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Abstract

Masked autoencoder has been widely explored in point cloud self-supervised learn-
ing, whereby the point cloud is generally divided into visible and masked parts.
These methods typically include an encoder accepting visible patches (normalized)
and corresponding patch centers (position) as input, with the decoder accepting the
output of the encoder and the centers (position) of the masked parts to reconstruct
each point in the masked patches. Then, the pre-trained encoders are used for down-
stream tasks. In this paper, we show a motivating empirical result that when directly
feeding the centers of masked patches to the decoder without information from the
encoder, it still reconstructs well. In other words, the centers of patches are impor-
tant and the reconstruction objective does not necessarily rely on representations of
the encoder, thus preventing the encoder from learning semantic representations.
Based on this key observation, we propose a simple yet effective method, i.e.,
learning to Predict Centers for Point Masked AutoEncoders (PCP-MAE) which
guides the model to learn to predict the significant centers and use the predicted cen-
ters to replace the directly provided centers. Specifically, we propose a Predicting
Center Module (PCM) that shares parameters with the original encoder with extra
cross-attention to predict centers. Our method is of high pre-training efficiency
compared to other alternatives and achieves great improvement over Point-MAE,
particularly surpassing it by 5.50% on OBJ-BG, 6.03% on OBJ-ONLY, and
5.17% on PB-T50-RS for 3D object classification on the ScanObjectNN dataset.
The code is available at https://github.com/aHapBean/PCP-MAE .

1 Introduction
Point clouds are a widely used representation of 3-D objects, offering a rich expression of their
geometric information. This versatility has led to their broad adoption across various application
scenarios, including autonomous driving [28], robotics [10, 30], and the metaverse [32]. In the
early developing stage of point cloud understanding, there are lots of related work proposed to
enhance the ability of networks for understanding point cloud [13, 18, 25, 26, 39] where the networks
typically need fully-supervised training from scratch. However, point cloud data are difficult to
annotate compared to the data in 2-D vision and NLP owing to the complexity of the toughness
of discriminating them. It leads to a phenomenon called data desert [9] in 3-D which refrains the
development of these fully-supervised methods. Recently, numerous self-supervised learning (SSL)
methods [47, 24, 9, 27] were proposed for point cloud understanding to alleviate the negative effect
brought by data desert because self-supervised learning methods can utilize unlabeled data effectively
by performing designed pretext task (e.g., reconstruction-based or contrastive-based) for pre-training
and the learned semantic representation benefits the performance of downstream tasks.
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Masked autoencoders (MAEs) [16] represent a prominent and robust framework within self-
supervised learning (SSL), which demonstrates remarkable scalability and superior performance. The
architecture of MAE is distinctly asymmetric, featuring an encoder and a decoder. The typical process
involves dividing an image into patches, which are then selectively masked prior to encoding. The
encoder only accepts visible patches as input along with their positional embedding, i.e. embedding
of patch indices. The decoder receives both the latent representations of the visible patches and
the tokens representing the masked patches, along with their corresponding positional embeddings.
Following MAE in 2-D, Point-MAE [24] and its variants [48, 51, 14, 27] are proposed, which divide
point cloud into patches where points in patches undergo normalization, achieved by subtracting the
coordinates of corresponding centers and apply the mask-reconstruction paradigm in 3-D domain.
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Figure 1: Illustrations of MAE reconstruction results for 2-D
MAE and Point-MAE when masking ratio equals to 100%.

However, different from the indices
of image patches (the positional em-
beddings in 2-D are fixed for all in-
put images [16]), position embedding
in point cloud is calculated using the
coordinates of the centers belonging
to patches, where the coordinates of
the centers usually contain rich geo-
metric and semantic information of
point clouds. Thus we ask: Should
the centers (i.e., positional embed-
ding) for masked patches be directly
given when performing masked re-
construction in the point clouds
field just like the way in 2-D vision? We answer this question with an interesting phenomenon
observed through experimental results in Fig. 1: We first set the mask ratio to 100% in Point-MAE for
pre-training on ShapeNet [3], i.e., the encoder is removed to verify whether the point cloud can be
reconstructed by only feeding the masked positional embeddings of the center points to the decoder
after training. Intriguingly, the reconstruction results are pretty well, which are shown in Fig. 1. This
is irreproducible for 2-D MAE since when masking 100% patches and only providing the positional
embedding of the masked patches (i.e., 2-D indices of patches), 2-D MAE cannot identify what the
images are (as all the images with the same resolution share the same positional embeddings).

The gap between 2-D and point cloud data reveals that the coordinates of the centers (i.e. positional
embeddings) are essential in the point cloud field, meaning that the decoder can even abandon the
output of the encoder and still reconstruct well. Thus, the reconstructing objective may make the
encoder unable to learn semantic features, and we argue that the answer to the previous question
is: The centers for masked patches can not be directly provided and should be utilized in a smarter
and more proper way. To this end, we propose a method, which learns to Predict Centers for Point
Masked AutoEncoders, termed as PCP-MAE. While existing MAE-based methods [24, 9, 27, 48, 51]
overlook the importance of centers during pre-training and directly leak the masked centers for the
decoder, our PCP-MAE learns more semantic representation by performing point cloud reconstruction
under the auxiliary of learning to predict centers, using predicted centers replace real masked centers.

The overview of the proposed PCP-MAE is illustrated in Fig. 2. Specifically, we propose a custom
pre-training task that forces the encoder to not only learn representations for visible patches but also
predict the centers of the masked ones. It is achieved by feeding both visible and masked patches to
the encoder. Visible patches (with centers) perform self-attention in each block as in Point-MAE,
while masked patches (without centers) leverage a cross-attention mechanism simultaneously to
acquire center information from themselves and the visible ones. Additionally, a dedicated objective
is introduced to minimize the difference between the predicted masked centers and the ground truth
values (positional embeddings). Furthermore, the predicted positional embeddings of the masked
centers are used to replace the real positional embeddings, which will be fed into the decoder. This
allows the network to not only encode visible centers effectively but also learn the inter-relationships
between visible and masked centers. Essentially, the encoder learns to infer the missing information,
leading to a more robust representation and improved performance in downstream tasks achieved
through fine-tuning. The main contributions include:

1) Center-aware objective makes the pre-training trivial. We identify the difference between 2-D
(image) and 3-D (point cloud), i.e., positional embedding (PE) in 2-D represents indices of patches,
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Table 1: Comparisons between our PCP-MAE and existing Single/Cross-Modal MAE-based methods
in terms of method features, pre-training efficiency, and performance on standard SSL benchmarks.

