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Abstract

Modeling population dynamics is a fundamental problem with broad scientific ap-
plications. Motivated by real-world applications including biosystems with diverse
populations, we consider a class of population dynamics modeling with two techni-
cal challenges: (i) dynamics to learn for individual particles are heterogeneous and
(ii) available data to learn from are not time-series (i.e, each individual’s state tra-
jectory over time) but cross-sectional (i.e, the whole population’s aggregated states
without individuals matched over time). To address the challenges, we introduce a
novel computational framework dubbed correlational Lagrangian Schrödinger
bridge (CLSB) that builds on optimal transport to “bridge" cross-sectional data
distributions. In contrast to prior methods regularizing all individuals’ transport
“costs” and then applying them to the population homogeneously, CLSB directly
regularizes population cost allowing for population heterogeneity and potentially
improving model generalizability. Specifically our contributions include (1) a
novel population perspective of the transport cost and a new class of population
regularizers capturing the temporal variations in multivariate relations, with the
tractable formulation derived, (2) three domain-informed instantiations of popu-
lation regularizers on covariance, and (3) integration of population regularizers
into data-driven generative models as constrained optimization and an approximate
numerical solution, with further extension to conditional generative models. Em-
pirically, we demonstrate the superiority of CLSB in single-cell sequencing data
analyses (including cell differentiation and drug-conditioned cell responses) and
opinion depolarization.

1 Introduction

Population dynamics sheds insight on the temporal evolution of systems, such as cytodynamics
[1], fluid mechanics [2] and single-cell omics [3], yet their direct observation is often restricted.
Motivated by such real-world systems, this paper targets generative population-dynamics models
for heterogeneous populations whose states are not available to track individual trajectories (time-
series data) but only observed at the population level at times (cross-sectional data as referred to in
[4, 5]). In the cross-sectional setting, states of a population are measured at each timestamp without
individual match or even population match across timestamps. In other words, the cross-sectional
data are sampled independently at various timestamps rather than jointly across timestamps. One
such example is single-cell omics that study cell populations behaviours with unprecedented data
[6, 7]: As each measurement at any timestamp is made with cells fixed and stained or chemically
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Figure 1: (Left) Overview of the proposed approach and (right) computational simulation of the expressions
of gene ABCA3 (x-axis) and A1BG (y-axis) during the embryonic stem cell development under different
regularizations. Notably, our proposed population-level regularization facilitates a more accurate modeling of
distributions, with quantitative evidence detailed in Sec. 4 and more visualization in Appdx. J.

destroyed, measurements across time or condition can only be observed from different samples of the
cell population but not individual trajectories of the same set of cells (e.g., developmental/immun
omics [8, 9]).

Lacking individual trajectory data for direct supervision, current machine learning methods attempt
to “bridge” among cross-sectional distributions under certain principles, such as optimal transport
[10, 11]. To characterize the evolutionary nature of the system, besides matching the cross-sectional
distributions, these methods also regularize certain transport costs, which are typically determined
by the domain knowledge of the system. These costs are associated with certain physical quantities
on individual particle’s states, such as the restraint on particle motions [12, 13], or the alignment
to empirical densities or velocities [4, 5]. However, some physical quantities are only defined in
the population level. For example of gene co-expressions: Gene expression covariance is only
among a population of cells, while each individual cell has different/heterogeneous gene expressions.
Uniformly restraining the states of individuals is thus oblivious to such knowledge.

To fill such a gap, we hypothesize that principled regularizers, if directly and appropriately formulated
for the states of the population (as opposed to the states of individuals), can lead to more accurate
modeling of dynamics for heterogeneous systems. The rationale of the hypothesis is directly related
to the needs: As the ensemble statistics of individual states, population states (i) respect the diversity
(heterogeneity) of individual states, and importantly, (ii) can accommodate domain priors previously
not utilized at the population level, , e.g., the co-expression relations among genes of cellular systems,
derived from bulk sequencing techniques [14, 15]. A nutshell overview of individual v.s. population
restraint can be found in Fig. 1 (left).

Contributions. We propose a novel learning framework dubbed correlational Lagrangian
Schrödinger bridge (CLSB) to model the dynamics of heterogeneous systems from cross-sectional
data using principled regularization at the population level (see Fig. 1 for an overview). To the best
of our knowledge, CLSB is the first framework to incorporate population-level domain prior into
diffusion Schrödinger bridge for generative dynamics, with substantial benefits demonstrated for
heterogeneous systems including biosystems. Specifically we make the following contributions.

(1) A novel perspective of the principled regularizer for transport cost with tractable formulations.
How to formulate the principled regularizer at the population level? Motivated by the principle
of least action [12, 13], we propose to conserve certain population states when bridging across
cross-sectional data, where the extent of conservation is measured by the temporal variations in
certain statistical characteristics. Accordingly, we introduce a new category of population regularizers
termed correlational Lagrangian, which is designed to capture the extent of temporal changes in
multivariate relations expressed as moments [16, 17] (Sec. 3.1). As the novel population regularizer
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poses a challenge of intractability that it cannot be computed numerically, we derive a computationally
tractable formulation by applying the Fokker-Planck equation [18] with mild assumptions (Sec. 3.2).

(2) Effective domain-informed instantiations of population regularization. How to instantiate pop-
ulation regularizers with domain-informed priors? The generic formulation of the correlational
Lagrangian is highly versatile, that is able to characterize arbitrary multivariate relations in arbitrary
orders. Inspired by the concept of co-expression stability in genetics that the co-expression relations
among genes should be robust to environments [19, 20], we propose to enforce temporal conservation
on the states of covariance, focusing on the 1st- and 2nd-order variations of bivariate statistics,
termed covariance kinetics (Sec. 3.3.1). We also leverage the existing evidence of co-expression by
constructing covariance potential, which enforces alignment between the modeled covariance and
the observed interactions from literature (Sec. 3.3.2).

(3) Practical numerical solution to model training. How to integrate population regularizers with data-
driven generative modeling of dynamics? We formulate a constrained optimization problem referred
to as CLSB, which is designed to minimize correlational Lagrangian subject to the constraints imposed
by cross-sectional observations, optimizing on the parametrized dynamics using neural stochastic
differential equations (SDEs) [21, 22]. To solve CLSB, we propose a numerical approximation via
unconstrained optimization (Sec. 3.4).

Furthermore, we extend the CLSB framework into conditional dynamics generation, by re-
engineering neural SDEs for taking the additional conditions as inputs. Empirically, we validate that
CLSB outperforms state-of-the-art competitors in the experiments of (unconditional) developmental
simulation and (conditional) drug-response prediction in cellular systems (Sec. 4). Population
regularizers also showed benefits in opinion depolarization (Appdx. J).

2 Preliminaries

Table 1: Notation settings.

Notations Descriptions
Upright letters (x) Random variables

Italicized letters (x) Their realizations

Lowercase boldfaced (x) Vectors
Uppercase boldfaced (X) Matrices

Lowercase non-boldfaced (x) Scalars

Superscripts with brackets (x(i)) For multiple realizations
Subscripts with square brackets (x[i]) For indexed elements

∇ Divergence operator
• Inner product

Data generation from dynamics.
The main notation used in the paper is
described in Tab. 1. Let’s assume that
data are generated from a stochastic
process (xt)t∈[0,1] following the dis-
tribution (pt)t∈[0,1] and obeying the
dynamics below:

dxt = f t(xt)dt+Gt(xt)dwt, (1)

where xt ∈ Rd, f t : Rd → Rd is the
drift function, (wt)t∈[0,1] is a Wiener
process in Rdwie , and Gt : Rd →
Rd×dwie is the diffusion function. Con-
sequently, the evolution of marginal
distribution pt satisfies the Fokker–Planck equation [18] as:

∂

∂t
pt(x) = −∇ • (pt(x)f t(x)) +

1

2
(∇∇⊤) •

(
pt(x)Gt(x)G

⊤
t (x)

)
. (2)

Generative modeling via Schrödinger bridge. As stated in Eq. (2), the distribution (pt)t∈[0,1] is
characterized by the drift and diffusion terms in Eq. (1). Thus, by parametrizing f t(·) and Gt(·)
with neural networks vt(·; θ) and Σt(·; θ), respectively, and with the observations from the finite-
dimensional distribution as Dfdim = {x(i)

t : t ∈ {t1, ..., ts}, i ∈ {1, ..., n}, (x(i)
t1 , ...,x

(i)
ts ) ∼

pt1,...,ts} where t1 = 0, ts = 1, a line of prior works attempt to construct the generative
model (πt)t∈[0,1] (parametrized by vt(·; θ),Σt(·; θ)) via solving the collective form of the (static)
Schrödinger bridge problem as [23, 24]:

min
θ

1

s− 1

s−1∑
i=1

KL(πti,ti+1
||p̂ti,ti+1

), (Trajectory Fitting) (3.1)

s.t. πti = p̂ti , i ∈ {1, ..., s}, (Marginal Fitting) (3.2)
(πt)t∈[0,1] is induced from vt(·; θ),Σt(·; θ), t ∈ [0, 1] via Eq. (1), (Parametrization) (3.3)
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where p̂t1,...,ts is the empirical distribution of Dfdim. Conceptually, Optimization in (3) requires the
parametrized (πt)t∈[0,1] to align with the reference joint distribution p̂ti,ti+1 as well as marginal p̂ti
of the data.

Lagrangian Schrödinger bridge for cross-sectional data. Trajectory observations Dfdim from the
finite-dimensional distribution are not always available. In practice, data might be only observed
from the marginal distributions Dmarg = {x(i)

t : t ∈ {t1, ..., ts}, i ∈ {1, ..., n},x(i)
t ∼ pt} where s is

the number of time stamps which can be observed. For such cross-sectional observations, Opt. (3) is
not applicable since the reference distributions p̂ti,ti+1

, i ∈ {1, ..., s− 1} in the objective (3.1) are
not available. Accordingly, existing solutions propose to solve an alternative optimization problem
called Lagrangian Schrödinger bridge (LSB), which adopts the principled regularizer of least action
instead to guide the evolution of dynamics as [5, 25]:

min
θ

1

(s− 1)d

s−1∑
i=1

d∑
j=1

∫ ti+1

ti

Lind(πt, j,m)dt, s.t. Constraints (3.2) & (3.3), (4)

where Lind(πt, j,m) =

Summarization︷︸︸︷
Eπt

[

Lagrangian to measure
individual action︷ ︸︸ ︷∣∣∣ d
dt

((xt,[j])
m)

∣∣∣2 ], (Principled Regularizer
for Individuals)

where p̂t1,...,ts is overwrote as the empirical distribution ofDmarg. It is typical to set m = 1 and approx-
imate the Lagrangian with expectation as | ddtxt,[j]|

2 ≈ |vt,[j](xt; θ)|2 +Σ⊤
t,[j,:](xt; θ)Σt,[j,:](xt; θ)

to restrain individual motions [26, 4]. More related works are detailed in Appdx. C.

