
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

DEALING OUT OF DISTRIBUTION WITH PREDICTION PROB-
LEM

Anonymous authors
Paper under double-blind review

ABSTRACT

The open world assumption in model development means that a model may lack sufficient
information to effectively handle data that is completely different or out of distribution
(OOD). When a model encounters OOD data, its performance can significantly decrease.
Improving the model’s performance in dealing with OOD can be achieved through gener-
alization by adding noise, which can be easily done with deep learning. However, many
advanced machine learning models are resource-intensive and designed to work best with
specialized hardware (GPU), which may not always be available for common users with
hardware limitations. To provide a deep understanding and solution on OOD for gen-
eral user, this study explores detection, evaluation, and prediction tasks within the context
of OOD on tabular datasets using common consumer hardware (CPU). It demonstrates
how users can identify OOD data from available datasets and provide guidance on eval-
uating the OOD selection through simple experiments and visualizations. Furthermore,
the study introduces Tabular Contrast Learning (TCL), a technique specifically designed
for tabular prediction tasks. While achieving better results compared to heavier models,
TCL is more efficient even when trained without specialised hardware, making it useful
for general machine-learning users with computational limitations. This study includes
a comprehensive comparison with existing approaches within their best hardware setting
(GPU) compared with TCL on common hardware (CPU), focusing on both accuracy and
efficiency. The results show that TCL exceeds other models, including gradient boosting
decision trees, contrastive learning, and other deep learning models, on the classification
task.

1 INTRODUCTION

The concept of open-world assumption in model development means that a model may not have enough
information to effectively handle data that is completely different or out of distribution (OOD). When a
model meets OOD data, it may suffer a significant decrease in performance (Hsu et al., 2020; Hendrycks
and Gimpel, 2016). To handle this, model generalisation by introducing noise can be used, which can be
achieved easily with deep learning. However, advanced deep learning algorithms such as FT-Transformer
benefit from the advancement of specialised hardware such as GPU or TPU (Hwang, 2018), this type of
hardware is not always available to the general user (Ahmed and Wahed, 2020). These demand the user to
find the best way to deal with these challenges and emphasize the importance of our research.

While out-of-distribution (OOD) detection has been extensively studied (Lee et al., 2020a), the challenge of
prediction tasks for OOD data, particularly in tabular datasets, remains underexplored. Significant progress
has been made in OOD detection with algorithms like MCCD (Lee et al., 2020b), OpenMax (Bendale and
Boult, 2016), Monte Carlo Dropout (Gal and Ghahramani, 2016), and ODIN (Liang et al., 2017). However,
the study of prediction tasks on OOD for tabular data is limited. Tree-based classical models are known to

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Figure 1: Tabular Contrastive Learning (TCL). The data [x] is duplicated ([x]1, [x]2) and noise is added.
Both duplicates are then encoded and decoded to compute the loss. During inference, TCL only uses the
encoder to produce new data [x]′ that enhances supervised learning performance f([x]′)→ Y . The decoder
is omitted during inference and used only for training.

be reliable for tabular data (Grinsztajn et al., 2022) , but our experiments show that these models exhibit a
decrease in performance when dealing with OOD data.

In this study, we made several contributions. First, we show step by step how to implement existing meth-
ods for detecting, separating, evaluating, and visualizing out-of-distribution (OOD) data using real-world
datasets. Second, we assess the performance of existing tabular machine learning algorithms in handling
OOD data. Lastly, we introduce a new approach called TCL, which provides efficiency and flexibility while
achieving comparable performance.

Tabular Contrast Learning (TCL), Figure 1, is a local adaptation of Contrastive Federated Learning (CFL)
(Ginanjar et al., 2024) designed for prediction tasks on tabular datasets for a general user. TCL is based
on the principles of contrastive learning (Chen et al., 2020; Ucar et al., 2021) but is optimized for tabular
data structures. TCL approach offers several advantages, e.g. Efficiency: TCL is designed to be faster and
more compact compared to current state-of-the-art models, Flexibility: TCL can be integrated with various
supervised learning algorithms and Performance: TCL achieves competitive performance.

Our experiment demonstrates that TCL delivers performance and efficiency (Huang et al., 2017) (defined by
a higher speed/accuracy trade-off score) compared to other models.

2 RELATED WORK

2.1 OOD DETECTION

OpenMax (Bendale and Boult, 2016) uses the concept of Meta-Recognition to estimate the probability that
an input belongs to an unknown class. OpenMax characterizes the failure of the recognition system and
handles unknown/unseen classes during operation. In deep learning, SoftMax calculates as P (y = j|x) =

evj(x)∑N
i=1 e

vi(x)
OpenMax recognizes that in out of distribution (OOD), the denominator of the SoftMax layer

does not require the probabilities to sum to 1.

