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Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models
with Modality-Aware Sparsity
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Abstract

State Space Models (SSMs) have emerged as effi-
cient alternatives to Transformers for sequential
modeling, but their inability to leverage modality-
specific features limits their performance in multi-
modal pretraining. Here, we propose Mixture-
of-Mamba, a novel SSM architecture that intro-
duces modality-aware sparsity through modality-
specific parameterization of the Mamba block.
Building on Mixture-of-Transformers (W. Liang
et al. arXiv:2411.04996; 2024), we extend the
benefits of modality-aware sparsity to SSMs while
preserving their computational efficiency. We
evaluate Mixture-of-Mamba across three multi-
modal pretraining settings: Transfusion (inter-
leaved text and continuous image tokens with
diffusion loss), Chameleon (interleaved text
and discrete image tokens), and an extended
three-modality framework incorporating speech.
Mixture-of-Mamba consistently reaches the same
loss values at earlier training steps with signifi-
cantly reduced computational costs. In the Trans-
fusion setting, Mixture-of-Mamba achieves equiv-
alent image loss using only 34.76% of the training
FLOPs at the 1.4B scale. In the Chameleon set-
ting, Mixture-of-Mamba reaches similar image
loss with just 42.50% of the FLOPs at the 1.4B
scale, and similar text loss with just 65.40% of
the FLOPs. In the three-modality setting, MoM
matches speech loss at 24.80% of the FLOPs at
the 1.4B scale. Our ablation study highlights the
synergistic effects of decoupling projection com-
ponents, where joint decoupling yields greater
gains than individual modifications. These results
establish modality-aware sparsity as a versatile
and effective design principle, extending its im-
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pact from Transformers to SSMs and setting new
benchmarks in multi-modal pretraining.

1. Introduction
State Space Models (SSMs) (Gu et al., 2021; Gu & Dao,
2023) have emerged as efficient alternatives to Transform-
ers for sequential modeling, offering linear scaling in se-
quence length and strong performance in single-modality
tasks. Mamba, a recent SSM variant, has demonstrated
exceptional efficiency and scalability across diverse tasks
by leveraging advanced gating mechanisms and selective
state-space scanning (Gu & Dao, 2023). Despite these ad-
vantages, SSMs, including Mamba, remain inherently dense,
applying the same set of parameters across all input tokens,
regardless of modality. This uniform parameterization limits
their ability to capture modality-specific features, leading to
suboptimal performance in multi-modal pretraining.

Recent efforts have extended SSMs to multi-modal tasks.
Works like VLMamba (Qiao et al., 2024) and Cobra (Zhao
et al., 2024) augment Mamba for vision-language modeling
by adding LLaVA-style projection modules that map image
features into the token space of Mamba. In the vision do-
main, Vision Mamba (Zhu et al., 2024) and VMamba (Liu
et al., 2024c) incorporate bidirectional scanning schemes
and selective 2D scanning paths for image patch modeling.
Similarly, Mamba has been explored for diffusion-based im-
age and video generation, as seen in DiffuSSM (Yan et al.,
2024) and Zigma (Hu et al., 2024), which employ unique
state-space scanning patterns. While these approaches
demonstrate the adaptability of Mamba, they are orthogonal
to our focus, which introduces modality-aware sparsity
directly into the Mamba block itself.

A promising approach to address such limitations is model
sparsity, exemplified by Mixture-of-Experts (MoE) (Jacobs
et al., 1991; Eigen et al., 2013; Shazeer et al., 2017; Lep-
ikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024;
Sukhbaatar et al., 2024). MoE reduces computational load
by activating only a subset of model components for each
input token, allowing experts to specialize in specific as-
pects of the data. Despite its potential, MoE-based architec-
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tures face challenges such as imbalanced expert utilization,
bi-level optimization instability, and inefficient load balanc-
ing (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2022). These issues motivate the need for alternative sparse
architectures that are computationally efficient and easier to
optimize.

In multi-modal contexts, prior work (Bao et al., 2022b;
Wang et al., 2022; Shen et al., 2023; Lin et al., 2024) has
introduced modality-aware sparsity in Transformer-based
MoE architectures. These approaches activate specific ex-
perts or parameters based on modality, enabling models to
specialize in handling diverse data types. Other methods
fine-tune modality-specific modules atop dense LLM back-
bones (Wang et al., 2023; He et al., 2024). Such methods
show that simple rule-based modality routing often out-
performs learned routing, likely due to improved training
stability and reduced optimization challenges.

The closest work to our approach is MoE-Mamba (Pióro
et al., 2024) and the related Blackmamba architecture (An-
thony et al., 2024), which interleave Mamba blocks with
MoE-augmented MLP layers. While effective, these hy-
brid designs apply sparsity only to the MLP layers, leav-
ing the dense Mamba blocks unmodified. In contrast, we
present Mixture-of-Mamba, a novel architecture that di-
rectly introduces modality-aware sparsity into the Mamba
block itself. Inspired by Mixture-of-Transformers (Liang
et al., 2024), our approach dynamically selects modality-
specific weights in every input processing component of
Mamba, enabling stable and efficient multi-modal pretrain-
ing. Furthermore, prior work (Liang et al., 2024) shows
that MoE techniques can complement sparse architectures
like Mixture-of-Transformers, suggesting that Mixture-of-
Mamba and MoE-based MLP sparsification can be com-
bined to achieve further gains.

To rigorously evaluate Mixture-of-Mamba, we conduct ex-
periments across three multi-modal pretraining settings:

• Transfusion: Interleaved text and continuous image
tokens with distinct autoregressive and diffusion-based
objectives. Mixture-of-Mamba achieves equivalent
image loss using only 34.76% of the training FLOPs
at the 1.4B scale.

• Chameleon: Interleaved text and discrete image to-
kens. Mixture-of-Mamba reaches similar image loss
with just 42.50% of the FLOPs and similar text loss
with only 65.40% of the FLOPs at the 1.4B scale.

• Three-Modality: Extension of the Chameleon setting
to include speech. Mixture-of-Mamba matches speech
loss using only 24.80% of the FLOPs at the 1.4B scale,
while maintaining strong performance across image
and text modalities.

Figure 1. Multi-modal pretraining on interleaved text and im-
age data. Training loss on the image modality is shown for mod-
els with 1.4B parameters: Mamba Dense (cyan), Flex-Attention
Transformer (dark gray), and Mixture-of-Mamba (orange). The
Mixture-of-Mamba achieves significantly lower training loss and
requires 2.5x fewer training steps (indicated by the green arrow)
to reach the same loss level as the other baselines.