3 Methods

We first introduce a novel regularizer from a fresh perspective of population state conservation (Sec.
3.1) and then address the intractability issue of regularizers resulting from the implicit distribution
parametrization in diffusion models, by using the Fokker-Planck equation (Sec. 3.2). For practical
implementation, we provide three biology-inspired instantiations of covariance regularizers (Sec.
3.3.1) and an approximate numerical solution to unconstrained optimization of the framework, while
the exact solution of constrained, non-convex optimization is daunting (Sec. 3.4).

3.1 The Principle of Least Population Action

The Lagrangian Schrödinger bridge (LSB) problem (4) enforces the least actions for individual
particles during the evolution, i.e., the conservation of individual states. Two assumptions could be
violated in real-world applications such as single-cell omics. First, time-series data for individuals
may not be available, e.g., measuring trajectories of individual cells is still technically challenging.
Second, particles could be heterogeneous in nature [6, 7], while the simple regularizer Lind(·) is
formulated for individual states (via action measurement | ddt (·)|

2) and then applied homogeneously
to all particles (via summarization Eπt

[·]), which violates the nature of population heterogeneity.

To address the two challenges above, we propose to shift the focus of regularizers to population-level
and reorient the emphasis of conservation strategies to population states. Specifically, we formulate
an optimization problem with population regularizer Lpop(·), by interchanging the order of action
measurement | ddt (·)|

2 and summarization Eπt [·] in Lind(·) as follows:

min
θ

1

(s− 1)d

s−1∑
i=1

d∑
j=1

∫ ti+1

ti

Lpop(πt, j,m)dt, s.t. Constraints (3.2) & (3.3), (5)

where Lpop(πt, j,m) =
∣∣∣ d
dt

Population state︷ ︸︸ ︷
Eπt

[(xt,[j])
m]

∣∣∣2︸ ︷︷ ︸
Action measurement

, (Principled Regularizer for Population)

where it is assumed
∫
|x[j]|mπt(x)dx < ∞, j ∈ {1, ..., d} [27] for the interchangeability. The

proposed population-level regularizer Lpop(·) essentially captures the temporal variations in certain
population characteristics, contrasting with the focus on individual-state dynamics in Lind(·). In
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this context, the population state is quantified by the mth-order moment of each variable j, the
determinacy of which is studied in the Hamburger moment problem [28, 29]. Thus, Opt. (5) aims to
find the evolution (πt)t∈[ti,ti+1] between terminal distributions πti = p̂ti and πti+1 = p̂ti+1 such that
the characteristics of distributions evolve smoothly.

Moving beyond Opt. (5) we will present a conceptually more complete and computationally tractable
formulation for population regularizers in the next subsections.

3.2 Correlational Lagrangian Schrödinger Bridge

Conservation of correlation during evolution. The initial extension from individual to population
regularization in Opt. (5) falls short in capturing the relations among data variables, which accounts
for a rich family of observed behaviors especially in biological systems [19, 20]. Thus, we propose
to extend the objective formulation in Opt. (5) by involving multivariate relations, resulting in the
optimization problem referred as correlational Lagrangian Schrödinger bridge (CLSB) as:

min
θ

1

(s− 1)|M|

s−1∑
i=1

∑
M̃∈M

∫ ti+1

ti

Lcorr(πt,M̃, k)dt, s.t. Constraints (3.2) & (3.3) (6)

where Lcorr(πt,M̃, k) =
∣∣∣ dk
dtk

Correlational characteristic︷ ︸︸ ︷
Eπt

[
∏

(j,m)∈M̃

(xt,[j])
m]

∣∣∣2
︸ ︷︷ ︸

Correlational Lagrangian

,
(Population Regularizer

on Multivariate Correlation)

where k ∈ Z>, M = {...,M̃i, ...} that each M̃i = {(j, m̄i(j)) : j ∈ M̄i ⊂ {1, ..., d}, m̄i :
{1, ..., d} → Z>} is a multiset consisting of variable indices and their corresponding occurrences,
identifying the targeted multivariate relation which is quantified by the mixed moment [16, 17]. We
refer to Lcorr(·) as correlational Lagrangian capturing temporal variations in multivariate correlations.

The CLSB formulation (6) is the more general framework, capable of imposing domain priors for
arbitrary multivariate relations (specified by M̃ in Lcorr(·)) in arbitrary order (specified by k). For
instance, by setting k = 1 andM = {M̃j : M̃j = {(j,m)}, j = 1, ..., d}, CLSB degenerates to
Opt. (5) that involves null multivariate correlations.

Analytical expression of correlational Lagrangian. The current formulation of correlational
Lagrangian Lcorr(·) in Opt. (6) is not yet in a tractable form for practical implementation due to
the existence of the k-order time derivative. Our following proposition provides the derivation of
tractable analytical expressions under mild assumptions.

Proposition 1. For k = 1, correlational Lagrangian in Opt. (6) admits the analytical expression as:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
(∏

(j,m)∈M̃
(xt,[j])

m
) Variation resulting

from drift vt(·;θ)︷ ︸︸ ︷
• vt(xt; θ) ]

+
1

2
Eπt

[(∇∇⊤
(∏

(j,m)∈M̃
(xt,[j])

m
)
)

Variation resulting
from diffusion Σt(·;θ)︷ ︸︸ ︷

•(Σt(xt; θ)Σ
⊤
t (xt; θ))]

∣∣∣2, (7)

if for the set of functions H = {h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x),
h(x)Dt(x)∇πt(x)} (θ is omitted for simplicity) that h(x) =

∏
(j,m)∈M̃(xt,[j])

m, Dt(x) =

Σt(x)Σ
⊤
t (x), it satisfies: (i) Continuity: h′ ∈ H is continuously differentiable w.r.t. x; (ii) Light tail:

The probability density function πt(x) is characterized by tails that are sufficiently light, such that∮
S∞

h′(x) • da = 0 for h′ ∈ H, where a is the outward pointing unit normal on the S∞ boundary.

For k ≥ 2, correlational Lagrangian Lcorr(πt,M̃, k) in Opt. (6) admits a more complex analytical
expression, which can be derived iteratively in a similar way if certain conditions of continuity and
light tails are met. The detailed formulation is postponed to Appdx. A to avoid distraction.

Proof. See Appdx. A.

The key step in the derivation involves applying the Fokker–Planck equation (2) to establish a connec-
tion between the temporal variation d

dtEπt
[·] and the (parametrized) force field vt(·; θ),Σt(·; θ). Both
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conditions are moderate and can be easily ensured by appropriately constructing the architectures of
the drift and diffusion functions [30, 31]. Thereby, Propos. 1 enables the tractable computation of
correlational Lagrangian for practical implementation.

3.3 Domain-Informed Instantiations of Correlational Lagrangian in Biological Systems

3.3.1 Covariance Kinetics

Conserving bivariate relations for co-expression stability. Existing literature in genetics indicates
the phenomenon of co-expression stability, i.e., the co-expression among genes could be robust to
environments [19, 20]. We numerically validate such phenomena in our dataset (see Appdx. D
for details). We are therefore inspired to incorporate such prior into the population regularizer, by
focusing correlational Lagrangian specifically on bivariate relations, thereby restraining temporal
variations of the states of covariance. We term it as covariance kinetics to demonstrate the idea of
restricting the “motion" of the population [32, 33], with two specific instantiations as follows.

Instantiation 1: Restraining the “velocity" of covariance. The first instantiation to enforce
models simulate stably co-expressed genes in cells, is through restraining the 1st-order moment of
the covariance, such that it (representing co-expression relations) changes slowly during temporal
evolution. In formulation, denotingMcov =

{
{(i, 1), (j, 1)} : i ∈ {1, ..., d}, j ∈ {1, ..., d}

}
for all

the pairs among d variables, the objective in Opt. (6) is analytically instantiated as:∑
M̃∈Mcov

Lcorr(πt,M̃, 1) =
∥∥∥ d

dt
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥Eπt [xtvt(xt)

⊤ + vt(xt)x
⊤
t +

1

2
Σt(xt)Σ

⊤
t (xt)]

∥∥∥2
F
. (8)

Instantiation 2: Restraining the “acceleration" of covariance. The second instantiation is
more relaxed, allowing greater temporal variation in co-expression, which however, should not be
“irregular". We achieves this by restraining the second-order moment of the covariance, ensuring that
it evolves "regularly" during dynamics, with the objective formulated as:∑

M̃∈Mcov
Lcorr(πt,M̃, 2) =

∥∥∥ d2

dt2
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]
+ Eπt

[
xt(∇vt(xt)vt(xt))

⊤ + (∇vt(xt)vt(xt))x
⊤
t + 2vt(xt)vt(xt)

⊤ +
1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]
+ Eπt

[
∇vt(xt)Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤vt(xt) +

1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤

+
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t +

1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4
]∥∥∥2

F
,

(9)

where we adopt the Einstein notation C = AijB
jk [34] for tensor operations that C [i,k] =∑

j A[i,j]B[j,k]. The matrix-form derivations of instantations (8) & (9) are based on Propos. 1, and
we provide a more detailed explanation of the derivation of complicated Eq. (9) in Appdx. B.

