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Abstract

Serving novel schemas for semantic parsing001
of natural language queries over relational002
databases is a challenging problem owing to003
a huge diversity of schemas and zero availabil-004
ity of text queries in the target schema until005
the initial deployment of the parser in the real006
world. We present REFILL, a framework for007
synthesising diverse and high quality parallel008
data of Text-SQL pairs for adapting seman-009
tic parsing models on a new schema. Unlike010
prior approaches that synthesize text using an011
SQL-to-Text model trained on existing datasets,012
our approach uses a novel method of retriev-013
ing diverse existing text, masking their schema-014
specific tokens, and refilling to translate to the015
target schema. We show that this process leads016
to significantly more diverse text than achiev-017
able by sampling the beam of a plain SQL-to-018
Text model. Experiments across four groups019
of relational databases establish that finetuning020
a semantic parser on the datasets synthesized021
by REFILL offers consistent performance gains022
over prior data-augmentation methods.023

1 Introduction024

Natural Language interface to Databases (NLIDB)025

that translate textual queries to SQLs executable026

on a relational database is an ambitious goal in the027

field of Semantic Parsing. Unlike other semantic028

parsing tasks, Text-to-SQL also demands the ability029

to reason over the schema structure of a relational030

database, in addition to understanding the natural031

text and generating a syntactically correct struc-032

tured output. Recently datasets such as Spider (Yu033

et al., 2018) comprising of parallel (Text,SQL)034

pairs over hundreds of schemas have been released,035

and these have been used to train state-of-art neural036

Text-to-SQL models (Scholak et al., 2021a; Ru-037

bin and Berant, 2021; Scholak et al., 2021b; Xu038

et al., 2021). However, several studies have in-039

dependently shown that such Text-to-SQL mod-040

els fail catastrophically when evaluated on unseen041

schemas from the real-world databases (Suhr et al., 042

2020; Lee et al., 2021; Hazoom et al., 2021). Since 043

database schemas are typically proprietary or pri- 044

vate, generalizing over the unseen schema structure 045

becomes even harder due to the lack of labeled 046

training data. In general, adapting an existing se- 047

mantic parser to a new schema requires significant 048

amounts of labeled data for finetuning. 049

Lack of parallel data, that is representative of 050

natural human generated queries (Wang et al., 051

2015; Herzig and Berant, 2019), is a long-standing 052

problem in semantic parsing. Several methods 053

have been proposed for supplementing with syn- 054

thetic data, ranging from grammar-based canoni- 055

cal queries to full-fledged conditional text genera- 056

tion models (Wang et al., 2015; Herzig and Berant, 057

2019; Zhong et al., 2020a; Yang et al., 2021; Zhang 058

et al., 2021; Wang et al., 2021). For Text-to-SQL, 059

state of the art data-generation methods are based 060

on training an SQL-to-Text model using labeled 061

data from pre-existing schemas, and generating 062

data in new schemas. We show that the text gen- 063

erated by these methods, while more natural than 064

canonical queries, lacks the rich diversity of natu- 065

ral multi-user queries. Fine-tuning with such data 066

often deteriorates the model performance since the 067

lack of diversity leads to a biased model. 068

We propose a framework called REFILL for gen- 069

erating synthetic, diverse text for a given SQL 070

workload that is often readily available (Baik et al., 071

2019). REFILL leverages the availability of paral- 072

lel datasets such as Spider (Yu et al., 2018) from 073

several existing schemas to first retrieve a diverse 074

set of text paired with SQLs that are similar struc- 075

turally to a given SQL q. Then, it trains a novel 076

schema translator model for converting the text of 077

the training schema to the target schema of q. The 078

schema translator is decomposed into a mask and 079

fill step to facilitate training without direct par- 080

allel examples of schema translation. Our design 081

of the mask module and our method of creating la- 082
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beled data for the fill module entails non-trivial083