Additionally, we perform an ablation study to analyze the
contribution of modality-specific parameterization. Our find-
ings reveal a synergistic effect: jointly decoupling all com-
ponents yields greater gains than individual modifications,
underscoring the importance of modality-aware sparsity as
a holistic design principle.

In summary, Mixture-of-Mamba establishes a versatile and
efficient architecture for SSMs by extending modality-aware
sparsity into the Mamba block. This approach delivers
robust performance gains and substantial computational
savings across diverse multi-modal settings, setting new
benchmarks in scalable multi-modal pretraining.

2. Method
2.1. The Mixture-of-Mamba Block

Our hypothesis is that explicitly parametrizing the selection
in SSMs with the modality can improve the data efficiency
of multi-modality training (Liang et al., 2024).

Following the setting of other SSMs (Gu et al., 2021),
Mixture-of-Mamba is composed of homogeneous Mixture-
of-Mamba blocks (line 1-13 of Algorithm 1).

In Mixture-of-Mamba, modality-specific parameterization
is applied to all projections that explicitly process input fea-
tures belonging to a single modality, including input projec-
tion (➊ Win proj), intermediate projections (➋ Wx proj and
➌ Wdt proj), and output projection (➍ Wout proj). Conv1D
and state transitions A remain shared because they oper-
ate across multiple features or on aggregated RNN-like
states, where the notion of modality is not well-defined. Af-
ter parametrized by modality M , the linear transformation
XW + b becomesM(X,W, b;M).M applies the weight
of modality m (Wm) to tokens of modality m (Xm) in par-
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Algorithm 1 Mixture-of-Mamba block

input Fin, A,Win proj ,Wx proj ,Wdt proj ,Wout proj , b,M
output Fout

1: x, z ←M(Fin,Win proj ;M) ▷ Block starts
2: u← SiLU(Conv1D(x)) ▷ [b,ℓ,d]
3: δ,B,C ←M(u,Wx proj ;M) ▷ [b,ℓ,(r,n,n)]
4: ∆← log(1 + exp((M(δ,Wdt proj , b;M))))
5: A← ∆ ∗A ▷ [b,ℓ,d,n]
6: B ← ∆ ∗ (u×B) ▷ [b,ℓ,d,n]
7: h = 0 ▷ [b,d,n]
8: for i = 0...N − 1 do
9: h = h ∗Ai +Bi ▷ [b,d,n]

10: yi = h · Ci ▷ [b,d]
11: end for
12: o← (y + u) ∗ SiLU(z)
13: Fout ←M(o,Wout proj ;M) ▷ Block ends
14:
15: functionM(X,W, b = None;M)
16: for each modality m ∈M do
17: Im ← {i : mi = m}
18: Xm ← {xi : i ∈ Im}
19: Ym ← XmWm + bm
20: end for
21: return Y ← ∪m∈MYm

22: end function

allel based on the modality mask. The output shape ofM
is the same as the corresponding linear transformation.

The shape of Win proj is [f,(d,d)] where f is the feature
dimension of input Fin and d is the expanded feature dimen-
sion. These two projections are fused together for efficiency
and Wx proj uses the same technique. Line 1, 12 and 13
can be viewed as a SwiGLU (Shazeer, 2020) around the
conv+SSM (Line 2-12). x is passed to conv+SSM and z
will be transformed to the gate in SwiGLU.

The Conv1D in Line 2 can help collect local information
across time as observed in (Sun et al., 2024). Similarly,
Conv1D can also gather local information across modali-
ties and we keep the weight-sharing property of convolu-
tion without separating the convolution kernel into different
modalities.

Line 3-12 is multi-modality selective SSM. It is composed
of parameter preparation (line 3-6), RNN update (line 7-11),
and residual connection (line 12).

∆ is the discretization time step. It is derived from u through
a low-rank approximation u → δ → ∆ followed by a
softplus as shown in Line 3 and 4. A is of shape [d,n]
and ∆ is of shape [b,ℓ,d] where b is batch size, ℓ is sequence
length, and n is the state dimension. Line 5 is a broad-
cast element-wise multiplication where ∆ is unsqueezed
to [b,ℓ,d,1] and repeated to [b,ℓ,d,n]. Line 6 first applies

Figure 2. Comparison of (a) the original Mamba block and (b)
the proposed Mixture-of-Mamba block. In Mixture-of-Mamba,
modality-specific parameterization is applied to all projections that
explicitly process input features belonging to a single modality, in-
cluding input projection (➊ Win proj), intermediate projections (➋
Wx proj and ➌ Wdt proj), and output projection (➍ Wout proj).
Conv1D and state transitions A remain shared because they op-
erate across multiple features or on aggregated RNN-like states,
where the notion of modality is not well-defined. By selectively
decoupling these projections, Mixture-of-Mamba enables modality-
aware sparsity without compromising computational efficiency.

a batched outer product between u [b,ℓ,d] and B [b,ℓ,n]
whose result is element-wise multiplied with ∆. Line 5 and
6 apply the selection to A,B and get Ā, B̄, respectively. B̄
can be viewed as a gated input u and Ā can be viewed as a
selection gate on the state h.

Line 7-10 is a typical RNN operator with state h and output
yi. The yi’s are concatenated together as output y. The
gate application on input u is fused with gate parameter
preparation at line 6 for efficiency.

Line 12 first adds the input u to the output y as residual,
which is the final output of SSM. Then, Line 12 applies the
gate of “SwiGLU” to the output of SSM. Finally, line 13
projects o back to the feature dimension.

2.2. Multi-objective Training with Diffusion

Following Transfusion (Zhou et al., 2024), Mixture-of-
Mamba is trained on interleaved multi-modal sequences
of discrete text tokens and continuous image tokens using
a combined objective that incorporates both language mod-
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eling and diffusion-based image generation. Each image is
encoded as a sequence of latent patches using a Variational
Autoencoder (VAE), where each patch is represented as a
continuous vector. The patches are sequenced left-to-right,
top-to-bottom, and inserted into the discrete text sequence.