Methods Masked Centers Single/Cross- Pre-trained Model Pre-training efficiency Performance

Leakage Modal Needed # Params GFLOPS Time (h) ScanObjectNN ModelNet40

Point-MAE [24] Single 29.0 (baseline) 2.0 (baseline) 8.7 (baseline) 85.18 (baseline) 93.2 (baseline)
Point-M2AE [50] Single 15.3 (0.53×) 3.2 (1.6×) 19.1 (2.2×) 86.43 (↑1.25) 93.4 (↑0.2)
Point-FEMAE [48] Single 41.5 (1.43×) 4.4 (2.2×) 32.2 (3.7×) 90.22 (↑5.04) 94.0 (↑0.8)

ACT [9] Cross 135.5 (4.67×) 23.0 (13.5×) 34.8 (4.0×) 88.21 (↑3.03) 93.2 (↑0.0)
I2P-MAE [51] Cross 74.9 (2.58×) 14.6 (7.3×) 42.6 (4.9×) 90.11 (↑4.93) 93.7 (↑0.5)
ReCon [27] Cross 140.9 (4.85×) 18.2 (9.1×) 44.4 (5.1×) 90.63 (↑5.45) 94.1 (↑0.9)

PCP-MAE Single 29.5 (1.02×) 2.9 (1.5×) 12.3 (1.4×) 90.35 (↑5.17) 94.0 (↑0.8)

while PE in point cloud provides coordinates of patch centers, where the indices usually provide
much less information than coordinates. As shown in Fig. 1, point clouds are well reconstructed by
the decoder under 100% masking ratio, indicating that the decoder does not necessarily rely on the
representations learned by the encoder. This phenomenon does not hold for 2-D MAE, suggesting
that existing MAE-based methods in point cloud adopt a trivial reconstruction pre-training task.

2) A new center-unaware pretraining method. We propose PCP-MAE, a framework that not
only performs point cloud reconstruction but also avoids direct leakage of semantically rich centers
by guiding the network to learn to predict them, which is much more challenging than previous
reconstruction-only-based methods, and forcing the model to learn more semantic representations.
Besides, the Predicting Center Module (PCM) is introduced to predict the positional embedding of
the centers, which shares parameters with the encoder to prevent an increase in parameter count.

3) Significant improvement over Point-MAE and high pre-training efficiency. Compared to other
MAE-based methods, our method only introduces a few parameters increase and affordable extra pre-
training time cost, remaining highly efficient for pre-training as shown in Tab. 1. Notably, extensive
experiments demonstrate the effectiveness and the efficiency of our PCP-MAE over other MAE-based
methods by improving Point-MAE. Specifically, our method surpasses baseline Point-MAE by large
margins of 5.50%, 6.03%, and 5.17% across three ScanObjectNN variants, respectively.

2 Related Work
Self-supervised learning for Point Cloud. Inspired by the recent successes of Self-Supervised
Learning (SSL) in NLP and 2-D vision, an increasing amount of research has been conducted to
explore the potential and strengths of SSL in the realm of 3-D vision [24, 47, 41, 1]. Existing 3-D
SSL methods can be mainly divided into two categories: contrastive learning [41, 1, 17, 29, 19] and
generative learning [47, 24, 50, 48, 51]. PointContrast [41] pioneers the contrastive learning in 3-D
by borrowing the idea of contrastive learning in 2-D and performing point-level invariant mapping
learning on two transformed views of the given point cloud. CrossPoint [1] advances this approach
by engaging in intra-modal learning while also introducing an auxiliary cross-modal contrastive
objective that facilitates the learning of transferable 3-D point cloud representations through 3D-
2D correspondence. Generative learning in 3-D typically trains autoencoders to learn semantic
latent representation during pre-training with a pre-designed task, i.e., reconstructing the original
input. Inspired by BERT, Point-BERT [47] firstly devises a Masked Point Modeling (MPM) task to
pre-train point cloud Transformers auxiliary by a point cloud Tokenizer with a discrete Variational
AutoEncoder (dVAE). Masked Autoencoders (MAE) [16], which mask random patches from the
input image and reconstruct the missing patches at the pixel level, have demonstrated substantial
potential and established a significant milestone in the field of SSL.

MAE-based methods for point cloud. Following the masked-reconstruction paradigm established
by MAE in vision, Point-MAE [24] is proposed, which pioneers designing a neat and efficient
architecture entirely built upon standard Transformer blocks for point cloud understanding. Motivated
by the success of Point-MAE, numerous works based on it are proposed [50, 9, 27, 14, 51, 48], show-
ing notable improvement compared to Point-MAE. On the basis of Point-MAE, Point-M2AE [50]
tailors the encoder and decoder into pyramid architectures, which allows for progressive modeling
of spatial geometries, facilitating the capture of both intricate details and overarching semantics
of 3D shapes. ACT [9], as an MAE-based method, acquires knowledge from other modalities by
adopting cross-modal auto-encoders as teachers. ReCon [27] harmoniously combines the generative
framework (MAE-based) and contrastive framework to share the merits of them. Joint-MAE [14]
enables better cross-modal interaction by constructing two hierarchical 2-D-3-D embedding modules.
I2P-MAE [51] introduce a 2-D guided masking strategy and 2-D semantic reconstruction apart from
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Figure 2: Overview of the proposed PCP-MAE. After patch division, the centers and normalized
patches are divided into visible and masked parts, with center coordinates embedded into positional
embedding (PE) and patches embedded into tokens (embeddings). The encoder accepts visible tokens
and PE as input, performing self-attention. Simultaneously, the weight-shared PCM (Predicting
Center Module) performs cross-attention (masked tokens as query and visible along with masked
tokens as key and value) to acquire knowledge to predict the positional embeddings of the masked
patches. CD-L2 refers to the l2 Chamfer Distance loss function [11].

point cloud reconstruction. Point-FEMAE [48] extends global random masking to two branches
consisting of a global branch and a local branch to capture latent semantic features, with extra modules
Local Enhancement Modules introduced. We find almost all existing MAE-based methods focus on
structural improvement, employing the same reconstruction objective as Point-MAE. However, as
shown in Fig. 1, we claim again that this reconstruction objective is not suitable to directly adopt
from 2-D to point clouds.