details that we explain in this paper. REFILL also084

incorporates a method of filtering high-quality text085

using an independent binary classifier, that pro-086

vides more useful independent quality scores, than087

the cycle consistency scores used in (Zhong et al.,088

2020a). Our approach is related to retrieve-and-089

edit models that have been used in other NLP tasks090

including dialogue generation (Chi et al., 2021),091

translation (Cai et al., 2021), Question Answer-092

ing (Karpukhin et al., 2020), and Semantic Pars-093

ing (Hashimoto et al., 2018; Pasupat et al., 2021;094

Das et al., 2021). However, our method of casting095

the "edit" as a two-step mask-and-fill schema trans-096

lation model is different from existing methods.097

Our key contributions are as follows (i) We propose098

the idea of translating natural text from several ex-099

isting schemas for synthesizing text for a target100

schema to get greater diversity than achievable by101

beam-sampling a SQL-to-Text model. (ii) We de-102

sign strategies for masking schema specific words103

in the retrieved text, and training the REFILL model104

to translate to the target schema using existing sin-105

gle schema pairs. (iii) We present a method for106

filtering high quality parallel data using a binary107

classifier and show that it is more efficient than ex-108

isting methods based on cycle consistency. (iv) We109

compare REFILL with existing conditional gen-110

eration methods and show that our more diverse111

synthetic data yields significantly more accurate112

adaption of Text-to-SQL models to new database113

schemas.114

2 Diverse parallel data synthesis with115

REFILL116

Our goal is to generate synthetic parallel data to117

adapt a trained Text-to-SQL model to a new schema118

unseen during training. A Text-to-SQL model M :119

X ,S 7→Q maps a natural language question x ∈ X120

addressed on a database schema s ∈ S, to an SQL121

query q̂ ∈ Q. We assume a Text-to-SQL model M122

trained on a dataset Dtrain = {(xi, si,qi)}Ni=1 con-123

sisting of text queries xi addressed on a database124

schema si, and the corresponding gold SQL queries125

qi. Our approach is agnostic to the exact model126

used for Text-to-SQL. The train set Dtrain con-127

sists of examples from a wide range of schemas128

si ∈ Strain, e.g. the Spider dataset (Yu et al., 2018)129

which contains roughly 140 schemas in the train set130

i.e. |Strain| = 140. We focus on adapting a model131

M trained on Dtrain to perform well on queries132

Algorithm 1: Data Synthesis with REFILL

1 input: QWs, M, Dtrain
2 Dsyn ← ϕ
3 for q← SampleSQLQueries (QWs) do
4 {qr,xr} ← RetrieveRelatedPairs(q,Dtrain)

5 {xmasked
r } ← MaskSchemaTokens({qr,xr})

6 {xq
r} ← EditAndFill({q,xmasked

r })
7 Dsyn ← Dsyn ∪ Filter(q, {xq

r})
8 Mnew ← Finetune(M,Dsyn)

from a new schema s different from the schemas 133

in Strain. We propose to generate diverse parallel 134

data Dsyn using which we fine-tune the pre-trained 135

model M to the new schema s. We assume that 136

on the new schema s we have a workload QWs 137

of SQL queries. Often in existing databases a sub- 138

stantial SQL workload is already available in the 139

query logs at the point a DB manager decides to in- 140

corporate the NL querying capabilities (Baik et al., 141

2019). The workload is assumed to be represen- 142

tative but not exhaustive. In the absence of a real 143

workload, a grammar-based SQL generator may be 144

used (Zhong et al., 2020a; Wang et al., 2021). 145

146

Figure 1 and Algorithm 1 summarizes our 147

method for synthesizing diverse SQL-Text pairs 148

for adapting an existing Text-to-SQL semantic pars- 149

ing model M to a target database s ∈ Starget not 150

seen during training s ̸∈ Strain. Given a SQL 151

query q on the target schema s, our method first 152

retrieves related SQL-Text pairs {qr,xr}Rr=1 from 153

the Dtrain on the basis of a tree-edit-distance mea- 154

sure such that the SQLs {qr}Rr=1 in the retrieved 155

pairs have similar structure as the given SQL query 156

q. We then translate each text xr so its target query 157

changes from qr to q on schema s. We decompose 158

this task into two steps: mask out schema specific 159

tokens in xr, and fill the masked text to represent q 160

with the help of a conditional text generation model 161

B like BART (Lewis et al., 2020). The translated 162

text may be noisy since we do not have direct su- 163

pervision to train such models. To improve the 164

overall quality of the synthesized data we filter out 165

the unlikely SQL-Text pairs with the help of an 166

independent binary classifier. Finally, we adapt the 167

given Text-to-SQL model M for the target database 168

by fine-tuning it on the diverse, high-quality filtered 169

data Dsyn synthesized by our method. We now de- 170

scribe each step in further detail. 171
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(SQL,Text) pairs from
existing datasets