The diffusion process follows the Denoising Diffusion Prob-
abilistic Models (DDPM) (Ho et al., 2020), where Gaussian
noise is progressively added to the latent image patches dur-
ing the forward process. Given a clean latent patch x0, a
noised version xt at timestep t is created as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ᾱt is determined by a cosine noise schedule (Nichol
& Dhariwal, 2021), approximated as

√
ᾱt ≈ cos( t

T ·
π
2 )

with adjustments. During training, noise is added to the
latent patches at a randomly selected timestep t, and the
model is optimized to predict the noise ϵ.

The overall training objective combines the autoregressive
language modeling loss LLM, applied to the discrete text
tokens, with the diffusion loss LDDPM, applied to the latent
image patches:

L = LLM + λ · LDDPM, (2)

where λ balances the contributions of the two losses.

Critically, the conditioning for image generation is naturally
embedded within the interleaved sequence. When denoising
image patches, the preceding tokens—including both text
describing the image and prior images—serve as context
for conditional generation. This unified approach enables
Mixture-of-Mamba to leverage the modality-aware sparsity
to efficiently model both local intra-image dependencies and
long-range inter-modal relationships across the sequence.

2.3. Training with Uniform Representations

As an alternative to the multi-objective training paradigm,
we explore a unified representation strategy in which both
text and image modalities are represented as discrete tokens.
Following the Chameleon framework (Chameleon Team,
2024), we treat the image data as sequences of discrete to-
kens obtained through a pre-trained VQ-VAE model (Gafni
et al., 2022). Specifically, each image is encoded into a
fixed number of tokens (e.g., 1,024) by quantizing its latent
features into a learned codebook. These tokens are then ar-
ranged sequentially, similar to the processing of text tokens,
resulting in a uniform discrete representation across both
modalities.

During training, both text and image tokens are processed
using the same autoregressive objective, where the model
learns to predict the next token in the sequence given all
previous tokens. Formally, the training objective is:

Luniform = Ex1:T
[− logP (xt | x1:t−1)] , (3)

where x1:T represents the interleaved sequence of text and
image tokens. This objective allows the model to treat text
and image data equivalently, unifying the training process
across modalities while relying solely on an autoregressive
loss. The use of discrete tokens for images simplifies the
training procedure by removing the need for separate loss
formulations, as in the diffusion-based approach. It also
aligns with the inherent sequence-to-sequence nature of
Mixture-of-Mamba, where the same modality-aware spar-
sity design can be applied seamlessly across the discrete
text and image tokens.

Motivation and Robustness Testing. We include this al-
ternative strategy to evaluate the robustness of our Mixture-
of-Mamba architecture under different choices of train-
ing objectives and data representations. By experiment-
ing with uniform discrete representations, we demonstrate
that Mixture-of-Mamba consistently outperforms Mamba
Dense models across various settings, including both con-
tinuous (multi-objective) and discrete (uniform) representa-
tions. This highlights the versatility of Mixture-of-Mamba
and its ability to deliver performance gains regardless of the
underlying choice of modality representations or training
objectives.

3. Results
3.1. Results in Multi-objective Training (Transfusion)

We evaluate Mixture-of-Mamba (MoM) against Mamba
Dense and Flex-Attention Transformer in the Transfusion
setting, where pretraining is performed on interleaved text
and image data across three model scales: 163M, 760M, and
1.4B. See our training configuration in Appendix Table 5.
Performance gain is quantified as:

Performance Gain (%) =
LossDense − LossMixture

LossDense
× 100,

where LossDense and LossMixture are the final losses of
Mamba Dense and Mixture-of-Mamba, respectively. Rela-
tive training FLOPs reflect the computational cost required
for MoM to match the training dynamics (similar loss) of
Mamba Dense. The detailed results are summarized in Ta-
ble 1 and Figure 3, with further visualizations provided in
Appendix Figures 4, 5, and 6.1

1Flex-Attention Transformer (i.e., Transfusion (Zhou et al.,
2024)) combines both attention patterns by applying causal atten-
tion to every element in the sequence and bidirectional attention
within the elements of each individual image. This makes Flex-
Attention Transformer an overestimated baseline for transformers
because both Mamba and Mixture-of-Mamba are strictly causal
across all elements, while Flex-Attention Transformer benefits
from bidirectional attention within images.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models with Modality-Aware Sparsity

(a) 1.4B Image Training Loss (b) 1.4B Image Loss Matching
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(c) 1.4B Text Training Loss
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(d) 1.4B Text Loss Matching
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(e) 760M Image Training Loss
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(f) 760M Image Loss Matching
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(g) 760M Text Training Loss
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(h) 760M Text Loss Matching

0 250000
Training Steps

0.22

0.23

0.24

0.25

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(i) 163M Image Training Loss
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(j) 163M Image Loss Matching
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(k) 163M Text Training Loss
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(l) 163M Text Loss Matching

Figure 3. Multi-modal pretraining in the Transfusion setting on interleaved text and image data across model scales. Training loss
and loss matching are reported for image and text modalities at three model sizes: 1.4B, 760M, and 163M. (a, e, i) Image training loss
shows significant improvements for Mixture-of-Mamba (orange), which consistently achieves lower loss compared to Mamba Dense
(cyan) and Flex-Attention Transformer (dark gray) across all scales. (b, f, j) Image loss matching compares the training dynamics and
shows that Mixture-of-Mamba and Flex-Attention Transformer reach the same loss values at earlier training steps compared to Mamba
Dense. (c, g, k) Text training loss shows competitive results, with Mixture-of-Mamba performing better than Mamba Dense and on par
with the Flex-Attention Transformer. (d, h, l) Text loss matching illustrates that Mixture-of-Mamba and Flex-Attention Transformer
exhibit more efficient training dynamics than Mamba Dense, requiring fewer steps to achieve comparable loss values, though the primary
improvements are observed in the image modality. Overall, in the Transfusion setting, Mixture-of-Mamba demonstrates substantial gains
in image loss and training efficiency while maintaining strong performance on text.

Image Modality. Mixture-of-Mamba (MoM) consistently
demonstrates superior performance in image modality
training loss across all model scales. At the 1.4B scale,
MoM achieves a training loss of 0.2138, outperforming
Mamba Dense by 2.20% while requiring only 34.76% of
the training FLOPs. Similar trends are observed at smaller
scales: at the 760M scale, MoM achieves a training loss of
0.2172, a 2.37% improvement over Mamba Dense, while
reducing training FLOPs to 37.76%.

