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Abstract

Denoised smoothing is the state-of-the-art approach to defending pretrained classi-
fiers against ℓp adversarial attacks, where a denoiser is prepended to the pretrained
classifier, and the joint system is adversarially verified via randomized smoothing.
Despite its state-of-the-art certified robustness against ℓ2-norm adversarial inputs,
the pretrained base classifier is often quite uncertain when making its predictions
on the denoised examples, which leads to lower natural accuracy. In this work,
we show that by augmenting the joint system with a “rejector” and exploiting
adaptive sample rejection, (i.e., intentionally abstain from providing a prediction),
we can achieve substantially improved accuracy (especially natural accuracy) over
denoised smoothing alone. That is, we show how the joint classifier-rejector can
be viewed as a classification-with-rejection per sample, while the smoothed joint
system can be turned into a robust smoothed classifier without rejection, against
ℓ2-norm perturbations while retaining certifiability. Tests on CIFAR10 dataset
show considerable improvements in natural accuracy without degrading adver-
sarial performance, with affordably-trainable rejectors, specially for medium and
large values of noise parameter σ.

1 Introduction

Despite their success in image classification, deep learning models are known to be vulnerable
against ℓp-norm adversarial attack, where small imperceptible perturbations on the input image can
considerably change model predictions Biggio et al. [2013], Szegedy et al. [2013], Goodfellow et al.
[2014], Carlini and Wagner [2017], Uesato et al. [2018]. Many empirical defense mechanisms and
training procedures have been proposed against adversarial attacks while often times stronger attacks
have followed to break them [Athalye et al., 2018, Tramèr et al., 2017]. These advances have lead to
certifiable defenses Levine and Feizi [2020], Wong and Kolter [2018], Salman et al. [2020], Gowal
et al. [2018] which provide provable lower bounds of robust classification accuracy; the most relevant
to our work is randomized-smoothing Lecuyer et al. [2019], Cohen et al. [2019], Li et al. [2018].

Denoised smoothing Salman et al. [2020] approaches this task by prepending a denoiser to pretrained
classifiers, and utilizes it jointly with randomized smoothing, i.e., taking a majority vote of the
predictions from multiple copies of the input image with noise, and provides state-of-the-art certifiable
defense for pretrained classifiers for ℓ2-norm perturbations. Unfortunately, despite using pretrained

∗Author was with Bosch Center for AI when this work was done.

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.



classifiers with high accuracy, the resulting smoothed classifier still exhibits a substantial drop in clean
accuracy for affordably-trainable denoisers. On the other hand, utilization of a rejection class for
improving robustness is an open area of research [Geifman and El-Yaniv, 2019, Yin et al., 2019, Stutz
et al., 2020, Liu et al., 2019, Tramer, 2022], with limited work available with certifiable guarantees
against ℓ∞-norm perturbations Sheikholeslami et al. [2020]. In fact, a certifiable utilization of
detector/rejectors has shown to be necessary as carefully-designed adaptive attacks have frequently
broken existing non-verifiable detectors Athalye et al. [2018], Tramer et al. [2020].

Our contribution.
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Figure 1: Verification of the proposed smoothed
classifier with ‘sample rejection’ at input x. Left:
Different colors denote the decision regions of
the base classifier fR(.) for different classes, with
color grey denoting the ‘reject’ class. The dot-
ted lines are the level sets of the Gaussian noise
distribution. Right: lower bound on top-class prob-
ability pA and that of “top-or-reject-class" pA+R,
used for upperbounding the probability of every
other class pB .

To the best of our knowledge, this is the first
work to robustify pretrained classifiers with sam-
ple rejection while providing certifiable accu-
racy. Key to our approach is to use a reject class,
realized through cheaply-trainable per-class re-
jectors, which are trained to reject noisy samples
whose prediction is inconsistent with the predic-
tion of the clean sample. Inevitably this can also
lead to a small number of correctly classified
samples to also get rejected, however, the over-
all certification radius with a pretrained denoiser
is improved since: (a) the reject class is used
to provide a lower (and tighter) upper bound on
the wrong class probabilities- see Fig. 1- and
subsequently (b) the lowered probability of the
runner-up class leads to higher certification ra-
dius due to its non-linear dependence via the
inverse Gaussian CDF function. See Fig. 2 for a
schematic of the proposed joint system.