(e.g. spider)

Query workload of the
new database 

SELECT country,
COUNT(*) FROM

singer GROUP BY
country

SELECT denomination,
COUNT(*) FROM school
GROUP BY denomination 

SELECT country_id,
COUNT(*) FROM

locations GROUP BY
country_id

SELECT location,
COUNT(*) FROM cinema
GROUP BY location 

SELECT nationality,
COUNT(*) FROM host

GROUP BY nationality

SELECT country,
COUNT(*) FROM member

GROUP BY country 

For each denomination,
return the denomination and

count of schools with that
denomination

Give the country ID and
corresponding count of cities

in each country

Show each location and the
number of cinema there

How many hosts does each
nationality have? List

nationality and the count

Show the different countries
and the number of members

from each

Retrieved (SQL,Text) pairs based on Tree Edit Distance
 

For each <mask>, return the
<mask> and count of

<mask> with that <mask>

Give the <mask> <mask>
and corresponding count of

<mask> in each <mask>

Show each <mask> and the
number of <mask> there

How many <mask> does
each <mask> have? List
<mask> and the <mask>

Show the different <mask>
and the number of <mask>

from each

Masked Texts
 

For each country, return the
country and count of singers

with that country

Give the country name and
corresponding count of
singers in each country

Show each country and the
number of singers there

How many singers does each
country have? List country

and the count

Show the different countries
and the number of singers

from each

Generated Diverse Text
 

Synthesized parallel
data with diverse text

queries for new
database

Binary
Classifier

1

2

Retrieval
Masking

Fill masks using
BART

Filtering using
binary classifier 

4

BART 3

Figure 1: Diverse parallel data synthesis by editing related examples using REFILL. Given a query q from a new
database, REFILL (1) Retrieves SQL-Text pairs from an existing dataset where the SQLs have a small edit distance
w.r.t. the query q (indicated by dashed lines in the diagram). (2) Since the retrieved text come from a different
database, the schema specific words are masked out. (3) The masked text and the query q are then translated into
the target schema via an Edit and Fill step that uses a conditional text generation model like BART. (4) Finally, the
synthesized SQL-Text pairs are filtered using a binary classifier model that is trained to retain only the consistent
SQL-Text pairs. Translating the text from multiple related examples allows REFILL to generate diverse and high
quality text for the new schemas.

2.1 Retrieving related queries172

Given a query q ∈ QWs sampled from the work-173

load, we extract the query-text pairs {qr,xr} ∈174

Dtrain from the train set such that the retrieved175

queries {qr} are similar in structure of the query q.176

We utilize tree-edit-distance (Pawlik and Augsten,177

2015, 2016) between the relational algebra trees178

corresponding to the queries q and qr. Since the179

retrieved queries come from a different schema, we180

modify the tree edit distance algorithm to ignore181

the schema names and the database values. The182

tree-edit-distance is further normalized by size of183

the larger tree. We only consider the pairs with184

queries having a distance of less than 0.1 w.r.t. the185

query q. On existing datasets like Spider, it is often186

possible to find several SQLs structurally similar187

to a q. For example, in Spider we found that 76%188

of test SQLs contain at least three SQLs in Dtrain189

that are structurally identical, that is, have a tree-190

edit-distance of 0. Figure 2 shows more detailed191

statistics.192193

2.2 Translating text of related queries194

Our next goal is to translate xr from being a query195

on qr on DB-schema sr to a text for query q on196

schema s where q ≈ qr structurally. We cannot197

train a direct translation model with (xr,q) as in-198
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Figure 2: Frequency distribution of average tree-edit-
distance of test-queries in Spider to its top-3 structurally
similar queries in the training set.

put since we do not have any parallel labeled data 199

for this new type of translation task. We therefore 200

decompose this into two steps: 1) a simpler task of 201

masking schema-specific tokens in xr to get a tem- 202

plate xmasked
r , and 2) a conditional text generation 203

model that maps (xmasked
r ,q) to the target text for 204

which we modify Dtrain to get indirect supervision. 205

We describe these steps next: 206

Masking retrieved text Converting retrieved 207

text queries to masked templates is a critical com- 208

ponent of REFILL’s pipeline since irrelevant to- 209

kens e.g. references to schema elements of the 210

original database, can potentially misguide the text 211

generation. Our initial approach was to mask to- 212

kens based on match of text tokens with schema 213
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names and manually refined schema-to-text linked214