The validation loss curves on the CC12M dataset ((Table 1,
Appendix Figure 5) further illustrate these trends. Mixture-
of-Mamba consistently achieves lower image validation
loss compared to Mamba Dense and Flex-Attention Trans-
former, with the improvements becoming more pronounced
as model size increases. Additionally, loss matching curves
demonstrate that MoM reaches equivalent loss values at
earlier training steps, highlighting its improved training effi-
ciency.

Text Modality. In the text modality, Mixture-of-Mamba
consistently outperforms Mamba Dense across both train-
ing and validation metrics. At the 1.4B scale, MoM
achieves lower validation losses on both the C4 (2.2695)
and Wikipedia (1.7164) datasets compared to Mamba Dense,
despite their similar training losses. This indicates better
generalization to unseen text data. Importantly, MoM also
performs comparably to or better than Flex-Attention Trans-
former, particularly on validation losses, as shown in Ap-
pendix Figure 4. Similar trends are observed at smaller
scales (760M and 163M), where MoM reduces validation
losses while maintaining high training efficiency.

Loss matching results in Appendix Figure 4 (b, f, j) confirm
that Mixture-of-Mamba aligns closely with or surpasses
Mamba Dense, reaching comparable loss values earlier dur-
ing training. These improvements highlight MoM’s strong
performance in text tasks while maintaining its computa-
tional efficiency.
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Model
Scale

Metric
Category Metric Name Mamba

Loss (↓)

Flex-Attention
Transformer

Loss (↓)

Mixture-of-
Mamba
Loss (↓)

Performance
Gain over

Mamba (%) (↑)

Relative Training
FLOPs to Match
Mamba (%) (↓)

163M

Image Metrics Training Loss 0.2262 0.2250 0.2199 2.80% 49.21%
CC12M Val. Loss 0.2295 0.2293 0.2255 1.74% 50.61%

Text Metrics
Avg Training Loss 2.4702 2.4424 2.4690 0.05% 98.80%

C4 Val. Loss 2.6917 2.6862 2.6912 0.02% 99.88%
Wikipedia Val. Loss 2.1884 2.1715 2.1870 0.06% 99.81%

Overall Train Avg Loss 3.6014 3.5674 3.5685 0.91% 86.11%

760M

Image Metrics Training Loss 0.2225 0.2213 0.2172 2.37% 37.76%
CC12M Val. Loss 0.2272 0.2253 0.2201 3.13% 35.27%

Text Metrics
Avg Training Loss 2.1394 2.1253 2.1353 0.19% 96.82%

C4 Val. Loss 2.3593 2.3559 2.3555 0.16% 99.01%
Wikipedia Val. Loss 1.8191 1.8143 1.8149 0.23% 99.11%

Overall Train Avg Loss 3.2519 3.2318 3.2214 0.94% 82.94%

1.4B

Image Metrics Training Loss 0.2186 0.2221 0.2138 2.20% 34.76%
CC12M Val. Loss 0.2264 0.2247 0.2190 3.29% 36.15%

Text Metrics
Avg Training Loss 2.0761 2.0673 2.0737 0.12% 98.27%

C4 Val. Loss 2.2726 2.2728 2.2695 0.13% 99.34%
Wikipedia Val. Loss 1.7205 1.7218 1.7164 0.24% 99.30%

Overall Train Avg Loss 3.1693 3.1777 3.1429 0.84% 83.10%

Table 1. Training and validation metrics across model scales in the Transfusion setting. Loss values are reported for image and text
modalities at three model sizes: 163M, 760M, and 1.4B. Mixture-of-Mamba consistently achieves competitive or superior performance
in image metrics and maintains strong text performance compared to Mamba Dense and Flex-Attention Transformer. The table also
reports relative training FLOPs required for Mixture-of-Mamba and Flex-Attention Transformer to match Mamba’s training dynamics,
highlighting improved training efficiency. Best loss values in each row are highlighted.

Overall Performance and Efficiency. Across both image
and text modalities, Mixture-of-Mamba consistently out-
performs Mamba Dense in terms of loss reduction while
requiring significantly fewer training FLOPs to achieve sim-
ilar learning dynamics. At the 1.4B scale, MoM improves
the overall training loss by 0.84% while requiring only
83.10% of the training FLOPs. At smaller scales, such as
760M and 163M, MoM reduces the overall training loss
by up to 0.94%, while requiring just 82.94% and 86.11%
of the FLOPs, respectively (Table 1, Appendix Figure 6).
These results, summarized in Table 1 and Figure 3, and
further supported by Appendix Figures 4, 5, and 6, under-
scoring MoM’s effectiveness, scalability, and efficiency in
the Transfusion setting.

3.2. Results in Training with Uniform Representations
(Chameleon)

We evaluate Mixture-of-Mamba (MoM) in the Chameleon
setting, where both image and text modalities are repre-
sented as discrete tokens. See our training configuration in
Appendix Table 6. Results are summarized in Table 2, with
full results across all five scales (37M, 94M, 443M, 880M,
and 1.5B) provided in Appendix Table 7. Training dynam-
ics and validation loss trends are visualized in Appendix
Figures 7, 8, and 9.

Image Modality. Mixture-of-Mamba (MoM) consistently
demonstrates better performance in image modality train-
ing loss across all model scales, achieving substantial effi-
ciency gains over Mamba Dense. At the 443M scale, MoM
achieves a training loss of 5.1703, a 3.46% improvement
over Mamba Dense, while requiring only 33.40% of the
training FLOPs. Similar trends are observed at other scales:
at the largest 1.5B scale, MoM achieves a training loss of
5.0591, a 2.51% improvement, with only 42.50% of the
training FLOPs. At the smallest 37M scale, MoM reduces
training loss to 5.9561, outperforming Mamba Dense by
2.85% while requiring just 25.90% of the FLOPs (Ap-
pendix Table 7). These results highlight MoM’s ability to
achieve improved performance and convergence efficiency
consistently in the image modality across all model scales.

