task:

In this HIT, Suppose you observe a debate class. Two students, Student A and Student B, are asked to debate and
disagree on a debate question.
Given one assertion by each student, your task is to determine whether Student B successfully challenges Student A's
argument.

In particular, you will answer the following questions about Student B's assertion

Does the assertion answer the debate question?

Does the assertion provide an alternative to Student A's argument?

Answer Yes  or No  to the following questions.

1. Does Student B's assertion answer the debate question? :

debate question: what do monkeys eat?

Student A:  ...

Student B:  Monkeys eat bananas.

Yes  Gives an example of what monkeys eat -- bananas.

Student B:  Monkeys eat multiple times a day.

No  Answers the wrong question (when monkeys eat) and not what they eat.

Student B:  Wild monkeys don't usually eat bananas.

No  Gives an example of things monkeys do not eat, it does not tell us what monkeys do eat.

2. Does Student B's assertion provide an alternative to Student A's argument? :

An alternative answer should be of the same category as Student A's answer but it must be di�erent
from Student A's answer.

debate question: what can birds do?

Student A: Birds can �y.

Student B:  Birds can also swim.

Yes  Swimming is an alternative type of movement to �ight.

Student B:  Birds can �y long distances.

No  "�y long distances" is a type of �ight so it is not an alternative.

Student B:  Birds can sing.

No  Although this is true and di�erent from "�y", it is not from the same category as �y

because �y is a type of movement.

Student B:  Birds can move.

No  Since "move" is a more general term than "�y", it is not an alternative to �ight.

Examples (click to expand/collapse)

Example

(a) Instructions
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Student B:  Birds can move.

No  Since "move" is a more general term than "�y", it is not an alternative to �ight.

Examples (click to expand/collapse)

Example

Debate question:  what are digital cameras used to do?

Student A:  digital cameras are used to take pictures.

Student B:

Digital cameras can be used to take
videos.

Yes No Explanation

Does Student B's statement answer the

debate question?

Yes because it provides a use for digital cameras.

Does Student B's statement provide an

alternative to Student A's argument?

The usage is in the same category as taking

pictures but is di�erent from it.

Student B:

A digital camera is used to take
pictures of people.

Yes No Explanation

Does Student B's statement answer the

debate question?

Yes because it provides a use for digital cameras.

Does Student B's statement provide an

alternative to Student A's argument?

Taking pictures of people is not an alternative

because it is a type of taking pictures.

Example

Debate question:  what are digital cameras used to do?

Student A:  digital cameras are used to take pictures.

Student B:

A digital camera is electronic.
Yes No Explanation

Does Student B's statement answer the

debate question?

Does not answer the question of what digital

cameras are used for.

Does Student B's statement provide an

alternative to Student A's argument?

Being an electronic isn't an alternative use.

Student B:

A phone is used to take pictures.
Yes No Explanation

Does Student B's statement answer the

debate question?

Answers the question of what is used to take

pictures.

Does Student B's statement provide an

alternative to Student A's argument?

Take pictures is not an alternative to taking

pictures.

Example

Debate question:  what are digital cameras used to do?

Student A:  digital cameras are used to take pictures.

Student B:

A broken digital camera is not used
to take pictures.

Yes No Explanation

Does Student B's statement answer the

debate question?

Doesn't answer the question of what a digital

camera is used for.

Does Student B's statement provide an

alternative to Student A's argument?

Does not provide an alternative use for digital

cameras.

Student B:

Digital cameras are used in movies
from the 1990s.

Yes No Explanation

Does Student B's statement answer the

debate question?

Yes because it provides a use for digital cameras.

Does Student B's statement provide an

alternative to Student A's argument?

Being used in movies is not in the same category

as "take pictures" (it is not a capability of the

camera).

Task:

Debate question:  ${qud}

Student A:  ${generic}

Student B:  ${exemplar}

(b) Examples

Figure 7: Annotation task for focused EXCEPTIONS.

For the INSTANTIATION task, the two students are on the same side of the debate and
the annotator’s task is to determine whether Student B, in asserting the EXEMPLARS, provides
an example supports Student A’s assertion (i.e., an example where the generic applies). Full
instructions and examples are shown in Fig. 5a and Fig. 5b respectively.

In contrast, when annotating EXCEPTIONS the two students are on opposing sides of the
debate. The debate question provided as context to annotators is the QUD for the corresponding
generic. For default EXCEPTIONS, annotators must decide if Student B provides an example that
conflicts with follow Student A’s assertion (i.e., the generic). See Fig. 6a and Fig. 6b for full
instructions and examples. For the focused EXCEPTIONS, we check that the alternative provided
is actually in the exotype (see §3.3) of the generic’s focused element. In particular, as discussed
in §4.2.3, for a concept-focused generic the alternative is valid if is is neither irrelevant nor a
supertype or subtype of the corresponding generic’s concept. Furthermore, the alternative must
be for the focused element (e.g., the concept) of the generic. Therefore, annotators are asked
to determine whether (1) the statement by Student B is actually related to the debate question
(i.e., whether it answers the same QUD as the generic) and (2) alternative is valid (see Fig. 7a
and Fig. 7b for full instructions and examples). Annotators must answer “yes” to both questions
for the candidate to be deemed a valid focused EXCEPTION. The same procedure can be applied
analogously for annotating property-focused EXCEPTIONS.