annotations as in (Lei et al., 2020). However, this215

approach failed to mask all schema-related terms216

since occurrences in natural text often differed217

significantly from schema names in the database.218

Table 12 shows some anecdotes. Consequently,219

we designed a simple frequency-based method of220

masking that was significantly more effective for221

our goal of using the masked text to just guide222

the diversity. For each word that appears in the223

questions of the train set, we count the number224

of distinct databases for which that word appears225

at least once in one of the text questions for that226

database. E.g. words like {‘show’, ’what’,227

’list’, ’order’} appear in more than228

90% of schemas, and schema specific words229

like {‘countries’, ‘government’} oc-230

cur only in queries of a few schemas. We mask231

out all the words that appear in less than 50% of232

schema. The words to be masked are replaced by233

a special token MASK. Consecutive occurrences of234

MASK are collapsed into a single MASK token. Thus235

we obtain masked templates {xmasked
r } retaining236

minimal information about their original schema.237

Editing and Filling the masked text Given a238

masked template xmasked
r , and an SQL query q239

that needs to be translated into a text query x̂, we240

first convert q into a pseudo-English representa-241

tion qEng similar to the one described in (Shu et al.,242

2021). In addition, we wrap the table, column, or243

value tokens in q with special tokens to provide244

explicit signals to the text generation module that245

such tokens are likely to appear in the generated246

text. Next, we concatenate the tokens in the masked247

text xmasked
r and the query qEng for jointly encoding248

them as an input to a conditional text generation249

model like BART. The output of the decoder is250

expected to be natural language text x̂ consistent251

with the query q. Since we do not have direct su-252

pervision for such training, we transform Dtrain to253

generate parallel data for this training as follows:254

Given a training dataset Dtrain =255

{(xi, si,qi)}Ni=1 of Text-SQL pairs (xi,qi)256

for different schemas si ∈ Strain, the conditional257

text generation model is now finetuned for258

translating {xmasked
i ,q

Eng
i } to xi as follows. (a)259

For one-third of random train steps we provide260

[xmasked
i |qEng

i ], the concatenation of the masked261

text and the q
Eng
i as an input to the encoder and262

maximize the likelihood of xi in the decoder’s263

output. (b) For another one-third we pass only264

q
Eng
i as an input maximize the likelihood of xi. 265

This ensures that model is capable of generating 266

the text from the query alone, if the templates are 267

unavailable or noisy. (c) For the last one-third, we 268

use masked templates xmasked
j , across two different 269

schemas si and sj , such that the tree-edit distance 270

between the queries qi and qj is small, and the 271

word edit distance between the masked templates 272

xmasked
i and xmasked

j is also small. This makes 273

the training more consistent with the inference, 274

where the schemas are different. In Section 4.4, 275

we establish the importance of steps (b) and (c) for 276

generating text that is more consistent with the 277

SQL queries (See Table 3). 278

2.3 Filtering Generated Text 279

Since the data synthesized using REFILL is used to 280

finetune the semantic parsing models in the down- 281

stream, we learn a Filtering model F : (X ,Q) 7→ 282

R that assigns lower scores to inconsistent SQL- 283

Text pairs and higher scores to the consistent ones. 284

We select the top-5 sentences for each query gen- 285

erated by REFILL and reject all the sentences that 286

are scored below a fixed threshold as per the Filter- 287

ing model. Existing work depended on the trained 288

Text-to-SQL M to assign quality scores, however 289

we found that such filtering did not result in a use- 290

ful dataset for fine-tuning M since it favored text 291

on which M was already good. 292

We instead train an independent binary classifi- 293

cation model for filtering as follows: The SQL-Text 294

pairs in the training set Dtrain = {(xi, si,qi)}Ni=1 295

serve as the positive (consistent) examples and we 296

synthetically generate the negative (inconsistent 297

pairs) as follows: (i) Replace DB values in the SQL 298

with arbitrary values sampled from the same col- 299

umn of the database. (ii) Replace SQL-specific 300

tokens with their corresponding alternates e.g. re- 301

place ASC with DESC, or ‘>’ with ‘<’. (iii) Cas- 302

cade previous two perturbations. (iv) Replace the 303

entire SQL with a randomly chosen SQL from the 304

same schema. (v) Randomly drop tokens in the 305

text query with a fixed probability of 0.3. (vi) Shuf- 306

fle a span of tokens in the text query, with span 307

length set to 30% of the length of the text query. 308

Thus for a given Text-SQL pair (x,q) we obtain six 309

corresponding negative pairs {(xn
i ,q

n
i )}6i=1. Let 310

s be the score provided by the filtering model 311

for the original pair (x,q) and {si}6i=1 be the 312

scores assigned to the corresponding negative pairs 313

{(xn
i ,q

n
i )}6i=1. We supervise the scores from the 314
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filtering model using a binary-cross-entropy loss315