3 PCP-MAE
3.1 Patches generation and masking
Patches generation. Patch-based learning paradigm [47, 24, 27] has been proven to be more
effective than directly consuming the whole point cloud [25, 26] empirically. We adopt the patch-
based paradigm and divide the input point cloud into point patches via Farthest Point Sampling (FPS)
and K-Nearest Neighborhood (KNN) algorithm following previous work [24]. Specifically, given a
point cloud with p points X ∈ Rp×3, FPS is first applied to sample n centers C from p points. Then,
we adopt KNN to select k nearest points of corresponding centers to consist n point patches P:

C = FPS(X), P = KNN(X,C), C ∈ Rn×3, P ∈ Rn×k×3 (1)

Coordinates of points in the point patch are normalized with the corresponding center, thus enabling
better separation between patches and centers.

Masking. With a pre-defined masking ratio m, we apply global random patch masking to point
patches. The masked patches are denoted as Pm ∈ R⌊mn⌋×k×3 and the visible patches are denoted
as Pv ∈ R⌈(1−m)n⌉×k×3, where ⌊·⌋ and ⌈·⌉ represent the floor function and the ceiling function,
respectively. For simplicity, we will omit these two symbols in the subsequent text. The corresponding
centers are denoted as Cm ∈ Rmn×3 and Cv ∈ R(1−m)n×3.

Embedding. Pv is embedded via a lightweight PointNet [25] to yield encoded tokens Ev following
Point-BERT [47] which can be expressed as follow, where D is the hidden dimension of the networks.

Ev = PointNet(Pv), Ev ∈ Rn×D (2)

We calculate fixed positional embedding for each center using the popular form [16] as detailed in
Eq. (3), which we call sin-cos positional embedding (sin-cos PE). For each triplet of coordinates
(x, y, z) for the center:
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where PEx ∈ R1×D/3. Then we concatenate PEx, PEy and PEz to obtain PE ∈ R1×D. Then
feed the obtained sin-cos PE into a learnable MLP called PEM (Positional Embedding Module) to
yield the final PE, which is different from the operation in Point-MAE [24]. On the one hand, the
sin-cos PE enables more sparse positional information compared to 3-dimension coordinate and
thus is more suitable as the predicting target of our proposed task just as illustrated in Sec. 4.3. On the
other hand, applying the sin-cos positional embedding to both visible and masked patches can better
align the usage of known visible PE with the predicted masked PE. The process can be expressed as:

PEsin−cos
v = sin-cos PE(Cv), PEsin−cos

v ∈ R(1−m)n×D (4)

PEsin−cos
m = sin-cos PE(Cm), PEsin−cos

m ∈ Rmn×D (5)

PEv = PEM(PEsin−cos
v ), PEv ∈ R(1−m)n×D (6)

PEm = PEM(PEsin−cos
m ), PEm ∈ Rmn×D (7)

3.2 Encoder
We employ an encoder that consists of standard Transformer blocks. Given the encoded visible tokens
Ev , masked tokens Em and visible positional embeddings PEv , the encoder performs self-attention
to encode Ev while performing cross-attention utilizing Em as input to acquire information of masked
centers from itself and the visible representations. Note the self-attention and cross-attention share
the parameters of Transformer blocks to avoid increasing parameters.

Visible tokens encoding. The latent representation of the visible parts can be obtained by inputting
Ev , PEv to the encoder which utilizes self-attention mechanisms. The process can be formulated as:

Tv = Encoder(Ev,PEv) (8)

Specifically, the self-attention in i-th Transformer block of the encoder can be expressed as:

Ti = Attn(Qv,Kv,Vv) = SoftMax

(
QvKv√

D

)
Vv (9)

where Qv = Ti−1WQ, Kv = Ti−1WK and Vv = Ti−1WV and the WQ, WK, WV are
learnable parameters. Note T0 = Ev +PEv .

Modules for learning to predict centers i.e., PCM. The PCM shares parameters with the encoder
and accepts only masked patches Em as input. Apart from the shared parameters of Transformer
blocks, additional MLP for projecting latent predicted PE to masked center embeddingsPEpred

m is
introduced into PCM. Based on the encoded masked patches, the PCM aims to recover the centers of
masked patches by acquiring knowledge from both the masked and visible representations. This can
be straightforwardly understood in a form where local patterns (without telling where they are) and
visible global patterns are given, and the task is acquiring positions of local patterns from the visible
patterns based on the known local patterns. The cross-attention mechanisms are performed:

PEpred
m = PCM(Em,Ev,PEv) (10)

Specifically, for the i-th Transformer block in PCM, the cross-attention can be formulated as:

PEi
m = Attn(Qm,Kv+m,Vv+m) = SoftMax

(
QmKv+m√

D

)
Vv+m (11)

where Qm = PEi−1
m WQ, Km = PEi−1

m WK and Vm = PEi−1
m WV and the WQ, WK are

shared parameters. We concatenate Qv and Qm to obtain Qv+m and it’s also the case for Kv+m and
Vv+m. Note PE0

m is the input of PCM, i.e., PE0
m = Em.
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3.3 Decoder
The decoder also consists of Transformer blocks and is used for point cloud masked recon-
struction. The decoder in existing MAE-based methods such as Point-MAE [24], ReCon [27],
Point-FEMAE [48] typically take Tv, PEv, PEm as input along with learnable mask tokens
[M] ∈ Rmn×D. It can be expressed as Hm = Decoder([M],PEm,Tv,PEv) where the centers for
the masked patches are directly provided. However, the centers are extremely important in point cloud
as shown in Fig. 1. Therefore, instead of doing that, we use the PEpred

m to replace the PEm which
means we use what the network learns but doesn’t leak the ground truth of positional embeddings to
the decoder. The process can be written as:

Hm = Decoder([M], sg(PEpred
m ),Tv,PEv) (12)

where sg(·) means the stop-gradient operation and Hm ∈ Rmn×D. Stop-gradient is applied to
prevent the decoder from finding reconstruction shortcuts by back-propagating through the PEpred

m
that modifies the weights of PCM, as illustrated in the ablation study Sec. 4.3. Finally, following
Point-MAE, we adopt a projection head consisting of one MLP layer to predict the coordinates of
normalized masked points in the input point cloud:

Ppred = Reshape(Linear(Hm)), Ppred ∈ Rmn×k×3 (13)

3.4 Objective function
The objective function L consists of two parts, i.e., recovering the centers of masked patches and the
points in every masked patch. The L can be written as L = ηLPC + LRecon. η is a scaling factor.

Learn to predict centers. We compute the loss for predicting centers using the l2 loss function:

LPC =
1

mnD
∥PEpred

m −PEm∥22 (14)

The information of centers is removed when generating point cloud patches through normalization,
thus posing no possibility for PCM to find shortcuts to recover the masked centers PEm based on
Em, Ev and PEv. And recovering the PEm is non-trivial because it needs the PCM to encode
masked patches well and demands the visible representation Tv possessing not only intra-information
but also inter-information between itself and the unseen masked ones. In other words, minimizing the
LPC enables the visible representation Tv to contain enough information to infer the distribution of
masked centers which is infeasible in the original Point-MAE.

Point cloud reconstruction. The reconstruction loss LRecon is computed using the l2 Chamfer
Distance loss function [11], written as:

LRecon =
1

|Ppred|
∑

a∈Ppred

min
b∈P

∥a− b∥22 +
1

|P|
∑
b∈P

min
a∈Ppred

∥a− b∥22 (15)

4 Experiments
We conduct experiments including object classification, few-shot learning and segmentation to
demonstrate the superior performance of our method over Point-MAE. With slightly longer pre-
training time than Point-MAE, our PCP-MAE achieves much higher performance than it and even
surpasses other more complex methods, achieving state-of-the-art in some tasks, e.g., ScanObjectNN
classification (OBJ-BG; OBJ-ONLY) and ModelNet40 few-shot (5-way, 10/20-shot; 10-way, 20-shot).
Ablation studies are conducted to illustrate the properties of our proposed PCP-MAE.

4.1 Pre-training setups
Model architecture. The backbone of our pre-trained PCP-MAE consists of standard Transformer
blocks where the encoder has 12 Transformer blocks and the decoder has 4, aligned with Point-
MAE [24]. The hidden dimension of Transformer blocks is 384 and the number of heads is 6.

Pre-training dataset. PCP-MAE is pre-trained on ShapeNet [3] which consists of about 51,300
clean 3-D models, covering 55 common object categories.

Experiment details. For each input point cloud, we first apply scale and translate operations,
followed by rotation for pre-training data augmentation. After sampling 1024 points via Farthest
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Table 2: Classification accuracy (%) on ScanObjectNN and ModelNet40. The parameters of
inference models #P (M) are reported. Three variants are evaluated on ScanObjectNN and the
accuracies obtained on ModelNet40 are reported for both without and with voting.

Methods References #P ScanObjectNN ModelNet40

Input OBJ BG OBJ ONLY PB T50 RS Input w/o Vote w/ Vote

Supervised Learning Only

PointNet [25] CVPR 2017 3.5 1k Points 73.3 79.2 68.0 1k Points 89.2 -
PointNet++ [26] NeruIPS 2017 1.5 1k Points 82.3 84.3 77.9 1k Points 90.7 -
DGCNN [37] TOG 2019 1.8 1k Points 82.8 86.2 78.1 1k Points 92.9 -
SimpleView [12] ICML 2021 - 6 Images - - 80.5±0.3 6 Images 93.9 -
MVTN [15] ICCV 2021 11.2 20 Images 92.6 92.3 82.8 12 Images 93.8 -
PointMLP [23] ICLR 2022 12.6 1k Points - - 85.4±0.3 1k Points 94.5 -
SFR [49] ICASSP 2023 - 20 Images - - 87.8 20 Images 93.9 -
P2P-HorNet [36] NeruIPS 2022 195.8 40 Images - - 89.3 40 Images 94.0 -

with Single-Modal Self -Supervised Learning

Point-BERT [47] CVPR 2022 22.1 1k Points 87.43 88.12 83.07 1k Points 92.7 93.2
MaskPoint [20] ECCV 2022 - 2k Points 89.30 88.10 84.30 1k Points - 93.8
Point-MAE [24] ECCV 2022 22.1 2k Points 90.02 88.29 85.18 1k Points 93.2 93.8
Point-M2AE [50] NeurIPS 2022 15.3 2k Points 91.22 88.81 86.43 1k Points 93.4 94.0
PointGPT [4] NeruIPS 2023 19.5 2k Points 91.60 90.00 86.90 1k Points - 94.0
Point-FEMAE [48] AAAI 2024 27.4 2k Points 95.18 93.29 90.22 1k Points 94.0 94.5
PCP-MAE - 22.1 2k Points 95.52 94.32 90.35 1k Points 94.0 94.2
Improve (over Point-MAE) - - - +5.50 +6.03 +5.17 - +0.8 +0.4

with Cross-Modal Self -Supervised Learning

ACT [9] ICLR 2023 22.1 2k Points 93.29 91.91 88.21 1k Points 93.2 93.7
Joint-MAE [14] IJCAI 2023 - 2k Points 90.94 88.86 86.07 1k Points - 94.0
I2P-MAE [51] CVPR 2023 15.3 2k Points 94.14 91.57 90.11 1k Points 93.7 94.1
TAP [38] ICCV 2023 22.1 2k Points 90.36 89.50 85.67 - - -
ReCon [27] ICML 2023 43.6 2k Points 95.18 93.63 90.63 1k Points 94.1 94.5

Point Sampling (FPS) from the input point cloud, it is divided into 64 point patches, each containing
32 points, selected using FPS and K-Nearest Neighbors (KNN). The PCP-MAE is pre-trained for
300 epochs using an AdamW optimizer [22] with a batch size of 128. The initial learning rate is set
at 0.0005, with a weight decay of 0.05. A cosine learning rate decay scheduler [21] is utilized. Check
the detailed experimental settings in Appendix A.