Collected Data. For training the INSTANTIATION and focused EXCEPTION discriminators we
collect annotations using the validity tasks for a sample of our system’s generated outputs
generated. In particular, we have annotators label 3055 generated EXEMPLARS for 207 generics
from the GGTest data, as well as 1045 generated EXEMPLARS for 406 generics from the
AnimalG data. The Fleiss’ κ and percentage agreement for each dataset and task are shown in
Table 16.
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Default EXCEPTIONS Focus EXCEPTIONS INSTANTIATIONS
#Ex κ % Agr. #Ex κ % Agr. #Ex κ % Agr.

Our Setup 237 0.3238 0.7300 1224 0.3465 0.7685 1440 0.2464 0.7296
PenguinsSetup 532 0.3367 0.7392 2912 0.3001 0.6758 2946 0.1863 0.6650

Table 15: Inter-annotator agreement for the annotations used in human evaluation. Our Setup
indicates evaluation from the main portion of the paper (§6), PenguinsSetup indicates annotations
used for the comparison of annotation procedures (see §A.3).

Default EXCEPTIONS Focus EXCEPTIONS INSTANTIATIONS
#Ex κ % Agr. #Ex κ % Agr. #Ex κ % Agr.

GGTest 294 0.3584 0.7120 1168 0.2935 0.7146 1593 0.2836 0.6874
AnimalG 221 0.0812 0.6561 413 0.3019 0.8309 411 0.4231 0.7568

Table 16: Inter-annotator agreement for the validity annotations used to train and evaluate the
discriminators.

12/15/23, 12:39 PM exemplars_truefalse.html
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True or False?

The Task:

You will be given 4 sentences.

For each sentence, determine whether the sentence is generally true or false by selecting one of two options.

Examples:

(Generally) True : if the claim is true or a generally true statement about the world.

"Elephants can be found both in Africa and Asia."
Explanation: true.

"Books is written about many subjects."
Explanation: true even though it is not completely gramatically correct.

"Cats can run fast."
Explanation: generally true, even though some cats may not be able to.

"Librarians are not predisposed to believe in God.".
Explanation: generally true.

(Generally) False : if the claim is false or simply unreasonable statement about the world.

"A �shing line is made of paper".
Explanation: false.

"Penguins cannot �y, but instead they can �y."
Explanation: a penguin cannot both �y and not �y, this is unreasonable.

"Parrots can be found under a pool."
Explanation: this is not a truthful claim about the world in general. If a parrot is found under a pool, then there needs to be extra
information to substantiate the claim (e.g., the parrot is dead, the parrot is a toy, etc). Please don't make excuses for false claims.

If a statement is non-sensical, please mark it as False

Statement 1:

${exemplar1} (Generally) True (Generally) False

Statement 2:

${exemplar2} (Generally) True (Generally) False

Statement 3:

${exemplar3} (Generally) True (Generally) False

Statement 4:

${exemplar4} (Generally) True (Generally) False

(Optional) Please let us know if anything was unclear, if you experienced any
issues, or if you have any other feedback for us.

Submit

Figure 8: Annotation task for truthfullness of generated EXEMPLAR candidates.

For conducting a human evaluation of system generations (§6.4), we collect annotations for
EXEMPLARS from 96 generics from GGSmall for which our system and both baseline systems
(i.e., the system proposed by Allaway et al. (2023) and the corresponding GPT-3 baseline; see
§6.3 for more details) each produce five EXCEPTIONS and five INSTANTIATIONS. That is, we
have annotators label 1440 EXCEPTIONS and 1440 INSTANTIATIONS using the annotation
tasks described in §A.3. The Fleiss’ κ and percentage agreement for each dataset and task are
shown in the first row of Table 15.
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Full Instructions     (Expand/Collapse)

Thanks for participating in this HIT! You will read a sentence that makes an assertion and then answer
questions about that sentence.

The Task:
In this task you will be given a Hypothesis, which is a sentence that makes an assertion about some
concept. For example, "Birds can fly" makes an assertion about birds. You will then be presented with
three premises (statements). We want you to evaluate the Hypothesis against each of the premises and
see if the hypothesis contradicts the premises.

Details:

You may assume that the provided hypothesis is true.

Assuming the premise is true, does the hypothesis contradict the premise?
Contradicts means asserts something opposite.
Ex: "Penguins cannot fly" contradicts All birds can fly.

If the Hypothesis is not relevant to the provided statement, please indicate this.
Ex: "Birds can sing" is not relevant to the statement All birds can fly.

Some examples may involve tricky, potentially subjective decisions.
Please mark these (Q3).

When in doubt, please err on the side of assuming things are the same.

For example:
Is "resolve a dispute" a form of "settle a claim"?

[Yes: these are exact paraphrases of each other with the same meaning]
Is "a surface" also "an object"?

[Yes: a surface is a part of an object]

Below are examples (Expand/Collapse)

Task

Instructions

Read a sentence and answer questions about it with respect to other sentences.

(a) Instructions

12/15/23, 2:21 PM evidence-hit_v2.html
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Full Instructions     (Expand/Collapse)

Below are examples (Expand/Collapse)

Instructions

Read a sentence and answer questions about it with respect to other sentences.

Hypothesis
Mosquitos can carry Zika virus.

1. Does the Hypothesis contradict Premise 1?

Premise 1: All mosquitos carry malaria.

Contradicts Agrees Neither

[Reason: mosquitos that carry malaria may also carry Zika virus, we do not know]
2. Does the Hypothesis contradict Premise 2?

Premise 2: Mosquitos only carry malaria.

Contradicts Agrees Neither

[Reason: if mosquitos can carry Zika then they cannot only carry malaria]

Hypothesis
Albino tigers have white stripes instead of orange stripes.