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

TemperatureScaling (Platt et al., 1999) is a single-parameter variant of the Platt scaling. In a study by Guo
et al. (Guo et al., 2017), despite its simplicity, temperature scaling is effective in calibrating a model for
deep learning. This also suggests that temperature scaling can be used to detect OOD. Our study uses these
two approaches to separate OOD from the dataset and use it as validation data.

Multi-class classification, deep neural networks, Gaussian discriminant analysis (MCCD) (Lee et al.,
2020b) is OOD detection algorithm based deep neural network that claim to have better classification infer-
ence performance. It is focuses on finding sperical-decission across classes.

Our work mainly uses OpenMax and TemperatureScaling. While the original algorithms are not new, both
algorithm have latest update and better support under pytorch-ood (Kirchheim et al., 2022) compared to
MCCD (Lee et al., 2020c).

2.2 TABULAR DATA PREDICTION

Neural Network-based Methods: Multilayer Perceptron (MLP) (Ruck et al., 1990; Gorishniy et al., 2023):
A straightforward deep learning approach for tabular data. Self-Normalizing Neural Networks (SNN).
(Klambauer et al., 2017): Uses SELU activation to train deeper networks more effectively.

Advanced Architectures: Feature Tokenizer Transformer / FT-Transformer (Vaswani et al., 2017): Adapts
the transformer architecture for tabular data, consistently achieving high performance. Residual Network
/ ResNet (Li et al., 2018): Utilizes parallel hidden layers to capture complex feature interactions. Deep &
Cross Network / DCN V2 (Wang et al., 2020): Incorporates a feature-crossing module with linear layers and
multiplications. Automatic Feature Interaction / AutoInt (Song et al., 2018): Employs attention mechanisms
on feature embeddings. Neural Oblivious Decision Ensembles / NODE (Popov et al., 2019): A differentiable
ensemble of oblivious decision trees. Tabular Network / TabNet (Arık and Pfister, 2019): Uses a recurrent
architecture with periodic feature weight adjustments. Focuses on attention framework.

Ensemble Methods: GrowNet (Badirli et al., 2020): Applies gradient boosting to less robust MLPs, pri-
marily for classification and regression tasks.

Gradient Boosting Decision Tree (GBDT) (Grinsztajn et al., 2022) : XGBoost :A tree-based ensemble
method that uses second-order gradients and regularization to prevent overfitting while maximizing compu-
tational efficiency. LightGBM :A fast and memory-efficient boosting framework that uses histogram-based
algorithms and leaf-wise tree growth strategy for faster training. CatBoost :A gradient boosting implementa-
tion specifically optimized for categorical features with built-in ordered boosting to reduce prediction shift.

These models have shown varying degrees of success in tabular data prediction. However, their performance
on OOD data remains a critical area for investigation. We include mentioned model as our base models.

2.3 TABULAR CONTRASTIVE LEARNING

SubTab (Ucar et al., 2021) and SCARF (Bahri et al., 2022) are a contrastive learning model tailored for
tabular datasets. Similar to the fundamental concept of contrastive learning for the image of SimCLR (Chen
et al., 2020). SubTab and SCARF calculate contrastive loss using cosine or euclidean distance. CFL (Gi-
nanjar et al., 2024) is a federated learning algorithm proposed to tackle vertical partition within data silos.
CFL explores the possibility of implementing contrastive learning within vertically partitioned data without
the need for data sharing. CFL merge the weight by understanding that the data came from global imaginary
dataset which is vertically partitioned. CFL uses contrastive learning as a medium for black box learning.
CFL focuses on collaborative learning across silos. In this study, we study learning from local data with
OOD, a problem that is yet to be explored by CFL CFL focuses on a Federated learning network, while ours
is common tabular data. CFL, while exhibiting a similar name, uses partial data augmentation as part of

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

the federated learning concept and is similar to image contrastive learning. TCL, in the other hand use full
matrix augmentation to support tabular data.

3 PROBLEM FORMULATION

3.1 DEFINITION

Definition 1: Tabular Data. Let D ∈ Rnd be a tabular dataset with n samples and d features, and Y ∈ Rn

be the corresponding labels. Tabular data is characterized by its structured format, where each row represents
a sample and each column represents a feature.

Definition 2: Out-of-Distribution Prediction. Given a model trained on in-distribution data Din =
{(xi, yi)|xi ∈ Xin, yi ∈ Yin}, where Xin follows a distribution pin, the task is to make accurate predictions
on OOD data Xood that follows a different distribution pood, where pood ̸= pin.