Standardized covariance kinetics within a projected space. The original covariance may be
sensitive to dataset-dependent parameters, such as batch effects in sequencing techniques [35, 36],
which can limit its generalizability. We have further re-write the regularization (8) & (9) to account
for the standardized covariance, which is more robust and better encompasses co-expression priors
across different datasets. The re-written objective for the velocity term (8) is formulated as:∑

M̃∈Mcov
Lcorr-std(πt,M̃, 1) =

∥∥∥ d

dt

(
Eπt

[xtx
⊤
t ]− Eπt

[xt]E⊤
πt
[xt]

)∥∥∥2
F

=
∥∥∥Eπt

[xtvt(xt)
⊤ + vt(xt)x

⊤
t +

1

2
Σt(xt)Σ

⊤
t (xt)]− Eπt

[xt]E⊤
πt
[vt(xt)]− Eπt

[vt(xt)]E⊤
πt
[xt]

∥∥∥2
F
.

(10)

Similarly for the acceleration term (9), the standardized formulation is detailed in Appdx. E.
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Furthermore, the regularizer constructed with domain-specific priors operates in a space that may
not correspond to that of the data (where the diffusion generative model is built in). For instance,
high-dimensional single-cell sequencing data often undergoes principal component analysis [37]
prior to further processing. In this scenario, when gene expressions are linearly mapped from the
principal components as xgene = Wx+ b, the projected (and standardized) k-th order covariance
kinetics are then represented in matrix form as:∑

M̃∈Mcov
Lcorr-std-linproj(πt,M̃, k) =

∥∥∥W dk

dtk

(
Eπt

[xtx
⊤
t ]− Eπt

[xt]E⊤
πt
[xt]

)
W⊤

∥∥∥2
F
. (11)

The derivation of the more complicated, non-linear projected space is detailed in Appdx. G.

3.3.2 Covariance Potential

Instantiation 3: Aligning covariance with observed bivariate interactions (“prior position").
There exists abundant observed evidence of co-expression relations among genes, sourced from
numerous experiments which represent these interactions in a statistical context [38, 39]. We hope
to leverage such prior knowledge in the generative modeling of cells. Specifically, denoting the
observed co-expression as Y ∈ [0, 1]d×d where Y [i,j] is the confidence score of genes i and j being
co-expressing, we construct the principled regularizer termed covariance potential, which borrows
the idea of enforcing alignment with the “correct position" of the population states as:∑

M̃∈Mcov
Lcorr(πt,M̃, 0) = U

(
Eπt [xtx

⊤
t ],Y

)
, (12)

where U(·) is the designated potential function detailed in Appdx. F, and the notation Lcorr(·) is
reused here, as it was previously undefined for k = 0.

3.4 Numerical Solutions to CLSB

Approximation via unconstrained optimization. The exact solution to CLSB (6) remains chal-
lenging despite that we provide a tractable objective in Sec. 3.3, due to its non-convex objective
and constraints w.r.t. network parameters. Thus, we propose a practical, approximate solution via
grappling with an unconstrained optimization problem as:

min
θ

1

(s− 1)

s−1∑
i=1

(
Ldist(πti+1, p̂ti+1) + αind

1

d

d∑
j=1

∫ ti+1

ti

Lind(πt, j, 1)dt

+

2∑
k=0

αcorr,k
1

|Mcov|
∑

M̃∈Mcov

∫ ti+1

ti

Lcorr(πt,M̃, k)dt
)
, (13)

where Ldist(·) is the distribution discrepancy measure, and αind, αcorr,0, αcorr,1, αcorr,2 are the weights
for different regularization objectives, which are treated as hyperparameters with tuning details
described in Appdx. J. Here we also adopt the individual regularizer Lind(·) and adjust its weight αind
for a more general framework encompassing Opt. (4) & (6), which is solved via gradient descent.
The parametrization of neural SDEs (vt(·; θ) and Σt(·; θ)) is described in Appdx. H.

Extension to conditional generative modeling. We further extend CLSB into the conditional
generation scenario, where we are tasked to model (pt(·|c))t∈[0,1]. The application encompasses
modeling cellular systems in response to perturbations c such as drug treatments or genetic mutations
[40, 41]. Such extension can be achieved by re-engineering the neural SDEs vt(·; θ),Σt(·; θ) to
input additional featurized conditions, which is re-written as vt(·, c; θ),Σt(·, c; θ), without altering
the rest of the framework. We detail the neural network parametrization in Appdx. H.

4 Experiments

We evaluate the proposed CLSB (13) in two real-world applications of modeling cellular systems in
the unconditional (Sec. 4.1) and conditional generation scenarios (Sec. I).

4.1 Unconditional Generation: Developmental Modeling of Embryonic Stem Cells
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Figure 2: Visualization of the simulated gene expressions and
trajectories with different methods. The trajectories are plotted for
the gene pairs with the highest correlation (ABCA3 and A1BG),
and along the first two PCs.

Data. Deciphering the developmen-
tal behavior of cells is the quintessen-
tial goal in the field of stem cell
research [42, 43]. The experiment
is conducted on scRNA-seq data of
embryonic stem cells [44], which is
collected during the developmental
stages over a period of 27 days, split
into five phases: t0 (days 0-3), t1
(days 6-9), t2 (days 12-15), t3 (days
18-21), and t4 (days 24-27). Follow-
ing the setting in [4, 5], gene expres-
sions are (linearly) projected into a
lower-dimensional space through prin-
cipal component analysis (PCA) [37]
prior to conducting the experiments,
which also can be re-projected to the
original space for evaluation. We also
conduct experiments on an additional
cell-differentiation dataset [45] in Ap-
pdx. J to demonstrate the effective-
ness of our method.

Evaluation and compared methods. To evaluate the (biological) validity of the proposed population
regularizers, we conduct model training using data from the terminal stages (t0, t4) without access
to the intermediate (t1, t2, t3), which are held out for evaluation. Following the setting in [4, 5], the
model is evaluated in the scenarios where the trajectories xti are generated based on p̂t0 (referred
as “all-step" prediction) or based on p̂ti−1

for πti (“one-step"), and the performance is quantified for
the intermediate stages, based on the discrepancy in the Wasserstein distance [10, 11] between the
predicted and the ground truth principal components, using the GeomLoss library [46].

The compared baselines include random expressions sampled from a non-informative uniform
distribution and simple population average across time stamps, ODE-based approaches OT-Flow [47]
and TrajectoryNet [4], and SDE-based approaches DMSB [48], NeuralSDE [21, 22] and NLSB [5].
The proposed CLSB falls under the category of SDE-based approaches. We adopt neural SDEs for
parametrizing dynamics, with the regularization weights tuned via grid search.

Results (i). Population regularization leads to more accurate modeling of cell developmental
dynamics. The results of developmental modeling of embryonic stem cells are shown in Tab. 2.
Compared with the competitors, CLSB with population regularizers alone and without individual
regularizers (αind = 0) attains the lowest average rank, predicting developmental gene expressions
closest in Wasserstein distance to the ground truth. The improvement is particularly evident in the most
challenging stage of t2, which is far from both end points observed at t0 and t4. This demonstrates the
effectiveness of the proposed population regularizers in the heterogeneous systems of cell clusters. We
also observe that in comparison to ODE-based methods, SDE-based ones perform better, echoing the
inherently stochastic and diffusive nature of cell expression priors [5]. The predicted gene-expression
trajectories are visualized and compared in Fig. 2 for two genes with the highest correlation (top
two rows) and for all genes along the first two principal components (bottom two rows), which also
qualitatively attests to the effectiveness of population regularizers. Visualizations for more gene pairs
and more principal components are provided in Appdx. J. Comparison with more SOTAs [49, 50] is
also shown in Tab. 11, and experiments on dataset CITE-Seq [51] at larger scale are shown in Tab.
12.

Beyond cellular systems, we also conduct more experiments on a well-controlled synthetic dataset
with results shown in Tab. 14, and of other applications of opinion depolarization [24] to validate our
method with results shown in Tab. 13.

(ii) Different population regularization strategies serve varied functions. We further carry
out ablation studies to examine the contributions of the three population regularizers to overall
performance, as detailed in Appdx. J. Interestingly, we find that they serve different functions.
Specifically, restraining the “acceleration" of covariance (k = 2, instantiation 2 (9)) provides more
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Table 2: Evaluation in the unconditional generation scenario of modeling embryonic stem-cell development.
Reported are Wasserstein distances, where lower values are preferable, with means ± standard deviations across
experiments. The best and the second-best performances in each case and across cases (‘A.R.’ stands for average
ranking) are highlighted in red and salmon, respectively. Methods are evaluated in the scenarios of all-step
prediction on πti|t0 where πt0 = p̂t0 , and one-step prediction on πti|ti−1

where πti−1 = p̂ti−1 , i ∈ {1, 2, 3}.

Methods All-Step Prediction One-Step Prediction A.R.
t1 t2 (Most Challenging) t3 t1 t2 t3

Random 1.873±0.014 2.082±0.011 1.867±0.011 1.870±0.013 2.084±0.010 1.868±0.012 10.0
SimpleAvg 1.670±0.019 1.801±0.014 1.749±0.016 1.872±0.014 2.085±0.011 1.868±0.012 9.3
OT-Flow 1.921 2.421 1.542 1.921 1.151 1.438 9.0

OT-Flow+OT 1.726 2.154 1.397 1.726 1.186 1.240 7.6
TrajectoryNet 1.774 1.888 1.076 1.774 1.178 1.315 6.8

TrajectoryNet+OT 1.134 1.336 1.008 1.134 1.151 1.132 3.6
DMSB 1.593 2.591 2.058 – – – 10.3

NeuralSDE 1.507±0.014 1.743±0.031 1.586±0.038 1.504±0.013 1.384±0.016 0.962±0.014 6.1
NLSB(E) 1.128±0.007 1.432±0.022 1.132±0.034 1.130±0.007 1.099±0.010 0.839±0.012 2.6

NLSB(E+D+V) 1.499±0.005 1.945±0.006 1.619±0.016 1.498±0.005 1.418±0.009 0.966±0.016 6.8

CLSB(αind > 0) 1.099±0.019 1.419±0.028 1.132±0.038 1.098±0.018 1.117±0.009 0.826±0.010 2.5
CLSB(αind = 0) 1.074±0.009 1.244±0.016 1.255±0.022 1.095±0.009 1.106±0.014 0.842±0.012 2.1

benefit in the early stage of development (i.e. t1), and restraining the “velocity" of covariance
(k = 1, instantiation 1 (8)) does so in the later stages (i.e. t2, t3). This observation could indicate
that in nature, co-expression relations among genes undergo larger magnitude variations in early
development stages, and tend to stabilize as development progresses. The benefit of aligning with
known gene-gene interactions (k = 0, instantiation 3 (12)) is present across all stages, albeit modestly.