2 Background and Related Work

2.1 Randomized smoothing

Consider a classification problem from Rd to classes Y := {1, 2, · · · ,K}. One can construct a
“smoothed” classifier g from an arbitrary base classifier f by defining [Cohen et al., 2019] g(x) :=
argmaxc∈Y πc where πc := P(f(x+ ϵ) = c) and ϵ ∼ N (0, σ2I). That is, the smoothed classifier g
returns the class that the base classifier f is most likely to return if the input x is perturbed under
Gaussian Noise ϵ ∼ N (0, σ2I). Let us also denote bounds on class probabilities by πc ≤ πc ≤ πc.

Certification: The main advantage of the well-known randomized-smoothing method is its inherent
capability in providing certifiable robustness against bounded ℓ2-norm worst-case perturbations.
Formally, for any deterministic or random function f : Rd → Y , suppose cA, cB ∈ Y are the top
and runner-up class respectively, and πA, πB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ πA ≥ πB ≥ max
c ̸=cA

P(f(x+ ϵ) = c).

Then Cohen et al. [2019] proved a tight verification bound as follows: g(x+δ) = cA for all ∥δ∥2 < ρ,
where ρ =

σ

2

(
Φ−1

(
πA

)
− Φ−1 (πB)

)
and Φ−1(.) is the inverse of the standard Gaussian CDF. In

practice, Monte Carlo (MC) sampling is used to estimate the class cA and a lower bound on its class
probability πA(MC). Using πB ≤ 1− πA(MC) yields certification radius ρ ≥ σΦ−1(πA(MC)).

2.2 Denoised smoothing for defending pretrained classifiers

Despite its simplicity, randomized smoothing is not, in general, directly effective on pretrained
classifiers. Specifically, performance of an off-the-shelf classifier can considerably deteriorate when
the input is subject to Gaussian noise (leading to small πA, and subsequently small certification radius
R), as standard classifiers, in general, are not trained to be robust against Gaussian perturbations.

In order to construct robust classifiers without altering the underlying weights of a given network
f(.), Salman et al. [2020] proposed to use an image denoisier as a pre-processing step before
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Figure 2: Schematic of the overall robust system consisting of the pretrained classifier f and denoiser
D, and trainable rejectors {hk}Kk=1.

passing inputs through f(.), where the denoiser aims at removing the Gaussian noise added to
the input. Concretely, this is done by augmenting the classifier f with a custom-trained denoiser
Dθ(.) : Rd → Rd, rendering the entire system as the composite function f ◦ Dθ : Rd → Y .
Such denoisers can be trained using various objectives subject to a varying level of complexity.
Minimizing the mean-square-error (MSE) loss of the reconstructed image as the simplest option
and the "stability" loss as a more expensive (to train) option are proposed, formulated respectively
as LMSE(θ) = Exi,ϵ

[
∥Dθ(xi + ϵ)− xi∥22

]
and Lstability(θ) = Exi,ϵ [ℓCE (F (Dθ (xi + ϵ)) , f (xi))]

where θ denotes trainable parameters of the denoiser, and the expectation is taken over data and noise.
Utilizing Lstability has proven to be successful, while best performance is achieved by imposing up-to
an order of magnitude increase in training time and complexity compared to using the MSE loss.

3 Denoised smoothing with sample rejection

In this work, we aim to improve certification accuracy of pretrained classifiers by incorporating an
explicit ‘reject’ class into the base classifier, while preserving the certifiability against worst-case
perturbations with bounded ℓ2-norm. To this end, let h : Rd → {0, 1} denote a general function
with binary outputs, which effectively ‘flags’ the input x if h(x) = 1, thus assigning it to the reject
class; while h(x) = 0 indicates allowing the input to pass and thus not rejecting it. In this work, we
introduce a novel algorithm to effectively train and operate such a ‘rejector’ in conjunction with
pretrained denoised smoothing in order to improve the robust performance of a pretrained classifier.