Definition 3: Efficiency-Accuracy Trade-off. We use a speed/accuracy trade off (Huang et al., 2017) from
the total performance matrix. Let T be the total performance , then T = P

t for classification or T = 1/P
t for

regression.

A performance evaluation P used is F1 or RMSE for the prediction task and the time t in seconds for the
duration of training. The P is used to obtain the standard performance of a model. The t is used to evaluate
the time it takes to train a model. A smaller t means a smaller resource to find the best model by tuning the
hyperparameters. The adjustment 1

P for regression is necessary because in regression tasks, RMSE is used
as the performance metric, and smaller values are better.

3.2 PROBLEM STATEMENT

In machine learning, the goal is to build a model f : x → y that generalizes unseen data. However, if the
model is exposed to samples outside the distribution during inference, it may make unreliable predictions or
exhibit unexpected behaviour.

Formally, a prediction task can be defined as finding a model f : (.) that minimizes the expected error over
a dataset Din with distribution pin. This can be defined as min Error(x, y)D = [L(f(x), y)], where L is a
loss function that measures the discrepancy between the prediction of the model f(x) and the true label y. A
bigger E means poor model performance P or can be denoted as E ↑= P ↓. When a different distribution
pood is introduced to a model, the performance decreased or P (f((x)Din)) > P (f((x)Dood

)).

The time t to find the best model should also be considered. A time-consuming model takes more resources
to train and tune. When dealing with a large dataset, the time used to train and tune a model is a big concern.
A larger and longer model does not always equal better performance P . This can be written as t ↑≠ P ↑.
We evaluated the total/overall performance of the models when dealing with tabular dataset with OOD. The
overall objection can be writen as T = max Pood

min t =
1/min E(x,y)Dood

min t .

4 PROPOSED METHOD

We introduce Tabular Contrastive Learning (TCL), an improved approach designed to enhance prediction
tasks on tabular data, particularly with hardware limitations.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

4.1 TCL MAIN ARCHITECTURE

Augmented Data

As a contrastive learning based algorithm, TCL works based on augmented data. TCL creates two data
augmentations. Denotated as {x1, x2} = Aug(x). Noise was added to these augmented data.

Matrix Augmentation

In TCL, all original data (without slicing or splitting) is utilized as a representation. Unlike previous ap-
proaches such as simCLR (Chen et al., 2020) and SubTab (Ucar et al., 2021) that use slice, TCL utilizes
the entire original data matrix for representation. This allows for capturing more comprehensive feature
interactions in tabular data.

Encoder-Decoder Structure

The contrastive learning architecture includes two main components: an encoder and a decoder. The encoder
transforms input data into a compressed representation called the latent space, denoted E : x;ωe → xe

where ω is parameter and e is encoder notation, while the decoder reconstructs the original data from this
representation denoted P : xe;ωp → xp where p is notation for decoder. During training, both components
are used, but only the encoder is employed during inference, allowing efficient compression of new data into
its learned latent representation without reconstruction.

Modified Contrastive Loss

Loss is calculated based on augmented data, not original data. TCL simplifies contrastive loss calculation
to enhance both performance and training speed. In contrastive learning, the loss is computed based on the
similarity or dissimilarity of the augmented noisy data. Since TCL deals with row-based tabular data and
it is a unsupervised learning, the method used is similarity. TCL aims to pull the noisy data points that
originated from the same data. This is achieved by minimizing the total loss Lc between representations.
During training, the total loss is calculated as follows:

Lt(x) = (Lr(x) + Lc(x) + Ld(x)) (1)

Where Lr is the reconstruction loss, Lc is the contrastive loss, and Ld is the distance loss. The objective of
contrastive learning is to minimize the total loss Lt. When D is dataset, and sliced data B ∈ D , then:

min Lt(.;ω
e, ωp) = min

1

J
ΣJ

j=1Lt(P (E(.;ωe);ωp)) (2)

with w is weight, P (.) is decoder function, and E(.) is encoder function. When MSE(.) is the mean

square error function, and [x] is noisy data of B, then: Lr(x) =
1

N

∑N
n MSE(x̂, x) and Ld(x) =

1

N

∑N
n MSE(xe1, xe2). While Lr is calculated from decoded data and original data, Ld is calculated

from encoded data only. We simplified the contrastive loss Lc by using only the result of a dot product
compared with other contrastive learning that used euclidean distance.

