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ABSTRACT

Although Large Language Models (LLMs) exhibit various exciting capabilities,
understanding the mechanisms behind these abilities remains a challenging prob-
lem. In this paper, we aim to understand these mechanisms from the perspective of
neurons. Specifically, we first propose a Detecting Capability-Specific Neurons
(DCSN) method. Extensive enhancement and erasure experiments demonstrate
that the detected neurons are highly correlated with specific capabilities, exhibiting
strong cohesion and separability, which we define as capability-specific neurons.
Moreover, leveraging these neurons, we conducted compositional experiments
and, for the first time, discovered that capability neurons exhibit compositional
generalization. Inspired by these findings, we propose a Capability Neuron-Level
Fine-tuning method (CNLF) that fine-tunes specific capability neurons to achieve
performance improvements across datasets and tasks. Extensive experiments vali-
date the effectiveness of this method and provide a low-cost, highly generalizable
fine-tuning paradigm. Our research offers interpretable insights into the capability
mechanisms of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance improvements across
various natural language processing tasks (Zhao et al., 2023). Despite their powerful capabilities, the
underlying principles of the mechanisms driving these capabilities (Yan et al., 2024; Haltaufderheide
& Ranisch, 2024), as well as the relationship between model parameters and performance, remain un-
clear to humans (Peng et al., 2024). Recently, many studies have attempted to further understand and
enhance the capabilities of these models, but their efforts have been hindered by the black-box nature
of LLMs (Bonaldi et al., 2024; Sun et al., 2024). Therefore, understanding the internal mechanisms
and characteristics of these models is key to improving their capabilities and interpretability (Ding
et al., 2023).

Previous studies have attempted to establish a correspondence between knowledge or tasks and
model parameters, defining these parameters as knowledge neurons or task neurons (Yao et al., 2024).
However, the assumption of associating knowledge or tasks with specific neurons has been questioned
in existing research (Dai et al., 2021). Studies have found a high degree of overlap among different
knowledge neurons, which does not align with the expected localization of parameters (Huang et al.,
2025b). Furthermore, the functions of these overlapping neurons remain unexplained (Huang et al.,
2025a). Similar issues of inexplicability also exist with task neurons (Leng & Xiong, 2025).

Previous research has found that a model’s capabilities can transcend knowledge and tasks, providing a
potential explanation for overlapping neurons (Huang et al., 2025b). Achieving parameter localization
of capabilities is key to interpretability research for LLMs (Trimmer, 2015). Inspired by these studies,
we attempt to pose three questions: (1) Do neurons related to specific capabilities exist in LLMs?
(2) Do capability neurons exhibit compositional generalization? (3) Can we improve LLMs through
these neurons?

To address the three questions above, we conducted an analysis of capability neurons in LLMs. First,
we constructed a compositional generalization dataset encompassing four computational capabilities:
addition, subtraction, multiplication, and division. We then proposed a Detecting Capability-Specific
Neurons (DCSN) method. Next, we performed enhancement and erasure experiments, demonstrating
that these neurons are highly correlated with the respective capabilities. Our experiments show
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that different capability neurons exhibit a low overlap rate (Separation), while neurons identified
utilizing different datasets that demonstrate the same capability exhibit a high overlap rate (Cohesion)
(MacQueen, 1967). Therefore, we refer to these as capability-specific neurons.

Utilizing the identified capability-specific neurons, we delved into the mechanism of capability
invocation within the model. When performing tasks, the model often invokes multiple capabilities.
To reflect this phenomenon, we constructed compositional problems within the compositional gener-
alization dataset. For example, the problem “1 + 3 * 5 = ?” requires both addition and multiplication
capabilities from the model. We collected neuron activation data during the model’s execution of
such tasks. Interestingly, the addition-specific neurons and multiplication-specific neurons were
significantly activated. We then conducted extensive experiments across various problem types
(involving different operations). The results demonstrated that capability-specific neurons exhibit
compositional generalization, marking the first time the mechanism of capability invocation within
the model has been revealed. Counterintuitively, we observed that when addition neurons were
activated, subtraction neurons were activated 22% more than other neurons (e.g., for multiplication or
division). This suggests a certain degree of association between addition and subtraction. Through
ablation experiments, we inferred that this is likely due to the inverse relationship between addition
and subtraction.

To enhance the model’s various capabilities, we proposed a Capability Neuron-Level Fine-tuning
method (CNLF). By fine-tuning these designated capability-specific neurons, we improved the
model’s capabilities and achieved superior performance across 12 downstream tasks. Compared
to fine-tuning all parameters, this method improved performance by 18.9% on unseen datasets.
Additionally, we were able to control the model’s individual capabilities, thereby enhancing the
model’s safety and controllability.

To the best of our knowledge, we are the first to discover that the model’s capability-specific
neurons possess compositional generalization. We also proposed a low-cost, highly generalizable
fine-tuning method that enables control over the model’s capabilities. This work sheds light on the
internal mechanism of capability invocation within the model and enhances its interpretability. Our
contributions can be summarized as follows:

• We proposed a Detecting Capability-Specific Neurons (DCSN) method, and successfully
identified capability-specific neurons. Compared to previously studied knowledge neurons
and task neurons, capability-specific neurons demonstrate superior separability and cohesion.

• To clarify the mechanism of capability invocation within the model, we conducted composi-
tional generalization experiments and discovered that capability-specific neurons exhibit
compositional generalization. This provides important insights for understanding and en-
hancing the model’s multiple capabilities.

• We introduced a Capability Neuron-Level Fine-tuning method (CNLF), which simultane-
ously improves multiple capabilities of the model and achieves significant performance
gains. Extensive experiments have demonstrated the effectiveness of the method.

2 RELATED WORK

Parameter Localization. Knowledge Neurons indicate that knowledge (such as triplets) can be
localized in parameters, with storage forms including distributed parameters (Liu et al., 2024b),
parameter layers (Meng et al., 2022b), and parameter chains (Yao et al., 2024). Task Neurons indicate
that different tasks can be localized and utilize Capability Neurons for task generalization (Leng &
Xiong, 2025). Capability Neurons Localization points out that knowledge cannot be localized, with
unexplainability, but capabilities can be localized (Huang et al., 2025b).