5 Conclusions

In this paper, we introduce a novel framework termed Correlational Lagrangian Schrödinger Bridge
(CLSB), effectively addressing the challenges posed by restricted cross-sectional samples and the
heterogeneous nature of individual particles. By shifting the focus of regularization from individual-
level to population, CLSB acknowledges and leverages the inherent heterogeneity in systems to
improve model generalizability. In developing CLSB, we address the technical challenges including
(1) a new class of population regularizers capturing with the tractable formulation, (2) domain-
informed instantiations, and (3) the integration of into data-driven generative models. Numerically,
we validate the superiority of CLSB in modeling cellular systems.

Admittedly, there are remaining gaps that need to be filled in the future. These include, but are not
limited to, the reliance on the domain-informed priors of CLSB instantiations (Sec. 3.3) and the
approximability of the numerical solution (Sec. 3.4). In broader impacts, the proposed approach
could be used to help develop new treatments, such as for cancer cells.
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[43] Wojciech Zakrzewski, Maciej Dobrzyński, Maria Szymonowicz, and Zbigniew Rybak. Stem
cells: past, present, and future. Stem cell research & therapy, 10(1):1–22, 2019.

[44] Kevin R Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S
Chen, Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, et al. Vi-
sualizing structure and transitions in high-dimensional biological data. Nature biotechnology,
37(12):1482–1492, 2019.

[45] Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando D Camargo, and Allon M Klein. Lin-
eage tracing on transcriptional landscapes links state to fate during differentiation. Science,
367(6479):eaaw3381, 2020.

[46] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and
Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2681–2690,
2019.

[47] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate
continuous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 9223–9232, 2021.

[48] Tianrong Chen, Guan-Horng Liu, Molei Tao, and Evangelos A Theodorou. Deep momentum
multi-marginal schr\" odinger bridge. arXiv preprint arXiv:2303.01751, 2023.

[49] Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schr\" odinger bridges via score and
flow matching. arXiv preprint arXiv:2307.03672, 2023.

[50] Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Kilian Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative
models with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

[51] Hani Jieun Kim, Yingxin Lin, Thomas A Geddes, Jean Yee Hwa Yang, and Pengyi Yang.
Citefuse enables multi-modal analysis of cite-seq data. Bioinformatics, 36(14):4137–4143,
2020.

[52] George Temple. Gauss’s theorem in general relativity. Proceedings of the Royal Society of
London. Series A-Mathematical and Physical Sciences, 154(882):354–363, 1936.

[53] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[54] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances
in Neural Information Processing Systems, 33:2503–2515, 2020.

[55] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pages 3154–3164. PMLR, 2020.

[56] Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas
Krause, and Charlotte Bunne. Aligned diffusion schr\" odinger bridges. arXiv preprint
arXiv:2302.11419, 2023.

[57] Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
cell perturbation responses using neural optimal transport. Nature Methods, 20(11):1759–1768,
2023.

[58] Charlotte Bunne, Andreas Krause, and Marco Cuturi. Supervised training of conditional monge
maps. Advances in Neural Information Processing Systems, 35:6859–6872, 2022.

12



[59] Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause, and Valentin De Bortoli.
Unbalanced diffusion schr\" odinger bridge. arXiv preprint arXiv:2306.09099, 2023.

[60] Ella Tamir, Martin Trapp, and Arno Solin. Transport with support: Data-conditional diffusion
bridges. arXiv preprint arXiv:2301.13636, 2023.

[61] Yuning You, Ruida Zhou, Jiwoong Park, Haotian Xu, Chao Tian, Zhangyang Wang, and
Yang Shen. Latent 3d graph diffusion. In The Twelfth International Conference on Learning
Representations, 2023.

[62] Yusuf Roohani, Kexin Huang, and Jure Leskovec. Gears: Predicting transcriptional outcomes
of novel multi-gene perturbations. BioRxiv, pages 2022–07, 2022.

[63] Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji,
Ignacio L Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al.
Predicting cellular responses to complex perturbations in high-throughput screens. Molecular
systems biology, 19(6):e11517, 2023.

[64] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[65] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[66] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[67] Yulun Wu, Robert A Barton, Zichen Wang, Vassilis N Ioannidis, Carlo De Donno, Layne C
Price, Luis F Voloch, and George Karypis. Predicting cellular responses with variational causal
inference and refined relational information. arXiv preprint arXiv:2210.00116, 2022.

[68] Nicholas HG Holford and Lewis B Sheiner. Understanding the dose-effect relationship: clinical
application of pharmacokinetic-pharmacodynamic models. Clinical pharmacokinetics, 6(6):429–
453, 1981.

[69] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[70] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–272,
2020.

[71] Jason Gaitonde, Jon Kleinberg, and Éva Tardos. Polarization in geometric opinion dynamics.
In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 499–519,
2021.

13



Appendix

A Proof for Proposition 1

Proposition 1. For revisit, correlational Lagrangian is defined as:

Lcorr(πt,M̃, k) =
∣∣∣ dk
dtk

Eπt [
∏

(j,m)∈M̃

(xt,[j])
m]

∣∣∣2.
For k = 1, correlational Lagrangian in Opt. (6) admits the analytical expression as:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
( ∏

(j,m)∈M̃

(xt,[j])
m
)
• vt(xt; θ)]

+
1

2
Eπt

[(∇∇⊤
( ∏

(j,m)∈M̃

(xt,[j])
m
)
) • (Σt(xt; θ)Σ

⊤
t (xt; θ))]

∣∣∣2,
if for the set of functions H = {h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x),
h(x)Dt(x)∇πt(x)} (θ is omitted for simplicity) that h(x) =

∏
(j,m)∈M̃(xt,[j])

m, Dt(x) =

Σt(x)Σ
⊤
t (x), it satisfies: (i) Continuity: h′ ∈ H is continuously differentiable w.r.t. x; (ii) Light tail:

The probability density function πt(x) is characterized by tails that are sufficiently light, such that∮
S∞

h′(x) • da = 0 for h′ ∈ H, where a is the outward pointing unit normal on the S∞ boundary.

For k ≥ 2, it admits the analytical expression in an iterative manner as:

Lcorr(πt,M̃, k) =
∣∣∣ ∑

S̃∈S<k−1>,

S̃=S̃′∪{Υ′
<i′,j′>}

Γ(S̃ ′ ∪Υ′
<i′+1,j′>) + Γ(S̃ ′ ∪Υ′

<i′,j′+1>)

+ Γ(S̃ ∪ ∇<0,0>) + Γ(S̃ ∪ (∇∇⊤)<0,0>)
∣∣∣2, (14)

where we denote the ordered sequence of operators S̃ = {...,Υ<i,j>, ...} that Υ ∈ {∇,∇∇⊤}, i ∈
Z>, j ∈ Z> such that:

Υ<i,j>(x) =
di

dti
Υ(

∏
(k,m)∈M̃

(x[k])
m) •

dj

dtj
γ(x), γ(x) =

{
vt(x), if Υ=∇

Σt(x)Σ
⊤
t (x), else if Υ=∇∇⊤ ,

and denote the function Γ(·) operating on the ordered sequence S̃ and ◦ as function composition such
that:

Γ(S̃) = cS̃Eπt
[◦Υ<i,j>∈S̃Υ<i,j>(xt)], cS̃ = 2−|{Υ<i,j>:Υ<i,j>∈S̃,Υ=∇∇⊤}|,

and further denote S<k> as the set of S̃ used to compute Lcorr(πt,M̃, k), e.g., S<1> =

{{∇<0,0>}, {(∇∇⊤)<0,0>}}. With the given notations, it is noticed that Lcorr(πt,M̃, 1) can be
rewritten in the form of Eq. (14) as Lcorr(πt,M̃, 1) = |Γ(∇<0,0>) + Γ((∇∇⊤)<0,0>)|2.

The conditions for if for the equality in Eq. (14) are that, for the set of functions H =
{h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x), h(x)Dt(x)∇πt(x)} that h(x) =

◦Υ<i,j>∈S̃Υ<i,j>(x), ∀S̃ ∈ S<k−1>, it satisfies: (i) Continuity. h′ ∈ H is continuously differ-
entiable w.r.t. x; (ii) Light tail. The probability density function πt(x) is characterized by tails that
are sufficiently light, such that

∮
S∞

h′(x) • da = 0 for h′ ∈ H.

Proof. Expression for k = 1. For simplicity, we omit θ in notations that vt(x; θ),Σt(x; θ) are
referred as vt(x),Σt(x), respectively. Denoting h : Rd → R as the mapping satisfying the continuity
and light tail conditions, for k = 1, we have:

d

dt
Eπt

[h(xt)]

14



(a)
=

d

dt

∫
h(x)πt(x)dx =

∫
h(x)(

d

dt
πt(x))dx

(b)
=

∫
h(x)

(
−∇ • (πt(x)vt(x)) +

1

2
∇ • ∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

=

∫ (
− h(x)

)(
∇ • (πt(x)vt(x))

)
dx+

∫ (1
2
h(x)

)(
∇ • ∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

(c)
=

Part (i)︷ ︸︸ ︷∫
∇
(
h(x)

)
•

(
πt(x)vt(x)

)
dx+

Part (ii)︷ ︸︸ ︷∫
−∇ •

(
h(x)πt(x)vt(x)

)
dx

+

Part (iii)︷ ︸︸ ︷∫
−∇

(1
2
h(x)

)
•

(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

+

Part (iv)︷ ︸︸ ︷∫
∇ •

((1
2
h(x)

)(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

))
dx,

where (a) is attained through the standard definition of integration, (b) results from the application of
the Fokker-Planck equation (2) to substitute the time derivative term with the divergence term, and
(c) is achieved by applying integration by parts on the right-hand side (RHS) of Eq. (b). Next, we
solve the four parts on RHS of Eq. (c). For part (i), we have:∫

∇
(
h(x)

)
•

(
πt(x)vt(x)

)
dx

=

∫ (
∇h(x) • vt(x)

)
πt(x)dx

= Eπt
[∇h(x) • vt(x)].