Base classifier with a rejection class: Let us denote K distinct binary classifiers by {hk}Kk=1,
which we also refer to as rejectors in this work. Together with the base classifier f , our proposed
base-classifier-with-rejection fR(x) : Rd → Y+, when queried at x, returns one of the classes in
Y+ := Y ∪ {R}, where class R denotes the reject class. Let us now formally define fR(.).

Definition. Consider f : Rd → Y to be any given deterministic or random classifier, together
with a collection of K deterministic or random binary classifiers, denoted by {hk}Kk=1 where
hk : Rd → {0, 1}. The base-classifier-with-rejection fR(x) : Rd → Y+ is defined as

fR(x) := (1− hf(x)(x))f(x) + hf(x)(x)R =

{
k if f(x) = k and hk(x) = 0

R if f(x) = k and hk(x) = 1
(1)

Smoothed classifier (without a rejection class) For a given base classifier fR(.), define

gR(x) := argmax
c∈Y

P
[
fR(x+ ϵ) = c

]
, (2)

where noise ϵ is sampled from Gaussian distribution with variance σ, i.e., ϵ ∼ N (0, σ2I). That is,
among the original classes in Y , the smoothed classifier returns the class that is mostly likely to be
returned by the base-classifier-with-rejection fR(.), excluding the rejection class R.

3.1 Certified Robustness

We prove that the smoothed classifier gR(.) defined in 2 is robust within the ℓ2 radius in Theorem 3.1.
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Theorem 3.1. Let fR : Rd → Y+ be any deterministic or random function, ϵ ∼ N (0, σ2I),
and let gR(.) be defined as in Eq. 2. Respectively, denote top and runner-up class probabilities
(exc. class R) as pA := P(fR(x + ϵ) = cA), pB := maxc/∈{cA,R} P(fR(x + ϵ) = c), and define
pA+R := P(fR(x + ϵ) ∈ {cA, R}). Suppose for cA ∈ Y , lower bounds pA, pA+R ∈ [0, 1] satisfy
pA ≥ pA ≥ pB and pA+R ≥ pA+R. Then gR(x+ δ) = cA for all ∥δ∥2 ≤ ρ, where

ρ =
σ

2

(
Φ−1

(
pA

)
+Φ−1

(
pA+R

))

𝜋!
𝑝!

𝑝! + 𝑝"

Figure 3: Inverse CDF of a stan-
dard Gaussian distribution.

Details of proof is delegated to Appendix 6.1 for brevity. It
is important to note that the claim of this Theorem is tightly
connected to the results in [Cohen et al., 2019]; while here
by utilizing the rejection class R, the upperbound pB ≤ 1 −
pA+R is employed. Furthermore, the intuition behind why this
can potentially lead to better certificatino radius is that proper
training and expressiveness of the rejectors can lead to pA +
pR > πA and, owing to the non-linearity of the inverse CDF
especially at large values, can lead to an improved radius if

Φ−1(pA,(MC)) + Φ−1(pA+R,(MC))

2
≥ Φ−1(πA,(MC)).

3.2 Sample rejection with denoised smoothing

The performance gap in empirical results between what an affordably trained denoiser and that of
the robustly trained baseline implies the limited capability of the joint denoiser-classifier system
in correctly classifying denoised inputs especially those subject to large noise. To alleviate the
performance loss in such cases, we propose to use the rejection capability in order to improve
network accuracy. Concretely, we aim at utilizing rejectors {hk}Kk=1 in blocking inputs likely to be
mis-classified by the following overall classification system:

gR(x) := argmax
c∈Y

P
[
fR(D(x+ ϵ)) = c

]
where ϵ ∈ N (0, σ2I). (3)

Practice. During inference, the image x will go through the following steps:

Algorithm 1 Prediction

PREDICT (S = {D, f, {hk}Kk=1}, σ, x,N, α)
count← SAMPLEUNDERNOISE (S, σ, x,N)
ĉA, ĉB ← top two indices in count
nA, nB ← count [ĉA], count[ĉB]
if BINOMPVALUE(nA, nA + nB , 0.5) ≤ α
then

return ĉA
else

return ABSTAIN
end if

(a) it is first perturbed by noise ϵ, (b) passes
through the image preprocessing (denoising)
step via D(x + ϵ), and (c) the resulting de-
noised image goes through fR(D(x+ ϵ)) as
in Eq. (1); (d) finally, the classification out-
put of the overall system (D, f, {hk}Kk=1) is
claimed as the most likely class over the noise
distribution (or it empirical realization via N
iid samples). The schematic in Fig. 2 de-
picts a visual placement of the components
S = {D, f, {hk}Kk=1}. Algorithm 1, 2 and 3
provide the pseudocode for the prediction and
certification (via MC-based class probability
lowerbounds) of the overall system, while training the rejectors in a scalable and stable manner is
detailed in Appendix 6.2.