4.2 Fine-tuning on downstream tasks

3-D object classification on a real-world dataset. We showcase the transferability of our models
by evaluating them on a real-world 3D object dataset. Specifically, we transfer our pre-trained
model to ScanObjectNN [33] for classification, a dataset renowned for its classification complexity,
encompassing around 15,000 real-world objects spanning 15 diverse categories. Our experimental
evaluations encompass three variants: OBJ-BG, OBJ-ONLY, and PB-T50-RS. Rotation is applied for
data augmentation during training following [27, 48]. The Tab. 2 presents the results, showing the
superior performance of our PCP-MAE, which obtains great performance not only over Point-MAE
but also over other more complex MAE-based methods and achieves state-of-the-art on OBJ-BG and
OBJ-ONLY. Specifically, PCP-MAE outperforms Point-MAE by 5.50%, 6.03%, 5.17% on three
variants and performs competitively or better than the leading cross-modal method ReCon [27].

3-D object classification on a dataset with clean objects. We assess the efficacy of our pre-trained
model for object classification on the ModelNet40 dataset [40]. ModelNet40 comprises 12,311
meticulously crafted 3-D CAD models, representing 40 distinct object categories. Standard random
scaling and random translation are applied for data augmentation during training. Notably, the input
point clouds exclusively contain coordinate information, without supplementary normal information.
The results are presented in Tab. 2 including results with and without voting. Improvements in
PCP-MAE over Point-MAE can be observed, 0.8% and 0.4% for w/o and w/ voting respectively.

Few-shot learning. We conduct few-shot learning experiments on the ModelNet40 dataset, following
established protocols [24, 31]. The experiments are structured as “w-way, s-shot" and consist of four
components, where w ∈ {5, 10}, representing the number of randomly selected classes, and s ∈
{10, 20}, indicating the number of randomly selected samples for each w. Each component undergoes
10 independent trials. The reported results include the mean accuracy and standard deviation, as
detailed in Tab. 3. Results show that with limited downstream finetuning data, our PCP-MAE exhibits
outstanding generalization ability among existing single-modal and cross-modal methods, achieving
SOTA in 5-way, 10-shot; 5-way, 20shot; 10-way, 20-shot experiments. Specifically, 1.1%, 1.3%,
0.9%, 0.9% performance gains over Point-MAE on four settings are obtained.
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Table 3: Few-shot classification results on ModelNet40. We perform ten separate trials for each
experimental setting and the mean accuracy (%) and standard deviation are reported.

Methods 5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

PointNet [25] 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
DGCNN [37] 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
OcCo [35] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2

with Single-Modal Self -Supervised Representation Learning

Point-BERT [47] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint [20] 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-MAE [24] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-M2AE [50] 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0
PointGPT [4] 96.8±2.0 98.6±1.1 92.6±4.6 95.2±3.4
Point-FEMAE [48] 97.2±1.9 98.6±1.3 94.0±3.3 95.8±2.8
PCP-MAE 97.4±2.3 99.1±0.8 93.5±3.7 95.9±2.7
Improve (over Point-MAE) +1.1 +1.3 +0.9 +0.9

with Cross-Modal Self -Supervised Representation Learning

ACT [9] 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8
Joint-MAE [14] 96.7±2.2 97.9±1.9 92.6±3.7 95.1±2.6
I2P-MAE [51] 97.0±1.8 98.3±1.3 92.6±5.0 95.5±3.0
TAP [38] 97.3±1.8 97.8±1.9 93.1±2.6 95.8±1.0
ReCon [27] 97.3±1.9 98.9±1.2 93.3±3.9 95.8±3.0

Object part segmentation. We conduct part segmentation experiments on the ShapeNetPart [46] to
validate the effectiveness of our PCP-MAE method. ShapeNetPart is used to evaluate the learning
capacity of models toward knowledge of detailed shape semantics within 3D objects. It comprises
16,881 objects across 16 categories. In alignment with prior research [24], we sample 2048 points
from each input point cloud and partition them into 128-point patches. As indicated in Tab. 4, our
PCP-MAE yields comparable performance over peer methods and outperforms Point-MAE by a large
margin. Particularly, PCP-MAE achieves 84.9% in Cls.mIoU and improves Point-MAE by 0.7%.

3-D scene segmentation. Scene segmentation is a challenging task, especially in large-scale 3-D
scenes, as it demonstrates the ability of models to comprehend contextual semantics and intricate
local geometric relationships. We conduct 3-D scene segmentation on the S3DIS dataset [2], which
provides densely annotated semantic labels for point clouds. The results can be observed in Tab. 4.
PCP-MAE shows better ability under scene segmentation scenarios and outperforms Point-MAE by
1.1% and 0.5% in mAcc and mIoU, respectively.

4.3 Ablation studies
We conducted several experiments to demonstrate the efficacy of PCP-MAE, with results on three
variants of ScanObjectNN (%) reported, maintaining experimental settings consistent with Sec. 4.2.
PCP-MAE is pre-trained on ShapeNet before fine-tuning on ScanObjectNN.