Text Modality. Mixture-of-Mamba (MoM) demonstrates
consistent improvements in text modality training loss
across all model scales. At the largest 1.5B scale, MoM
reduces training loss to 2.1614, a 3.01% improvement over
Mamba Dense, while requiring only 65.40% of the train-
ing FLOPs. Validation loss on Obelisc and SSTK datasets
exhibits similar trends, with MoM achieving notable im-
provements in loss values while maintaining significant ef-
ficiency gains (Appendix Figures 8 and 9). These results
further highlight MoM’s ability to deliver strong text perfor-
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Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

Table 2. Training and validation metrics across model scales in the Chameleon setting. In this setting, both image and text modalities
are represented as discrete tokens. Mixture-of-Mamba achieves substantial performance improvements over Mamba Dense, with the
image modality showing the largest gains. The text modality also exhibits significant improvements, in contrast to the Transfusion
setting where text gains were more modest. The current table shows results for three model scales: 443M, 880M, and 1.5B, due to space
constraints. See Appendix Table 7 for the full results across all five model scales: 37M, 94M, 443M, 880M, and 1.5B. These results
further highlight the effectiveness and efficiency of Mixture-of-Mamba, which consistently achieves strong performance with reduced
relative training FLOPs.

mance with improved convergence efficiency. These results
highlight Mixture-of-Mamba’s robust and efficient improve-
ments in the Chameleon setting across both image and text
modalities, with substantial computational savings.

3.3. Results in Training with Three Modalities
(Chameleon+Speech)

To evaluate the robustness and scalability of Mixture-of-
Mamba (MoM), we extend the Chameleon framework to
include a third modality: speech, alongside image and text,
with all modalities represented as discrete tokens. Speech
data is tokenized using an in-house tokenizer, a variant of
DinoSR (Liu et al., 2024a), which extracts semantic tokens
with a vocabulary size of 500, where each token corresponds
to 40ms of audio content. Results are summarized in Table 3,
with additional training dynamics and evaluation loss trends
visualized in Appendix Figures 11, 12, 13, and 14.

Speech Modality. Mixture-of-Mamba (MoM) achieves
substantial improvements in speech modality training loss

across all model scales. At the 443M scale, MoM improves
speech training loss by 7.14% compared to Mamba Dense.
To match the training loss achieved by Mamba Dense, MoM
requires only 19.20% of the training FLOPs, demonstrating
significant efficiency gains. Similar trends hold at the largest
1.5B scale, where MoM achieves a 5.75% improvement in
speech training loss and matches Mamba Dense’s loss with
just 24.80% of the training FLOPs.

Overall training loss is consistently reduced across scales.
At the 1.5B scale, MoM lowers the overall training loss by
3.05%. When targeting the same loss as Mamba Dense,
MoM achieves this with a 56.20% reduction in relative
training FLOPs, highlighting its improved computational
efficiency.

Performance in the image and text modalities similarly
shows consistent improvements in training and validation
losses relative to Mamba Dense. Full results and trends are
presented in Appendix Figures 13 and 14, where MoM’s
robust performance across all three modalities is further
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Model
Scale Metric Category Metric Name Mamba Loss (↓) Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M Speech Metrics
Training Loss 1.8159 1.6909 6.88% 10.30%

LL60K Val. Loss 1.6756 1.5217 9.18% 13.60%
PPL30K Val. Loss 1.8147 1.6845 7.17% 13.60%

Overall Metrics Avg Training Loss 4.2299 4.0759 3.64% 45.00%

94M Speech Metrics
Training Loss 1.6911 1.5662 7.38% 11.90%

LL60K Val. Loss 1.5235 1.3747 9.76% 14.80%
PPL30K Val. Loss 1.6951 1.6152 4.71% 12.60%

Overall Metrics Avg Training Loss 3.7756 3.6371 3.67% 43.10%

443M Speech Metrics
Training Loss 1.5414 1.4313 7.14% 19.20%

LL60K Val. Loss 1.3466 1.2113 10.05% 24.70%
PPL30K Val. Loss 1.5634 1.4790 5.40% 22.00%

Overall Metrics Avg Training Loss 3.3317 3.2096 3.66% 44.00%

880M Speech Metrics
Training Loss 1.4902 1.4054 5.69% 22.40%

LL60K Val. Loss 1.2939 1.1757 9.13% 30.10%
PPL30K Val. Loss 1.5400 1.4619 5.07% 24.30%

Overall Metrics Avg Training Loss 3.2289 3.1571 2.22% 54.30%

1.5B Speech Metrics
Training Loss 1.4790 1.3940 5.75% 24.80%

LL60K Val. Loss 1.2592 1.1552 8.26% 32.10%
PPL30K Val. Loss 1.5200 1.4387 5.35% 27.60%

Overall Metrics Avg Training Loss 3.1507 3.0545 3.05% 56.20%

Table 3. Training and validation metrics across model scales with three modalities: image, text, and speech. This setting extends the
Chameleon framework by incorporating speech alongside image and text, with all modalities represented as discrete tokens. Mixture-of-
Mamba achieves consistent improvements over Mamba Dense across all scales (37M, 94M, 443M, 880M, and 1.5B), particularly in the
speech modality, where performance gains reach up to 9.18%. These gains are achieved with substantial reductions in training FLOPs,
ranging from 10.30% to 56.20% relative to Mamba Dense. The results demonstrate that Mixture-of-Mamba generalizes effectively to a
multi-modal setting with three modalities while delivering significant computational efficiency.

validated.

3.4. Ablation Study on Decoupling Components

To better understand the design choices underpin-
ning Mixture-of-Mamba, we conduct an ablation study
on the Chameleon + Speech setting at the 443M
scale. We evaluate the impact of decoupling four key
components—Win-proj (➊), Wx-proj (➋), Wdt-proj (➌), and
Wout-proj (➍)—individually and in various combinations.
This analysis enables us to test both individual and com-
bined contributions to the model’s overall performance.

The results show that decoupling components individually
yields varying degrees of improvement, with performance
gains ranging from 0.63% (Wout-proj) to 1.22% (Win-proj).
Interestingly, some components (Wx-proj and Wdt-proj) ex-
hibit minimal or even slightly negative impact when de-
coupled alone. However, decoupling multiple components
in combination leads to significantly larger gains. For ex-
ample, decoupling Win-proj and Wout-proj (➊+➍) achieves a
2.20% improvement, while decoupling three components
(➊+➋+➍) further increases the gain to 3.11%.

Most importantly, decoupling all four components simul-

taneously (➊+➋+➌+➍, Mixture-of-Mamba) achieves the
largest improvement, with a performance gain of 3.80%
over the Mamba baseline. This result highlights a key obser-
vation: the gain from decoupling all components together
exceeds the sum of individual gains, demonstrating a syner-
gistic effect. The combination of all decoupled projections
enables better parameter allocation across modalities, lead-
ing to more efficient and effective learning. In summary,
the ablation study confirms that the design of Mixture-of-
Mamba is both effective and interdependent. Decoupling
all key components simultaneously is critical to achieving
the observed substantial performance gains.