over the Sigmoid activations of scores as in Equa-316

tion 1.317

Lbce = − log σ(s)−
6∑

i=1

log σ(1− si) (1)318

To explicitly contrast an original pair with its cor-319

responding negative pairs we further add another320

Softmax-Cross-Entropy loss term.321

Lxent = − log
exp(s)

exp(s) +
∑6

i=1 exp(si)
(2)322

3 Related Work323

SQL-to-Text generation A large body of prior324

work performs training data augmentation via325

pre-trained conditional text generation modelsthat326

translate SQLs into natural text (Guo et al., 2018;327

Zhong et al., 2020a; Shi et al., 2020; Zhang et al.,328

2021; Wang et al., 2021; Yang et al., 2021; Shu329

et al., 2021). For example, Wang et al. (2021)330

finetune BART (Lewis et al., 2020) on parallel331

SQL-Text pairs to learn an SQL-to-Text translation332

model. Shu et al. (2021) propose a similar model333

that is trained in an iterative-adversarial way along334

with an evaluator model. The evaluator learns to335

identify inconsistent SQL-Text pairs, similar to our336

filtering model. To retain high quality synthesized337

data Zhong et al. (2020a) additionally filter out338

the synthesized pairs using a pre-trained Text-to-339

SQL model based on cycle consistency, that we340

show to be sub-optimal in Section 4.5. The SQL341

workload in these work was typically sampled from342

hand-crafted templates or a grammar like PCFG in-343

duced from existing SQLs, or crawling SQLs from344

open-source repositories Shi et al. (2020). How-345

ever, database practitioners have recently drawn346

attention to the fact that SQL workloads are of-347

ten pre-existing and should be utilized (Baik et al.,348

2019)349

Retrieve and Edit Methods Our method is re-350

lated to the Retrieve and Edit framework, which351

has been previously applied in the context of var-352

ious NLP tasks. In Semantic Parsing, question353

and logical-form pairs from the training data rele-354

vant to the input question are retrieved and edited355

to generate the output logical forms in different356

ways (Shaw et al., 2018; Das et al., 2021; Pasu-357

pat et al., 2021; Gupta et al., 2021). In machine358

translation, Translation-memory augmented meth-359

ods like (Hossain et al., 2020; Cai et al., 2021)360

retrieves and edit examples from translation mem- 361

ory to guide the decoder’s outputs. Our editing 362

step masking followed by refilling is somewhat 363

similar to style transfer methods like (Li et al., 364

2018) that minimally modify the input sentence 365

with help of retrieved examples corresponding to 366

the target attribute. In contrast to a learned retrieval, 367

we find simple tree-edit distance based retrieval to 368

be highly effective for retrieving the relevant exam- 369

ples for our task. 370

4 Experiments1 371

We demonstrate the effectiveness of the data syn- 372

thesized using REFILL for adapting base semantic 373

parsing models to new groups of databases in Sec- 374

tion 4.1. We compare with the recent and competi- 375

tive baselines that utilize SQL-to-Text generation 376

methods for improving the performance of seman- 377

tic parsers via training-data augmentation (Wang 378

et al., 2021; Zhong et al., 2020a). We also evaluate 379

the intrinsic quality of the generated synthetic data 380

in-terms of diversity and agreement with gold text 381

queries in the test data. In Section 4.2 we compare 382

the quality and the diversity of the text generated 383

using REFILL with the relevant SQL-to-Text base- 384

lines. Section 4.4 justifies the key design choices 385

related to masking and the training of schema trans- 386

lator module, that helps REFILL synthesize high 387

quality text. Section 4.5 demonstrates the impor- 388

tance of using an independent binary classifier over 389

cycle-consistency filtering. 390

4.1 Experimental Setup 391