Lc(x) =
1

N

N∑
n

(−log exp(MSE([0], dot(xe1 · xe2))/T )∑K
k=1 exp(MSE([0], dot(xe1 · xe2))/T )

) (3)

5 TCL ALGORITHM

The TCL process involves several steps. First, a minibatch of N samples is sampled from the dataset. Then,
for each sample in the batch, two augmented views are created and added with noise. Although they came

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

from the same data, both augmented data are different due to previous treatments. These augmented views
are passed through an encoder network to obtain encoded representations. A decoder is then applied to
the encoded representations. The loss function then calculates the difference between two augmented data.
By minimizing this loss, noisy data is pulled together. Because TCL applies full matrix representation, the
process pulls noisy data row by row together. This results in generalized data for better inference. The
complete steps are presented on Algorithm 2 in the Appendix section.

6 EXPERIMENT

6.1 DATASETS

We utilized 10 diverse tabular datasets. The datasets are Adult (Becker and Kohavi, 1996), Helena (Guyon
et al., 2019), Jannis (Guyon et al., 2019), Higgs Small (Baldi et al., 2014), Aloi (Geusebroek et al., 2005),
Epsilon (PASCAL Challenge on Large Scale Learning, 2008), Cover Type (Blackard and Dean, 2000),
California Housing (Pace and Barry, 1997), Year (Bertin-Mahieux et al., 2011), Yahoo (Chapelle and Chang,
2011), and Microsoft (Qin and Liu, 2013).

6.2 OOD DETECTION

We have implemented two Out-of-Distribution (OOD) detection methods, namely OpenMax (Bendale and
Boult, 2016) and TemperatureScaling (Platt et al., 1999). We applied OOD detection methods to each
dataset to transform the data and establish thresholds. The thresholds were manually assigned by observing
the graphs produced with the OOD detection algorithm. The manual assignment was done by selecting a
single point on a tail of the observation. We then separated the OOD data based on the thresholds to generate
two sets, DM

in and DN
ood, where M and N are total sample in each set, (Din + Dood = D). We expect to

find M > N . The OOD separation is validated using linear regression. Finally, we compared the model
performance with and without OOD separation, expecting to find that the performance decreased in this step
f : Din > f : Dood.

The results of the experiment is two set of dataset Din, Dood. While Din is used for train dataset, Dood is
used for test dataset. The Algorithm 1 in the Appendix section explains step by step the OOD detection is
done.

6.3 PREDICTION ON OOD DATASET

We experimented with 12 based models. For deep learning tabular models we use FT-T, DCN2, GrowNet,
ResNet, MLP, AutoInt and TabR-MLP (Gorishniy et al., 2023). In addition, we experimented with the recent
implementation of contrastive learning for tabular data SubTab (Ucar et al., 2021) and SCARF (Bahri et al.,
2022), which comes from a similar domain to our TCL. We also did not apply FT-Transformer to some
datasets. The FT-Transformer is heavy and has reached our hardware limitation. Finally, we compared our
TCL with GDBT models.

Our experiment used an NVIDIA H100 GPU for all models except TCL and the GBDT-based model. TCL
and GBDT were trained on a CPU (Apple / AMD) to emphasize our advancement within limited hardware.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Figure 2: Histogram representing the OOD scores across various datasets. The red line is the threshold line
that indicates whether the data is Out of Distribution or not.

7 RESULT AND EVALUATION

7.1 OOD DETECTION

Table 1: The OOD detection settings. Performances are results of model trained with linear regression
(r2) and logistic regression (accuracy). When OOD dataset is separated and used as test dataset in (b) the
performance of the model is decreased. OOD case in the epsilon (∗) dataset cannot be identified.

Dataset Detectors Norms OOD
threshold

Accuracy without
OOD a

Accuracy with
OOD b

Train Test Train
non-OOD

Test
OOD

Adult OpenMax l2 0.162800 0.782561 0.783089 0.797838 0.267408
Helena OpenMax l1 0.045000 0.194532 0.196626 0.146428 0.047553
Jannis TemperatureScaling l1 -0.020000 0.561953 0.563982 0.577274 0.474213
Higgs small OpenMax l1 0.042000 0.622216 0.616879 0.622667 0.568493
Aloi OpenMax l1 0.016000 0.260648 0.232546 0.328289 0.071186
Epsilon ∗ TemperatureScaling l2 -0.000523 0.898635 0.897230 0.898700 0.893338
Covtype TemperatureScaling l1 -0.035000 0.604674 0.604373 0.603514 0.435439

California Housing OpenMax l1 0.110000 0.333448 0.180680 0.477136 -6.033595
Year OpenMax l2 0.045000 0.168659 0.167098 0.169745 -0.714197
Yahoo TemperatureScaling l1 -0.001460 0.325685 0.326275 0.325577 -0.297845
Microsoft TemperatureScaling l1 -0.008300 0.045648 0.044109 0.047334 -0.841856

Table 1 shows significant differences between the two settings. Without OOD (Table 1 , Section a), the
training and test results are comparable. However, when used as test data, the OOD reduces the performance
of the models. OOD leads to a 20% decrease (Table 1 , Section b) in performance between training and test
results for the classification task, and a negative r2 for the regression task. The OOD separation process is

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

(a) Adult (b) Helana (c) Jannis (d) Higgs Small (e) Aloi

(f) CovType (g) California Housing (h) Year (i) Yahoo (j) Microsoft

Figure 3: OOD Visualisation. (.) or blue color is the in distribution data (ID), (+) or red is out of distrobution
data (OOD). In all dataset, except for Jannis, it is clearl that OOD fills empty space between ID. Jannis data
is evenly distributed, the visualisation capture neither ID nor OOD.

