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Abstract

Beyond representing the external world, humans also represent their own cognitive
processes. In the context of perception, this metacognition helps us identify
unreliable percepts, such as when we recognize that we are experiencing an illusion.
In this paper we propose MetaGen, a model for the unsupervised learning of
metacognition. In MetaGen, metacognition is expressed as a generative model of
how a perceptual system transforms raw sensory data into noisy percepts. Using
basic principles of how the world works (such as object permanence, part of
infants’ core knowledge), MetaGen jointly infers the objects in the world causing
the percepts and a representation of its own perceptual system. MetaGen can then
use this metacognition to infer which objects are actually present in the world,
thereby flagging missed or hallucinated objects. On a synthetic dataset of world
states and black-box visual systems, we find that MetaGen can quickly learn a
metacognition and improve the system’s overall accuracy, outperforming baseline
models that lack a metacognition.

1 Introduction

Learning accurate representations of the world is critical for prediction, inference, and planning in
complex environments [1, 2]. In humans, these representations are generated by perceptual systems
that transform raw sensory data, such as light entering the retina, into conceptual representations
of the physical space and the objects and agents in it [3, 4]. While human perception is robust and
reliable, it nonetheless suffers from rare but compelling errors, such as the Blivet, the lilac chaser,
and the peripheral drift illusions. Critically, in all of these cases, people recognize that the faulty
representation does not reflect reality and stems instead from an error in their visual system.

Pre-trained systems for object recognition and image classification face a similar challenge: iden-
tifying false percepts. After training, these systems can be inflexible and have no general way of
identifying when a percept is unreliable or false [1, 5, 6]. As an illustrative example, suppose that an
object recognition system observes a 10-frame video of a person riding a motorcycle, and that the
system outputs noisy labels for each frame. Suppose than, in some frames, the system incorrectly
detects a car that’s not actually present. In other frames, it misses the motorcycle or the person. The
problem the system faces is to figure out what objects were actually present in the video given these
noisy percepts. Put another way, the system has to decide which percepts reflect objects in the external
world, and which percepts are merely artifacts of its own processing. We propose that augmenting
object recognition and image classification systems with a metacognition—a representation of their
own computational processes [7]—can allow these systems to monitor their percepts and flexibly
decide when to trust or question proposed representations, much like humans do.
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Here we present MetaGen, a model for learning a metacognition in an unsupervised context. MetaGen
can learn a metacognition for a pre-trained black-box system, requiring only a few percepts from the
system. MetaGen does not need access to the internal structure of the system or any performance
metrics, meaning that MetaGen can learn a metacognition for a completely black-box system without
any external feedback.

Given a set of noisy percepts, we conceptualize learning a metacognition as a joint inference problem
over the objects generating the percepts and a representation of the system’s performance. Crucially,
we make this problem tractable by drawing on two insights from cognitive science: 1) Infants come
into the world equipped with a basic form of ‘core knowledge’ or ‘start-up sofware,’thought to be
critical for human-like learning [1, 8]. These built-in principles of how the world works constrain
the representations of states of the world that infants consider possible (e.g., objects persist in time
and move continuously in space) [9]. Similarly, MetaGen constrains the space of representations
through a prior distribution over possible world states. 2) Human mental models are often simplified
approximations of the content they model, designed for efficient inference and prediction [10, 11].
In the same spirit, metacognition in MetaGen is expressed as a generative model that captures the
marginal distributions that approximate a system’s performance without modeling the system’s exact
internal structure and computations.