Main components in the PCP-MAE. Compared to Point-MAE which only performs point cloud
reconstruction, our PCP-MAE also adopts reconstruction as a pre-training target and differs from
Point-MAE mainly in two aspects: 1) Adding PCM which shares parameters with the encoder to
guide the encoder to learning to predict centers for masked patches. 2) Instead of directly providing
the ground truth PEm, we replace it with the predicted results PEpred

m . To validate the effectiveness
of these two operations in PCP-MAE, we conduct experiments by varying the utilization of PCM and
the predicted PEpred

m on the performance of our PCP-MAE. The Tab. 5 presents the results, showing
that only adopting predicting centers as pertaining target outperforms the from-scratch baseline which
means the task using PCM proposed by us is meaningful as an isolated pre-training task. Results also
indicate that while guiding encoder learning to predict centers improves the performance (w/ PCM),
replacing PEm with PEpred

m further enhances the performance.

Predicting Targets. The centers can be expressed in two forms: coordinates with a 3-dimensional
representation (x, y, z) and positional embedding (PE) with a D-dimensional representation obtained
by embedding the coordinates, where D refers to the dimensionality of the model. Therefore, there
are at least two available targets for center prediction. We claim that the PE form is more suitable
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Table 4: Segmentation Results on ShapeNetPart and S3DIS Area 5: Mean intersection over union
for all classes Cls.mIoU (%) and all instances Inst.mIoU (%) for Part Segmentation; Mean accuracy
mAcc (%) and IoU mIoU (%) for Semantic Segmentation.

Methods Part Seg. Semantic Seg.

Cls.mIoU Inst.mIoU mAcc mIoU

PointNet [25] 80.4 83.7 49.0 41.1
PointNet++ [26] 81.9 85.1 67.1 53.5
DGCNN [37] 82.3 85.2 - -
PointMLP [23] 84.6 86.1 - -

with Single-Modal Self -Supervised Representation Learning

Transformer [34] 83.4 84.7 68.6 60.0
CrossPoint [1] - 85.5 - -
Point-BERT [47] 84.1 85.6 - -
MaskPoint [20] 84.4 86.0 - -
Point-MAE [24] 84.2 86.1 69.9 60.8
PointGPT [4] 84.1 86.2 - -
Point-FEMAE [48] 84.9 86.3 - -
PCP-MAE 84.9 86.1 71.0 61.3
Improve (over Point-MAE) +0.7 +0.0 +1.1 +0.5

with Cross-Modal Self -Supervised Representation Learning

ACT [9] 84.7 86.1 71.1 61.2
ReCon [27] 84.8 86.4 - -

Table 5: Effects of the main components in the proposed PCP-MAE include the pre-training targets
(point cloud reconstruction, learning to predict centers with PCM) and the operation that replaces the
PEm with predicted centers PEpred

m . The default setting is marked in blue .

reconstruction w/ PCM using PEpred
m OBJ BG OBJ ONLY PB T50 RS

90.01 (scratch) 88.64 (scratch) 83.93 (scratch)

92.42 92.42 88.13
91.73 92.42 88.37

92.94 92.42 88.65
90.01 88.64 84.73
94.32 93.11 89.38

95.52 94.32 90.35

Table 6: Effects of predicting targets.
predicting targets OBJ BG OBJ ONLY PB T50 RS

coordinates 94.32 92.25 88.68
sin-cos PE 95.52 94.32 90.35

Table 7: Effects of stop-gradient operation.
stop-gradient OBJ BG OBJ ONLY PB T50 RS

92.42 91.56 87.36
95.52 94.32 90.35

in this situation because it provides sparser positional information compared to the 3-dimensional
coordinates, and it represents a high-dimensional semantic space that is easier and clearer for the
model to learn. The experiment results reported in Tab. 6 substantiate this claim.

Stop-gradient operation. To prevent the decoder from finding shortcuts during pre-training, we
apply a stop-gradient operation sg(·) to the predicted centers before feeding them into the decoder.
This stops the back-propagation of gradients to the PCM, ensuring that any reduction in reconstruction
loss does not falsely adjust the predicted centers PEpred

m , as the reconstruction loss only contains
information for points in patches but no semantic information for the centers. Experimental results,
shown in Tab. 7, indicate a significant performance drop when the stop-gradient operation is omitted.

5 Conclusion
In this paper, we first identify the disparities in positional embeddings between 2-D vision and 3-D
point cloud, finding that direct leakage of masked centers makes the pre-training in Point-MAE
and existing MAE-based methods trivial as shown in Fig. 1. To address this issue, we introduce
PCP-MAE, which adds a novel objective to guide the encoder to predict positional embeddings for
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the masked centers, enabling the encoder to learn much more semantic representations. A Predicting
Center Module which uses cross-attention and shares parameters with the encoder is proposed to
achieve this. Exhaustive experiments on SSL benchmarks showcase the superior performance of our
method compared to Point-MAE, setting new SOTA results across various tasks.
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Table 8: Training details for pretraining and downstream fine-tuning.

Config ShapeNet ScanObjectNN ModelNet ShapeNetPart S3DIS
optimizer AdamW AdamW AdamW AdamW AdamW
learning rate 5e-4 2e-5 1e-5 2e-4 2e-4
weight decay 5e-2 5e-2 5e-2 5e-2 5e-2
learning rate scheduler cosine cosine cosine cosine cosine
training epochs 300 300 300 300 60
warmup epochs 10 10 10 10 10
batch size 128 32 32 16 32
drop path rate 0.1 0.2 0.2 0.1 0.1
number of points 1024 2048 1024 2048 2048
number of point patches 64 128 64 128 128
point patch size 32 32 32 32 32
augmentation Scale&Trans+Rotation Rotation Scale&Trans - -

GPU device V100 / RTX 3090 V100 / RTX 3090 V100 / RTX 3090 RTX 3090 RTX 3090

Table 9: Different Loss functions. The accuracy (%) on three variants of ScanObjectNN is reported.
The default setting is marked in blue .

Loss function OBJ BG OBJ ONLY PB T50 RS

l1 Distance 94.49 93.28 89.76
Smooth l1 95.18 92.94 89.48
Cosine Similarity 94.83 93.45 89.52
l2 Distance 95.52 94.32 90.35

Appendix

A Additional Experimental Eetails

Pre-training details. We use ShapeNet [3] as the pretraining dataset. ShapeNet is a clean set of 3D
CAD object models with rich annotations, including 51K unique 3D models from 55 common object
categories. The overall pretraining includes 300 epochs, and we use a cosine learning rate [21] of
5e-4 warming up for 10 epochs. AdamW optimizer [22] is used, and the batch size is 128. We run
all experiments with single GPU either using RTX 3090 (24GB) or V100 (32GB). More details are
shown in Tab. 8.