4. Related Work
4.1. State-Space Models and Multi-Modal Extensions

State-space models (SSMs) (Gu et al., 2021; Gu & Dao,
2023) have recently gained traction as computationally ef-
ficient alternatives to Transformers for sequential model-
ing. Mamba (Gu & Dao, 2023), in particular, demonstrates
strong performance on single-modality tasks by leveraging
linear time complexity and advanced gating mechanisms.
Extending Mamba to multi-modal tasks remains an active
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Ablation Study Avg Training
Loss (↓)

Performance
Gain (%) (↑)

443M Mamba (without ➊➋➌➍) 3.3317 0% (baseline)
➊ (decouple Win proj) 3.2916 1.22%
➋ (decouple Wx proj) 3.3580 -0.79%
➌ (decouple Wdt proj) 3.3525 -0.62%
➍ (decouple Wout proj) 3.3109 0.63%
➊+➋ (decouple Win proj ,Wx proj) 3.2780 1.64%
➊+➌ (decouple Win proj ,Wdt proj) 3.2687 1.93%
➊+➍ (decouple Win proj ,Wout proj) 3.2599 2.20%
➋+➌ (decouple Wx proj ,Wdt proj) 3.3214 0.31%
➋+➍ (decouple Wx proj ,Wout proj) 3.2829 1.49%
➌+➍ (decouple Wdt proj ,Wout proj) 3.2509 2.48%
➊+➋+➌ (not decoupling Wout proj) 3.2593 2.22%
➊+➋+➍ (not decoupling Wdt proj) 3.2312 3.11%
➊+➌+➍ (not decoupling Wx proj) 3.2342 3.01%
➋+➌+➍ (not decoupling Win proj) 3.2773 1.66%
➊+➋+➌+➍ (Mixture-of-Mamba) 3.2096 3.80%

Table 4. Ablation study on the Chameleon + Speech setting.
This study evaluates the impact of decoupling individual compo-
nents (1, 2, 3, 4) and their combinations on model performance.
The results demonstrate that decoupling all components (1+2+3+4,
Mixture-of-Mamba) achieves the best performance with a 3.80%
gain over the Mamba baseline. Notably, the performance gain
achieved by decoupling all components together exceeds the sum
of gains from decoupling each component individually, highlight-
ing the synergistic effect of combined decoupling. Green shading
indicates positive performance gains, with the darkest green high-
lighting the best configuration.

research area.

In vision-language modeling, VLMamba (Qiao et al., 2024)
and Cobra (Zhao et al., 2024) augment Mamba by incor-
porating LLaVA-style projection modules, enabling image
features to be mapped into the token space of the Mamba
model for sequence modeling. In the vision domain, Vision
Mamba (Zhu et al., 2024) introduces bidirectional scan-
ning by chaining forward and backward SSM blocks, while
VMamba (Liu et al., 2024c) further enhances image patch
processing with a 2D Selective Scan (SS2D) module that
traverses patches across multiple scanning paths.

For diffusion-based models, works such as DiffuSSM (Yan
et al., 2024) and Zigma (Hu et al., 2024) replace attention
mechanisms with SSMs for image and video generation.
Zigma introduces a zigzag scanning scheme to improve
efficiency for sequential diffusion tasks, while other ap-
proaches (Mo & Tian, 2024; Fei et al., 2024) explore bi-
directional SSM architectures. While these works highlight
the flexibility of Mamba in generative tasks, they focus pri-
marily on architectural modifications for specific domains
rather than general multi-modal pretraining.

The most related work to ours is MoE-Mamba (Pióro et al.,
2024) and Blackmamba (Anthony et al., 2024), which inter-
leave Mamba blocks with MoE-augmented MLPs to intro-
duce sparsity. However, these hybrid designs apply sparsity
only to the MLP layers, leaving the dense Mamba block

unmodified. In contrast, our proposed Mixture-of-Mamba
integrates modality-aware sparsity directly into the Mamba
block by decoupling its projection components, enabling
specialized computations for different modalities. This gen-
eral design complements existing methods and offers new
opportunities for computationally efficient multi-modal pre-
training.

4.2. Sparse Architectures for Multi-Modal Pretraining

Model sparsity, particularly Mixture-of-Experts (MoE), has
been extensively explored in Transformers to reduce compu-
tational cost (Jacobs et al., 1991; Eigen et al., 2013; Shazeer
et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Jiang
et al., 2024). MoE selectively activates subsets of parame-
ters for each input token, allowing the model to specialize
in different aspects of the data. However, challenges such
as expert imbalance, bi-level optimization, and load balanc-
ing remain prevalent (Shazeer et al., 2017; Lepikhin et al.,
2020).

In multi-modal tasks, modality-aware sparsity has emerged
as an effective strategy. Works such as VLMo (Shen
et al., 2023), MoMA (Lin et al., 2024), and related ap-
proaches (Wang et al., 2022; Bao et al., 2022a; Long et al.,
2023) assign modality-specific experts to handle the unique
statistical properties of text, images, and other data types.
This improves specialization while avoiding the complexi-
ties of learned routing mechanisms (Liang et al., 2022).

Transformer-based architectures have further extended spar-
sity into attention mechanisms (Wang et al., 2023; Shen
et al., 2024; Liu et al., 2024b). CogVLM (Wang et al., 2023)
applies sparse techniques on top of a pre-trained Vicuna-7B
model but remains limited to generating text outputs. Con-
currently, Playground v3 (PGv3) (Liu et al., 2024b) inte-
grates DiT-style image transformers with a frozen LLaMA-3
backbone to achieve state-of-the-art performance in text-to-
image generation.

Our work differs fundamentally in two key aspects. First,
Mixture-of-Mamba introduces modality-aware sparsity into
the Mamba block itself, generalizing sparse architectures
beyond Transformers to SSMs. Unlike prior works that spar-
sify only the MLP or attention components, we decouple
projection components of the Mamba block, enabling effi-
cient and specialized computations across modalities. Sec-
ond, Mixture-of-Mamba is trained from scratch for multi-
modal generation tasks, unlike approaches like CogVLM
and PGv3 that fine-tune pre-trained backbones.

Furthermore, our design is complementary to existing MoE
techniques. Prior work (Liang et al., 2024) has demonstrated
that MoE-based sparsification can be combined with sparse
architectures like Mixture-of-Transformers to achieve ad-
ditional gains. Similarly, Mixture-of-Mamba can serve as
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a versatile and computationally efficient solution, offering
new pathways for scalable multi-modal pretraining.