Condition pA > pB is substituted by the more restrictive condition pA ≥ pA ≥ 1− pA − pR ≥ pB

which leads to pA >
1

2
(1 − pR), which if not met, the algorithm abstains from certification.

This is to be contrasted with πA > 1/2 in randomized smoothing [Cohen et al., 2019]. Function
LOWERCONFBOUND(s, n0, 1 − α) returns a one-sided (1 − α) lower confidence interval for the
Binomial parameter q given a sample s ∼ Binomial(n0, q), which similar to Cohen et al. [2019], has
been evaluated via Clopper–Pearson interval in the statsmodel package in Python directly. Subscript
MC has been dropped in Algorithm 2 for brevity of notation.
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Algorithm 2 Certification with MC-sampling

# certify the robustness of gR around x
CERTIFY (S = {D, f, {hk}Kk=1}, σ, x,N, α)

count← SAMPLEUNDERNOISE (S, σ, x,N)
ĉA ← top index in count
nA, nR ← count [ĉA], count [R]
pA ← LOWERCONFBOUND(nA, N, 1− α)
pR ← LOWERCONFBOUND(nR, N, 1− α)
pA+R ←LOWERCONFBOUND(nA + nR, N, 1− α)

if pA >
1

2
(1− pR) then

return ĉA , ρ̂ =
σ

2
(Φ−1(pA) + Φ−1(pA+R))

else
return ABSTAIN

end if

Algorithm 3 Sampling under
noise for the overall system
S = {D, f, {hk}Kk=1}

function SAMPLEUNDERNOISE
(S, x, n, σ)
Initialize count = [0, · · · , 0]K+1×1

for ν = 1, · · · , n do
sample noise ϵν ∈ N (0, σ2I)
k ← f(D(x+ ϵν))
if hk(D(x+ ϵν)) = 0 then

++ counts [k]
else

++ counts [R]
end if

end for
return count
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Figure 4: CIFAR10 certification results with DnCNN-based denoising
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Figure 5: CIFAR10 certification results with MemNet-based denoising

4 Experiments

In this section, we examine the performance of robustifying pretrained classifier using rejectors
with denoised smoothing on CIFAR10 dataset with ResNet110 as the base classifier, and comparing
our method with two baselines: randomized smoothing (serving as the upper-bound baseline) and
denoised smoothing (with two choices of denoiser architectures, namely DnCNN [Zhang et al., 2017]
and MemNet [Tai et al., 2017]), both of which have network weights publicly available. To test the
proposed Sample rejection with denoised smoothing, the classifier and denoiser architectures and
weights are considered given and fixed. Rejector network is implemented with a ResNet-34-like
backbone architecture with a 10-dimensional output, to realize the K = 10 rejector heads, trained
with 20 epochs and SGD optimizer; see App. 6.3 for detailed description of architectures and training.

Performance is reported in terms of certified accuracy in 4 and 5, scatter plots in 6, and training time
in 1 demonestrating the effective exploitation of the rejectors. Although certification accuracy of our
method is lower than expensive denoised smoothing baseline with stability objectives, our training
time is less than half of training a denoiser with stability loss – training a denoisier with MSE or MSE
and stability objective in addition to train the rejector is in total 2.78 to 6.8 hours while training a
denoiser with stability objective is 9.8 to 20.8 hours. Also, 6 plots the 2D-histograms corresponding
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Figure 6: 2D-histogram plots of distribution of the joint classification-rejection outcome in terms
of number-of-rejected vs. not-rejected top-class samples. Utilizing the rejection class helps the
summation of the two terms to approach the total number of N=10,000 draws (the x1 + x2 = N
diagonal line), which can help with improving the certification radius as discussed in Remark.

to the overall denoiser-classifier-rejector system in terms of number-of-rejected vs. top-class not-
rejected samples for DnCNN denoiser trained with the MSE-loss and fine-tuned with the stability
loss, exhibiting the utilization of the rejection class for large values of σ while demonestrating that
the summation of the two values approaches the total nomber of N = 10, 000 draws.