We apply MetaGen to the problem of identifying what objects are in a scene given a set of percepts.
These percepts are drawn from multiple viewpoints or from multiple frames in a video, each processed
by the same noisy black-box object recognition system with unknown performance (Figure 1). We
formalize a metacognition as a representation of the system’s propensity to miss objects that are
present and to hallucinate (false alarm) objects that are not present as a function of the object’s
category. By assuming object permanence (i.e., within each set of percepts, all images include
the same objects), our model learns about its own propensity to miss or hallucinate objects in an
unsupervised manner. MetaGen can then use this metacognition to identify which objects are likely
present in the scene. We test our model using a synthetic dataset where we sample different world
states (i.e., scenes with collections of objects) and different visual systems (i.e., visual systems with
variable fidelity). We then process these sampled world states through the black-box visual systems
to obtain noisy percepts. These percepts are then used as input to MetaGen. We evaluate MetaGen
in two ways: 1) by its estimation of the true underlying visual system generating the percepts and
2) by its capacity to flag missed or hallucinated objects, measured in terms of overall accuracy and
compared to a set of baseline models.

Overall, our work makes three contributions. First, we present MetaGen, a model for learning a
metacognition in an unsupervised manner. Second, we show proof of concept that MetaGen can learn
a system’s miss and false alarm rates by observing percepts from a few dozen world states. Finally,
we show how this learned metacognition enables the model to infer the true world states producing
them. For a discussion of related work, please see A.1.

2 MetaGen

2.1 Problem and solution overview

We first explain the logic of our model in the context of our experimental setup. Consider a black-box
classification system that generates percepts for the objects present in a scene (represented as labels
from a set of categories). Given a set of object classes C that the system can recognize, the set of
possible percepts X is given by the powerset of C (i.e., the set of all subsets of C). Similarly, we
assume that the space of world states w ∈ W is given by the powerset of C, such that objects are
either present or absent in a scene (and thereby assuming object permanence). For instance, in Figure
1, the class of objects C consists of five geometrical shapes. The possible states of the world and the
possible percepts consist of all subsets of these five shapes. We define an observation o = {xi}Fi=1 as
a collection of F percepts generated by processing different views of the same world state. In Figure
1, the observation of the first world state contains three percepts ([cone, cylinder], [cone, cylinder,
sphere], and [cone]), and the observation of the second world state contains two percepts ([cone,
cylinder, cube] and [cone, sphere, cube]).

We define a metacognition as a generative model v : X × W → [0, 1] such that v(x,w) is the
probability that the visual system would produce percept x ∈ X when processing world state w ∈W .
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Figure 1: A set of scenes with different objects (bottom row) are processed by a black-box noisy
object detection system (blue arrows). MetaGen performs joint inference over the objects in the world
states (represented here as a vector of objects ŵt), and a metacognition of the object detection system
(represented here as a matrix v̂ that captures the visual system’s miss rate M and false alarm rate FA
for each object category). Colored-in elements of the visual metarepresentation v̂ indicate increases
(red) and decreases (green) in the estimate (v̂i) of the FA or M for an object category.

Given a collection of observations ~o = {ot}Tt=1 (i.e., multiple sets of percepts from multiple world
states), our goal is to infer Pr(v, ~w|~o), given by

Pr(v, ~w|~o) ∝ Pr(v)
T∏
t=1

Pr(ot|wt, v)Pr(wt) (1)

Here we focus on a case where the goal of the metacognitive representation v is to capture the false
alarm (false positive) and miss (false negative) rates for each category of objects that could appear in
a world state. In this formulation, v is a C × 2 matrix of false alarm and miss rates for the C object
categories (see Figure 1 for an example). The framework we propose for learning metacognition is
not specific to the choice of simplified representation v; it could also apply to a C × C confusion
matrix (where each element at i, j is the probability of mistaking an object of category i for object of
category j) or to some other representation of v.

Figure 1 shows an intuitive explanation of this inference procedure. After the visual system processes
the first world state and outputs percepts, MetaGen takes those percepts as input and tries to infer the
world state and visual system that caused them. The pattern in the three percepts from the first world
state can be explained by inferring that a cone and cylinder were present and that the sphere in the
second percept was a false alarm. Because the cone was detected in all three views but the cylinder
was only detected in two of them, an appropriate metacognition should decrease its belief that the
visual system misses cones and increase its belief that it misses cylinders. Furthermore, the presence
of a sphere in the second percept suggests that the false alarm rate for spheres is high. Conversely, the
lack of detection of prisms or cubes suggests that the false alarm rate for these shapes is low. Figure 1
visualizes these changes in beliefs.