Localization Method. Distributed Parameters: Knowledge-sensitive neurons are detected using
a gradient attribution method, and after sorting, the Top-K neurons are selected and considered as
knowledge neurons (Huang et al., 2024). Parameter Layers: Similar to the causal tracing (Meng
et al., 2022b), a clean run that predicts the fact, a corrupted run where the prediction is damaged, and
a corrupted-with-restoration run that tests the capability of a single state to restore the prediction
(Huang et al., 2025a). Parameter Chains: KC (Yao et al., 2024) believes that individual knowledge is
stored on a parameter chain and utilizes the entire parameter chain to recall knowledge.
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Fig. 1: Illustration of our research methodology. The entire framework consists of three steps:
Recognition Capability-Specific Neurons, Compositional Generalization and Capability Neuron-
Level Fine-tuning. Step 1 provides identification methods for subsequent research, Step 2 provides
interpretability of capability mechanisms for subsequent research, and provides justification for
multi-capability enhancement in Step 3.

3 METHODOLOGY

Figure 1 illustrates our research approach. First, we proposed a capability neuron detection algorithm
and successfully identified capability-specific neurons, which exhibit strong separability and cohesion.
Next, we conducted capability compositional generalization experiments and uncovered the mecha-
nism of capability invocation within the model. Finally, based on capability-specific neurons, we
proposed a fine-tuning method at the capability neuron level aimed at enhancing multiple capabilities
of the model.

3.1 CONSTRUCTION OF COMPOSITIONAL GENERALIZATION DATASET

To identify neurons that are highly correlated with specific capabilities utilizing data, it is first
necessary to clarify the relationship between capabilities and data (Hinterstoisser et al., 2011).
Capabilities reflect the model’s proficiency in solving certain problems, they are transferable across
datasets, tasks, and even languages. Our compositional generalization dataset consists of two parts:
the neuron identification part and the compositional generalization part.

Neuron Identification Part. This part helps identify the capability-specific neurons within the
model. First, we selected four basic arithmetic operators–“+”, “-”, “*”, and “/”, which reflect different
computational capabilities. To achieve a cross-task setup, our data includes three types of tasks:
Multiple-choice (MQ) tasks, True/False (TF) tasks, and Direct Generation (DG) tasks. Additionally,
to meet the cross-language requirement, we utilized Deepseek V3’s (Liu et al., 2024a) translation
capabilities to provide data in both English and Chinese. The specific data formats are shown in Table
1.

Combination Generalization Part. This dataset helps clarify the capability invocation mechanism
within the model. The dataset includes five different types of expressions. For example, 2-operator
expressions (e.g., 1+3*5), which involve two different operators. Interestingly, to explore the impact
of repeatedly occurring operators on neuron activation levels, we designed a 5-operator expression,
such as (1+3*5-6/3+5), where the “+” operator appears twice. The specific data formats are shown in
Table 1. We provide more dataset details in the Appendix A.
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Multi-operation
expression

< + > < + ∩ * > ... < + ∩ - ∩ * ∩ / >
< 1-OP: 1 + 6 = ?>; < 2-OP:1 + 3*5 = ? >; ... , < 5-OP: 1+3*5 - 6/3+5=? >

Category Component Prompt Target Answer

DG Based on the given expression “1+3*5=?”, please provide
the answer directly: 16

MQ
Based on the given expression “1+3*5=?”, the following
options are provided: (a) 10, (b) 0, (c) 16, and (d) 26.
Please select the correct option:

c

TF Based on the given expression “1+3*5=16”,
please determine whether it is correct: Yes

Table 1: Example of combining generalized datasets. The categories are: Directly Generated(DG),
Multiple-choice Questions(MQ), and True/False questions(TF). The target answer are “16”, “c” and
“Yes”, respectively. i-OP indicates that the operation expression contains i types of operations.

3.2 RECOGNITION CAPABILITY-SPECIFIC NEURONS IN LLMS

To identify capability-specific neurons, it is necessary to determine the correlation between each
neuron and a specific capability. Previous studies have focused on locating neurons responsible for
individual pieces of knowledge (Meng et al., 2022a) or tasks (Leng & Xiong, 2025). Inspired by
these works, we propose a Detecting Capability-Specific Neurons (DCSN) method, which utilizes
the contribution of each neuron to a capability as a relevance score. Notably, current LLMs are based
on the autoregressive transformer architecture, which consists of Multi-Head Self-Attention (MHSA)
and Feed-Forward Networks (FFNs) (Touvron et al., 2023). Previous research has demonstrated that
FFNs can store a large amount of parametric knowledge (Dai et al., 2021). Our experiments focus
solely on this component.

For identifying neuronal samples S = [s1, s2, ..., sj ], we compute correlation score for each neuron
ni at layer l as:

C(i, l, t, S) =
1

n

n∑
j=0

Al,j
i,−1 · (WunW

l
ud)t,i (1)

where (·)t,i represents the t-th row and i-th column of the input matrix, and Al,j
i,−1 is the activation

output at the last token for neuron ni at layer l of sample sj . The Wun is the unembedding matrix,
and W l

ud is the up or down weight of the forward feedback network at layer l.

Here we regard WunW
l
ud ∈ Rv×dm as a projection function projecting from activations of the

neurons to distribution of the vocabulary, where v is the vocabulary and dm is the intermediate, and
regard Al

i,−1 as a coefficient of the projection, respectively. This projection clearly displays the
average contribution level of each neuron to all samples.