Table 1: Training time of different denoisers and rejectors. ‘+’ signs mean training time is in addition
to the previous rows’ times/epochs since they refer to fine-tuning and/or the rejectors’ training times.

Objective Epochs
Sec
per
Epoch

Total
Time
(hr)

DnCNN MSE 90 31 0.78
DnCNN +Stab +20 57 +0.32
DnCNN + Rejector +Reject. Obj. + 20 352 +1.94
DnCNN Stab. Obj. 600 59 9.80
MemNet MSE 90 85 2.13
MemNet +Stab +20 118 +0.66
MemNet + Rejector +Reject. Obj +20 546 +3.03
MemNet Stab. Obj. 600 125 20.83

5 Conclusions

In this work, we have proposed a novel algorithm for modeling and utilizing an ‘explicit reject‘ class
for robustifying pre-trained classifiers with denoised smoothing with certifiable guarantees. The reject
class, effectively realized through cheaply-trainable per-class rejectors, is successfully exploited
through MC sampling to reject noisy samples whose prediction is inconsistent with the prediction
of the clean sample. Thus, by reducing the number of not-rejected misclassified samples, natural
accuracy as well as the certification radius is shown to have substantially improved for inexpensive
denoisers. To the best of our knowledge, this is the first work to incorporate certifiable application of
rejection for robustifying pre-trained classifiers with denoised smoothing.
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6 Appendix

6.1 Proof of Theorem 3.1

Theorem [Restated] Let fR : Rd → Y+ be any deterministic or random function, ϵ ∼ N (0, σ2I),
and let gR(.) be defined as in Eq. 2. Suppose cA ∈ Y and pA, pA+R ∈ [0, 1] satisfy

P(fR(x+ ϵ) = cA) ≥ pA ≥ max
c ̸=cA,R

P(fR(x+ ϵ) = c)

P(fR(x+ ϵ) ∈ {cA, R}) ≥ pA+R.

Then gR(x+ δ) = cA for all ∥δ∥ ≤ R, where

R =
σ

2

(
Φ−1

(
pA

)
+Φ−1

(
pA+R

))
.

Proof. We need to prove that for ∥δ∥2 ≤ R, the classification outcome of gR(.) will not flip from
cA to any other class. According to the definition of gR(.) in Eq. (2), class R is never selected as its
outcome, thus it suffices to show

P(fR(x+ δ + ϵ) = cA) ≥ P(fR(x+ δ + ϵ) = c) ∀c /∈ {cA, R} (4)

where the probability is computed over the randomness of noise ϵ. As a direct result from the
certification guarantee in Cohen et al. [2019], this would hold for

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (5)

where pB ≥ pB = maxc/∈{cA,R} P(fR(x+ δ) = c) and cB = argmaxc/∈{cA,R} P(fR(x+ δ) = c).
Since we have

pA +
∑

c=1,..,K, c/∈{cA,R}

pc + pR = 1 (6)

it holds for cB = argmaxc/∈{cA,R} P(fR(x+ δ) = c) that

P(fR(x+ δ) = cB) = 1− pR − pA −
∑

c/∈{cA,cB ,R}

pc ≤ 1− pA+R

and so the right-hand-side of the inequality serves as an upper bound on pB . Substituting this into Eq.
5 one can get

R ≥ σ

2
(Φ−1(pA)− Φ−1(pB)) ≥

σ

2
(Φ−1(pA) + Φ−1(pA+R))

where we have used Φ−1(1− z) = −Φ−1(z).

6.2 Training the rejectors

In this work, we have assumed that a pretrained classifier along with an affordably pretrained denoiser
are given to enable robustness and certification of the given classifier. The goal is to utilize rejectors
{hk}k with inexpensive/affordable training to increase the robustness certification of the joint system.