2.2 Generative Model

In MetaGen, the production of percepts is captured through a generative model. If an object r of
category c is present in world state w, then that object rc is detected with probability 1 −Mc and
missed with probability Mc. If an object of category c is not present, then that object is hallucinated
with probability FAc and correctly rejected with probability 1− FAc.

Pr(rc ∈ x) =
{
1−Mc, if rc ∈ w
FAc, if rc 6∈ w
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Thus, which objects are perceived in percept x is a function of the visual system v and the world state
w.

2.3 Inference Procedure

In MetaGen, the posterior, eq. 1, is approximated via Sequential Monte-Carlo using a particle filter
[12]. Given ||~o|| = T , an estimate of the joint posterior can be sequentially approximated via:

Pr(v, ~w|~o) ≈ Pr(v̂0)
T∏
t=1

Pr(~ot|v̂t, ŵtt)Pr(ŵtt)Pr(v̂t|v̂t−1) (2)

where v̂T , is the estimate of v, and ŵ1
T , . . . , ŵT

T is the estimate w1, . . . , wT after T observa-
tions. Here the transition kernel, Pr(v̂t|v̂t−1), defines the identity function. The details of the
implementation of this inference procedure are left to A.3.

MetaGen can be evaluated in two ways. First, we can test performance change over time as MetaGen
learns a metacognition (Online MetaGen). After sufficient observations, the posterior distribution
over v stabilizes and MetaGen has a learned metacognition. At this point, we can evaluate the benefit
of having a metacognition by fixing the final estimate of v and re-evaluating the world states that
caused the observed percepts (Retrospective MetaGen).

3 Experiments

To evaluate MetaGen, we created a synthetic dataset of different visual systems processing multiple
observations of multiple world states. We then tested MetaGen’s ability to infer the underlying visual
system and the world states causing the percepts.

Dataset. We aim to test whether MetaGen can learn an accurate and useful representation of an
artificial visual system. To fully explore the space of possible artificial visual systems, we synthesized
a dataset of artificial visual systems with a wide range of probabilities of hallucinating or missing
objects. We also synthesized world states (hypothetical collections of objects, summarized as a vector
of 1s and 0s indicating the presence or absence of objects). We then generated sparse observations
(5-15 per world states; far fewer than what is available on real datasets like videoclips) from these
visual system and world states.

Our dataset consists of 35000 randomly sampled visual systems processing multiple views of multiple
world states. The details of synthesizing this dataset are left to A.4.

3.1 Comparison Models

To better interpret the results of how MetaGen learns a metacognition (Online MetaGen) and how it
performs after having learned its metacognition (Retrospective MetaGen), we contrasted our results
with two baseline models: Thresholding and Lesioned MetaGen. Thresholding simply concludes that
an object was present if it was perceived in more than half of the frames, else, not. For a discussion
of other threshold values, please see A.5. Lesioned MetaGen fixes the metacognitive representation
of v to the expectation of the prior over v. Although it has a metacognitive representation of v, that
metacognition is neither learned nor updated in light of new observations. Our main models and the
comparison models are described more formally in A.5.

3.2 Results

In this section, we demonstrate that MetaGen can learn a system’s false alarm and hit rates without
feedback, and that its improvements in accuracy track with its learning of a metacognition. See A.6
for definitions of the metrics used, and A.2 for results from an example simulation.

Figure 2 shows MetaGen’s performance over the 35000 sampled visual systems. Figure 2A shows
that Online MetaGen’s estimates v̂t of the false alarm and miss rates per category rapidly approach
the true values. In as few as 40 observations, the MSE of v̂t (FA: 0.0018, M: 0.0033) is less than a
third of its initial MSE of v0,µ (0.011; horizontal dotted line).
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Figure 2: Model performance over 35000 sampled visual systems, each processing 75 world states.
A. MSE between true and inferred false alarm and miss rates as a function of number of observations.
Horizontal dotted line represents MSE from the prior. B. Mean accuracy as a function of number of
observations. C. Accuracy for Retrospective MetaGen and Thresholding as a function of noise in the
observation. D. Difference in average accuracy between Retrospective MetaGen and Thresholding as
a function of noise in the observation.