5. Conclusion
In this work, we introduced Mixture-of-Mamba, a novel
extension of state-space models (SSMs) that incorporates
modality-aware sparsity through modality-specific param-
eterization. By enabling modality-specific specialization
while preserving the computational efficiency of SSMs,
Mixture-of-Mamba consistently outperforms dense base-
lines across three multi-modal settings: Transfusion (in-
terleaved text and continuous image tokens), Chameleon
(interleaved text and discrete image tokens), and an extended
Chameleon+Speech framework. Our results demonstrate
substantial improvements in loss reduction, with training
efficiency gains reaching more than double the computa-
tional efficiency compared to dense SSMs. Ablation studies
further reveal a synergistic effect from jointly decoupling
key projection components, highlighting the effectiveness of
modality-aware sparsity. These findings establish Mixture-
of-Mamba as a scalable and efficient architecture for multi-
modal pretraining, paving the way for future exploration in
dynamic sparsity and broader multi-modal applications.
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A. Appendix

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps

163M 768 16 12 4,096 4 56 1,048,576 250,000
760M 1,536 24 24 4,096 4 56 1,048,576 250,000
1.4B 2,048 24 16 4,096 2 128 1,048,576 250,000

Table 5. Architectural specifications and training configurations of models across different parameter scales (Transfusion setting).

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps

37M 256 4 8 4,096 2 64 524,288 160,000
94M 512 8 8 4,096 2 64 524,288 160,000
443M 1,024 24 16 4,096 2 64 524,288 160,000
880M 1,536 24 24 4,096 2 64 524,288 120,000
1.5B 2,048 24 16 4,096 1 128 524,288 120,000

Table 6. Architectural specifications and training configurations of models across different parameter scales (Chameleon setting
and Chameleon+Speech setting).
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Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M

Image Metrics
Training Loss 6.1308 5.9561 2.85% 25.90%

Obelisc Val. Loss 5.2866 5.1124 3.29% 26.60%
SSTK Val. Loss 6.6694 6.5023 2.51% 27.50%

Text Metrics
Training Loss 3.6262 3.5175 3.00% 60.90%

Obelisc Val. Loss 4.1244 4.0469 1.88% 64.80%
SSTK Val. Loss 4.0417 3.9533 2.19% 57.50%

Overall Avg Training Loss 4.6607 4.5247 2.92% 50.70%

94M

Image Metrics
Training Loss 5.7609 5.6057 2.69% 35.70%

Obelisc Val. Loss 4.9231 4.7683 3.14% 35.30%
SSTK Val. Loss 6.3130 6.1652 2.34% 37.00%

Text Metrics
Training Loss 3.0294 2.9414 2.90% 58.40%

Obelisc Val. Loss 3.6016 3.5270 2.07% 62.60%
SSTK Val. Loss 3.4109 3.2901 3.54% 61.40%