As the proposed procedure suggests, an ideal rejector hk() is the one that can successfully discriminate
between the correctly classified and mis-classified denoised inputs that are assigned to class k by the
base classifier f(.). Thus, we propose to train these networks according to this objective. Concretely,
with ℓBCE denoting binary cross-entropy loss, define the classification loss for rejector hk as

LΩk
(xi, ϵ) = ℓBCE(Hk(D(xi + ϵ)), bi) (7)

where Hk is the sigmoid outputs of rejector k, and the target label bi for image xi is defined as

bi := 1{f(D(xi+ϵ)) ̸=f(xi)} (8)

where 1{.} is the indicator function. That is bi = 0 if the classifier f has classified denoised input
D(xi+ ϵ) to the same class as that of the noise-free image f(xi), and bi = 1 otherwise, thus rejecting
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the noisy images whose classification outcome has changed. 2 Capturing the set of parameters of
all the K rejectors by Ω := {Ω1, · · · ,ΩK} , total loss aggregated over the entire set of data with all
possible K classes yields

Lrejection(Ω) := Exi,ϵ

K∑
k=1

1f(xi)=k LΩk
(xi, ϵ) . (9)

In order to make the training more affordable, we propose to tie the K rejectors through a shared
backbone hBB, parameterized by ΩBB and define each hk by adding a fully-connected layer param-
eterized by ωk to the features extracted via the backbone network; see Fig. 2. This renders the
minimization of Lrejection w.r.t. Ω = {ΩBB , ω1, · · · , ωK} upon approximation by empirical mean
over the dataset and T ≥ 1 realizations of Gaussian noise to simplify to

min
{ΩBB,ω1,··· ,ωK}

Exi,ϵ

K∑
k=1

1{f(xi)=k} LΩBB,ωk
(xi, ϵ) ≡

min
{ΩBB,ω1,··· ,ωK}

1

NT

N∑
i=1

T∑
t=1

K∑
k=1

1{f(xi)=k} LΩBB,ωk
(xi, ϵt).

6.3 Experiment details

Randomized smoothing with training classifiers against Gaussian perturbations. The work of
[Cohen et al., 2019] obtains the classifier by training its weights with augmented input images with
Gaussian noise. This method serves as the upper-bound baseline in robustifying pretrained networks,
as the pretrained classifier’s weights are given and cannot be altered while randomized smoothing
optimizes those.

Denoised smoothing. [Salman et al., 2020] uses a trainable denoiser and trains it with the (i)
MSE loss that is fast to train (0.78 to 3 hours of training), (2) MSE loss then fine-tuning by the
‘classification-stability’ loss (total of 1 to 3.8 hours of training), and (3) the ‘classification-stability’
loss (9.8 to 20.8 hours of training). While the last objective gives the highest performance, it takes
almost an order of magnitude longer to train compared to other objectives, with up to training 600
epochs as proposed by the authors. Two choices of recent denoiser architecture, namely DnCNN
[Zhang et al., 2017] and MemNet [Tai et al., 2017], have been tested, the choice of which influences
the training time. We utilize the weights shared by the authors under MIT License and take the best
performing selection of training hyperparameters per denoiser architecture and noise parameter σ.

Our method. In this setup, we assume that the classifier and denoiser architectures and weights are
given and cannot be changed. In order to verify the effectiveness of the proposed method with sample
rejection, we augment the system consisting of the classifier and denoiser with a rejector network
hΩ(.) with a ResNet-34-like backbone architecture, followed by 3 layers of fully connected (FC)
layers with a 10-dimensional output, to realize the K = 10 rejector heads3, given the 10 classes in
the CIFAR10 dataset. Additionally, we have adjusted the architecture of the backbone slightly so that
mid-layer features of the classification network f(.) are concatenated with the mid-layer features of
the rejector right after each of the 4 "blocks" in the Resnet architectures, and are fed forward into the
rejector network. We have found that explicit use of classifier features yields empirical advantage,
while it is important to note that the gradient does not flow backwards into the classifier architecture
as the weights of network f(.) are fixed.