Model details. The model is shown in the Fig. 2. The encoder comprises 12 Transformer blocks with
6 attention heads, while the decoder consists of 4 Transformer blocks with 6 attention heads each.
The projector is composed of MLP layers, LayerNorm, ReLU, and another MLP layer, sequentially.
The PCM (Predicting Center Module) also comprises 12 Transformer blocks and shares parameters
with the encoder by leveraging the same layers within the Transformer block. They differ in their
attention mechanisms, i.e., employing self-attention in the encoder or cross-attention in the PCM and
their attention objectives.

B Additional Ablation Study

Masking ratio. We conduct experiments using various masking ratios to determine the most suitable
option for our PCP-MAE. The results are illustrated in Fig. 3, and we identify a masking ratio of
m = 0.6 as optimal.

Loss function for predicting centers. The pre-training objective guiding the encoder to predict
centers entails a regression task. We explore various regression loss functions to select a suitable loss
function for our PCP-MAE. The results are reported in Tab. 9. Notably, the L2 Distance loss emerges
as the best choice. Consequently, we adopt the L2 Distance loss for center prediction.

Pre-training augmentation. The pre-training augmentation plays an important role in increasing the
variance of training samples and thus affecting the performance of our PCP-MAE. We experiment
with different augmentations for pre-training and validate their performance through fine-tuning.

14



0.4 0.5 0.6 0.7 0.8 0.9
Masking Ratio

88.75

89.00

89.25

89.50

89.75

90.00

90.25

Ac
cu

ra
cy

Performance of Different Masking Ratios

Figure 3: Performance of different masking ra-
tios in our PCP-MAE. The accuracy (%) on
PB T50 RS variant of ScanObjectNN are re-
ported. Masking ratio 0.6 performs the best.
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Figure 4: Performance of different η in objective
function L = ηLPC + LRecon. The accuracy
(%) on PB T50 RS variant of ScanObjectNN
are reported. η = 0.1 performs the best.

Table 10: Effects of pre-training augmentations. The accuracy (%) on three variants of ScanObjectNN
is reported. The default setting is marked in blue .

Augmentation OBJ BG OBJ ONLY PB T50 RS

- 94.19 92.08 88.06
Jitter 93.63 92.25 88.05
Horizontal Flip 93.45 91.91 88.82
Scale&Translate 94.14 92.25 88.54
Rotation 94.14 93.11 88.96
Rotation + Scale&Translate 94.83 93.11 90.18
Scale&Translate + Rotation 95.52 94.32 90.35

When fine-tuning, we adopt Rotation for augmenting ScanObjectNN. The results, presented in Tab. 10,
show that the combination of augmentations, particularly Scale & Translate + Rotation, increases the
diversity of training samples and yields the best performance. We adopt it as the augmentation for the
pre-training of our PCP-MAE.

Additional analysis on the data augmentation. We used the Scale&Translate+Rotation augmen-
tation for pre-training because this combination benefits our PCP-MAE, differing from previous
baselines. Since we apply different pre-training augmentations compared to prior methods, we
report the performance of the baseline (Point-MAE [24]) under various augmentations in Tab. 11 for
clarity. Additionally, we test previous SOTA methods (Point-FEMAE [48] and ReCon [27]) with
our augmentation strategy and observe a slight performance drop, as shown in Tab. 12. These results
indicate that the explored augmentation composition benefits our methods more than others. This
improvement can be attributed to the fact that the combination of augmentations enables a
variety of centers, allowing our PCP-MAE to learn a richer distribution of center information
and become more robust. In contrast, the baseline method Point-MAE benefits only slightly from
this augmentation due to relying solely on point cloud reconstruction during pre-training, and prior
SOTA methods like ReCon and Point-FEMAE do not empirically benefit from it.

Different η in the objective function. As discussed in Sec. 3.4, the objective function includes a
scaling factor η to balance the point reconstruction loss LRecon and the center prediction loss LPC ,
formulated as L = ηLPC + LRecon. As depicted in Fig. 4, the optimal performance is achieved
when η = 0.1. Therefore, we adopt this value as the scaling factor for the objective function.

Projector for predicting centers. After obtaining the output of the last transformer block in PCM,
it is passed through a projector comprising MLP layers, ReLU, and LayerNorm to predict masked
centers. In contrast, the output of the encoder is directed into a decoder, which consists of transformer
blocks, for further reconstructing the point cloud. Thus, we conduct experiments to investigate
whether additional transformer layers are necessary for PCM to enhance the decoding of the predicted
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Table 11: Performance comparison of Point-MAE with different augmentations. The star (∗) marks
the setting used by the original Point-MAE [24], the dagger (†) by peer SOTA methods such as
Point-FEMAE [48] and ReCon [27], and the double dagger (‡) by us.

Augmentation ScanObjectNN

Pre-training Fine-tuning OBJ-BG OBJ-ONLY PB-T50-RS

Scale&Translate Scale&Translate ∗ 90.02 88.29 85.18
Rotation Rotation † 92.60 91.91 88.42
Scale&Translate+Rotation Rotation ‡ 92.94 92.25 88.86

Table 12: The performance of previous SOTA methods using our explored augmentation.

Method OBJ-BG OBJ-ONLY PB-T50-RS

Point-FEMAE (Origin) 95.18 93.29 90.22
Point-FEMAE (Our augmentation) 94.32 92.94 89.38
ReCon (Origin) 95.18 93.63 90.63
ReCon (Our augmentation) 94.49 92.77 89.55

Table 13: Number of transformer layers in the projector. The accuracy (%) on three variants of
ScanObjectNN is reported. The default setting is marked in blue .