Overall Avg Training Loss 4.1577 4.0419 2.78% 49.80%

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

Table 7. Training and validation metrics across model scales in the Chameleon setting. In this setting, both image and text modalities
are represented as discrete tokens. Mixture-of-Mamba achieves substantial performance improvements over Mamba Dense, with the
image modality showing the largest gains across all five model scales: 37M, 94M, 443M, 880M, and 1.5B. Notably, the text modality
also exhibits significant improvements, in contrast to the Transfusion setting where text gains were more modest. These results further
highlight the effectiveness and efficiency of Mixture-of-Mamba, which consistently achieves strong performance with reduced relative
training FLOPs.
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Figure 4. Validation loss and loss matching for text modality across model scales (C4 and Wikipedia datasets) during multi-modal
pretraining in the Transfusion setting. Results are shown for Mixture-of-Mamba, Mamba Dense, and Flex-Attention Transformer at three
model scales: 163M, 760M, and 1.4B. (a, e, i) Validation loss on the C4 dataset shows that Mixture-of-Mamba achieves comparable
performance at 163M and performs marginally better than Mamba Dense and Flex-Attention Transformer at the 760M and 1.4B scales.
(b, f, j) Loss matching for C4 demonstrates that Mixture-of-Mamba reaches similar or slightly lower loss values at earlier training steps
compared to Mamba Dense. (c, g, k) Validation loss on the Wikipedia dataset follows a similar trend, with Mixture-of-Mamba showing
marginal improvements at the 760M and 1.4B scales. (d, h, l) Loss matching for Wikipedia illustrates efficient training dynamics, with
Mixture-of-Mamba aligning closely with Flex-Attention Transformer while reaching comparable or slightly lower loss values than Mamba
Dense. Overall, Mixture-of-Mamba demonstrates moderate improvements over both baselines at the larger scales (760M and 1.4B).
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Figure 5. Image validation loss and loss matching on the CC12M dataset across three model scales: 163M, 760M, and 1.4B during
multi-modal pretraining in the Transfusion setting. (a, c, e) Validation loss curves show that Mixture-of-Mamba achieves substantially
lower image validation loss compared to Mamba Dense and Flex-Attention Transformer across all scales, with the improvement becoming
more pronounced as model size increases. (b, d, f) Loss matching curves demonstrate that Mixture-of-Mamba reaches the same loss
values at earlier training steps compared to Mamba Dense, highlighting improved training efficiency. Overall, Mixture-of-Mamba achieves
large improvements in image validation loss on the CC12M dataset, showcasing its effectiveness in the image modality.
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Figure 6. Overall training loss and loss matching during multi-modal pretraining in the Transfusion setting. Results are shown for
Mixture-of-Mamba, Mamba Dense, and Flex-Attention Transformer at three model scales: 163M, 760M, and 1.4B. (a, c, e) Training loss
averaged across the image and text modalities demonstrates that Mixture-of-Mamba achieves substantial improvements over Mamba
Dense, with a notable reduction in training loss across all scales. (b, d, f) Loss matching results show that Mixture-of-Mamba and
Flex-Attention Transformer reach the same loss values at earlier training steps compared to Mamba Dense, highlighting improved training
efficiency. Note: The image loss in the Transfusion setting corresponds to the diffusion loss, which is of smaller magnitude compared to
the cross-entropy loss in the text modality. Overall, Mixture-of-Mamba demonstrates significant gains in training loss and efficiency
across multi-modal pretraining.
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Figure 7. Modality-specific pre-training loss and step matching plots across model scales (Chameleon setting). Training loss and loss
matching are reported for image and text modalities across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image
training loss shows significant improvements for Mixture-of-Mamba (orange), which consistently achieves lower loss compared to Mamba
Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching compares the training dynamics and shows that Mixture-of-Mamba
reaches the same loss values at earlier training steps compared to Mamba Dense, highlighting its improved efficiency. (c, g, k, o, s) Text
training loss demonstrates competitive performance, with Mixture-of-Mamba achieving slightly lower loss values compared to Mamba
Dense. (d, h, l, p, t) Text loss matching illustrates that Mixture-of-Mamba reaches the same loss values at earlier training steps compared
to Mamba Dense, reflecting its efficient training dynamics. Overall, in the Chameleon setting, Mixture-of-Mamba achieves consistent
improvements in the image modality, with substantial computational savings, while also demonstrating meaningful gains in the text
modality.
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Figure 8. Training and evaluation losses for image and text modalities across model scales in the Chameleon setting on the Obelisc
dataset. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e,
i, m, q) Image evaluation loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving lower loss compared to
Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching shows that Mixture-of-Mamba reaches the same loss values at
earlier training steps compared to Mamba Dense, reflecting its improved training efficiency. (c, g, k, o, s) Text evaluation loss indicates
competitive results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h, l, p, t) Text loss matching highlights
that Mixture-of-Mamba reaches the same loss values at earlier training steps, further demonstrating its efficiency in the text modality.
Overall, Mixture-of-Mamba achieves strong and consistent improvements in both image and text modalities across all model scales in the
Chameleon setting evaluated on the Obelisc dataset.
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Figure 9. Training and evaluation losses for image and text modalities across model scales in the Chameleon setting on the
Shutterstock dataset. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M,
and 1.5B. (a, e, i, m, q) Image evaluation loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving lower
loss compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching shows that Mixture-of-Mamba reaches the
same loss values at earlier training steps compared to Mamba Dense, reflecting its improved training efficiency. (c, g, k, o, s) Text
evaluation loss indicates competitive results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h, l, p, t) Text
loss matching highlights that Mixture-of-Mamba reaches the same loss values at earlier training steps, further demonstrating its efficiency
in the text modality. Overall, Mixture-of-Mamba achieves strong and consistent improvements in both image and text modalities across
all model scales in the Chameleon setting evaluated on the Shutterstock dataset.
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Figure 10. Average training loss and step matching plots across model scales in the Chameleon setting. Results are shown for
Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, c, e, g, i) Average training
loss (across image and text modalities) demonstrates consistent reductions for Mixture-of-Mamba (orange), achieving lower loss values
compared to Mamba Dense (cyan) at all model scales. (b, d, f, h, j) Average loss matching plots highlight that Mixture-of-Mamba
reaches the same loss values at earlier training steps compared to Mamba Dense, reflecting improved training efficiency. Overall,
Mixture-of-Mamba consistently reduces average training loss and achieves more efficient convergence across all model scales in the
Chameleon setting.
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Figure 11. Training and evaluation losses for image, text, and speech modalities (37M and 94M scales) in the Chameleon+Speech
setting. Results are reported for Mixture-of-Mamba and Mamba Dense. (a, e, i) Image training loss demonstrates that Mixture-of-Mamba
(orange) achieves consistently lower loss compared to Mamba Dense (cyan). (b, f, j) Image loss matching highlights Mixture-of-Mamba’s
ability to reach the same loss values at earlier training steps, showing improved training efficiency. (c, g, k) Text training loss shows
competitive results for Mixture-of-Mamba, improving over Mamba Dense. (d, h, l) Text loss matching confirms Mixture-of-Mamba’s
ability to reach the same loss values at earlier training steps, showing improved training efficiency. (e, m) Speech training loss highlights
significant improvements in speech modality performance. (f, n) Speech loss matching shows efficient learning dynamics for Mixture-of-
Mamba. (g, o) Speech evaluation loss on LL60K confirms notable performance gains, and (h, p) Speech evaluation loss on PPL30K
further highlights the efficiency of Mixture-of-Mamba.
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Figure 12. Training and evaluation losses for image, text, and speech modalities (443M, 880M, and 1.5B scales) in the
Chameleon+Speech setting. Results are reported for Mixture-of-Mamba and Mamba Dense. (a, i, q) Image training loss demonstrates
that Mixture-of-Mamba (orange) consistently outperforms Mamba Dense (cyan) across larger scales. (b, j, r) Image loss matching
highlights improved training efficiency for Mixture-of-Mamba, reaching the same loss values at earlier training steps. (c, k, s) Text
training loss shows Mixture-of-Mamba achieving better performance. (d, l, t) Text loss matching further demonstrates efficient learning
dynamics. (e, m, u) Speech training loss confirms substantial gains for Mixture-of-Mamba in the speech modality, consistent across
model scales. (f, n, v) Speech loss matching illustrates the improved efficiency of Mixture-of-Mamba across scales. (g, o, w) Speech
evaluation loss on LL60K highlights consistent improvements, while (h, p, x) Speech evaluation loss on PPL30K demonstrates notable
gains and efficient performance across scales.
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Figure 13. Training and validation losses for image and text modalities across model scales in the Chameleon+Speech setting
evaluated on the Obelisc dataset. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M,
443M, 880M, and 1.5B. (a, e, i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (orange) over Mamba
Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image loss matching shows that Mixture-of-Mamba reaches
the same loss values at earlier training steps compared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text evaluation
loss indicates consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales. (d, h, l, p, t) Text loss matching
illustrates that Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense, maintaining its
efficiency in the text modality. Overall, Mixture-of-Mamba achieves consistent improvements in both image and text modalities while
maintaining its efficiency, even with the addition of the speech modality. These results confirm the robustness of Mixture-of-Mamba in
multi-modal settings.
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Figure 14. Training and validation losses for image and text modalities across model scales in the Chameleon+Speech setting
evaluated on the Shutterstock dataset. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M,
94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (orange) over
Mamba Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image loss matching shows that Mixture-of-Mamba
reaches the same loss values at earlier training steps compared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text
evaluation loss indicates consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales. (d, h, l, p, t) Text loss
matching illustrates that Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense, maintaining
its efficiency in the text modality. Overall, Mixture-of-Mamba achieves consistent improvements in both image and text modalities while
maintaining its efficiency, even with the addition of the speech modality. These results confirm the robustness of Mixture-of-Mamba in
multi-modal settings.
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