For part (ii), we have: ∫
−∇ •

(
h(x)πt(x)vt(x)

)
dx

(a)
= −

∮
S∞

(
h(x)πt(x)vt(x)

)
• da

(b)
= 0,

where (a) is accomplished through the application of Gauss’s theorem [52], that a is the outward
pointing unit normal at each point on the boundary at infinity S∞, under the satisfaction of the
continuity condition, and (b) is achieved by considering the light tail condition.

For part (iii), we have:∫
∇
(
h(x)

)
•

(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

(a)
=

∫
∇ •

(
πt(x)Σt(x)Σ

⊤
t (x)∇h(x)

)
dx−

∫ (
∇∇⊤h(x)

)
•

(
πt(x)Σt(x)Σ

⊤
t (x)

)
dx

(b)
=

∮
S∞

(
πt(x)Σt(x)Σ

⊤
t (x)∇h(x)

)
• da− Eπt [

(
∇∇⊤h(x)

)
•

(
Σt(x)Σ

⊤
t (x)

)
]

(c)
= − Eπt

[
(
∇∇⊤h(x)

)
•

(
Σt(x)Σ

⊤
t (x)

)
],

where (a) is achieved by applying integration by parts, (b) is accomplished through the application of
Gauss’s theorem under the satisfaction of the continuity condition, and (c) is achieved by considering
the light tail condition.

For part (iv), we have:∫
∇ •

((
h(x)

)(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

))
dx
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(a)
=

∫
∇ •

((
h(x)

)(
∇ • (Σt(x)Σ

⊤
t (x))

)
πt(x)

)
dx+

∫
∇ •

((
h(x)

)(
∇πt(x) • (Σt(x)Σ

⊤
t (x))

))
dx

(b)
=

∮
S∞

((
h(x)

)(
∇ • (Σt(x)Σ

⊤
t (x))

)
πt(x)

)
• da+

∮
S∞

((
h(x)

)(
∇πt(x) • (Σt(x)Σ

⊤
t (x))

))
• da

(c)
= 0,

where (a) is achieved by applying the product rule, (b) is accomplished through the application of
Gauss’s theorem under the satisfaction of the continuity condition, and (c) is achieved by considering
the light tail condition.

By combining them and setting h(x) =
∏

(j,m)∈M̃(x[j])
m, we eventually have:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
( ∏

(j,m)∈M̃

(xt,[j])
m
)
• vt(xt)]

+
1

2
Eπt

[(∇∇⊤
( ∏

(j,m)∈M̃

(xt,[j])
m
)
) • (Σt(xt)Σ

⊤
t (xt))]

∣∣∣2.
Expression for k ≥ 2. We present a more general form of correlational Lagrangian, by denoting the
ordered sequence of operators S̃ = {...,Υ<i,j>, ...} that Υ ∈ {∇,∇∇⊤}, i ∈ Z>, j ∈ Z> such that

Υ<i,j>(x) =
di

dti
Υ(

∏
(k,m)∈M̃

(x[k])
m) •

dj

dtj
γ(x), γ(x) =

{
vt(x), if Υ=∇

Σt(x)Σ
⊤
t (x), else if Υ=∇∇⊤ ,

and denote the function Γ(·) operating on the ordered sequence S̃ such that

Γ(S̃) = cS̃Eπt
[◦Υ<i,j>∈S̃Υ<i,j>(xt)], cS̃ = 2−|{Υ<i,j>:Υ<i,j>∈S̃,Υ=∇∇⊤}|,

and then we can rewrite correlational Lagrangian for the k = 1 case:

Lcorr(πt,M̃, 1) =
∣∣∣Γ({∇<0,0>}) + Γ({(∇∇⊤)<0,0>})

∣∣∣2.
We further denote S<k> as the set of S̃ used to compute Lcorr(πt,M̃, k), e.g., S<1> =
{{∇<0,0>}, {(∇∇⊤)<0,0>}} according to the above formulation. Thus, for k ≥ 2, we have:

Lcorr(πt,M̃, k) =
∣∣∣ ∑
S̃∈S<k−1>

d

dt
Γ(S̃)

∣∣∣2.
To calculate this general formulation, denoting S̃ = S̃ ′ ∪ {Υ′

<i′,j′>}, we utilize the following
equation:

d

dt
Γ(S̃) = d

dt
Γ(S̃ ′ ∪ {Υ′

<i′,j′>})

(a)
= cS̃

d

dt
Eπt [◦Υ<i,j>∈S̃Υ<i,j>(xt)]

(b)
= cS̃

d

dt

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)
πt(x)dx

(c)
= cS̃

∫
di

′+1

dti′+1
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)
πt(x)dx

+ cS̃

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′+1

dtj′+1
γ′(x)

)
πt(x)dx

+ cS̃

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)( d

dt
πt(x)

)
dx

(d)
= Γ(S̃ ′ ∪ {Υ′

<i′+1,j′>}) + Γ(S̃ ′ ∪ {Υ′
<i′,j′+1>}) + cS̃

∫ (
◦Υ<i,j>∈S̃ Υ<i,j>(x)

)( d

dt
πt(x)

)
dx,
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where (a, b) is established through definitions, (c) is realized by applying the product rule, and (d) is
also derived from standard definitions. Denoting h(x) = ◦Υ<i,j>∈S̃Υ<i,j>(x), we have:

cS̃

∫
h(x)(

d

dt
πt(x))dx

(a)
= cS̃Eπt

[∇h(x) • vt(xt)] +
cS̃
2
Eπt

[(∇∇⊤(h(x))) • (Σt(xt)Σ
⊤
t (xt))]

(b)
= Γ(S̃ ∪ {∇<0,0>}) + Γ(S̃ ∪ {(∇∇⊤)<0,0>}),

where (a) follows the same derivation of correlational Lagrangian for k = 1, under the satisfaction of
the continuity condition and light tail conditions, and (b) is established through definitions.

By combining them, we eventually have:

Lcorr(πt,M̃, k) =
∣∣∣ ∑

S̃∈S<k−1>,

S̃=S̃′∪{Υ′
<i′,j′>}

Γ(S̃ ′ ∪Υ′
<i′+1,j′>) + Γ(S̃ ′ ∪Υ′

<i′,j′+1>)

+ Γ(S̃ ∪ ∇<0,0>) + Γ(S̃ ∪ (∇∇⊤)<0,0>)
∣∣∣2.

B Derivation of Covariance Acceleration

The derivation of covariance acceleration (Eq. (9)) is carried out by applying Propos. 1 (Eq. (14)) as
follows:∑

M̃∈Mcov

Lcorr(πt,M̃, 2) =
∥∥∥ d2

dt2
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥

Matrix collection of Γ(S̃′∪Υ′
<i′,j′+1>

) terms in Eq. (14)︷ ︸︸ ︷
Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]
+

Γ(S̃′∪Υ′
<i′+1,j′>)︷︸︸︷
0

+

Γ(S̃∪∇<0,0>)︷ ︸︸ ︷
Eπt

[
xt(∇vt(xt)vt(xt))

⊤ + (∇vt(xt)vt(xt))x
⊤
t

+ 2vt(xt)vt(xt)
⊤ +

1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]

+

Γ(S̃∪(∇∇⊤)<0,0>)︷ ︸︸ ︷
Eπt

[
∇vt(xt)Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤vt(xt)

+
1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤ +
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t

+
1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4
]∥∥∥2

F
.

C More Related Works

Modeling population dynamics with machine learning. A significant body of research has
been dedicated to modeling population dynamics using data-driven approaches. This includes the
development of continuous normalizing flows [53, 54], which model the dynamics through ordinary
differential equations (ODEs). Furthermore, an advancement of neural ODEs, namely neural SDEs,
has been introduced to capture both drift and diffusion processes using neural networks [21, 22]. In
scenarios where ground truth trajectories are inaccessible, regularization strategies for flows have been
developed. These strategies emphasize enforcing constraints on the motion of individual trajectories.
Examples include the regularization of kinetic energy and its Jacobian [4, 55], as well as the inclusion
of dual terms derived from the Hamilton–Jacobi–Bellman equation [5, 47], aiming to guide the model
towards realistic dynamic behaviors.
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In a very general sense, these methods are categorized under the optimal transport framework,
characterized by varying choices of cost objectives [56, 23, 57, 58, 12, 25, 24, 59, 60, 61]. It
is crucial within this framework to thoughtfully construct cost functions, as they impose various
priors on the dynamics data. This often leads to the imposition of homogeneous priors across all
individual particles, affecting both learning accuracy and efficiency. In contrast, our work aims to
model heterogeneous particle behaviors, as observed in various real-world population dynamics. For
example, cell-to-cell variations in gene expression are inherent to biological systems, with changes
in such variations linked to disease phenotypes and aging. Consequently, our approach enhances
accuracy by employing appropriate and justifiable population-level priors to learn the dynamics of
heterogeneous particles.

Developmental modeling of embryonic stem cells. The modeling of embryonic stem cell develop-
ment represents a cutting-edge intersection of developmental biology, computational science, and
systems biology [42, 43, 45]. This field aims to unravel the complex processes governing the differ-
entiation and proliferation of embryonic stem cells into the diverse cell types that form an organism.
Given the foundational role of these processes in understanding both normal development and various
diseases, developmental modeling of embryonic stem cells has garnered significant interest. At its
core, developmental modeling seeks to simulate and predict the dynamic behavior of stem cells as
they progress through various stages of development. This involves mapping the intricate pathways
that lead to cell fate decisions, a challenge that requires sophisticated computational models and deep
biological insights.

Dose-dependent cellular response prediction to chemical perturbations. The prediction of dose-
dependent cellular responses to chemical perturbations is pivotal in pharmacology, toxicology, and
systems biology [41, 57, 62, 63]. It aims to understand how cells react to varying concentrations of
chemical compounds, which is crucial for drug development, safety assessment, and personalized
medicine. This field combines quantitative biology, computational modeling, and high-throughput
experimental techniques to map out the intricate cellular mechanisms activated or inhibited by drugs
and other chemical agents at different doses. At the heart of dose-dependent cellular response
prediction is the need to accurately model the complex, nonlinear interactions between chemical
perturbations and cellular pathways. This involves determining the specific dose at which a chemical
agent begins to have a biological effect (the threshold), the range over which the response changes
(the dynamic range), and the dose causing maximal response (the ceiling).