Table 2: Experiment result. F1 score for classification and RMSE for regression. Datasets with (*) mean a
regression problem. Models with (c) are contrastive learning based models.

AD↑ HE↑ JA↑ HI↑ AL↑ CO↑ CA*↓ YE*↓ YA*↓ MI*↓
FT-T 0.782 0.153 0.572 0.738 0.407 - 0.867 6.461 - -
DCN2 0.744 0.129 0.542 0.710 0.414 0.58 2.602 7.054 0.645 0.746
GrowNet 0.465 - - 0.685 - - 0.969 7.605 1.01 0.769
ResNet 0.652 0.10 0.574 0.753 0.437 0.694 0.892 6.496 0.639 0.736
MLP 0.508 0.146 0.561 0.753 0.326 0.617 0.894 6.488 0.657 0.741
AutoInt 0.78 0.133 0.549 0.719 0.401 0.608 0.89 6.673 - 0.739
TabR-MLP 0.688 0.165 0.541 0.753 0.429 0.688 2.677 2e5 1.285 0.79
TCLc 0.831 0.154 0.575 0.758 0.447 0.880 0.843 6.491 0.652 0.738
Scarfc 0.720 0.00 0.122 0.308 0.00 0.091 - - - -
SubTabc 0.714 0.146 0.504 0.602 0.322 0.59 1.012 6.668 0.656 0.744

visualized in Figure 2, which presents histogram graphs of the transformed data with detectors. The Epsilon
dataset shows two peaks, indicating complexity, and outliers cannot be detected. In contrast, the Microsoft
dataset shows a performance decrease with OOD. Figures 3 show the results of separating in-distribution
(ID) and out-of-distribution (OOD) data using TSNE in an unsupervised manner. The figures demonstrate
that OOD data fills the empty space between ID data, indicating a strong presence of OOD. Table 1, Figure
2, and Figure 3 show strong indications of the existence of out-of-distribution (OOD) data.

7.2 MODELS PERFORMANCE

Table 2 shows the results of the experiment. Overall, TCL outperforms other models, while the performance
of the other models is comparable across various datasets. There are some exceptions where specific models
underperform relative to others. For instance, GrowNet performs below average on the adult dataset, DCN
V2 underperforms on the California Housing dataset, and GrowNet also underdelivers on the Yahoo dataset.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Table 3: Experiment result of TCL compared to GBDT. F1 score for classification and RMSE for regression.
Datasets with (*) mean a regression problem. Model with (c) means contrastive learning based model,
models with (x) mean GBDT based models.

AD↑ HE↑ JA↑ HI↑ AL↑ CO↑ CA*↓ YE*↓ YA*↓ MI*↓
TCLc 0.831 0.154 0.575 0.758 0.447 0.880 0.843 6.491 0.652 0.738
Lightgbmx 0.591 0.080 0.432 0.609 0.177 0.219 0.848 6.565 0.661 0.740
CatBoostx 0.927 0.152 0.533 0.718 - 0.753 0.827 6.622 0.655 0.733
XGBx 0.925 0.127 0.532 0.739 0.328 0.700 0.845 6.867 0.654 0.739

Table 4: Table of training duration in second of each dataset. Datasets with (*) means a regression problem.
All model except for TCL are trained with GPU. TCL were trained with CPU

AD↓ HE↓ JA↓ HI↓ AL↓ CO↓ CA*↓ YE*↓ YA*↓ MI*↓
FT-T 1027 130 155 94 1205 - 88 1290 - -
ResNet 2.1e+02 32 21 56 44 618 15 236 284 950
TCL 15 23 23 38 40 330 7 240 620 820

In contrast, TCL stands out by outperforming other models on most datasets, particularly in classification
problems. Nevertheless, TCL’s performance in regression problems is not significantly behind that of the
top models..

When compared with the GBDT method, TCL outperforms in most datasets, especially in the classification
problem, see Table 3. Compared to other classification problems, the adult dataset has a relatively higher
score across other datasets. This shows that adult dataset does not require generalisation during prediction,
which also explains why TCL performs under CatBoost. CatBoost dominant in 4 datasets beat any other
GBDT algorithm.