To identify the capability-specific neurons, we take the Mask matrix:

Maski,l =

{
1 |C −mean(C)| > σ · var(C)
0 else

(2)

where mean(·) denotes the mean value of all scores and var(·) indicates the variance of the neurons.
σ is the threshold guiding us to find the task neurons. According to statistical principles (Kumar et al.,
2007), in the absence of any special instructions to follow, we view the neurons with scores outside
σ = 6 as capability-specific neurons. We also provide experimental results for other σ values in the
Appendix D.

3.3 COMPOSITIONAL GENERALIZATION EXPERIMENT

Once it is confirmed that capability-specific neurons truly exist, we analyze how the model invokes
various capabilities when solving problems. First, we design a forward reasoning experiment to
observe whether the corresponding neurons are successfully activated when the model solves multi-
operation expression problems. Additionally, in the reverse validation experiment, we erase certain
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capability-specific neurons in advance to evaluate the model’s performance on multi-operation
expression problems. Through this process, we aim to clarify the model’s internal mechanism for
utilizing capabilities, thereby revealing the relationship between capability-specific neurons and
model performance.

Forward Reasoning Experiment. We utilize the compositional generalization dataset introduced
in Section 3.1 to have the model solve multi-operation expression problems. By analyzing the
activation states of neurons in the model, we determine whether capability-specific neurons exhibit
compositional generalization. Specifically, we examine whether the activated neurons include the
identified capability-specific neurons and whether these neurons correspond to the operators in the
multi-operation expressions. This experiment aims to verify whether specific neurons demonstrate
compositional generalization properties.

Reverse Validation Experiment. We erase certain capability-specific neurons in advance to observe
their impact on the corresponding model capabilities. For example, we set addition-specific neurons to
zero and then have the model answer multiple questions containing addition operators, measuring the
change in accuracy before and after the erasure. Furthermore, we erase multiple capability-specific
neurons simultaneously to examine the resulting accuracy changes in related problems. This step
aims to validate the authenticity of the compositional generalization properties of capability-specific
neurons.

3.4 ENHANCING MULTIPLE CAPABILITIES OF LLMS UTILIZING CAPABILITY-SPECIFIC
NEURONS

Through the analysis of capability-specific neurons, we found that these neurons exhibit compositional
generalization. This discovery reveals the mechanism by which the model invokes its capabilities and
establishes a correspondence between capability-specific neurons and model performance. However,
enhancing the model’s performance remains a challenge. We propose a Capability Neuron-Level
Fine-tuning method (CNLF), aiming to leverage the detected neurons to further improve the model’s
performance.

First, given a set of training samples D, we fine-tune only the corresponding capability-specific
neurons during the fine-tuning phase while freezing all other parameters. During the testing phase,
inference proceeds as usual. We refer to this approach as Capability Neuron-Level Fine-tuning
method. Specifically, existing open-source datasets do not solely focus on a single capability. For
instance, the dataset meta math (Yu et al., 2023) reflects both the model’s mathematical and
language capabilities, which poses challenges in selecting which neurons to fine-tune. Fortunately,
we have already confirmed the existence of compositional generalization in capabilities. The model’s
performance on meta math is primarily related to its mathematical and language capabilities.
Therefore, we choose to fine-tune both the mathematics and language capability-specific neurons
simultaneously. Experimental results validate the effectiveness of this method.

4 EXPERIMENTS: RECOGNITION CAPABILITY-SPECIFIC NEURONS

In this section, we first utilized neuron DCSN in Section 3.2 to detect capability-specific neurons, and
designed enhancement and erasure experiments to verify the high correlation between these neurons
and capabilities. Finally, we constructed dissociation and cohesion indicators to determine the true
existence of capability-specific neurons.

4.1 EXPERIMENTAL SETUP

The first experiment is an enhancement experiment, in which we fine-tune the ability-specific neurons.
Specifically, only ability specific neurons are updated, while other parameters in the model are frozen.
The second experiment is an inhibition test. During the inference phase, we set the ability specific
neurons to zero while keeping other parameters unchanged.

We tested three publicly available models of different sizes, including LLaMA-2-7B (Touvron et al.,
2023), LLaMA-3-8B, LLaMA-3-13B and GPT-J-6B (Wang & Komatsuzaki, 2021). The proportion
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Enhancement LLaMA-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

Original 52.4 50.3 45.2 43.6 47.8 50.7 50.1 45.2 40.3 46.5
FT-Random 52.7 51.0 45.7 43.9 48.3 50.9 50.7 45.3 40.5 46.8
FT-w/o Cap 56.7 55.6 50.6 48.3 52.8 56.3 56.2 49.3 47.6 52.3

FT-Cap (Ours) 67.8 68.3 66.1 65.7 66.9 (↑ 14.1) 66.4 67.4 65.4 65.3 66.1 (↑ 13.8)

Erasure LLaMA-3-8B LLaMA-3-13B
+ - * / Avg. (↓) + - * / Avg. (↓)

Original 56.4 55.3 48.4 48.6 52.1 58.6 57.4 50.1 51.7 54.4
Deactivate-Random 56.3 55.0 48.4 48.5 52.0 58.5 57.3 49.8 53.1 54.6

Deactivate-Cap (Ours) 32.5 31.5 30.4 30.8 31.3 (↓ 20.7) 34.6 32.7 31.6 32.7 32.9 (↓ 21.7)

Table 2: Results of enhancement and erasure experiments. FT-Random refers to fine-tuning an equal
amount of random parameters (0.05% of parameters), FT-w/o Cap refers to fine-tuning all parameters
except for the specified capability-specific neurons (99.95% of parameters), and FT-Cap refers to
fine-tuning the specified capability-specific neurons (0.05% of parameters). The experiment only
disabled 10% of ability specific neurons.

of ability specific neurons in the total parameters is 0.05%. The datasets is neuron identification part
in Section 3.1. The Appendix C provides comparison results with the positioning method NeFT (Xu
et al., 2025).