Connection with Probability Flow Ordinary Differential Equation. Our model is able to integrate
the Probability Flow Ordinary Differential Equation [31] to accelarate the sampling in scenarios
where the score function can be expressed. For our parametrized SDE dxt = vt(xt)dt+Σt(xt)dωt,
the corresponding probability flow ODE sharing the same marginal probability densities is formulated
as dxt = vt(xt) − 1

2∇ ·
[
Σt(xt)Σt(xt)

⊤] − 1
2Σt(xt)Σt(xt)

⊤∇x log pt(xt)dt which requires the
expression of ∇x log pt(xt) (the score function). Since ∇x log pt(xt) is in general not directly
derivable, [31] constructs the (known) artificial dynamics between data and white noise in a certain
way such that∇x log pt(xt) can be approximated with a neural-network parametrized score model.

Thus, in scenarios where the score function can be explicitly expressed, we are able to con-
struct PF-ODE. An example is described as follows: p0 is the mixture of Gaussian that p0(x) =∑n

i=1 wiN (x;µ0,i, σ
2
0,i); The SDE is linear such that vt(xt) = axt + b, Σt(xt) = c; Denot-

ing µt,i = exp(at)µt,i +
b
a (exp(at) − 1), σ2

t,i = σ2
0,i exp(2at) +

c2

2a (exp(2at) − 1); The score

function can then be expressed as ∇xpt(xt) =

∑n
i=1 wi

−(xt−µt,i)

σ2
t,i

N (xt;µt,i,σ
2
t,i)∑n

i=1 wiN (xt;µt,i,σ2
t,i)

. In the scenar-
ios where the PF-ODE is constructed, we can speed up the sampling process via: By denoting
ht(xt) = vt(xt) − 1

2∇
[
Σt(xt)Σt(xt)

⊤] − 1
2Σt(xt)Σt(xt)

⊤∇x log pt(xt), we can then compute
the exact log-likelihood via log pt(xt) = log p0(x0) +

∫ t

0
∇ · hs(xs)ds.

Connection with Flow Matching. Our model is potentially capable of integrating the flow matching
objective (FM) [64], since FM is an orthogonal objective to our proposed regularization, focusing on
capturing the mismatch between generated and observed data. More specifically, FM is an alternative
to the (Wasserstein) data matching loss in our framework formulated in Opt. (13). The integration
can be conducted by further adding the FM loss into our optimization objective. The advantages
of the FM loss are well-known: it is simple, effective in capturing distribution mismatches, and
stable during training [64]. Therefore, integrating it could lead to better estimation of the terminal
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distribution, and faster, more stable convergence when training the diffusion model which is left to
the future works.

D Stability of Genetic Co-Expression Relations

Stability of genetic co-expression relations. The majority of co-expression relationships among
gene pairs remain relatively stable over time, as evidenced by the first column of Fig. 3. Population
regularization effectively preserves this stability, a feature that is often lost with individual-level
regularization by comparing between the second and third columns of Fig. 3.
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Figure 3: Visualization of temporal variations of the covariance of embryonic stem cell expression. The first row
of figures presents direct plots of the covariance at time t, while the second row displays violin plots illustrating
the differences between time t and t− 1.

E Formulation to Restrain “Acceleration" of Standardized Covariance

The formulation to restrain the “acceleration" of standardized covariance is expressed as:∑
M̃∈Mcov

Lstd-corr(πt,M̃, 2) =
∥∥∥ d2

dt2

(
Eπt

[xtx
⊤
t ]− Eπt

[xt]E⊤
πt
[xt]

)∥∥∥2
F

=
∥∥∥

Matrix collection of Γ(S̃′∪Υ′
<i′,j′+1>

) terms in Eq. (14)︷ ︸︸ ︷
Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]

− Eπt [xt]E⊤
πt
[
d

dt
vt(xt)]− Eπt [

d

dt
vt(xt)]E⊤

πt
[xt] +

Γ(S̃′∪Υ′
<i′+1,j′>)︷︸︸︷
0

+

Γ(S̃∪∇<0,0>)︷ ︸︸ ︷
Eπt

[
xt(∇(vt(xt))vt(xt))

⊤ + (∇(vt(xt))vt(xt))x
⊤
t + 2vt(xt)vt(xt)

⊤

+
1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]
− Eπt

[xt]E⊤
πt
[∇(vt(xt))vt(xt)]− Eπt

[∇(vt(xt))vt(xt)]E⊤
πt
[xt]− 2Eπt

[vt(xt)]E⊤
πt
[vt(xt)]

+

Γ(S̃∪∇∇⊤
<0,0>)︷ ︸︸ ︷

Eπt

[
∇(vt(xt))Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤(vt(xt))

+
1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4
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+
1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤ +
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t

]
− 1

2
Eπt

[xt]E⊤
πt
[∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3 ]

− 1

2
Eπt [∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3 ]E⊤
πt
[xt]

∥∥∥2
F
.

F Form of Covariance Potential

Denoting D = Eπt
[xtx

⊤
t ] − Eπt

[xt]E⊤
πt
[xt] D̃ ∈ Rd×d, D̃[i,j] =

{
0, if i̸=j

1/
√

D[i,j], else, , the designated
form of potential covariance is expressed as:∑

M̃∈Mcov

Lcorr(πt,M̃, 0) =
∥∥∥D̃⊤

DD̃ − Y
∥∥∥2
F
.

G Standardized Covariance Kinetics within a Non-Linear Projected Space

We assume the diffusion generative model is built in a non-linear latent space as:

xt =
←−
h (zt), dzt = f(zt)dt+D(zt)dwt,

and then the correlation Lagrangian can be computed as:

d

dt
E[xt,[i]xt,[j]] =

d

dt
E[
←−
h [i](zt)

←−
h [j](zt)]

=E
[
∇{
←−
h [i](zt)

←−
h [j](zt)} • f(zt) +

1

2
∇2{
←−
h [i](zt)

←−
h [j](zt)} • D2(zt)

]
=E

[←−
h [j](zt)(∇

←−
h [i](zt) • f(zt)) +

←−
h [i](zt)(∇

←−
h [j](zt) • f(zt))

+
1

2

{
∇
←−
h [i](zt)∇

←−
h ⊤

[j](zt) +∇
←−
h [j](zt)∇

←−
h ⊤

[i](zt) +
←−
h [i](zt)∇2←−h [j](zt) +

←−
h [j](zt)∇2←−h [i](zt)

}
•D2(zt)

]
.

The first part of the last line can be written in the matrix form as:

Part 1 = E
[←−
h (zt)(∇

←−
h (zt)f(zt))

⊤ + (∇
←−
h (zt)f(zt))

←−
h ⊤(zt)

]
.

The second part of the last line can be written in the matrix form as:

Part 2 =
1

2
E
[〈(
⟨∇
←−
h (zt)i1i2 ,∇

←−
h (zt)i3i4⟩i1i3i2i4 + ⟨∇

←−
h (zt)i1i2 ,∇

←−
h (zt)i3i4⟩i3i1i2i4

+ ⟨
←−
h (zt)i1 ,∇2←−h (zt)i2i3i4⟩i1i2i3i4 + ⟨

←−
h (zt)i1 ,∇2←−h (zt)i2i3i4⟩i2i1i3i4

)
i1i2i3i4

, D2(zt)i3i4

〉i1i2]
,

which can be simplified as follows if D is diagonal:

Part 2 =
1

2
E
[〈(
⟨∇
←−
h (zt)i1i2 ,∇

←−
h (zt)i3i2⟩i1i3i2 + ⟨∇

←−
h (zt)i1i2 ,∇

←−
h (zt)i3i2⟩i3i1i2

+ ⟨
←−
h (zt)i1 ,∇2

Diag
←−
h (zt)i2i3⟩i1i2i3 + ⟨

←−
h (zt)i1 ,∇2

Diag
←−
h (zt)i2i3⟩i2i1i3

)
i1i2i3

, D2(zt)i3

〉i1i2]
.

Since based on Propos. 1 we have:

d

dt
E[
←−
h [i](zt)] = E[∇

←−
h [i](zt) • f(zt) +

1

2
∇2←−h [i](zt) •D

2(zt)],

and then we can express the normalized form as:

d

dt

(
E[
←−
h (zt)

←−
h ⊤(zt)]− E[

←−
h (zt)]E⊤[

←−
h ⊤(zt)]

)
=Part 1 + Part 2− E[

←−
h (zt)]E⊤[∇

←−
h (zt)f(zt)]− E[∇

←−
h (zt)f(zt)]E⊤[

←−
h (zt)]

− 1

2
E[
←−
h (zt)]E⊤[⟨∇2←−h (zt)i1i2i3 , D

2(zt)i2i3⟩i1 ]−
1

2
E[⟨∇2←−h (zt)i1i2i3 , D

2(zt)i2i3⟩i1 ]E⊤[
←−
h (zt)].

20



H Neural Network Parametrization of (Conditional) Neural SDEs

Neural network parametrization of drift vt(·; θ) and diffusion Σt(·; θ). We follow the architecture
in [47] to parametrize the drift and diffusion functions. Specifically, given the time embedding zt for
a time stamp t, we first construct a potential function Φt : Rd → R as:

Φt(x) = wTMLP(CAT(x, zt);ϕ1) +
1

2
x⊤A⊤Ax+ b⊤x+ c,

where MLP(·;ϕ1) is a multi-layer perceptron, and CAT(·) is the concatenation function. The drift is
then computed by taking the gradient as:

vt(x; θ) = ∇xΦt(x).

For the diffusion, we simply construct it as:

Σt(x; θ) = MLP(CAT(x, zt);ϕ2).

The learnable parameter collection is expressed as θ = {ϕ1, ϕ2,w,A, b, c}. Model predictions are
generated through SDE simulation using Eq. (1) with the torchsde library [21].