1. Does the Hypothesis contradict Premise 1?

Premise 1: All tigers have orange and black stripes.

Contradicts Agrees Neither

[Reason: albino tigers are an example of tigers without orange stripes]
2. Does the Hypothesis contradict Premise 2?

Premise 2: Tigers have only orange and black stripes.

Contradicts Agrees Neither

[Reason: albino tigers are an example of tigers with a stripe color that is not orange or black]

Hypothesis
Penguins are found on Mars.

1. Does the Hypothesis contradict Premise 1?

Premise 1: All penguins are found in Antarctica.

Contradicts Agrees Neither

[Reason: penguins found on Mars means not all penguins are in Antarctica]

2. Does the Hypothesis contradict Premise 2?

Premise 2: Penguins are only found in Antarctica.

Contradicts Agrees Neither

[Reason: penguins found on Mars means penguins can be found in places other than Antartica]

(b) Examples

Figure 9: Annotation task for PenguinsSetup (§A.3.3) from Allaway et al. (2023).

A.3.2 Truthfulness Annotation. To annotate generated candidate EXEMPLARS for truthfulness,
we ask annotators to determine whether a candidate is generally true or generally false. Annotators
are instructed to consider nonsensical statements as false. Full instructions are given in Figure 8.

We collect truthfulness annotation in order to validate the quality of the truthfulness filter
used in ExempliFI (i.e., GPT-3.5-Turbo). Specifically, we collect annotations for a set of 500
randomly sampled EXEMPLARS generated from AnimalG generics, 100 EXEMPLARS of each
type (default EXCEPTIONS, concept- and property-focused EXCEPTIONS, concept- and property-
focused INSTANTIATIONS). The Fleiss’ κ is 0.4407 and the percent agreement is 0.7507.

A.3.3 Penguins Annotation. We validate the quality of generations from our ExempliFI system
by using the annotation tasks from Allaway et al. (2023) (henceforth called PenguinsSetup). In
particular, we use the PenguinsSetup to collect validity annotations for our generated EXEMPLARS,
as well as for the EXEMPLARS from both the baseline systems. This is to check that our system
outperforms the baselines in the setting they were designed for.

In PenguinsSetup, INSTANTIATIONS are annotated by asking annotators are asked whether
an INSTANTIATION contradicts the original generic; valid INSTANTIATIONS will agree with the
generic. In contrast, for EXCEPTIONS annotators are asked whether an EXCEPTION contradicts two
modified forms of the generic. Specifically, whether the EXCEPTION contradicts (i) the generic
prefixed with “all” or (ii) the generic with “only” added as a modifier on the property. For example,
the two modified forms of the generic “birds can fly” are (i) “all birds can fly” and (ii) “birds
can fly only”. Allaway et al. (2023) posit that default EXCEPTIONS will contradict form (i) and
property-focused EXCEPTIONS will contradict form (ii). Note that because they do not generate
concept-focused EXCEPTIONS there is no condition to check the validity of such EXCEPTIONS.
Full annotation instructions and examples are shown in Figure 9.

Using PenguinsSetup, for a random subset of 200 generics from GGSmall, we collect
annotations on the validity of the top five INSTANTIATIONS and top five EXCEPTIONS generated
by our system and both baseline systems. Agreement measures are shown in the second row of
Table 15.
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Baseline Template Prompt In-Context Examples
(i) [KSUBTYPE] [r] [P ] Birds can fly. For example, seagulls can fly.

Dogs protect buildings from intruders. For example, pitbulls protect buildings
from intruders.

Ducks lay eggs. For example, female ducks lay eggs.
(ii) [K] [r] [P SUBTYPE] Viruses are spread through body fluids. For example, viruses are spread

through saliva.
Dogs protect buildings from intruders. For example, dogs protect some
private homes from intruders.

Cowsheds are found on farms. For example, cowsheds are found on dairy farms.
(iii) [KSUBTYPE] [r] [P SUBTYPE] Birds can fly. For example, Canadian geese fly long distances to migrate.

Ostriches lay eggs. For example, female ostriches lay large spotted eggs.
Elephants are found in zoos. For example, African elephants are found in
most large zoos.

(iv) [KSUBTYPE] [¬r] [P ] Birds can fly. But also penguins cannot fly.
Ducks lay eggs. But also male ducks do not lay eggs.
Dogs protect buildings from intruders. But also very small dogs do not protect
buildings from intruders.

(v) [K] [¬r] [P SUBTYPE] Dogs protect buildings from intruders. But also dogs do not protect
apartment buildings from intruders.

Cowsheds are found on farms. But also cowsheds are not found in orchards.
The sun produces radiation. But also the sun does not produce x-rays.

(vi) [K] [r] [�P ] Elephants are found in zoos. But also elephants are found in the wild in Africa.
Viruses are spread through body fluids. But also viruses are spread in the air.
A hair dryer is used to dry hair. But a hair dryer can also be used to dry clothes.

(vii) [KSUBTYPE] [r] [�P ] Elephants are found in zoos. But also African elephants are found in the wild
in Africa.

Viruses are spread through body fluids. But also coronaviruses are spread
in the air.

A hair dryer is used to dry hair. But also an electric hair dryer can be used
to dry clothes.

(viii) [�K] [r] [P ] Elephants are found in zoos. But also giraffes are found in zoos.
Dogs protect buildings from intruders. But also security cameras protect
buildings from intruders.

A hair dryer is used to dry hair. But also a towel can be used to dry hair.