4.2 RESULTS

Table 2 presents the results of the enhancement experiments. Compared to fine-tuning an equivalent
number of random parameters, fine-tuning capability-specific neurons achieves significant perfor-
mance improvements. Specifically, despite fine-tuning only 0.05% of the parameters, fine-tuning
capability-specific neurons results in a 19.9% performance improvement. In comparison to “FT-w/o
Capability,” the performance improvement is 14.1%. Notably, “FT-w/o Capability” refers to fine-
tuning all parameters except the capability-specific neurons, which accounts for 99.95% of the total
parameters, yet only achieves a mere 4.5% performance improvement. This demonstrates that the
identified neurons are highly correlated with the model’s capabilities.

Table 2 also provides the results of the erasure experiments. By zeroing out certain neurons and
observing the performance drop, the more significant the drop, the more sensitive the erased neurons
are to the capability. Despite disabling only 10% of the capability-specific neurons, the model
experiences a 21.7% performance drop. When disabling an equivalent number of random parameters
(0.05%), the model’s performance drops by only 0.1%. This further highlights that the identified
neurons are highly sensitive to the model’s capabilities.

Meanwhile, previous studies lacked metrics to evaluate the accuracy of neuron identification. Inspired
by clustering analysis (MacQueen, 1967), capability-specific neurons for different capabilities should
exhibit high distinctiveness (e.g. n+ and n−). The greater the distinctiveness, the higher the
identification accuracy. We define this metric as separability Sep. Additionally, neurons identified for
the same capability (utilizing different datasets, e.g., English nEN and Chinese nCH ) should exhibit
high similarity. The greater the similarity, the stronger the identification reliability. We define this
metric as cohesiveness Coh. Formally, these metrics can be expressed as:

Sep(+ ∩ −) = n+ ∩ n−, Coh(+) = nCH ∩ nEN (3)

Table 3 presents the results of cohesiveness and separability. In previous studies, the cohesiveness
of KN (Dai et al., 2021) was only 37.3%, while the separability of ROME (Meng et al., 2022a)
reached as high as 86.6%, making the identified neurons unconvincing (Huang et al., 2025b). Even
under interference from multiple question types and multilingual data, the capability-specific neurons
identified in our study achieve a cohesiveness of 94.3% and a separability of only 3.6%. This
demonstrates that the identified capability-specific neurons are both reliable and accurate.

In summary, compared to random parameters and “w/o Capability,” enhancing and suppressing
capability-specific neurons significantly impacts model performance. The results of cohesiveness and
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Cohesiveness LLaMA-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

DG 95.47 93.73 92.96 94.35 94.19 95.63 93.78 93.86 94.25 94.35
TF 94.63 93.47 94.54 94.32 94.26 93.59 93.70 94.23 92.41 93.42
MQ 95.38 93.24 93.57 94.66 94.13 93.45 93.68 94.39 93.34 93.62
CH 84.11 81.63 82.77 83.32 82.97 83.54 80.55 80.76 81.62 81.59

Separability LLaMA-3-8B LLaMA-3-13B
+ ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓) + ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓)

DG 6.46 3.26 2.63 2.31 3.65 5.76 4.61 4.33 4.22 4.73
MQ 6.22 4.77 4.16 3.89 4.73 5.84 5.52 4.36 4.03 4.90
TF 5.73 5.05 4.53 4.06 4.82 5.65 5.08 4.51 3.76 4.71
CH 5.88 4.48 4.08 3.65 4.57 4.89 4.43 4.07 3.69 4.22
EN 6.38 5.47 4.33 3.45 4.84 5.79 5.66 4.35 3.57 4.76

Table 3: The results of cohesiveness and separability experiments. EN refers to all English datasets,
while CH refers to translating all English into Chinese datasets.

separability further demonstrate the high accuracy of neuron identification. Therefore, we conclude
that capability-specific neurons do indeed exist in LLMs.

5 EXPERIMENTS: COMBINATION GENERALIZATION

Fig. 2: The activation values corresponding to different
operation symbols, and different colors refer to different
operators in 1-OP.

We analyzed ability specific neurons to
understand the ability calling mechanism
of the model. According to the analysis
method in Section 3.3, we have listed the
relevant results of combination generaliza-
tion experiments.

5.1 FORWARD
REASONING EXPERIMENT

Experimental Setup. The experimental
data D = [d1, d2, ..., dr] is the combined
generalization part in Section 3.1. Utilizing
Equation 2, we identified activated neurons
and compared them with the four ability
specific neurons obtained in Section 4, uti-
lizing the coincidence ratio as the evalua-
tion metric. Specifically, when the experimental data is a 2-operation expression (e.g. “1+3 * 5”), we
calculate the ratio R of activated neurons nact containing {+}-specific neurons n+ and {*}-specific
neurons n∗ as the evaluation metric. Formalized as follows:

R(+&∗) = 1

r

r∑
i=0

(
ni
(+|act)

ni
+

+
ni
(∗|act)

ni
∗

) (4)

where ni
(+|act) refers to activated {+}-specific neurons, ni

+ refers to all {+}-specific neurons.

Results. Table 4 presents the activation rates of various arithmetic expressions. The results show
that, on average, 89.53% of the capability-specific neurons are activated when the model processes
multi-operation expressions. The activation rates for 4-OP and 5-OP are similar, indicating that the
presence of two identical operators in an expression does not significantly increase the activation
rate of the corresponding capability-specific neurons. Figure 2 further illustrates the activation
values of neurons when processing different arithmetic expressions. Counterintuitively, when an
expression contains only the “+” operator, the activation value for “-” is also significantly higher than
the average. A similar issue is observed with “*” and “/”. This contradicts our intuition, as under
normal circumstances, when an arithmetic expression does not contain “-”, the activation value for

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Forward LLaMA-2-7B GPT-J-6B
2-OP 3-OP 4-OP 5-OP Avg.(↑) 2-OP 3-OP 4-OP 5-OP Avg. (↑)