Datasets: We create 4 Groups of databases cho- 392

sen from Spider’s dev-set. The databases within 393

each group have a similar topic. E.g. Group-1 394

consists of databases {Singer, Orchestra, 395

Concerts}. We utilize all the available Text- 396

SQL pairs in each group for evaluation. On average, 397

each group contains 69 unique SQLs and 131 eval- 398

uation examples. To simulate a query workload 399

QWs for each group, we randomly select 70% 400

of the available SQLs and replace the constants- 401

values in the SQLs with values sampled from their 402

corresponding column in the database. We also 403

evaluate on query workloads of size 30% and 50% 404

of the available SQL queries. The SQL queries in 405

the workload are translated using an SQL-to-Text 406

model, and the resulting Text-SQL pairs are then 407

used to finetune a base semantic parsing model. 408

1
Code for experiments will be open sourced after the anonymity period.
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Base Semantic Parsers: We experiment with SM-409

BOP (Rubin and Berant, 2021) as our base Text-410

to-SQL semantic parser, and utilize author’s imple-411

mentation for our experiments. The SMBOP model412

is initialized with a ROBERTA-BASE model, fol-413

lowed by four RAT layers, and trained on the train414

split of Spider dataset. The dev set used while train-415

ing excludes data from the four evaluation groups.416

Edit and Fill model: We utilize a pre-trained417

BART-BASE as our conditional text generation418

model for editing and filling the masked text. The419

model is finetuned using the train split of Spider420

dataset as described in Section 2.2421

Filtering Model: We train binary classifier based422

on a ROBERTA-BASE checkpoint on Spider’s423

train split to filter out inconsistent SQL-Text pairs424

as described in Section 2.3.425

Baselines: For baseline SQL-to-Text generation426

models, we consider recently proposed models like427

L2S (Wang et al., 2021), GAZP (Zhong et al.,428

2020a), and SNOWBALL (Shu et al., 2021). All429

the baselines utilize pre-trained language models430

like BART (Lewis et al., 2020) or BERT (Devlin431

et al., 2018) for translating SQL tokens to natural432

text in a standard seq-to-seq set-up. The baselines433

mostly differ in the way of feeding SQL tokens as434

an input to the models. Section 3 provides more435

details about the baselines.436

Evaluation Metrics Following the prior work, we437

evaluate the Text-to-SQL parsers using the Exact438

Set Match (EM), and the Exection Accuracy (EX),439

as proposed in Yu et al. (2018). The EM metric440

measures set match for all the SQL clauses and441

returns one if there is a match across all the clauses.442

It ignores the DB-values (constants) in the SQL443

query. The EX metric directly compares the results444

obtained by executing the predicted query q̂ and445

the gold query q on the database.446

Additional implementation details including the447

hyperparameters are reported in the Appendix A.5448

4.2 Main Results449

Evaluating finetuned parsers Table 1 presents450

results for finetuning the base Text-to-SQL model451

on the SQL-Text pairs obtained by translating the452

SQL workload using various SQL-to-Text genera-453

tion models. Compared to prior methods for SQL-454

to-Text generation that lack both in the diversity455

and the quality of the generated text, finetuning456

over the high-quality and diverse text generated457

by REFILL provides consistent performance gains458
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Figure 3: Average EM performance of Text-to-SQL
models on the four groups vs. the size of query work-
load. The data generated by REFILL using 30% query
workload yields better performance than the data from
the existing best baseline on 70% workload.