Neural network parametrization of conditional drift and diffusion. A small-molecule drug can be
routinely represented as a graph G [65]. Thus, we leverage graph neural networks (GNNs) to embed
it into vector space as zG = GNN(G;ϕ3). The conditional drift and diffusion are then expressed as:

vt(x; θ) = ∇x

(
wTMLP(CAT(x, zt, zG);ϕ1) +

1

2
x⊤A⊤Ax+ b⊤x+ c

)
,

Σt(x; θ) = MLP(CAT(x, zt, zG);ϕ2).

The learnable parameter collection is expressed as θ = {ϕ1, ϕ2, , ϕ3,w,A, b, c}. We adopt the graph
attention network architecture [66] for drug embedding.

Computational resources. Experiments are distributed on computer clusters with NVIDIA A100
GPU (40 GB memory), which in general can be finished within two days.

Additional details on the dataset of conditional generation. Dimensionality: The generative model
training is conducted in 256 hidden dimensions. The hidden (latent) space is constructed by training
an autoencoder on the training data, which contains the 2,000 most differentially expressed genes.
Pre-processing: The pre-processing of sci-plex is standardized by adopting the code from [67]. Steps
include QC filtering, normalization, log1p transformation, and differentially expressed gene selection.
Number of drugs: All 188 drugs contained in the dataset are used. Split: In the paper, we focus on
dose-effect prediction conditional on different drug perturbations, each labeled with five dose effects
(t0-t4). We use the dose effects of t0&t4 for training and validation, and perform testing on t1-t3 as
described in the main text. We also used the perturbation split to test performances on new drugs.

Regarding the significance of dose splitting, understanding the dose-effect relationship is crucial
in therapeutics. Intuitively, the dose impacts drug concentration, which can lead to very different
phenotypic outcomes [68]. The sci-plex dataset provides treated cellular expressions under various
drugs and doses. We therefore treat dose as a pseudo-time variable and construct a conditional
generative model to simulate the evolution of dose effects. Similar efforts are described in [63], which
are useful for guiding the clinical use of new drugs.

We also conducted an experiment using a dataset split based on drug perturbations and compared it
with the SOTA CellOT [57] in our implementation. The results, presented in Tab. 3, demonstrate the
effectiveness of our method.

Table 3: Experiments on the sci-plex dataset based on drug perturbation split (predicting dose-dependent cellular
response to new drugs).

Methods VAE CellOT Ours

WDist ↓ 8.07 1.42 1.38
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I Conditional Generation: Dose-Dependent Cellular Response Prediction to
Perturbations

Data. Examining cellular responses to chemical perturbations is one of the fundamental tasks in the
drug discovery process [41, 57]. The experiment utilizes the sci-Plex data for three cancer cell lines
under different drug treatments [40], where data are collected for treatment doses of 10 nM, 100 nM,
1 µM, and 10 µM. In this context, we consider the drug dose as pseudo-time (denoted as t1, t2, t3, t4,
respectively; whereas zero-dose control is denoted as t0). Gene expression dynamics is conditioned
on the embedding of graph-structured drug data (see more details of datasets in Appdx. H).

Evaluation and compared methods. We train our model using samples from the terminal stages
(t0, t4), reserving samples from the intermediate stages (t1, t2, t3) for evaluation. During inference,
expressions are generated based on the state at t0. Performance is then assessed on the Wasserstein
distance on PCs across all drug conditions, which is compared on the mean and median values.
Evaluation on the original gene expressions is also provided in Appdx. J. The compared baselines
include the random expressions, VAE [69], NeuralODE [47], NeuralSDE [21, 22], and NLSB [5].

Table 4: Evaluation in the conditional generation scenario of dose-dependent cellular response prediction to
chemical perturbations. Numbers indicate the mean and median Wasserstein distances on all drug conditions,
and the best and the second-best performances in each case and across cases (‘A.R.’ stands for average ranking)
are highlighted in red and salmon, respectively.

Methods t1 t2 (Most Challenging) t3 A.R.Mean Median Mean Median Mean Median

Random 5.236±3.349 4.895±4.080 5.215±3.416 5.037±4.311 5.247±3.346 5.011±4.108 8.0
NeuralSDE(RandInit) 2.300±1.204 2.235±1.212 2.314±1.224 2.285±1.332 2.317±1.208 2.265±1.259 7.0

VAE 1.387±0.926 1.144±0.676 1.029±0.524 0.935±0.453 0.855±0.290 0.804±0.294 4.6
NeuralODE 0.914±0.272 0.831±0.206 1.064±0.413 0.985±0.414 1.004±0.296 0.937±0.286 5.3
NeuralSDE 0.905±0.416 0.829±0.425 1.053±0.547 0.962±0.532 1.032±0.409 0.943±0.351 5.0
NLSB(E) 0.503±0.106 0.418±0.054 0.574±0.115 0.496±0.063 0.667±0.159 0.555±0.058 2.8

CLSB(αind > 0) 0.516±0.163 0.401±0.054 0.571±0.189 0.452±0.062 0.631±0.235 0.471±0.072 2.1
CLSB(αind = 0) 0.476±0.109 0.393±0.052 0.531±0.121 0.449±0.063 0.564±0.122 0.455±0.056 1.0

Results (iv). Application of population regularization leads to more accurate prediction of
perturbation effects. The results of dose-dependent cellular response prediction to chemical pertur-
bations are shown in Tab. 4. Compared with the competitors, CLSB with population regularization
alone (αind = 0) attains the lowest average rank, which indicates it replicates treated gene expressions
in better alignment with the ground truth, and the benefit of population regularization is presented in
all the three stages. This coincides the effectiveness of the proposed population regularization. We
also observe the similar phenomenon that SDE-based approaches outperform ODE-based approaches,
and the classical VAE. Lastly, we split the data based on drug perturbations and showed our model’s
superior predictions for new drugs in Tab. 3.

J More Results and Visualizations

Hyperparameter tuning. The appropriate weighting of different loss functions in the unconstrained
optimization (13) for an approximated CLSB solution is important. We perform tuning for αcorr,0 in
{1e-2, 1e-1, 1, 1e1, 1e2}, αcorr,1 in {1, 1e1, 1e2, 1e3, 1e4}, and αcorr,2 in {1, 1e1, 1e2, 1e3, 1e4} via
grid search. Validation results are shown in Tab. 5 and test results in Tab. 6. αind is tuned in {0, 1},
which does not lead to a significant impact on performance.

For the experiment in Sec. 4.1: Tab. 5 provides the validation performance for a single type of
correlational regularization (out of a total of three as in Opt. (13)), and Tab. 6 showcases their
corresponding test performances. The ultimate test performance in Tab. 2 is achieved by applying all
three regularizations with weights tuned according to Tab. 5.

Intuition: By experimenting with the single regularization presented in Tab. 6, we aim to understand
how the three types of regularizations contribute differently to the ultimate performance: Regulariza-
tion on “position" provides less benefit compared to the other two; “acceleration" benefits the early
stages more, and “velocity" provides more benefit in the later stages. For the experiment in Sec. I:
We simply adopt the hyperparameter setting from Sec. 4.1.
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Table 5: Evaluation on the validation data in the unconditional generation scenario of developmental modeling
of embryonic stem cells.

Methods All-Step Prediction One-Step Prediction
t1 t2 t3 t1 t2 t3

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 0 1.563±0.008 1.916±0.008 1.695±0.018 1.561±0.008 1.362±0.011 1.067±0.017

αcorr,0 = 1e-2, αcorr,1 = 0, αcorr,2 = 0 1.532±0.008 1.886±0.012 1.670±0.016 1.533±0.007 1.356±0.011 1.051±0.018
αcorr,0 = 1e-1, αcorr,1 = 0, αcorr,2 = 0 1.618±0.006 1.968±0.008 1.701±0.015 1.617±0.005 1.395±0.011 1.093±0.019
αcorr,0 = 1, αcorr,1 = 0, αcorr,2 = 0 1.598±0.007 1.949±0.010 1.700±0.017 1.598±0.008 1.367±0.012 1.053±0.020
αcorr,0 = 1e1, αcorr,1 = 0, αcorr,2 = 0 1.635±0.008 1.736±0.014 1.514±0.022 1.635±0.008 1.273±0.014 1.062±0.018
αcorr,0 = 1e2, αcorr,1 = 0, αcorr,2 = 0 1.653±0.009 1.743±0.018 1.672±0.030 1.651±0.010 1.471±0.014 1.209±0.013

αcorr,0 = 0, αcorr,1 = 1, αcorr,2 = 0 1.547±0.008 1.895±0.008 1.678±0.018 1.547±0.006 1.345±0.011 1.048±0.019
αcorr,0 = 0, αcorr,1 = 1e1, αcorr,2 = 0 1.471±0.009 1.801±0.009 1.642±0.018 1.471±0.007 1.293±0.011 1.040±0.018
αcorr,0 = 0, αcorr,1 = 1e2, αcorr,2 = 0 1.337±0.008 1.628±0.009 1.538±0.021 1.337±0.007 1.200±0.013 0.967±0.018
αcorr,0 = 0, αcorr,1 = 1e3, αcorr,2 = 0 1.053±0.007 1.484±0.010 1.549±0.019 1.052±0.007 1.098±0.015 0.910±0.015
αcorr,0 = 0, αcorr,1 = 1e4, αcorr,2 = 0 1.042±0.004 1.482±0.009 1.494±0.018 1.041±0.005 1.129±0.012 0.927±0.017

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1 0.982±0.005 1.470±0.010 1.482±0.019 0.983±0.005 1.135±0.013 0.985±0.018
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e1 1.074±0.010 1.499±0.016 1.556±0.025 1.074±0.011 1.095±0.013 0.896±0.016
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e2 1.110±0.015 1.498±0.016 1.511±0.024 1.111±0.012 1.064±0.014 0.901±0.017
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e3 1.277±0.018 1.662±0.019 1.586±0.023 1.281±0.016 1.101±0.010 0.859±0.012
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e4 1.341±0.014 1.786±0.015 1.761±0.020 1.345±0.013 1.142±0.009 0.849±0.014

Table 6: Evaluation on the test data in the unconditional generation scenario of developmental modeling of
embryonic stem cells.