DG 94.37 89.67 87.43 86.66 89.53 90.63 87.64 84.13 83.22 86.41
MQ 91.22 86.42 82.67 82.64 85.73 89.76 86.42 82.37 82.66 85.30
TF 90.37 87.45 83.64 83.37 86.21 89.73 87.64 82.66 82.47 85.63
CH 89.67 85.43 81.09 80.43 84.16 90.13 86.57 82.93 82.86 85.62
EN 90.17 86.59 82.19 81.93 85.22 89.30 85.71 81.05 80.54 84.15

Reverse LLaMA-3-8B LLaMA-3-13B
2-OP 3-OP 4-OP 5-OP Avg.(↓) 2-OP 3-OP 4-OP 5-OP Avg. (↓)

Original 60.25 56.47 54.29 54.17 56.29 66.54 63.41 60.37 59.29 62.40
Deactivate-Random 60.27 56.21 54.20 53.07 55.93 66.34 63.20 60.35 59.28 62.29

Ours 32.07 30.49 27.31 27.78 29.41 (↓ 26.88) 34.22 31.72 28.57 27.43 30.48 (↓ 29.92)

Table 4: The experimental results of forward reasoning and reverse verification.

“-” should be close to the average. We analyzed the underlying reason for this phenomenon, which
might be related to the fact that addition and subtraction are inverse operations. To investigate further,
we conducted ablation experiments.

Erase LLaMA-3-8B (↓)
+ - * /

1-OP (+) ↓ 23.9 ↓ 6.3 ↓ 0.1 ↓ 0.2
1-OP (-) ↓ 5.7 ↓ 23.8 ↓ 0.0 ↓ 0.1
1-OP (*) ↓ 0.0 ↓ 0.3 ↓ 18.0 ↓ 6.0
1-OP (/) ↓ 0.4 ↓ 0.1 ↓ 5.3 ↓ 17.8

Table 5: The results of the ablation experiment. 1-OP
(+) refers to the presence of + in 1-OP. The value refers
to the magnitude of the performance decline with zero
capability-specific neurons. (↓) represents the influence
between neurons that perform inverse operations on
each other.

Ablation Experiment. In Table 5, such
as in arithmetic expressions where only ad-
dition is present, the performance drops
significantly by 6.3% when subtraction is
removed compared to multiplication and di-
vision. This indicates a certain correlation
between addition and subtraction, which is
related to their nature as inverse operations,
thus verifying our analysis.

5.2 REVERSE
VERIFICATION EXPERIMENT

Experimental Setup. We sequentially
ablate the capability-specific neurons cor-
responding to operators in expressions to observe their impact on final performance. For 2-OP, we
only remove a single capability neuron, whereas for 3-OP and 4-OP, we remove multiple capability
neurons. This further verifies the authenticity of capability compositional generalization.

Results. In Table 4, for 2-OP, removing the corresponding capability-specific neuron significantly
reduces the model’s performance by 28.18%. Notably, for 3-OP and 4-OP, we intuitively observe
that as more corresponding capability-specific neurons are removed, the performance degradation
becomes more pronounced. However, when removing an equivalent number of parameters, the
performance drop is minimal.

In conclusion, we have gained an understanding of the model’s capability invocation mechanism
during forward inference and believe that the model exhibits compositional generalization of capabil-
ities.

6 EXPERIMENT: ENHANCING MULTIPLE CAPABILITIES OF LLMS

To fully leverage capability-specific neurons, we propose a fine-tuning method at the capability-
specific neuron level. The experimental results show that, in addition to operation-related capabilities,
our work is also applicable to deeper-level capabilities (such as Math, Program, and Language, etc.).

6.1 EVALUATION INDICATORS

To evaluate the fitting and generalization capabilities of neurons, we designed two evaluation metrics:
the fitting score on the test set, and the generalization score obtained by training on the current dataset
and testing on other datasets.

8
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2-OP LLaMA-2-7B/+(↑) GPT-J-6B/+(↑)
+ +&- +&* +&/ + +&- +&* +&/

Original 52.41 47.63 43.65 41.65 50.7 47.31 43.53 39.41
FT-Random 52.71 48.07 44.72 42.67 50.92 48.38 44.37 40.55

O-LoRA 67.4 49.77 47.32 44.97 64.89 59.63 46.55 42.09
FT-All 68.36 49.86 47.39 45.36 66.93 59.83 47.29 43.63
Ours 67.83 57.64(↑ 7.78 ) 58.83(↑ 11.44 ) 57.42(↑ 12.06 ) 66.42 66.81(↑ 6.98) 58.33(↑ 11.04) 53.37(↑ 9.74 )

Math LLaMA-2-7B/GSM8K(↑) GPT-J-6B/GSM8K(↑)
GSM8K Meta Math SVAMP AMC GSM8K Meta Math SVAMP AMC

Original 21.42 23.63 42.55 30.01 23.04 23.07 41.09 30.89
FT-Random 21.21 23.67 41.99 30.98 24.09 23.42 42.70 31.47

O-LoRA 35.09 24.37 40.36 31.09 37.42 26.37 45.09 30.82
FT-All 38.67 25.63 41.32 31.72 39.09 26.63 44.92 31.78
Ours 35.02 35.03(↑ 9.40) 50.20(↑ 8.88 ) 46.01(↑ 14.29 ) 40.27 33.42(↑ 6.79 ) 54.32(↑ 9.4 ) 48.06(↑ 16.28 )

Program LLaMA-2-7B/Code25K(↑) GPT-J-6B/Code25K(↑)
Code25K HumanEval MBPP APPS Code25K HumanEval MBPP APPS

Original 23.51 27.99 43.51 35.42 43.03 24.07 36.08 32.82
FT-Random 24.32 28.09 41.99 36.98 43.29 24.52 37.74 33.04

O-LoRA 34.00 36.96 47.32 41.08 48.52 29.37 43.08 38.42
FT-All 39.47 37.02 48.53 42.29 49.89 29.98 44.62 38.87
Ours 35.74 45.37(↑ 8.35 ) 58.23(↑ 9.70 ) 49.73(↑ 7.44 ) 55.73 38.92(↑ 8.94 ) 56.42(↑ 11.80 ) 49.83(↑ 10.96 )