We train the hΩ(.) network with a total of 20 epochs where the first 5 epochs utilize Adam optimizer
with 1e−4 learning rate, followed by an SGD optimizer that starts with learning rate of 1e-3 and drops
by a factor of 10 every 5 epochs. We train a rejector for every denoiser given by denoised-smoothing
[Salman et al., 2020] as discussed above.

2It is interesting to note that there are similarities between this loss definition and that of the classification
stability Lstability in 2.2. One could also define target bi according to the ground-truth class yi, however, this
would impose a harder criteria, which is more difficult to aim for, as also observed in the training the denoiser in
[Salman et al., 2020].

3One should consider the first two layers of the 3-layer FC network as part of the backbone network, and
view the last FC layer as the independently trained K heads
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Certification accuracy and training time

For a given (classifier f , denoiser D, rejector hΩ), the certified radii of CIFAR10 test set are calculated
using the Theorem 3.1 for α = 0.01 and N = 10, 000, and the certification curves are plotted by
calculating the percentage of the data points whose radii are larger than the given ℓ2-radius.

The experiments are carried out for σ ∈ {0.25, 0.50, 1.00}, and the results are plotted in Figures 4
and 5 for DnCNN and MemNet denoiser architectures, respectively. For higher resolution copies of
these plots together with additional choice of σ = 0.12 see Appendix 6.4. We chose T = 20, leading
to a per-epoch training-time of 350 seconds for the DnCNN-based denoisers and 540 seconds for the
MemNet-based denoisers, respectively; See Table. (1) for detailed training-time comparisons, and 9
for ablation study on T . Fig. 4 and 5 demonestrate that for both denoiser architectures, the proposed
method with rejection has better certification accuracy (except for σ = 1.0 with MemNet and MSE
objective). With σ being 0.25 or 0.5, the gain of certified accuracy with rejection is more significant
especially at radius 0. This shows that by adding the rejector, the clean accuracy of the smoothed
classifier gR(.) in Eq. (2) is better than the base classifier f(.). Such increase of clean accuracy also
helps increase certification radii since larger pA+R will lead to larger radii as in Theorem 3.1.

Since the proposed randomized smoothing with sample rejection utilizes pretrained denoisers, making
direct comparison difficult, we emphasize that the point to demonstrate through empirical results
is the additional gain that can be obtained by utilizing a reject class on a denoised classifier. Our
method can specifically improve cheaply trained denoisers and improve their performance without
imposing a large computational cost; see Table (1) for training-times.

Although certification accuracy of our method is lower than denoised smoothing baseline with
stability objectives, our training time is less than half of training a denoiser with stability loss –
training a denoisier with MSE or MSE and stability objective in addition to train the rejector is in
total 2.78 to 6.8 hours while training a denoiser with stability objective is 9.8 to 20.8 hours.

Furthermore, Fig. 6 plots the 2D-histograms corresponding to the overall denoiser-classifier-rejector
system in terms of number-of-rejected vs. top-class not-rejected samples for the publicly available
DnCNN denoiser architecture trained with the MSE-loss and fine-tuned with the stability loss, for
various values of σ. The plots shows that indeed, by utilizing the rejector, as expected and discussed
in Figure 1 and Remark in Section 3.1„ the total number of the samples in the top-class (not-rejected)
and the reject-class lie close to the diagonal line x1 + x2 = N where N = 10, 000, especially for
larger σ, giving high values for the (lower-bounds of) pA+R, leading to an improved certified radius.

6.4 Certification radius plots

Figures 7 and 8 plot the results on CIFAR10 as discussed in Section 4 with higher resolution together
with the additional choice of σ = 0.12 (which was omitted from the main body due to space
limitation).

6.5 Experiments- Ablation on varying T

Ablation study on number of noise realizations T in empirical approximation of the training loss
for training the rejector is presented here in Fig. 9. For these experiments, the best DnCNN-
based denoiser from [Salman et al., 2020] trained with the MSE-loss and fine-tuned by the stability
loss was selected. training parameters of the rejectors is selected as explained in Section 5 while
T ∈ 4, 6, 10, 20.
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Figure 7: CIFAR10 certification results with DnCNN-based denoising
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Figure 8: CIFAR10 certification results with MemNet-based denoising
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Figure 9: Ablation study on number of noise realizations T in empirical approximation of the training
loss.
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