over the base model across all the database groups. 459

On average, REFILL improves the base model by 460

8.0% EM in comparison to a gain of 2.8% by the 461

best baseline (GAZP). The gains from the baseline 462

methods are often small or even negative. Our gains 463

over baselines continue even for other settings of 464

workload sizes. Figure 3 plots size of the workload 465

on the x-axis vs. the EM of the finetuned parsers 466

averaged across all the four groups, on the y-axis 467

When using the data synthesized by REFILL, the 468

performance of the parser improves steadily with 469

an increasing size of the query workload. On the 470

other hand, the baseline SQL-to-Text generation 471

methods fail to provide significant improvements. 472

Interestingly, the data synthesized by REFILL for 473

the 30% query workload is more effective on av- 474

erage than any of the baselines utilizing the 70% 475

query workload for SQL-to-Text generation. 476
477

Intrinsic quality and diversity of generated text 478

We explain our gains over existing methods to the 479

increased quality and diversity of the generated 480

text. We measure quality by reporting the BLEU 481

score of the set S(q) of generated text for a SQL 482

q with the gold text of the query in the test data. 483

To measure diversity we utilize SelfBLEU (Zhu 484

et al., 2018) that measures the average BLEU score 485

among text in S(q). We evaluate on all the gold 486

SQL-Text pairs available in the Spider’s dev set. Ta- 487

ble 2 reports the results. For each model we sample 488

a beam of 10 hypotheses per SQL query, and pick 489

the hypothesis with the highest BLEU to report the 490
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Group 1 Group 2 Group 3 Group 4 Average
Method EM EX EM EX EM EX EM EX EM EX
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S (Wang et al., 2021) 88.7 87.8 61.3 62.1 62.8 61.0 42.5 35.0 63.8 61.4
GAZP (Zhong et al., 2020a) 85.2 85.2 58.9 66.9 70.1 60.5 52.5 40.8 66.6 63.3
SNOWBALL (Shu et al., 2021) 85.2 87.8 59.7 60.5 64.0 65.9 44.2 38.3 63.2 63.1
REFILL (Ours) 88.7 87.0 69.7 73.8 73.2 70.1 55.8 45.0 71.8 68.9

Table 1: Results for finetuning a base semantic parser (SMBOP) on SQL-Text pairs generated various SQL-to-Text
baselines and REFILL, as described in Section 4.2. REFILL provides consistent gains over the base model across all
the database groups, while gains from other methods are often negative or small.

Method BLEU ↑ 100-SelfBLEU ↑
(Quality) (Diversity)

Gold-Ref 100 68.8
L2S 38.0 2.2
GAZP 38.8 2.0
SnowBall 40.2 2.8
REFILL 48.6 33.8

Table 2: Comparison of quality (BLEU) and diver-
sity (100-SelfBLEU) scores across various SQL-to-Text
models including REFILL. Gold-Ref represents the
scores corresponding to gold-references as outputs.

overall BLEU scores. To allow baselines for gener-491

ating more diverse outputs than the standard beam492

search, we utilize beam-sampling (Fan et al., 2018;493

Holtzman et al., 2019). For REFILL, the 10 hypoth-494

esis come from using upto 10 retrieved templates.495

REFILL generates both diverse and high-quality496

hypotheses. We observe that leveraging text from497

other schemas allows REFILL to generate higher498

quality text (+9.8 BLEU points), while simultane-499

ously enabling higher diversity.500

4.3 Importance of Text Diversity501

Utilizing the retrieved text templates from multiple502

schemas allows REFILL to generate diverse text.503

Figure 4 justifies the importance of text diversity504

for improved performance, by varying the num-505

ber of templates on the x-axis and performance of506

the finetuned models on y-axis for each group. To507

keep the number of synthesized examples same,508

the product of beam-samples and the number of509

templates is held constant. Utilizing the more di-510

verse data generated via 5 templates is consistently511

superior than using less diverse data obtained by512

using one or two templates. The consistent drops in513

EM while moving from 5 templates to 10 templates514

is explained by the reduced diversity. Using 5 tem-515

plates yields a 100−SelfBLEU score of 46.7, while516

2 4 6 8 10

Number of templates

50

60

70

80

90

E
M

on
te

st
se

t

Group 1 Group 2 Group 3 Group 4

Figure 4: Accuracy of finetuned SQL-to-Text models
Vs. the number of templates per SQL used by REFILL.

Naive Train Robust Train
Schema-Match 37.2 41.8
Frequency 40.2 43.8

Table 3: Analyzing impact of design choices related to
Schema Translation, by observing BLEU-4 scores of
the text generated by REFILL (§ 4.4).

with 10 templates we observe 100− SelfBLEU to 517

be 33.8. The reduction in text diversity is possibly 518

due to the inclusion of more similar templates as 519

we go from 5 templates to 10 templates. 520

Finally, the drop in REFILL’s performance with 521

lesser (one or two) templates in Fig. 4, reconfirms 522

the worse performance of reported SQL-to-Text 523

baselines that do not offer enough textual diversity. 524

525526

4.4 Design choices of Schema Translator 527

Section 2.2 described two important design choices: 528

(1) Method of masking schema-relevant tokens 529

and (2) Method of training the Edit-and-Fill model 530

for generating text. Table 3 justifies these design 531

choices. Comparing across rows (Schema-Match 532

Vs Frequency), we observe that Frequency based 533
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EM EX
BASE-M 45.8 35.8
No Filtering 40.8 31.7
Cycle Consistent 29.2 22.5
Filtering Model 48.3 36.7