Methods All-Step Prediction One-Step Prediction
t1 t2 t3 t1 t2 t3

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 0 1.499±0.005 1.945±0.006 1.619±0.016 1.498±0.005 1.418±0.009 0.966±0.016

αcorr,0 = 1e-2, αcorr,1 = 0, αcorr,2 = 0 1.468±0.005 1.908±0.007 1.586±0.015 1.467±0.004 1.416±0.009 0.957±0.016
αcorr,0 = 0, αcorr,1 = 1e3, αcorr,2 = 0 1.035±0.005 1.557±0.012 1.523±0.021 1.034±0.005 1.164±0.011 0.865±0.014
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1 0.946±0.004 1.503±0.007 1.440±0.015 0.946±0.004 1.205±0.008 0.917±0.013

Evaluation of the original gene expressions in conditional generation (Sec. I). We also perform
evaluations on the original gene expressions beyond principal components, as shown in Tab. 7. We
compute the Wasserstein distance between gene expressions and calculate both the mean and median
across all drug conditions, with mean and standard deviation computed for all genes. The Wasserstein
distance is computed using the SciPy library [70].

Table 7: Evaluation in the conditional generation scenario of dose-dependent cellular response prediction to
chemical perturbations. Numbers (×1e-3) indicate the mean and median Wasserstein distances for all genes,
where lower values are preferable.

Methods t1 t2 (Most Challenging) t3
Mean Median Mean Median Mean Median

Random 573.0±51.3 516.9±24.2 578.7±51.7 520.2±24.6 577.5±52.9 519.0±25.1
NeuralSDE(RandInit) 529.9±73.4 578.7±46.2 536.5±73.4 592.5±45.3 536.3±75.8 585.7±53.0

VAE 227.6±87.5 168.6±107.1 215.7±74.7 159.6±87.8 210.0±70.0 150.5±77.7
NeuralODE 177.7±43.2 108.3±38.7 192.3±56.1 119.8±50.0 183.5±58.4 115.5±51.4
NeuralSDE 170.1±40.8 102.0±44.8 183.0±53.2 117.3±57.1 182.3±63.4 117.8±55.0
NLSB(E) 78.6±35.1 59.8±29.3 93.1±43.1 70.0±35.8 104.0±47.9 75.9±39.6

CLSB(αind > 0) 79.3±36.4 61.0±29.6 87.3±44.8 67.0±34.6 92.0±50.0 69.4±38.1
CLSB(αind = 0) 76.9±33.7 60.9±27.4 89.1±39.9 72.2±32.5 93.3±43.2 74.8±35.4

Terminal state evaluation. Our model not only demonstrates advantages in generating the inter-
mediate state populations between t1 and t3 as shown in Sec. 4, but it also excels in generating the
terminal state at t4, as illustrated in the Tabs. 8 & 9.

Table 8: Evaluation on the terminal state t4 for the stem-cell dataset.

Methods OT-Flow OT-Flow+OT TrajectoryNet TrajectoryNet+OT NLSB(E) NLSB(E+D+V) Ours(CLSB-α >0) Ours(CLSB-α =0)

WDist ↓ 0.799 0.748 0.702 0.692 0.755 0.716 0.707 0.687
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Table 9: Evaluation on the terminal state t4 for the sci-Plex dataset.

Methods NeuralSDE(RandInit) VAE NeuralODE NeuralSDE NLSB(E) Ours(CLSB-α >0) Ours(CLSB-α =0)

WDist ↓ 2.26 1.03 1.04 1.07 1.28 0.80 0.70

Experiment on an additional cell-differentiation dataset. Beyond the experiment using the cell-
differentiation dataset [44], we conducted additional experiments on a dataset curated from [45] to
further validate the proposed population-level regularization. We adopted SBAlign [56] as the base
model (following the same experimental settings) and further restrained the covariance velocity (Eq.
(8)) in the training objective. The results are shown in Tab. 10, demonstrating the effectiveness of our
method on three out of four metrics.

Table 10: Means and standard deviations (in parentheses) of maximum-mean-discrepancy (MMD), ℓ2, RMSD,
and cell-type classification accuracy on cellular expression simulation, following the evaluation pipeline of [56].

Methods MMD ↓ ℓ2 ↓ RMSD ↓ Classification Accuracy ↑
w/o CorrLagr 1.07e-2±0.01e-2 1.24±0.02 0.21e-1±0.01e-1 56.3%±0.7%
w/ CorrLagr 1.61e-2±0.06e-2 1.07±0.04 8.93e-1±0.01e-1 57.6%±1.4%

Comparison with more SOTAs. We further compare with more baselines including [49, 50]. We
follow the leave-one-out setting in [49, 50] and experiment on the embryonic body dataset with
results shown in Tab. 11.

Table 11: Experiments on the embryonic stem cell dataset following the leave-one-out setting in [49]

Methods DSBM DSB Reg.CFN TrajNet NLSB OT-CFN SF2M Ours

WDist ↓ 1.755 0.862 0.825 0.848 0.970 0.790 0.793 0.736

Experiment on larger and higher-dimensional dataset of CITE-Seq. We also examine the
scalability of our model in the larger and higher-dimensional dataset of CITE-Seq [51]. We follow the
leave-one-out setting on 50 principal components as [49], with the results shown in Tab. 12 strikingly
demonstrate the distinguished scalability of our method. We believe the observed improvement is
due to differences in the evaluation, where in the CITE-Seq experiment the distribution mismatch
was evaluated using 50 PCs versus ≤10 PCs in the standard setting. Evaluating on more PCs
further reveals the capability of different models in different aspects, showing how they capture the
"main" distribution shifts (in the top PCs) versus how they handle “minor" distribution shifts. This
interestingly demonstrates that our model effectively captures both "major" and "minor" distribution
shifts during dynamic modeling.

Table 12: Experiments on the CITE-Seq dataset (high-dimensional setting) following the setting in [49]

Methods DSBM I-CFM OT-CFM SF2M Ours

WDist ↓ 53.81 41.83 38.76 38.52 9.07

Experiment on a non-biological application of opinion depolarization. Beyond single-cell
applications, we conducted experiments on the application of opinion depolarization [71] to further
validate the proposed population-level regularization. The dimension of opinion depolarization
is 2 following the original setting. We adopt DeepGSB [24] as the base model, maintaining the
same experimental settings, with two different parametrizations for the actor-critic and critic roles.
Additionally, we further restrain the covariance velocity (Eq. (8)) in the training objective. The results
are shown in Tab. 13, demonstrating the effectiveness of our method.

Experiment on synthetic datasets. We conduct experiments on a synthetic dataset by referencing
[49], to learn the transport from 8 Gaussian (mixture of Gaussian) to 1 Gaussian distribution. To
establish an ideal setting for evaluating our proposed regularization on correlation conservativeness,
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Table 13: Wasserstein distance between the simulation and ground-truth in the opinion depolarization experiment,
following the evaluation pipeline of [24].

Methods Actor-Critic Parametrization Critic Parametrization

w/o CorrLagr 8.45e-2 4.09e-2
w/ CorrLagr 8.36e-2 4.02e-2

we intentionally ensure that the source and target distributions have the same covariance matrix. Thus,
the PDFs of the source and target distributions are formulated as follows:

• Source 8 Gaussian:
∑8

i=1 wiN (µi,Σi) where
∑8

i=1 wi = 1, wi ≥ 0;

• Target 1 Gaussian: N (µ + d,Σ) where µ =
∑8

i=1 wiµi,Σ =∑8
i=1 wi

(
Σi + (µi − µ)(µi − µ)⊤

)
;

• Here, ∥d∥ reflects the difficulty of learning such a transport from one aspect (the larger ∥d∥, the
more difficult).

Building on the SF2M base model and its training paradigm [49], we compare the performance with
and without our correlational regularization, using the Wasserstein 1 distance as the metric. The Tab.
14 results demonstrate the effectiveness of our method, especially in difficult cases.

Table 14: Wasserstein distance between the simulation and ground-truth in the synthetic experiment, following
the evaluation pipeline of [49].

∥d∥ = 50 100 200

w/o CorrLagr 1.48 1.92 3.27
w/ CorrLagr 1.39 1.63 1.77

More visualization in unconditional generation (Sec. 4.1). We provide more visualization of the
simulated gene expressions (or their principal components) and trajectories as follows.
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Figure 4: Visualization of local dynamics for genes A2M-AS1 and A1BG.
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Figure 5: Visualization of local dynamics for genes A2ML1 and A2M.

N
ul

l
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
2M

t0

Obs_Expres
Pred_Expres
Pred_Traj

t1 t2 t3 t4

In
di

vi
du

al
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
2M

Gene A4GALT

Po
pu

la
ti

on
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
2M

Gene A4GALT Gene A4GALT Gene A4GALT Gene A4GALT

Figure 6: Visualization of local dynamics for genes A4GALT and A2M.
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Figure 7: Visualization of local dynamics for genes A4GALT and A2ML1.
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Figure 8: Visualization of local dynamics for genes AACS and A1BG.
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Figure 9: Visualization of local dynamics for genes AADAT and A2M.
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Figure 10: Visualization of local dynamics for genes AAK1 and A1BG-AS1.
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Figure 11: Visualization of local dynamics for genes AAR2 and A1BG-AS1.
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Figure 12: Visualization of global dynamics for principle components 1 and 2.
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Figure 13: Visualization of global dynamics for principle components 1 and 3.
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Figure 14: Visualization of global dynamics for principle components 1 and 4.
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Figure 15: Visualization of global dynamics for principle components 1 and 5.
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Figure 16: Visualization of global dynamics for principle components 2 and 3.

31



N
ul

l
 R

eg
ul

ar
iza

tio
n

PC
4

In
di

vi
du

al
 R

eg
ul

ar
iza

tio
n

PC
4

PC2

Po
pu

la
ti

on
 R

eg
ul

ar
iza

tio
n

PC
4

PC2 PC2 PC2 PC2

Figure 17: Visualization of global dynamics for principle components 2 and 4.
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Figure 18: Visualization of global dynamics for principle components 2 and 5.
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Figure 19: Visualization of global dynamics for principle components 3 and 4.
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Figure 20: Visualization of global dynamics for principle components 3 and 5.
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Figure 21: Visualization of global dynamics for principle components 4 and 5.
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