Table 17: Prompts for GPT-3 Baseline from Allaway et al. (2023). Note that (viii) is added in this
work to adapt the GPT-3 baseline to generate concept-focused EXCEPTIONS.

A.4 Generation Baselines

To generate EXEMPLARS, both baseline systems use seven templates, four for EXCEPTIONS and
three for INSTANTIATIONS (see Table 10). Of the three INSTANTIATION templates used by the
baselines, (i) and (ii) are the same as the templates we use to construct INSTANTIATIONS (see
Table 4 (a) and (b)). Similarly, template (iv) is the same as the template (c) in our system (Table 4)
for generating default EXCEPTIONS. Additionally, template (vi) follows the logical form for
property-focused EXCEPTIONS used in our system (Table 2).

In order to evaluate the baseline generations using our proposed annotation setup (§A.3)
we treat generations from templates (iv) and (v) as default EXCEPTIONS and the generations
from (vi) and (vii) as property-focused EXCEPTIONS. Additionally, we treat generations from
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template (i) as concept-focused INSTANTIATIONS and generations from templates (ii) and (iii) as
property-focused INSTANTIATIONS38.

Constrained Decoding (ConstraintDec). The system proposed by Allaway et al. (2023)
(ConstraintDec) uses the NeuroLogic A?esque (NeuroLogic?) (Lu et al. 2022) constrained
decoding algorithm to generate EXEMPLARS from GPT2-XL. Following the templates in Table 10,
this system constructs a generation prompt (from the input template) and a set of lexical constraints
(from the output template) that should be satisfied during decoding. The lexical constraints specify
n-grams that should be included in or excluded from the generated output (e.g., exclude “fly”,
“flying”, “flew”, etc.). The NeuroLogic? algorithm outputs a sequence that has both high likelihood
and high satisfaction of the specified constraints. The generated candidates are then filtered for
truthfulness and validity using trained discriminators.

GPT-3 Baseline. The GPT-3 baseline used by Allaway et al. (2023) uses few-shot prompting to
illustrate the desired template for generation. Each prompt consists of three in-context examples
(see Table 17). Note that we add an additional prompt to generate concept-focused EXCEPTIONS
(see (viii) Table 17). This baseline uses the davinci model with top-p sampling 1.0, temperature
0.8, maximum length 50 tokens and top 5 sequences. As with the constrained decoding system,
the generated candidates are filtered for truthfulness.

A.5 LLMs and Generics Probe Details

For the quantification probe, we slightly modify the decoder-only prompts from Table 7 for
LLAMA-2. Specifically, we use the following prompts with LLAMA-2. For the probe without
default EXCEPTIONS we use

What are the 5 best quantifiers to fill in the [blank] in the sentence?
Sentence: [blank] {birds can fly}G.
Answer (list 5 quantifiers):
1.

and for the probe with default EXCEPTIONS we use
What are the 5 best quantifiers to fill in the [blank] in the sentence?
Sentence: {birds can fly}G. However, {penguins cannot fly}E . Therefore, [blank] {birds can
fly}G.
Answer (list 5 quantifiers):
1.

where G indicates the generic and E the default EXCEPTION.
For the generations from LLAMA-2, we use a maximum token length of 120. For both the

quantification and inheritance the generations from GPT-3, GPT-3.5-Turbo, and GPT-4, we use: a
maximum token length of 100, temperature 0.9, presence penalty 0.0, frequency penalty 0.0, and
top-p of 1.0.

B. Supplementary Results

In this section we discuss supplementary analyses and results. Specifically, we discuss the results
of our quantifier probe using metrics from prior work (§B.1) and the validation experiments for

38 Since template (iii) contains subtypes of both the concept and the property, these generations could be considered
either property or concept-focused INSTANTIATIONS. We arbitrarily choose to consider them property-focused.
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the wording used in our property inheritance probes (§B.2). We also include analyses comparing
the annotation procedures proposed in this work to those from prior work (§B.3).

B.1 GOG Effect and Quantifiers

We include here additional results, including exploration of an alternative prompt strategy for
examining the GOG effect through quantifiers.

B.1.1 Top Quantifiers Probe. Following prior work (Ralethe and Buys 2022), we include
here analysis of the GOG effect in multiple encoder-only LMs. Specifically, we use mask
infilling to determine the associations between quantifiers and generics. That is, we insert
a mask token before the generic and then take the top five tokens predicted to replace the
mask. For example, for the generic “birds can fly” the input would be “<mask> birds
can fly”, where <mask> is a special token of the LM. As in §5.1, we run this probe
with and without default EXCEPTIONS (e.g., “Birds can fly. However, penguins
cannot fly. Therefore, <mask> birds can fly”). Similarly, as with our main
Top Quantifiers probe in §5.1, we measure the frequency of the universal quantifiers “all” and
“every” among the elicited quantifiers.

The encoder-only models we use are39:

• BERT: A bidirectional transformer-based language model trained with two objectives:
MLM and next sentence prediction (Devlin et al. 2018).

• RoBERTa: A BERT model trained without the next-sentence prediction task as well as
longer sequences and more data (Liu et al. 2019).

• ALBERT: A BERT model trained with parameter reduction techniques and an additional
loss component to increase inter-sentence coherence (Lan et al. 2019). The model has 11M
parameters, compared to BERT’s 340M.

• ELECTRA: A bidirectional transformer-based language model trained with an alternative
to MLM (Clark et al. 2020). In particular, the input is corrupted by replacing random tokens
with a sampled alternative (rather than a mask). Then during training, the objective is to
predict whether or not a token has been replaced.