7.3 TRAINING DURATION

Table 4 displays the training duration for the best three deep learning models. Each model has unique
characteristics and training steps, and all seven models (FT-T, DCN 2, GrowNet, ResNet, MLP, AutoInt,
TabR-MLP) underwent extensive tuning. The Yahoo and Microsoft datasets required 5 days to complete the
entire parameter-tuning process. For FTT and restnet, a single training time was sampled once the tuning
process was completed. TCL, which involve unsupervised training, The time recorded is time for each
model to stabilize their loss with a 256 batch size, which is around 15 epochs. it is clear that TCL has a short
training time.

7.4 EFFICIENCY EVALUATIONS

Table 5: A speed/accuracy trade off matrix T = P
t where P performance matrix used and t is time in second

required. A higher result is better. Datasets with (*) mean a regression problem.

AD HE JA HI AL CO CA* YE* YA* MI*

FT-T 0.00076 0.0012 0.0037 0.0079 0.00034 - 0.013 0.00012 - -
ResNet 0.0031 0.0031 0.027 0.013 0.0099 0.0011 0.075 0.00065 0.0055 0.0014

TCL 0.055 0.0066 0.025 0.028 0.0199 0.0026 0.16 0.00064 0.0024 0.0016

Table 5 shows that TCLs are dominant. FT-Transformer and ResNet produce a good F1 and RMSE score;
however, they take more time to train. In FT-Transformer, multiple attention heads process numeric and

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

categorical features separately before combining them. The model includes four types of layers that grow
exponentially, leading to resource-intensive computations. ResNet employs parallel calculations across mul-
tiple convolutional layers (SubNet), using three identical SubNets, one of which is highly filtered. In con-
trast, TCL has a simpler architecture akin to MLP, achieving a high speed/accuracy trade-off. TCL features
narrow layers for both the encoder and decoder, each with one hidden layer and one normalization layer, re-
sulting in fewer layers than ResNet. However, TCL’s pair operation for loss calculation doubles its training
time.

7.5 TCL EFFICIENCY EVALUATION

Our TCL has undergone significant algorithm modifications, making the original similarity loss function
inapplicable. We compare TCL with SubTab, which employs a similarity function for tabular contrastive
learning, to evaluate TCL’s efficiency.

Table 6 shows that the dot product applied on TCL consistently faster compared to similarity distance func-
tion applied to similar contrastive learning under SubTab. The efficiency gain from using the dot product
supports our decision to incorporate it into the TCL model. Implementation of the entire original data ma-
trix for representation removes matrix splitting as used in common contrastive learning. Implementation of
dot product removes the requirement to calculate more complex similarity scores. Both algorithms were
evaluated under CPU.

Table 6: Table of training duration in second of each dataset. Datasets with (*) mean a regression problem.
TCL uses the dot product, and SubTab uses the similarity function. Both algorithms were evaluated under
CPU.

AD↓ HE↓ JA↓ HI↓ AL↓ CO↓ CA*↓ YE*↓ YA*↓ MI*↓
TCL 15 23 23 38 40 330 7 240 620 820
SubTab 1400 1700 2400 2800 3400 1.8e+06 640 1.5e+04 3.6e+04 4e+04

8 CONCLUSION

The choice of models for tabular datasets with out-of-distribution (OOD) data depends on the user’s needs
and available resources. TCL outperforms other heavier models for classification problems on OOD while
maintaining efficiency. RestNet and FT-Transformer perform well on many datasets, but these models re-
quire more resources, which may not always be feasible. It is worth noting that TCL was trained on a CPU,
and RestNet and FT-T were trained on a GPU. This makes TCL available for more users than other models
that require more training resources. Both RestNet and TCL can be options for fine-tuning and serving as
head-to-head comparison models.

Although TCL has shown promising results, there are opportunities for potential enhancement. A continual
learning can be proposed to improve performance. Further optimization of the contrastive learning process
can be studied to achieve even greater efficiency. Additionally, there is a need to explore TCL’s perfor-
mance on a wider range of domain-specific tabular datasets. Furthermore, it is crucial to investigate TCL’s
interpretability, as this is important for many real-world applications.

9 REPRODUCIBILITY

The code for this work can be found online (anonymized, 2024) (submitted as a supplementary file). The
dataset is also available online and can be downloaded using the information provided in the citation.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

REFERENCES

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-distribution
image without learning from out-of-distribution data, 2020.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. 5th International Conference on Learning Representations, ICLR 2017 - Conference
Track Proceedings, 10 2016. URL https://arxiv.org/abs/1610.02136v3.