Depth # P (M) OBJ BG OBJ ONLY PB T50 RS

0 29.05 95.52 94.32 90.35
1 31.27 94.14 92.94 88.93
2 33.05 94.49 93.45 90.04
3 34.81 93.28 92.25 89.27
4 36.59 94.49 93.80 89.55

representations. The results presented in Tab. 13 indicate that additional transformer layers do not
improve performance, hence we continue to employ a simple projector for decoding the predicted
representations obtained by the PCM.

Shared parameters between the encoder and the PCM. We conduct an ablation study to compare
the effects of sharing parameters versus not sharing parameters between the encoder and the PCM.
As shown in Tab. 14, sharing parameters not only significantly reduces the number of parameters but
also enhances the performance of the model.

This improvement can be attributed to the following reasons: The encoder is responsible for encoding
visible tokens to obtain semantic representations and is the only component used during fine-tuning.
When the encoder and PCM share parameters, updates from the PCM are directly incorporated into
the encoder. This allows the encoder (or PCM) to learn more semantic representations and more
effectively understand the relationship between visible representations and masked patches. Although
the loss for predicting centers back-propagates to the encoder due to the cross-attention between the
PCM and encoder, its impact on the encoder is indirect when parameters are not shared. In this case,
the parameters of the PCM are useless and wasted in downstream tasks because only the encoder is
utilized during fine-tuning. In conclusion, sharing parameters makes the updates of the PCM directly
influence the encoder, leading to more efficient and effective learning and enabling the encoder to
learn more semantic representations.

Concerning the above advantages, we choose to share weights between the encoder and the PCM in
our method.

C Additional Visualization Results

After pre-training Point-MAE with a 100% mask ratio, i.e.,, the encoder is completely discarded
during training and only the decoder is utilized, the decoder is able to reconstruct the full point
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Figure 5: Additional visualization results of Point-MAE reconstruction results on the ScanObjectNN
dataset.
Table 14: Ablation on shared parameters between the encoder and PCM. The accuracy (%) on three
variants of ScanObjectNN is reported. The default setting is marked in blue .

Type # P (M) OBJ BG OBJ ONLY PB T50 RS

shared 29.05 95.52 94.32 90.35
non-shared 50.77 94.66 92.77 89.27

cloud using only masked positional embeddings, as shown in Fig. 1. We refer to this as the "masked
center leakage", which demonstrates that the decoder does not necessarily rely on the encoder’s
representation during the pre-training of Point-MAE.

To extend the validation of this phenomenon beyond the ShapeNet dataset [3], which primarily
contains objects with clear and well-defined shapes, we conducted experiments on another dataset,
ScanObjectNN [33]. This dataset poses a more significant challenge, as it consists of real-world
scans that include background clutter and occlusions. The visualization results in Fig. 5 show
that the masked center leakage phenomenon is also present in this more complex dataset, further
demonstrating the generality of the phenomenon that we identified.

D Limitations and Future Works

PCP-MAE is a simple and effective method that improves Point-MAE by additionally learning to
predict the centers, which significantly boosts performance. However, there are some limitations in
PCP-MAE, which may be two-fold. PCP-MAE is a single-modal self-supervised method. Neverthe-
less, the current dataset of 3-D point clouds is constrained in size due to the challenges associated with
collecting point cloud data, which in turn limits the wider applicability of our approach. Additionally,
while PCP-MAE capitalizes on generative learning, it does not leverage the benefits of contrastive
learning and some other works such [27, 7] show great performance by harmoniously combining
generative learning [56, 53] and contrastive learning [54, 55, 52].

To address these issues, future works could focus on developing a multi-modal PCP-MAE, explainable
AI [7, 6, 5, 8] or a hybrid model that effectively combines the strengths of both generative and
contrastive learning.

E Broader Impacts

Our PCP-MAE demonstrates a marked improvement over the existing Point-MAE and establishes
new state-of-the-art (SOTA) benchmarks across a variety of tasks in point cloud understanding. This
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enhancement is pivotal in advancing technologies reliant on precise spatial recognition [43, 42, 44,
45, 6], such as autonomous driving, which demands accurate environmental perception for safety and
efficiency. Moreover, the versatility of the PCP-MAE extends its utility to other critical applications,
including urban planning, where detailed and scalable 3D city modeling is essential, and in augmented
reality, enhancing interactive experiences by integrating more accurate virtual information with the
real world. While our PCP-MAE marks an advancement in point cloud understanding with broad
applications ranging from autonomous driving to urban planning, it is also susceptible to potential
negative societal impacts. The primary concerns stem from its potential use in surveillance systems,
where enhanced spatial recognition capabilities could lead to privacy infringements.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction sections accurately reflect the paper’s contribu-
tion and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion on the limitations of our work is stated in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work is motivated by an interesting experiment phenomenon and proposes
methods based on this observation, which improves the baseline by a large margin. There
are no assumptions and any following proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Comprehensive experimental details necessary for reproducibility, including
datasets, model configurations, used optimizers, and learning rates, are thoroughly detailed in
Sections Sec. 4.1, Sec. 4.2, and Appendix A. These details collectively ensure that the main
experimental results supporting the paper’s claims and conclusions can be independently
reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the link to our code implementation in the Abstract and
provide detailed instructions in the repository for reproducing the main results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive experimental details, including hyperparameters
(such as learning rate, max epochs, batch size, etc.), and the type of optimizer, meticulously
outlined in Sections Sec. 4.1, Sec. 4.2, and Appendix A. Additionally, we conduct ablation
studies to select experiment settings, with key ablations elaborated upon in Sections Sec. 4.3
and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean accuracy and standard deviation in Tab. 3.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We primarily executed all experiments relying on GPU resources, with details
of the specific GPUs used provided in Appendix A, and corresponding execution times
reported in Tab. 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics, and we affirm that
the research conducted in our paper adheres to the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: See Appendix E for the broader impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To our knowledge, the model proposed in our paper does not pose a risk for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the creators of models and datasets mentioned in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our experiments focus on point cloud data and do not include crowdsourcing
or involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research presented in the paper does not involve human subjects or
crowdsourcing experiments.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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