Figure 2B shows the average accuracy of the models’ inferences about world states. The red line
shows Online MetaGen’s rapid increase in accuracy over the first 40 observations. During these
observations, Online MetaGen’s accuracy increases from 76.6% to 84.9% (with 85.4% final accuracy
after the 75th observation), a percentage substantially higher than chance (8%, see A.7). This increase
in accuracy occurs simultaneously with the decline in MSE for the inferred visual system parameters.

After Online MetaGen has completed its final estimate of v, Retrospective MetaGen (blue line;
Figure 2B), revises its beliefs about the world states by conditioning on that final estimate. Although
its estimate of v was based on percepts of those world states, the model never received feedback
(access to the ground-truth of those world states). Retrospective MetaGen (red; 85.6% average
accuracy), consistently outperforms Thresholding (light gray; 80.3% accuracy) and the Lesioned
MetaGen model (purple; 80.7%) by about 5%. Together, these results show that MetaGen’s ability
to infer the true world states was not due to the high fidelity of the percepts (as it outperformed
the Threshold model) or due to merely having a metacognitive representation (as it outperformed
Lesioned MetaGen). Instead, our results show that MetaGen’s improved accuracy was due to its
ability to learn the content of the metarepresentation in an unsupervised manner.

Retrospective MetaGen especially outperforms Thresholding on noisy percepts. Figure 2C shows
the average accuracy of Retrospective MetaGen and Thresholding as a function of noise ζ (using a
rolling window such that each point shows average accuracy on the [ζ − .05, ζ + .05] range. See
A.6 for a formal definition of perceptual noise, ζ). At low noise levels (ζ ∈ [0, 0.15]), Thresholding
reaches near ceiling performance because, by definition, the majority of the percepts are accurate. As
percepts become noisy (ζ ∈ [0.15, 0.59]), both models decline in accuracy, but MetaGen declines
more gradually, outperforming the Threshold model. This implies that MetaGen gains accuracy over
Thresholding by sometimes rejecting objects that appear on the majority of percepts and choosing
to include objects that were only present in a minority of percepts. Figure 2D shows the difference
in average accuracy between MetaGen and Thresholding as a function of perceived noise. Metagen
reaches peak advantage over Thresholding at a noise level of ζ = 0.34, with 58.9% accuracy, while
Thresholding is at 19.2% accuracy.

Given that MetaGen drastically outperforms Thresholding for most noise levels, it may seem sur-
prising that MetaGen’s overall accuracy is only 5% above that of Thresholding. Note, however,
that percepts are biased toward having low levels of noise. At such low noise levels, Thresholding
can reach ceiling performance and obscure MetaGen’s drastic success over Thresholding on noisy
percepts.

4 Discussion and Conclusion

Here we proposed MetaGen, a model for learning a metacognition in an unsupervised context. Given
a set of observations generated by a black-box classification system with unknown performance,
MetaGen performs joint inference over a meta-representation of the system and over the objects
causing the observations. Using a large synthetic dataset of black-box visual systems, we showed
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that with as few as 40 observations, MetaGen can infer a system’s propensity to false alarm and miss
objects. MetaGen can use this metacognition to flag and correct errors from the classification system,
improving the system’s overall accuracy.

Although our analyses were based on a synthetic dataset, we have demos showing that MetaGen
can infer stable object representations from the outputs of real-world artificial visual systems, like
Detectron2 [13]. These demos can be found on the project’s GitHub page (link).