Language LLaMA-2-7B/Emotion(↑) GPT-J-6B/Emotion(↑)
Emotion Imdb GoEmotions TweetEval Emotion Imdb GoEmotions TweetEval

Original 67.42 57.43 66.78 57.43 60.14 53.01 51.92 52.82
FT-Random 68.22 58.72 67.42 58.99 62.43 54.32 53.71 54.42

O-LoRA 76.43 57.62 68.93 58.44 73.32 56.57 51.53 51.55
FT-All 79.85 58.66 68.79 58.79 75.08 53.32 52.42 53.78
Ours 77.47 66.70(↑ 8.04 ) 77.90(↑ 9.11 ) 67.09(↑ 8.30 ) 73.06 69.43(↑ 16.11 ) 63.17(↑ 10.75 ) 65.07(↑ 11.29 )

Table 6: Experimental results on ability enhancement and generalization. “ LLaMA-2-7B/+ ” refers
to fine-tuning the “+” training set on {+}-specific neurons of LLaMA-2-7B, and evaluate the fitting
and generalization ability on “+” and three other 2-OP datasets.

6.2 EXPERIMENTAL SETUP

In this Section, we provide an introduction to datasets and baselines. The dataset includes Math,
Program, and Language capabilities, with baselines including FT Random, O-LoRA (Wang et al.,
2023), and FT-ALL (Hawthorne & Isaacs, 2018) methods. We provide more details in Appendix B.

6.3 THE RESULTS OF THE OPERATION-RELATED CAPABILITIES

Table 6 presents the results of model enhancement on the addition {+}-OP. By fine-tuning the neurons
related to the {+}-OP, we evaluate the model’s performance on 1-OP(+) and on 2-OP tasks that
include {+}-OP. The results show that our method achieves a fitting capability for the {+}-OP
comparable to that of O-LoRA. For generalization to other 2-OP operations, our method outperforms
FT-ALL by 12.06%. These findings demonstrate that our method possesses superior generalization
ability and genuinely improves the model’s {+}-capability.

6.4 THE RESULTS OF DEEPER-LEVEL CAPABILITIES

Furthermore, we shift our attention to deeper-level capabilities (such as Math, Program, and Lan-
guage), which hold significant practical value. Table 6 shows that by fine-tuning only 0.05% of
the parameters, we can achieve fitting scores comparable to FT-All and O-LoRA. Meanwhile, our
generalization scores are 15.89% higher than FT-All. Compared to fine-tuning the same number of
random parameters, our performance has improved by 18.17%. The experimental results demonstrate
that we provide a cost-effective fine-tuning approach and exhibit significant generalization capabilities
on other capabilities. This Discussion E provides more insights into our research.

7 CONCLUSION

In this study, we propose a methodological research framework to understand the capability mecha-
nisms of models from a neuronal perspective. First, we identified that capability-specific neurons are
indeed present. Second, we gained an initial understanding of the internal capability invocation mech-
anisms within models. Finally, we introduced a low-cost, high-generalization fine-tuning paradigm
that leverages capability-specific neurons to enhance various model capabilities. Importantly, this
research framework promotes advancements in model interpretability studies.
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ETHICS STATEMENT

This work is the first to discover the compositional generalization phenomenon of capability neurons
and proposes a low-cost, high-generalization neuron-level fine-tuning method. All experiments are
based on publicly available datasets and open-source models, with no involvement of human subjects
or private data. This benchmark is intended for academic research on model compression rather than
for harmful applications. We have not identified significant ethical risks related to bias, privacy, or
abuse. All experiments comply with the license terms of the datasets and models used.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the benchmark construction, evaluation protocols, and experi-
mental setup. All underlying datasets are publicly available, and we followed standard preprocessing
and evaluation procedures. Additional details and complete results are reported in the appendix.
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A THE CONSTRUCTION PROCESS AND NUMBER OF SAMPLES IN THE
DATASET

Construction Process: Overall, the neuron recognition part only contains 1-OP, while the combinato-
rial generalization part includes 2,3,4,5-OP. Specifically, as shown in Table 7, we use the same prompt
framework and only change different arithmetic expressions. For example, for Direct Generation
(DG), the prompt for sample 1 is “Based on the given expression 1+3*5=?, please provide the
answer directly:”, and for sample 2, we only need to change “1+3*5=?” to “2+6/4=?”. Regarding the
arithmetic expressions, the numbers are randomly generated while ensuring an equal distribution of
+, -, *, and / operators.

The number of examples is shown as follows:

English 1-OP 2-OP 3-OP 4-OP 5-OP
DG 4000 1000 1000 1000 1000
MQ 4000 1000 1000 1000 1000
TF 4000 1000 1000 1000 1000

Table 7: The number of samples in the dataset.

The number of Chinese samples is the same as English ones, which were translated using Deepseek
V3 (Liu et al., 2024a). In 1-OP (4000 samples), there are 1000 samples each for +, -, *, and /. We
will add this explanation in the revised version and commit to making all data publicly available.

B EXPERIMENTAL SETUP

B.1 DATASET AND NEURON DETECTION

We collected datasets related to mathematics, programming, and language, and used the method
described in Section 3.1 to identify math-specific neurons, programming-specific neurons, and
language-specific neurons. The relevant datasets include:

• Math: GSM8K (Cobbe et al., 2021) contains approximately 8,000 elementary math prob-
lems with detailed solutions. Meta Math (Yu et al., 2023) focused on meta-learning for math
problems. MathQA (Luo & Pan, 2024), SVAMP (Naeem et al., 2014) and AMC (AMCs,
2013) datasets.

• Program: Code25K (Beguš, 2021) contains around 25,000 code snippets. HumanEval
(Zheng et al., 2023), MBPP (Athiwaratkun et al., 2022), CodeXGLUE (Lu et al., 2021) and
APPS (Zheng et al., 2023).