These models are chosen to cover a sample of popularly used bidirectional LMs.
We report our results for these models in Figure 10. We observe a GOG effect across all the

LMs. That is, universal quantifiers are supplied in the top five infilling tokens for a non-negligible
percentage of generics for all models. Furthermore, we also observe that the GOG effect increases
when EXCEPTIONS are included in the prompt. Recall that we also observe an increased GOG
effect with GPT-3.5-Turbo and LLAMA-2 (see §5.1.2), which we posit is in part due to the
substantially lower variety in unique modifiers, particularly multi-word modifiers, generated by
GPT-3.5-Turbo/LLAMA-2 LLMs. Since mask infilling does not allow the bidirectional models to
produce multi-word modifiers (e.g., it cannot produce “not all”), a similar explanation may apply
here.

Note that, in prior work, Ralethe and Buys (2022) measure the GOG effect with a similar
infilling probe to our Top Quantifiers probe. As metrics they compute precision at 5 (P@5) and
Mean Reciprocal Rank (MRR). P@5 measures the proportion of universal quantifiers that occur in
the quantifiers returned by the probe. In contrast, MRR measures how highly ranked the universal

39 BERT—bert-large-uncased; RoBERTa—roberta-large; ALBERT—albert-large-v2;
ELECTRA—google/electra-large-generator.
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Figure 10: Results of the Top Quantfiers probe from §5.1 adapted to bidirectional LMs with
infilling. Percentage of generics where a GOG quantifier (i.e., one of the universals “all” or
“every”) is in the top 5 tokens supplied by the LM to quantify the generic. With Exceptions
indicates the prompts include default EXCEPTIONS. Higher values indicate a larger amount of
overgeneralization by the LM.
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(b) Mean Reciprocal Rank (MRR).

Figure 11: Results of the Top Quantifiers probe evaluated using the metrics from Ralethe and Buys
(2022). GOG quantifiers are the universals “all” and “every”. With Exceptions indicates the prompts
include default EXCEPTIONS. Higher values indicate a larger amount of overgeneralization by the
LM.

quantifiers are, if they occur. We report the results from our investigations using these metrics in
Figure 11a and Figure 11b.

Across the LLMs for which the GOG effect increases in the presence of EXCEPTIONS, we
see that the increases in MRR are generally greater than in P@5. Therefore, universal quantifiers
are not only being produced more frequently they are also being ranked higher in the generated
modifiers.
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(b) Responses for the generic presented as a universally quantified statement (i.e., quantified with
“some”).

Figure 12: Supplementary results from the Leslie Questions probe. Percentage of generics with a
particular response to the generic in some form and to the default EXCEPTIONS.

B.1.2 Psychology-based Questions Probe. We present here (Fig. 12) the results for statements in
their generic form statements and in their existential form from the Psychology-based Questions
probe in §5.1. We observe with both GPT-3.5-Turbo and GPT-4 a relatively high level of
endorsement of both the generic and the existentially quantified statements. For LLAMA-2,
we observe that only a small portion of responses fall into each slice, suggesting that the model is
simply unable to respond appropriately, similar to what we find with other probes.

B.1.3 Alternative Prompting Strategy. To explore the impact of prompt choice on observed GOG
effect in LMs, we experiment with an additional prompt for a sample of generics. Specifically,
we reformulate the generic as a question and then ask the models to answer it. As with the
Leslie Quesitons probe in §5.1 we experiment with three versions of the generic: the generic
in its base form, a universally quantified version of the generic (i.e., quantified with “all”), and
an existentially quantified version of the generic (i.e., with “some”). Additionally, we provide
the (potentially quantified) question form of the generic to the model with and without default
EXCEPTIONS. For example, for the generic “birds can fly”, without EXCEPTIONS we query
the model with three separate prompts of the form “Can [quantifier] birds fly?”,
where [quantifier] is either nothing (for the generic itself), or one of “all” and “some”
(e.g., “Can all birds fly?”); including EXCEPTIONS we again have three prompts of the
form “[EXCEPTION]. Can [quantifier] birds fly?”, where [EXCEPTION] is a
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default EXCEPTION to the generic (e.g., “penguins cannot fly”) and [quantifier] is again
one of the three quantification options.

As with the Psychology-based Questions probe, we run this prompting strategy on a sample
of 1000 generics from the AnimalG dataset for which each has at least three valid default
EXCEPTIONS. Specifically, we use the same 1000 generics and accompanying EXCEPTIONS as
with the Psychology-based Questions probe. Note that querying with the generic as a generic does
not probe the GOG effect, even if EXCEPTIONS are included. This is because, if the generic is
felicitous, the answer should be “yes” regardless of whether EXCEPTIONS are provided. If the
LM respondes “no” to the generic than it is possible that the generic is not felicitous (assuming a
perfectly correct LM); more likely, the model is either ignorant of the generic or simply unable to
respond appropriately to the input stimulus.

We present the results of the probe in Figure 13. We observe a GOG effect across models
(Fig. 13a). For GPT-3.5-Turbo and GPT-4 we observe a decrease when EXCEPTIONS are included
in the prompt, while for LLAMA-2 we observe an increase in the effect. Note however that
LLAMA-2’s behavior in response to the prompt is far from sensible (Fig. 13b). In particularly,
LLAMA-2 responds “yes” to only 10% of the generics when presented in their generic form
(compared to 62% and 72% for GPT-3.5-Turbo and GPT-4) and only 40% of the generics when
they are existentially quantified (compared to 83% and 91% for GPT-3.5-Turbo/GPT-4). This
suggests that LLAMA-2’s behavior is likely indicative of a broad failure by the model to respond
appropriately to the prompt, regardless of the generic it contains.