More broadly, our work points to a new direction for how we think about improving AI systems.
When an AI system’s representations of the world are noisy, a typical approach is to try to directly
improve those representations of the world (i.e. change the visual system’s architecture or training set
so as to directly reduce the false alarm and miss rates). Our work suggests a complimentary approach:
learning representations of the system itself. Representing how an AI system builds its representations
of the world can facilitate compensation for the noisiness of these representations. Our work shows
how this can be achieved without feedback, by grounding this learning process in basic assumptions
about the world (object permanence, in our case). This model offers a proof-of-concept of such an
approach, and highlights the importance of metacognition in humans and machines.

4.1 Acknowledgments

We thank Laurie Paul, Ilker Yildirim, and Flora Zhang for helpful discussions. This work was
supported by a Google Faculty Research Award and by the Center for Brains, Minds, and Machines
NSF-STC award CCF-1231216.

References
[1] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building

machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

[2] Zenon Walter Pylyshyn. Computation and cognition. MIT press Cambridge, MA, 1984.

[3] Brian J Scholl and Patrice D Tremoulet. Perceptual causality and animacy. Trends in cognitive
sciences, 4(8):299–309, 2000.

[4] Tom Cornsweet. Visual perception. Academic press, 2012.

[5] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti
Pietikäinen. Deep learning for generic object detection: A survey. International journal of
computer vision, 128(2):261–318, 2020.

[6] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

[7] Karen Strohm Kitchner. Cognition, metacognition, and epistemic cognition. Human develop-
ment, 26(4):222–232, 1983.

[8] Susan Carey. The origin of concepts. Oxford university press, 2009.

[9] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–
96, 2007.

[10] Julian Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current Opinion in
Behavioral Sciences, 29:105–110, 2019.

[11] Tomer D Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B Tenenbaum. Mind games:
Game engines as an architecture for intuitive physics. Trends in cognitive sciences, 21(9):649–
665, 2017.

[12] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

[13] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

6

https://anonymous.4open.science/r/2dd94a53-06d0-4ace-b314-85c9c6a2624e/
https://github.com/facebookresearch/detectron2


[14] Michael T Cox. Metacognition in computation: A selected research review. Artificial intelli-
gence, 169(2):104–141, 2005.

[15] Giduthuri Sateesh Babu and Sundaram Suresh. Sequential projection-based metacognitive
learning in a radial basis function network for classification problems. IEEE transactions on
neural networks and learning systems, 24(2):194–206, 2012.

[16] Kartick Subramanian, Sundaram Suresh, and Narasimhan Sundararajan. A metacognitive
neuro-fuzzy inference system (mcfis) for sequential classification problems. IEEE Transactions
on Fuzzy Systems, 21(6):1080–1095, 2013.

[17] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of
physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–
18332, 2013.

[18] Julian Jara-Ettinger, Laura Schulz, and Josh Tenenbaum. The naive utility calculus as a unified,
quantitative framework for action understanding. PsyArXiv, 2019.

[19] Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, and Joshua B Tenenbaum. Rational quantita-
tive attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour,
1(4):1–10, 2017.

[20] Alison Gopnik. How we know our minds: The illusion of first-person knowledge of intentional-
ity. Behavioral and Brain sciences, 16(1):1–14, 1993.

[21] Richard E Nisbett and Timothy D Wilson. Telling more than we can know: verbal reports on
mental processes. Psychological review, 84(3):231, 1977.

[22] Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and
Tomer Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic
object representations. In Advances in Neural Information Processing Systems, pages 8983–
8993, 2019.

[23] Charles Kemp and Fei Xu. An ideal observer model of infant object perception. In Advances in
Neural Information Processing Systems, pages 825–832, 2009.

[24] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify
classification uncertainty. In Advances in Neural Information Processing Systems, pages 3179–
3189, 2018.

[25] Lance Kaplan, Federico Cerutti, Murat Sensoy, Alun Preece, and Paul Sullivan. Uncertainty
aware ai ml: why and how. arXiv preprint arXiv:1809.07882, 2018.

[26] Magdalena Ivanovska, Audun Jøsang, Lance Kaplan, and Francesco Sambo. Subjective net-
works: Perspectives and challenges. In International Workshop on Graph Structures for
Knowledge Representation and Reasoning, pages 107–124. Springer, 2015.