• Language: Emotion (Kosti et al., 2019) with text data labeled with various emotions. Imdb
(Tripathi et al., 2020) contains movie reviews and ratings. GoEmotions (Demszky et al.,
2020), SemEval-2019 Task 3 (Chatterjee et al., 2019) and TweetEval (Barbieri et al., 2020) .

B.2 BASELINES

The baseline methods mainly include:

• FT-Random: Fine-tuning an equal amount of random parameters.
• O-LoRA (Wang et al., 2023) : learning tasks in different (low-rank) vector subspaces.
• FT-All (Hawthorne & Isaacs, 2018): Fine-tuning the entire model using training data.

C THE COMPARATIVE EXPERIMENTAL RESULTS

We provide comparison results with existing positioning methods. The evaluation indicators include
Cohesiveness and Separability.

In Figure 8, the results show that our proposed method exhibits characteristics such as high Cohesive-
ness and low Separation, demonstrating superior performance.
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DG Cohesiveness(↑) Separability(↓)
NeFT 72.33 35.89
Ours 94.19 3.65
MQ Cohesiveness(↑) Separability(↓)

NeFT 70.59 32.68
Ours 94.26 4.82
TF Cohesiveness(↑) Separability(↓)

NeFT 73.17 33.83
Ours 94.13 4.73

Table 8: Comparison of our method and NeFT’s (Xu et al., 2025) localization results.

D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 SUPPLEMENTARY EXPERIMENTS

Enhancement LLaMA-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

Original 52.4 50.3 45.2 43.6 47.8 50.7 50.1 45.2 40.3 46.5
FT-Random 52.7 51.0 45.7 43.9 48.3 50.9 50.7 45.3 40.5 46.8
FT-w/o Cap 56.7 55.6 50.6 48.3 52.8 56.3 56.2 49.3 47.6 52.3

FT-Cap (Ours) 67.4 68.0 65.1 63.1 62.1 65.1 66.4 64.3 64.2 62.5

Erasure LLaMA-3-8B LLaMA-3-13B
+ - * / Avg. (↓) + - * / Avg. (↓)

Original 56.4 55.3 48.4 48.6 52.1 58.6 57.4 50.1 51.7 54.4
Deactivate-Random 56.3 55.0 48.4 48.5 52.0 58.5 57.3 49.8 53.1 54.6

Deactivate-Cap (Ours) 34.6 33.7 32.2 31.7 32.7 36.1 34.0 32.5 33.7 33.1

Table 9: Results of enhancement and erasure experiments. σ = 3.

Math LLaMA-3-8B/GSM8K(↑) LLaMA-3-13B/GSM8K(↑)
GSM8K Meta Math SVAMP AMC GSM8K Meta Math SVAMP AMC

Original 24.32 26.73 43.67 32.17 26.15 27.39 45.73 33.67
FT-Random 25.31 25.43 43.39 31.74 27.33 27.41 45.73 33.59

O-LoRA 38.94 27.33 44.63 35.97 41.32 29.45 47.12 34.63
FT-All 43.07 28.53 45.32 35.67 43.89 29.63 47.82 35.87
Ours 37.42 36.73(↑ 8.20 ) 57.92(↑ 12.20) 47.63(↑ 11.96) 41.23 36.47(↑ 6.84 ) 58.63(↑ 10.81) 51.76(↑ 15.89)

Table 10: Experimental results on ability enhancement and generalization. Fine-tuning the GSM8K
training set and evaluate the fitting and generalization ability on GSM8K and three other datasets.

Cohesiveness LLaMA-3-8B LLaMA-3-13B
+ - * / Avg. (↑) + - * / Avg. (↑)

DG 94.32 92.97 93.67 93.35 93.29 94.62 93.64 93.56 94.37 93.35
TF 94.33 93.27 93.64 94.02 93.36 93.49 93.67 93.29 92.51 93.78
MQ 95.42 93.27 92.59 92.67 93.23 93.55 93.69 93.32 93.42 93.22
CH 83.61 82.91 83.74 85.42 83.27 84.24 81.54 82.46 81.55 82.79

Separability LLaMA-2-7B GPT-J-6B
+ ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓) + ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓)

DG 5.64 4.27 3.93 2.51 3.45 5.66 4.31 4.00 3.78 4.23
MQ 5.32 4.65 4.23 3.79 4.03 5.88 5.42 4.74 4.12 4.98
TF 5.63 5.15 4.70 4.02 4.61 5.60 5.18 4.52 3.74 4.73
CH 5.76 4.40 4.12 3.75 4.24 5.78 4.52 4.01 3.62 4.03
EN 6.24 5.41 4.09 3.66 4.38 5.40 4.58 4.30 3.46 4.68

Table 11: The results of cohesiveness and separability experiments. EN refers to all English datasets,
while CH refers to translating all English into Chinese datasets.
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D.2 ABLATION EXPERIMENT OF HYPERPARAMETRIC β

We provide additional ablation experiments, which are conducted on Llama-2-7B. The values in the
table are Avg. metrics, and the experimental settings are the same as those in Table 2.

Enhancement Experiment
β 1 2 3 4 5 6 7 8 9
Avg. (↑) 54.5 57.2 62.1 63.4 65.5 66.9 65.4 62.7 60.8

Erasure Experiment
β 1 2 3 4 5 6 7 8 9
Avg. (↓) 44.3 38.9 35.4 30.8 25.5 22.6 24.7 29.9 34.1

Table 12: The Ablation Experiment Results of Hyperparametric β.

Experimental results show that β = 6 achieves superior performance, which demonstrates the
rationality of our setting β = 6.

D.3 THE RESULTS OF LARGER SCALE MODELS

We conducted enhancement and erasure experiments on the LLaMA-2-30B and LLaMA-2-70B
models. The remaining experimental settings are the same as those in the paper. The results are as
follows:

LLaMA-2-30B + - * / Avg. (↑)

Original 54.7 51.6 46.3 44.8 49.3
FT-Random 53.4 52.1 46.7 45.3 49.4
FT-Cap (Ours) 68.9 69.4 67.5 66.8 68.1

LLaMA-2-70B + - * / Avg. (↑)

Original 55.4 52.6 47.3 45.1 50.1
FT-Random 54.3 52.9 47.4 46.5 50.3
FT-Cap (Ours) 69.3 69.9 68.4 67.5 68.8

Table 13: Enhancement Experiment.