We note that this prompting strategy measures the GOG effect differently from the main
Top Quantifiers probe in §5.1. In particular, our Top Quantifiers probe aims to capture potential
variation in the LMs’ responses by asking them to generate multiple quantifiers. This can be
seen as evaluating how the GOG effect might impact models when used for generation tasks.
In contrast, this prompt captures instead how the model might behave in a classification-like
scenario, akin to the supplementary Psychology-based Questions probe. Regardless, as with our
other probes we observe that LMs do in fact exhibit a GOG effect.

B.2 Property Inheritance Validation

To validate the wording used in our property inheritance probe, we manually construct a set of
questions to test the LLMs. Specifically, the questions evaluate whether the models recognize that
the wording of the prompt asks them to consider deductive reasoning (see templates in Table 18).
We use the following five nonsense words in all property inheritance evaluations: “Dofik”, “Yeb”,
“Wumox”, “Bafu”, “Goq”. For the validation questions we use the following five properties: “has
three sides”, “is red”, “eats oranges”, “lives in New Zealand”, and “swims quickly”.

The overall accuracy of the models LLMs evaluated on these questions is 0.820 (GPT-3.5-
Turbo), 0.932 (GPT-4), and 0.864 (GPT-3).

B.3 Comparison of Annotation Procedures

We note that the precision scores obtained by our collected human annotations for GPT3-baseline
and ConstraintDec are around 10 points higher than those reported by Allaway et al. (2023).
These annotations were collected using the new annotation setup we developed (§6.2) that better
aligns with the logical forms for the EXEMPLARS. Therefore, we also conduct a human evaluation
using the annotation setup from Allaway et al. (2023) (All-Only Setup). As before, we compute
precision at k.

We observe first that the precision across systems decreases substantially in the All-Only
Setup. However, across both EXCEPTIONS and INSTANTIATIONS our system outperforms both
baselines. This further highlights the strength of our system.
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Figure 13: Responses to the alternative prompt formulating generics as questions. With Exceptions
indicates the prompt included a default EXCEPTION. Higher values indicate larger amounts of
overgeneralization.

Are the procedures comparable?. We note that for EXCEPTIONS, the precision we find in
the All-Only Setup is similar to that reported in Allaway et al. (2023); they report ∼0.624
for ConstraintDec, 0.54 for GPT-3-baseline. However, for INSTANTIATIONS the precision is
substantially lower (∼0.897 for ConstraintDec and ∼0.724 for GPT-3-baseline). We hypothesize
that this is due to the difficulty of the annotation task. Even after removing annotators with low
competence, the Fleiss’ κ for agreement is only 0.1863 for INSTANTIATIONS in the All-Only
Setup. In contrast, the κ is approximately 0.32 for the EXCEPTIONS in the same annotation setup.
Despite the increased annotation difficulty, our system still outperforms both baselines.

How are incorrectly formatted candidates handled?. Our new annotation setup enforces that
generations fit the desired template in order to be valid, while the All-Only Setup does not. As
noted by Allaway et al. (2023), the GPT-3-baseline generations often do not adhere to the required
template. Therefore, generations deemed invalid in our annotation setup due to having the incorrect
format could be marked valid in the All-Only Setup, thereby increasing precision. This is likely
why the precision of GPT-3-baseline for EXCEPTIONS actually increases under the All-Only Setup.
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Question Label
(1) Premises: All t1 [property]. A t2 is a t1.

Conclusion: Therefore, all t2 [property].
Yes

(2) Premises: All t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [property]

No

(3) Premises: All t1 [property]. A t2 is a t1.
Conclusion: Therefore, all t2 [not-property].

No

(4) Premises: All t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [not-property].

No

(5) Premises: Some t1 property. A t2 is a t1.
Conclusion: Therefore, all t2 property.

No

(6) Premises: Some t1 [property]. A t2 is a t1.
Conclusion: Therefore, some t2 [property].

Yes

(7) Premises: Some t1 [property]. A t2 is a t1.
Conclusion: Therefore, all t2 [not-property].

No

(8) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [property].

No

(9) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, some t2 [property].

No

(10) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [not-property].

No

Table 18: Templates for constructing the questions to validate the wording of the property
inheritance probe. t1 and t2 are placeholders for nonce types, [property] is a placeholder for
a property to be inherited and [not-property] is the negation of that property.

EXCEPTIONS INSTANTIATIONS
P@1 P@5 P@1 P@5

GPT-3-baseline 0.6610 0.5814 0.5329 0.4695
ConstraintDec 0.5847 0.6237 0.5449 0.5246
ExempliFI 0.6695 0.6763 0.6168 0.6072

Table 19: Precision at k (P@k) results for human evaluation using the annotation procedure from
Allaway et al. (2023).

To see why this is the case, consider the following default EXCEPTION generated by GPT-3-
baseline:

Generic: a jungle gym can be a great place to work out.
GPT-3-baseline candidate: a jungle gym could be a great place to get hurt.

In our setup, the format is enforced by having separate annotation tasks (with different instructions
and examples) for the default and focused EXCEPTIONS (§6.2). Therefore, this example would
be marked invalid because it does not provide a counterexample to the generic (i.e., does not
provide a type of jungle gym that is not good for working out; see annotation instructions in
Fig. 6). In contrast, the All-Only Setup uses two questions, asked together, for the default and
focused EXCEPTIONS. In particular, the All-Only Setup asks whether the EXEMPLAR contradicts:
(1) the generic prefixed with “all” (i.e., “All jungle gyms are a great place to work out”) and (2)
the generic with “only” (e.g., “jungle gyms can only be a great place to work out”). Therefore, in
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the All-Only Setup, the example candidate would be marked valid because it contradicts question
(2). This occurs despite the example not contradicting question (1), which was intended for to
identify valid default EXCEPTIONS40.