[27] Justin Halberda. Epistemic limitations and precise estimates in analog magnitude representation.
Core knowledge and conceptual change, pages 167–186, 2016.

[28] Justin Halberda, Michèle MM Mazzocco, and Lisa Feigenson. Individual differences in non-
verbal number acuity correlate with maths achievement. Nature, 455(7213):665–668, 2008.

[29] Kevin Canini, Lei Shi, and Thomas Griffiths. Online inference of topics with latent dirichlet
allocation. In Artificial Intelligence and Statistics, pages 65–72, 2009.

[30] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka.
Gen: A general-purpose probabilistic programming system with programmable inference. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pages 221–236, New York, NY, USA, 2019. ACM.

7



A Appendices

A.1 Related Work

Metacognition in AI. Previous work has argued for the importance of metacognition for machine
learning and AI [14]. Models that use metacognition during learning have shown promise for
improving classification accuracy [15, 16]. This work has focused on engineering an inflexible
metacognition to guide a system’s learning. In this paper, we focus on a complimentary problem:
developing a model for learning a metacognition of any black-box system.

Computational cognitive science. Our core idea—learning a metacognitive model of a perceptual
system—is inspired by research in cognitive science showing that human reasoning is structured
around mental models of the physical world [11, 17], of the social world [18, 19], and of ourselves
[20, 21]. A critical idea in this line of research is that mental models do not need to capture the true
data-generating process. Instead, these models are often approximations that are broadly accurate, but
simplified to make inference and reasoning more tractable than would be otherwise possible [17, 18].
This type of work aims to model human intuitive theories. Unlike this work, our work does not aim
to model people’s metacognition. Our goal is instead to test, in a machine-learning and AI context,
whether the type of mental models that humans use to reason about themselves and others can serve
as a fruitful approach for learning how to represent complex black-box systems.

Our work is also related to computational models of human core knowledge [22, 23]. Although we
use infant-like core knowledge to support learning models about oneself, our focus is not on core
knowledge per se.

Uncertainty-aware AI. The spirit of our work relates more closely to uncertainty-aware AI. This
work focuses on building end-to-end systems that express uncertainty in their inferences [24–26].
Our work focuses instead on a related problem: how can you learn a model of uncertainty over a
pre-trained, black-box system? These two approaches complement each other. In humans, meta-
cognitive uncertainty supplements the intrinsic uncertainty in visual perception. For example, when
estimating the number of dots in an array, people experience a basic, perceptual kind of uncertainty
integrated with a higher-level, conceptual kind of uncertainty. [27, 28]).

A.2 Example Simulation

Here, we show an example simulation from our experiment. Figure 3A shows a sampled set of
75 world states. Each row represents one of the five objects, each column a world state, and color
indicates the presence or absence of an object (light blue indicating presence). Figure 3B shows
the observations generated by these 75 world states when passed through a noisy black-box object
detection system (color indicating proportion of percepts in which the object was detected). Figures
3C and 3D show the inferred realities obtained by the Thresholding and MetaGen models, respectively.
Figures 3E and 3F show the inferred world states color-coded by whether object were correctly
detected, false alarmed, or missed. In this simulation, the visual system has high false alarm rates for
categories C (sphere) and D (cuboid), leading to a high proportion of false alarms for these categories.
Thresholding takes these noisy percepts at face value, resulting in the incorrect conclusion that nearly
every world state contains objects of category C and D. MetaGen, by contrast, learns the visual
system’s bias toward false alarming these categories and is able to drastically reduce the number of
false alarms, at the expense of introducing a few misses.

A.3 Inference Procedure

We sequentially approximated the joint posterior given in eq. 2 using a particles filter with 100
particles.