Tim Hwang. Computational power and the social impact of artificial intelligence. SSRN Electronic Journal,
2018. doi: 10.2139/ssrn.3147971.

Nur Ahmed and Muntasir Wahed. The de-democratization of ai: Deep learning and the compute divide in
artificial intelligence research, 2020. URL https://arxiv.org/abs/2010.15581.

Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-Class Data Description for Out-of-distribution Detection.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1362–1370, aug 2020a. doi: 10.1145/3394486.3403189. URL https://dl.acm.org/doi/
10.1145/3394486.3403189.

Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-class data description for out-of-distribution detection.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’20, page 1362–1370, New York, NY, USA, 2020b. Association for Computing Machin-
ery. ISBN 9781450379984. doi: 10.1145/3394486.3403189. URL https://doi.org/10.1145/
3394486.3403189.

Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016-December:1563–1572, 12 2016.
ISSN 10636919. doi: 10.1109/CVPR.2016.173.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning, 6 2016. ISSN 1938-7228. URL https://proceedings.mlr.press/v48/
gal16.html.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image detection in
neural networks. 6th International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings, 6 2017. URL https://arxiv.org/abs/1706.02690v5.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520, dec
2022.

Achmad Ginanjar, Xue Li, and Wen Hua. Contrastive federated learning with tabular data silos, 2024. URL
https://arxiv.org/abs/2409.06123.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. pages 1597–1607, 11 2020. ISSN 2640-3498. URL
https://proceedings.mlr.press/v119/chen20j.html.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data for
self-supervised representation learning. volume 23, 2021.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,
Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy. Speed/accuracy trade-offs for
modern convolutional object detectors, 2017.

11

https://arxiv.org/abs/1610.02136v3
https://arxiv.org/abs/2010.15581
https://dl.acm.org/doi/10.1145/3394486.3403189
https://dl.acm.org/doi/10.1145/3394486.3403189
https://doi.org/10.1145/3394486.3403189
https://doi.org/10.1145/3394486.3403189
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/1706.02690v5
https://arxiv.org/abs/2409.06123
https://proceedings.mlr.press/v119/chen20j.html


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
34th International Conference on Machine Learning, ICML 2017, 3:2130–2143, 6 2017. URL https:
//arxiv.org/abs/1706.04599v2.

Konstantin Kirchheim, Marco Filax, and Frank Ortmeier. Pytorch-ood: A library for out-of-distribution
detection based on pytorch. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pages 4351–4360, June 2022.

Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-class data description for out-of-distribution detection,
2020c. URL https://github.com/donalee/DeepMCDD.

Dennis W Ruck, Steven K Rogers, and Matthew Kabrisky. Feature selection using a multilayer perceptron.
Journal of neural network computing, 2(2):40–48, 1990.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem Babenko.
Tabr: Tabular deep learning meets nearest neighbors in 2023, 2023. URL https://arxiv.org/
abs/2307.14338.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural net-
works. 31st Conference on Neural Information Processing Systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Bin Li, Weihang Wei, Anselmo Ferreira, and Shunquan Tan. Rest-net: Diverse activation modules and
parallel subnets-based cnn for spatial image steganalysis. IEEE Signal Processing Letters, 25(5):650–
654, 2018.

Ruoxi Wang, Rakesh Shivanna, Derek Z. Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed H. Chi. Dcn
v2: Improved deep and cross network and practical lessons for web-scale learning to rank systems. The
Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021, pages 1785–1797,
8 2020. doi: 10.1145/3442381.3450078. URL http://arxiv.org/abs/2008.13535http:
//dx.doi.org/10.1145/3442381.3450078.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. Au-
toint: Automatic feature interaction learning via self-attentive neural networks. International Confer-
ence on Information and Knowledge Management, Proceedings, 10:1161–1170, 10 2018. doi: 10.1145/
3357384.3357925. URL http://arxiv.org/abs/1810.11921http://dx.doi.org/10.
1145/3357384.3357925.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep learn-
ing on tabular data. 8th International Conference on Learning Representations, ICLR 2020, 9 2019. URL
https://arxiv.org/abs/1909.06312v2.

Sercan Arık and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. 35th AAAI Conference on
Artificial Intelligence, AAAI 2021, 8A:6679–6687, 8 2019. ISSN 2159-5399. doi: 10.1609/aaai.v35i8.
16826. URL https://arxiv.org/abs/1908.07442v5.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S. Keerthi.
Gradient boosting neural networks: Grownet. 2 2020. URL https://arxiv.org/abs/2002.
07971v2.