How successfully are alternatives identified?. In addition to allowing incorrectly formatted
EXCEPTIONS to be valid, the All-Only Setup places less restrictions on the focused generics.
Consider the following example from ConstraintDec:

Generic: hockey is a game.
ConstraintDec candidate: hockey can be a lot more than that.

This was annotated as a valid EXCEPTION in the All-Only Setup because it contradicts “hockey is
only a game” (i.e., annotation question (2)). However, this candidate does not actually contain
a valid alternative to “game”. In other words, it does not answer the property-focused QUD for
the generic (i.e., “what hockey is”) and is therefore an invalid EXCEPTION. Since our annotation
setup directly queries the relationship between the candidate and the QUD, it produces the correct
label (invalid).

Even in cases where an alternative property is included, the All-Only Setup can fail to catch
irrelevant alternatives. For example, consider the candidate from ConstraintDec and our system:

Generic: drummers are taught to play with their hands.
ConstraintDec candidate: a drumming instructor is taught to work with the student.
Our system candidate: drummers are taught to use a combination of their hands and
feet.

Both candidates would be marked valid in the All-Only Setup because they contradict “drummers
are only taught to play with their hands”. However, the ConstraintDec candidate is invalid because
“work with the student” is not an alternative to “play with their hands”. While it is something
drummers are taught, the generic is about how drummers are taught to play and so the alternatives
should be other ways of playing (e.g., with their feet). Although the candidate from our system
does include an alternative way of playing (“a combination of their hands and feet”), this is still
not a valid alternative; “hands and feet” overlaps with “hands” and so is not fully different. Both
candidates are correctly marked as invalid EXCEPTIONS in our annotation setup.

B.4 Additional Comparison Baseline for ExempliFI

We include here a proof-of-concept for using GPT-3.5-Turbo as a baseline for evaluating our
ExempliFI system in §6.4. For this baseline, we use gpt-3.5-turbo with a temperature of 0.9 and
max length of 100 tokens. We use the prompts from the GPT-3 baseline (Table 17) that align
with the EXEMPLARS in this work. In particular, we use the following prompt-EXEMPLAR type
pairs: (i) for concept-focused INSTANTIATIONS, (ii) for property-focused INSTANTIATIONS, (iv)
for default EXCEPTIONS, (vi) for property-focused EXCEPTIONS, and (viii) for concept-focused
EXCEPTIONS.

We evaluate this baseline on the sample of eight generics shown in §4.3. Note that because
“Birds fly” is one of these generics, we must adjust two of the prompts to not include this example.
In particular, we replace “Birds can fly. For example seagulls can fly” in (i) with “Bats can fly. For
example, fruit bats can fly”; in (iv) we replace the relevant example with “Tigers are orange and
black. But also albino tigers are not orange and black”.

40 Recall that the generations from templates (iv) and (v) in Table 10 are considered default EXCEPTIONS, while the
generations from templates (vi) and (vii) are considered property-focused EXCEPTIONS.

53

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00530

© 2024 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/coli_a_00530/2463166/coli_a_00530.pdf by U
niversity of Edinburgh user on 11 Septem

ber 2024

https://doi.org/10.1162/coli_a_00530


Computational Linguistics Volume 1, Number 1

AnimalG Data
(a) Generic: Cats sleep in trees

Concept-Focused INSTANTIATIONS:
• Serval cats sleep in trees.
• Tabby cats sleep in trees.
• Persian cats sleep in trees.

Default EXCEPTIONS:
• Cats prefer to sleep indoors.
• Some cats do not like climbing trees

and prefer to sleep on the ground.

Property-Focused INSTANTIATIONS:
• Cats sleep in branches of tall trees.
• Cats sleep in tall trees in the forest.

Property-Focused EXCEPTIONS:
• Cats sleep in cozy beds indoors.
• Cats sleep in sunny spots by the window.

Concept-Focused EXCEPTIONS:
• Birds sleep in trees.
• Squirrels also sleep in trees.

(b) Generic: Birds fly.
Concept-Focused INSTANTIATIONS:
• Eagles can fly.
• Hawks can fly.

Property-Focused INSTANTIATIONS:
• Birds fly south for the winter.

Concept-Focused EXCEPTIONS:
• Bats are able to fly.
• Airplanes are able to fly.

Property-Focused EXCEPTIONS:
• Birds are able to swim.
• Birds are able to migrate thousands

of miles across continents.

Default EXCEPTIONS:
• Penguins are birds that cannot fly.
• Some birds, such as ostriches and emus,

are flightless.

(c) Generic: Moose have winter coats.
Concept-Focused INSTANTIATIONS:
• Moose have thick winter coats to keep

them warm in winter.

Property-Focused INSTANTIATIONS:
• Moose have thick fur coats to keep

them warm in cold climates.
• Moose have thick, insulated fur that keeps

them warm during the cold winter months.

Property-Focused EXCEPTIONS:
• Moose have summer coats.

Default EXCEPTIONS:
• Moose shed their winter coats in the summer.
• Some moose living in warmer climates may

not develop a thick winter coat.