We implemented rejuvenation using a series of Metropolis-Hastings MCMC perturbation moves over
v̂. The proposal function is defined as a truncated normal distribution with bounds (0, 1):

v̂i
t′ ∼ N (µ = v̂i

t, σ2 = 0.01) (3)

where vi an element in the matrix v. A proposal is accepted or rejected according to the Metropolis-
Hastings algorithm [29]. Each element in v is rejuvenated separately and in randomized order.
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Figure 3: Example simulation from our experiment. A. Ground-truth world states. Each column
represents a sampled world state (75 world states total). The presence or absence of an object is
coded as light and dark blue, respectively. B. Percepts generated by a visual system processing
5-15 viewpoints per world state. Color indicates proportion of viewpoints from which an object was
detected (lighter blue indicating higher proportion). C Inferred world states obtained by thresholding
the percepts from panel B. D. Inferred world states inferred (retrospectively) by MetaGen from the
percepts from panel B. E-F Thresholding and MetaGen’s error maps. Light green indicates correct
inferences, grey indicates objects that the model missed, and dark green indicates objects that the
model false alarmed.

We then take the expectation of the marginal distribution by averaging across unweighted particles:
v̂Tµ = E[v̂T |~o] = 1

M

∑M
m=1 v̂

T
m, where m indexes the particles. Given v̂Tµ , the posterior predictive

distribution is defined as:

Pr( ~̂w|~o, v = v̂Tµ ) ∝ Pr(v = v̂Tµ )

T∏
t=1

Pr(ot|ŵt, v = v̂Tµ )Pr(ŵt) (4)

This posterior predictive distribution can then be used to make better inferences about world states.
These world states could be new ones wT+1, ..., or they could be the world states w1, ..., wT already
used to estimate v. Retrospective MetaGen does that latter: conditioning on v̂Tµ , Retrospective
MetaGen infers the world states w1, ..., wT from the posterior predictive distribution. When inferring
these world states, we take the MAP of the unweighted particles.

We implemented our generative model and inference procedure in the Julia-based probabilistic
programming language Gen [30].

A.4 Synthesizing the Dataset

Here we discuss how we synthesized the dataset for evaluating MetaGen.

In this context, the visual system, v can be represented as a 5× 2 matrix of false alarm and miss rates
(see Figure 1). Each visual system was generated by drawing ten independent samples from a beta
distribution, ∼ B(α = 2, β = 10). This distribution allows us to sample visual systems with variable
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error rates (mean value = .17) while maintaining a low probability of sampling visual systems that
produced false alarms or misses more often than chance (0.005 chance of sampling values above 0.5;
0.06 chance that complete sampled visual system has at least one false alarm or miss rate above 0.5).
The wide range of these false alarm and miss rates encompasses those of state-of-the-art artificial
visual systems.

For each visual system, we sampled 75 world states. A Poisson distribution N ∼ Poisson(λ = 1)
truncated with bounds [1, 5] determined the number of objects in a world state. The object categories
were samples from a uniform distribution. Each world state was a hypothetical collections of objects,
summarized as a vector of 1s and 0s indicating the presence or absence of each category of objects.
For each world state we used the visual system to synthesize the 5− 15 percepts (number sampled
from a uniform distribution), producing a total of 375− 1125 percepts per visual system. Inferences
about the false alarm and miss rate of each object are independent, and we thus considered situations
with only five types of objects.

A.5 Comparison Models

A model needs to map a collection of percepts to a likely world state. One simple way to recover
the world state w causing observation o = x1, . . . , xF is to threshold the percepts—an object c
was present if and only if it appeared in at least half (0.50) of the observations. We call this model
Thresholding.

It is possible that the Thesholding baseline model would perform better with a different threshold
value. Fitting the threshold value involves comparing the model’s outputs to ground-truth world
states. Although this Fitted Thresholding model, unlike MetaGen, has access to ground-truth, we
nevertheless compared the two. We found that, even using the best-fitting threshold value (0.54),
Retrospective MetaGen still outperformed this Thresholding model with an overall average accuracy
of 85.6% compared to Fitted Thresholding’s 83.1%. Even granting this baseline model access to
ground-truth, it could not outperform our unsupervised MetaGen model.