12

https://arxiv.org/abs/1706.04599v2
https://arxiv.org/abs/1706.04599v2
https://github.com/donalee/DeepMCDD
https://arxiv.org/abs/2307.14338
https://arxiv.org/abs/2307.14338
http://arxiv.org/abs/2008.13535 http://dx.doi.org/10.1145/3442381.3450078
http://arxiv.org/abs/2008.13535 http://dx.doi.org/10.1145/3442381.3450078
http://arxiv.org/abs/1810.11921 http://dx.doi.org/10.1145/3357384.3357925
http://arxiv.org/abs/1810.11921 http://dx.doi.org/10.1145/3357384.3357925
https://arxiv.org/abs/1909.06312v2
https://arxiv.org/abs/1908.07442v5
https://arxiv.org/abs/2002.07971v2
https://arxiv.org/abs/2002.07971v2


564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. SCARF: SELF-SUPERVISED CONTRASTIVE
LEARNING USING RANDOM FEATURE CORRUPTION. In ICLR 2022 - 10th International Confer-
ence on Learning Representations, 2022.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengying Liu,
Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, Alexander Statnikov, Wei-Wei Tu, and Eve-
lyne Viegas. Analysis of the automl challenge series 2015-2018. In AutoML, Challenges in Machine
Learning. Springer, 2019.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5:4308, 2014. doi: 10.1038/ncomms5308.

Jan-Mark Geusebroek, Gertjan J. Burghouts, and Arnold W. M. Smeulders. The amsterdam library of
object images. International Journal of Computer Vision, 61(1):103–112, 2005. doi: 10.1023/B:VISI.
0000042993.50813.60.

PASCAL Challenge on Large Scale Learning. Epsilon Dataset: Simulated Physics Experiments. http:
//largescale.ml.tu-berlin.de/instructions/, 2008. Accessed: [Insert Access Date].

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks and discrimi-
nant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24(3):131–151, 2000. doi: 10.1016/S0168-1699(99)00046-0.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):
291–297, 1997.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset. In
Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), pages
591–596, Miami, Florida, USA, October 2011. URL http://ismir2011.ismir.net/papers/
OS6-1.pdf.

Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the Learning
to Rank Challenge, volume 14 of Proceedings of Machine Learning Research, pages 1–24. PMLR, 2011.
URL http://proceedings.mlr.press/v14/chapelle11a.html.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013. URL
https://arxiv.org/abs/1306.2597.

anonymized. Tabular contrastive learning (tcl). [Online]. Available from: https://github/
anonymized, July 12 2024.

13

http://largescale.ml.tu-berlin.de/instructions/
http://largescale.ml.tu-berlin.de/instructions/
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://proceedings.mlr.press/v14/chapelle11a.html
https://arxiv.org/abs/1306.2597
https://github/anonymized
https://github/anonymized


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

A APPENDIX

Algorithm 1 OOD Detection and Train-Test Separation

Require: Dataset D, OOD detection methods M = {OpenMax, TemperatureScaling}
Ensure: In-distribution dataset Din, Out-of-distribution dataset Dood

for each method m ∈M do
Apply m to D
Obtain transformed data Dm

end for
for each Dm do

Visualize histogram of Dm

Manually set threshold tm based on histogram
end for
Initialize Din ← ∅, Dood ← ∅
for each sample x ∈ D do

if ∀m ∈M : Dm(x) < tm then
Din ← Din ∪ {x}

else
Dood ← Dood ∪ {x}

end if
end for
Validate OOD separation using linear regression
Compare model performance: f(Din) vs f(Dood)
return Din, Dood

Algorithm 2 Tabular Contrastive Learning (TCL) Algorithm

Require: Tabular dataset D, encoder E, decode P , batch size N , temperature τ
for each epoch do

for each batch B ∈ D do
for each sample xi ∈ B do

Create augmented views x1
i , x

2
i = Augment(xi)

end for
Baug = {x1

i , x
2
i |i = 1, . . . , N}

for each x̃i ∈ Baug do
xe = E(x̃i) ▷ Encode
xp = P (xe) ▷ Decode

end for
if inference then return xe

end if
for i = 1 to 2N do

i+ = (i+N) mod 2N ▷ Pair index
Lt = Lr + Lc + Ld

end for
LtN = 1

N

∑N
1 Lt

Update E and P by optimizing LtN

end for
end for

14


	Introduction
	Related Work
	OOD detection
	Tabular data prediction
	Tabular contrastive learning

	Problem Formulation
	Definition
	Problem Statement

	Proposed Method
	TCL Main Architecture

	TCL Algorithm
	Experiment
	Datasets
	OOD Detection
	Prediction ON OOD Dataset

	Result and Evaluation
	OOD Detection
	Models Performance
	Training Duration
	Efficiency Evaluations
	TCL Efficiency Evaluation

	Conclusion 
	Reproducibility
	Appendix