Concept-Focused EXCEPTIONS:
• Bears have thick fur to keep them warm

in winter.
• Reindeer have thick fur to keep them warm

in winter.

(d) Generic: Deer live in meadows.
Concept-Focused INSTANTIATIONS:
• White-tailed deer live in meadows.

Property-Focused INSTANTIATIONS:
• Deer live in forests and grasslands.
• Deer can often be seen grazing in meadows.

Default EXCEPTIONS:
• Some deer can live in forests or mountains

instead of meadows.

Concept-Focused EXCEPTIONS:
• Rabbits live in meadows.
• Foxes live in meadows.
• Horses live in meadows.

Property-Focused EXCEPTIONS:
• Deer can be found in forests and

other types of habitats.

Table 20: Examples of EXEMPLARS generated by the proof-of-concept baseline using GPT-3.5-
Turbo (§B.4) for generics from AnimalG.
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GGTest Data
(e) Generic: a scavenger hunt is a fun way to spend an afternoon with friends.

Concept-Focused INSTANTIATIONS:
• A scavenger hunt is a fun way to spend

an afternoon with friends in a park.
Property-Focused INSTANTIATIONS:
• A scavenger hunt is a fun way to spend

a birthday party with children.
• A scavenger hunt is a fun way to celebrate

a birthday with friends.
Default EXCEPTIONS:
• Scavenger hunts can be done alone

for a solo adventure.
• Some people may not find scavenger

hunts enjoyable.

Concept-Focused EXCEPTIONS:
• A movie marathon is a fun way to spend

an afternoon with friends.
• A picnic in the park is a fun way to spend

an afternoon with friends.
• Playing board games is a fund way to spend

an afternoon with friends.
Property-Focused EXCEPTIONS:
• A scavenger hunt can be a creative

educational activity for students to learn
about their surroundings.

• A scavenger hunt can be a team-building
exercise for corporate events.

(f) Generic: Binoculars are used to view location.
Concept-Focused INSTANTIATIONS:
• Birdwatchers use binoculars to view

distant birds.
Property-Focused INSTANTIATIONS:
• Binoculars are used to view wildlife

in national parks.
• Binoculars are used to view wildlife

in their natural habitat.

Default EXCEPTIONS:
• Binoculars are used for stargazing.
• Binoculars are used for surveillance,

wildlife observation, or marine activities.
Concept-Focused EXCEPTIONS:
• Telescopes are used to view celestial bodies.
• Microscopes are used to view tiny objects.
Property-Focused EXCEPTIONS:
• Binoculars can be use for stargazing

or birdwatching.
GGSmall Data

(g) Generic: A rose is placed in a container with water.
Concept-Focused INSTANTIATIONS:
• A red rose is placed in a vase with water.
• A yellow rose is placed in a glass jar

with water.
Property-Focused INSTANTIATIONS:
• A rose is placed in a vase with water.
Default EXCEPTIONS:
• A dried rose cannot be placed in a container
with water.
• A fake rose made of plastic or silk cannot

be placed in a container with water.

Concept-Focused EXCEPTIONS:
• A bouquet of flowers can be placed in a vase

with water.
• A single flower can be placed in a bud vase

with water.
Property-Focused EXCEPTIONS:
• A rose can be planted in soil to grow into

a bush or a tree.
• A rose can be dried and preserved for

decorative purposes.

(h) Generic: Cakes are made with a mix.
Concept-Focused INSTANTIATIONS:
• Birthday cakes are made with a mix.
• Pancakes are made with a mix.
• Chocolate cakes are made with a mix.

Property-Focused INSTANTIATIONS:
• Cakes are made with a mix of flour,

sugar, eggs, and other ingredients.

Default EXCEPTIONS:
• Some cakes are made from scratch.

Property-Focused EXCEPTIONS:
• Cakes can be made from scratch

using individual ingredients.

Concept-Focused EXCEPTIONS:
• They can be made by professional bakers

or homemade using recipes and various
ingredients.

Table 21: Examples of EXEMPLARS generated by the proof-of-concept baseline using GPT-3.5-
Turbo (§B.4) for generics from GGTest and GGSmall.
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Sample outputs for each of the five types of EXEMPLARS are shown in Table 20 for AnimalG
generics and Table 21 for generics from GGTest and GGSmall. We observe that while the this
baseline is substantially more controllable than the GPT-3 baseline, it is still less controllable
than our ExempliFI system. For one, in cases where only a portion of the generic should change
(e.g., the concept in concept-focused EXCEPTIONS) this is not consistently the case. For example,
for the generic “binoculars are used to view location” the concept-focused EXCEPTIONS include
“telescopes are used to view celestial bodies” (see (f) in Table 21); here both the concept and
property have been changed.

Additionally, this baseline fails to generate default EXCEPTIONS in most cases (more details
below). Instead it generates candidates that are either focused EXCEPTIONS (e.g., (d) in Table 20
and (f) in Table 21) or alternatives for the generic as a whole (e.g., “some people may not find
scavenger hunts enjoyable” for the generic “a scavenger hunt is a fun way to spend an afternoon
with friends”; (e) Table 21). While these latter cases are interesting and worth investigating in
future work, they are not valid EXCEPTIONS under our framework. Note that even when the
model successfully generates default EXCEPTIONS (e.g., “penguins are birds than cannot fly”)
the EXCEPTIONS are primarily knowledge-based, not reasoning-based. Further exploration of the
prompts used for the baseline may improve the default EXCEPTIONS. Overall, GPT-3.5-Turbo
appears to be a reasonable baseline and should be further explored in future work.
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