LLaMA-2-30B + - * / Avg. (↓)

Original 54.7 51.6 46.3 44.8 49.3
Deactivate-Random 54.4 51.1 46.1 44.4 49.0
Deactivate-Cap (Ours) 34.5 32.6 33.8 32.7 33.4

LLaMA-2-70B + - * / Avg. (↓)

Original 55.4 52.6 47.3 45.1 50.1
Deactivate-Random 55.2 52.3 47.0 46.9 50.4
Deactivate-Cap (Ours) 35.1 33.2 34.3 33.2 33.9

Table 14: Erasure Experiment.

Experimental results show that our method still has significant performance advantages when extended
to larger-scale models.

E APPENDIX: DISCUSSION

E.1 NOT ONLY IDENTIFIED THE {+,-,*, / } CAPABILITY-SPECIFIC NEURONS

One of the core contributions of our work is to demonstrate that capability neurons have combinatorial
generalization. We first demonstrated this intriguing phenomenon using four operators. In addition to
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identifying capability-specific neurons for four operators, we identified capability-specific neurons
for mathematics, language, and programming in Section 3.4 and Experiment 6.

However, as we mentioned, the existing datasets do not have as good capability differentiation as
the four operators we constructed when identifying capability-specific neurons for mathematics,
language, and programming. For example, the meta math dataset, which contains both mathematical
and language capabilities, fine-tuning some neurons would disrupt other abilities of the model (Huang
et al., 2025b), which is the biggest challenge faced by previous methods for practical application.

Fortunately, by leveraging the phenomenon of combinatorial generalization of capability neurons
we discovered, and fine-tuning the capability neurons we located, we not only achieved significant
performance improvements but also good generalization (Table 6). The discovery of the combinatorial
generalization phenomenon will broadly aid future neuron fine-tuning tasks.

This explains the confusion in previous work: Adjusting the neurons of a certain knowledge or
task would lead to a decrease in performance in other knowledge or tasks and poor generalization.
This is because their premise (Leng & Xiong, 2025; Meng et al., 2022b) (that knowledge or tasks can
be parameter localized) is incorrect.

E.2 REGARDING OTHER WORKS EXPLORING NEURON-RELATED CAPABILITIES AND
COMPOSITIONAL GENERALIZATION

Firstly, aggregation and separation are used as accuracy indicators for neuron localization. Based on
cluster analysis, we are the first to propose these indicators for cross-comparing different localization
methods. The results show that it is unreasonable to utilize knowledge or tasks as localization
objects, proving that the previous assumptions of parameter localization have serious flaws. We
have experimentally proven that it is accurate to utilize abilities as localization objects. Methods
(Meng et al., 2022a; Leng & Xiong, 2025) that utilize knowledge or tasks as neuron localization
objects cannot predict the experimental conclusions in our work, and these methods has not explicitly
discovered the phenomenon of combinatorial generalization.

Moreover, the main contribution of our work is the first discovery that capability-specific neurons
have the phenomenon of combinatorial generalization. Specifically, using four operators (=, -, *, /),
we determined the capability call mechanism within the model. When different capability-specific
neurons are activated in combination, complex tasks (such as 3-OP) can be accurately solved. When
capability-specific neurons are enhanced, the model can generalize well across datasets and tasks
(Table 6). This explains the confusion in previous work: enhancing neurons for a specific knowledge
or task leads to a decline in the performance of other knowledge or tasks and poor generalization.
This is because their preliminary assumption (knowledge or tasks can be parameter localized) is
wrong.

Finally, we discovered the phenomenon of combinatorial generalization using four operators, but the
conclusion is not limited to mathematical capability. We identified math, language, and programming
capability-specific neurons in Section 3.4 and Experiment 6. However, as we mentioned, when
identifying math, language, and programming capability-specific neurons, existing datasets do
not have good capability differentiation like our constructed four operators. For example, the
meta math dataset, which contains both mathematical and language capabilities, fine-tuning some
neurons will disrupt other capabilities of the model (Huang et al., 2025a), which is the biggest
challenge faced by previous methods in practical implementation. Fortunately, by utilizing the
phenomenon of combinatorial generalization of capability neurons we discovered, and fine-tuning the
capability neurons we located, not only is there a significant performance improvement, but also good
generalization (Table 6). The discovery of the combinatorial generalization phenomenon will broadly
assist future neuron fine-tuning tasks. This finding has high novelty and practicality, which was not
proposed in previous work, and our experimental conclusions could not be accurately predicted.

E.3 DISTINGUISHING BETWEEN “CAPABILITY” AND “TASK”

First, from a formal perspective, a task merely refers to having the model complete a specific piece of
work, such as a question-answering or named entity recognition task. In this process, the model will
utilize various abilities, such as language and reasoning. However, ability is an inherent attribute of
the model itself; it is not limited to the form of a task and exists across tasks. The experimental results
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in Table 6 show that enhancing the model’s abilities can help improve its performance on current
tasks and even unseen tasks, exhibiting significant generalization, which task neurons cannot achieve.

From the perspective of localization, the localization of task neurons relies on specific task datasets,
such as question-answering datasets (MQA, ARC). In contrast, the localization of ability neurons
depends on datasets that reflect specific abilities, such as mathematical ability datasets (GSM8K,
Meta Math). Ability is the product of aggregated localization from multiple related datasets, which
makes it more reasonable and accurate. This is verified by the experiments in Table 4 and Table 6.

F LIMITATIONS

Due to limitations in computing resources, we did not conduct relevant experiments on larger language
models. Due to the novelty of our method, existing methods do not have the same experimental setup
and lack comparisons with more datasets and localization methods.
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