To test whether learning a metacognition improves inferences about the world state, we compare
MetaGen with and without the metacognitive learning. We call MetaGen without learned metacogni-
tion Lesioned MetaGen. Like the other MetaGen models, Lesioned MetaGen has a metacognitive
representation of v and uses an assumption of object permanence to infer the world states causing the
percepts. Lesioned MetaGen, however, does not learn or adjust the content in its meta-represetation
v based on the observed percepts. Formally, Lesioned MetaGen assumes that the false alarm and
miss rates for every category are the MAP of the beta prior over false alarm and miss rates, call it
v̂0,µ. Lesioned MetaGen then uses the same particle filtering process described in A.3, except that it
conditions on v̂0,µ instead of v̂T,µ.

We also compare two variations of MetaGen with learning. Online MetaGen performs a joint
inference over v and ~o online, as observations are presented sequentially. This model allows us to
evaluate how MetaGen’s inferences improve as a function of the observations it has received. We
name this model of online, observation-by-observation inference Online MetaGen.

After having received all T observations, MetaGen could retrospectively re-infer the world states
causing the T observations. This model, Retrospective MetaGen, re-infers the world states that
caused its observations conditioned on its estimate v̂T,µ, as described in A.3.

Online MetaGen lets us interpret how MetaGen learns a metacognition, and Retrospective MetaGen
lets us test how MetaGen performs after having learned that metacognition. Thresholding and
Lesioned MetaGen serve as baseline models for comparison.

A.6 Metrics Used

To measure how well MetaGen learned a metacognition, we calculated the mean squared error (MSE)
between the inferred visual system v̂ and the true v generating the percepts, given by

MSE =
1

2|C|
∑
c∈C

(
(FAc − F̂Ac)2 + (Mc − M̂c)

2)

)
(5)

where C is the the set of object classes.
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To measure MetaGen’s capacity to infer the objects causing the percepts, we computed world-state
accuracy, defined as 1 if ŵ = w (i.e., the model inferred the exact set of object that are present) and
0 otherwise. This produces one accuracy score per world state, for a total of 75 accuracy scores
per visual system. We average these accuracy scores to get the average accuracy. For this baseline
measure, expected accuracy from the prior (without learning a metacognition) is 8% (see A.7).

To analyze MetaGen’s accuracy as a function of noise in the percepts, we computed the average noise
of an observation ot as

ζt =
1

|ot||C|
∑
c∈C

∑
x∈ot

|1wt
(c)− 1x(c)| (6)

where C is the set of object classes, ot is the collection of percepts generated from world state wt,
1wt

(c) is an indicator for whether an object of class c is in wt, and 1x(c) is an indicator for whether
an object of class c is in percept x.

A.7 Expected Accuracy of Guessing World States

Here, we calculate the expected accuracy of a model that guesses world states by sampling from the
prior over possible world states. Call d(n) the density of a Poisson distribution truncated with bounds
[1, 5] and with λ = 1. If n is the number of objects in a world state then the probability of guessing
a world state correctly by chance is

∑n=5
n=1 d(n) ∗ d(n)/

(
5
n

)
= 0.0774. Any model that performs

significantly above 8% accuracy is above chance.

We want to calculate the expected accuracy of a model that guesses world states by sampling from
the prior. Call d(n) the density of a Poisson distribution truncated with bounds [1, 5] and with λ = 1.

If a ground-truth world state has n objects, then the probability of guessing the correct number of
objects by sampling from the prior is d(n). The probability of guessing the correct combination of n
objects out of the 5 possible objects is 1

(5
n)

. So, given that a ground-truth world state has n objects,

the probability of guessing that world state correctly by sampling from the prior is d(n)/
(
5
n

)
.

We want the expectation of guessing correctly when the ground-truth n is unknown. We must sum,
over all n, the probability of guessing correctly, weighted by the probability that the ground-truth
world state has n objects. The probability that the ground truth has n objects is the prior over n, d(n).
So we obtain

∑n=5
n=1 d(n) ∗ d(n)/

(
5
n

)
.
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