Table 4: Using an independent filtering model allows
us to retain more useful training examples than cycle
consistent filtering, leading to better performance of the
finetuned Text-to-SQL models (§ 4.5).

masking results in 2 to 3 point improvements in534

BLEU compared to matching schema names. Ta-535

ble 12 shows specific examples where the schema-536

match method fails to mask sufficiently. In contrast,537

even though the frequency-based method might538

over-mask it still suffices for our goal of guiding the539

text generation model. Comparing across columns540

(Naive Train Vs. Robust Train) we observe that541

specifically training the template filling model for542

being robust to the input templates also improves543

quality of the generated text by 3.6 to 4.6 points.544

4.5 Importance of Filtering model545

Methods like GAZP (Zhong et al., 2020a) utilize546

consistency-based filtering to reject synthesized547

SQL-Text pairs (q,x) inconsistent with the output548

q̂ produced by the base Text-to-SQL for the text549

query x. We argue that cycle-consistency based550

filtering is sub-optimal for two reasons: (i) Data551

Redundancy: Since the Text-to-SQL model is al-552

ready capable of generating the correct output for553

the retained examples, these samples do not offer554

much improvements while training. (ii) Data Loss:555

If the base Text-to-SQL model is weak in parsing556

text-queries for the target database, a large portion557

of potentially useful training examples get filtered558

out due to cycle-inconsistency.559

As a solution, we train a Filtering model described560

in Section 2.3. The filtering is now independent of561

the base semantic parser, thus capable of retaining562

the high quality generated examples which might563

otherwise be filtered out by cycle-consistency fil-564

tering using a weak Text-to-SQL model. Table 4565

compares the base Text-to-SQL model, with mod-566

els finetuned without any filtering, with cycle-567

consistent filtering, and with using our filtering568

model. We focus on Group-4 where the base569

Text-to-SQL model is significantly weaker com-570

pared to other groups, and use REFILL to synthe-571

size data for the 30% query workload. Not using572

any filtering, or using cycle-consist filtering result573

Method Geo Acad IMDB Yelp Average
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 27.9 14.4 24.8 19.8 21.7
GAZP 20.8 16.0 19.3 10.8 16.7
SNOWBALL 25.6 8.8 21.1 18.9 18.6
REFILL(Ours) 30.1 27.6 26.6 29.7 28.5

Table 5: Evaluation on datasets outside Spider. We
continue to observe that finetuning on data synthesized
by REFILL offers superior EM performance (§ 4.6).

in worse performance, while using our filtering 574

model offers significant improvements over the 575

base model. Table 11 provides anecdotes of po- 576

tentially useful training examples that were filtered 577

out by the cycle-consistency, but retained by our 578

filtering model. 579

4.6 Experiments on additional datasets 580

We validate our method further on four additional 581

datasets namely GeoQuery (Zelle and Mooney, 582

1996), Academic (Li and Jagadish, 2014), IMDB 583

and Yelp (Navid Yaghmazadeh and Dillig, 2017). 584

Table 7 in Appendix provides details about these 585

datasets. In Table 5 we compare EM performance 586

of models finetuned on data generated by REFILL 587

and other baselines while utilizing 30% of the avail- 588

able query workload for each database. We con- 589

tinue to observe that finetuning on data synthesized 590

by REFILL consistently offers better results over 591

other SQL-to-Text generation baselines. Table 9 in 592

Appendix provides additional results for 50% and 593

70% query workload settings. 594

5 Conclusion and Future Work 595

We presented REFILL, a framework for generating 596

diverse and high quality parallel data for adapting 597

existing Text-to-SQL models to a target database. 598

REFILL translates a given SQL query into diverse 599

questions by retrieving and editing examples from 600

other schemas, using a mask and refill mechanism. 601

Through extensive experiments, we establish that 602

REFILL generates higher quality and more diverse 603

text which are key to better performance of the 604

downstream semantic parsers finetuned on the data 605

generated by REFILL. Even with lower query work- 606

loads we often found REFILL to outperform the 607

baselines with higher query workloads. In this 608

work our explorations have been limited for the 609

task of SQL-to-Text generation. We hope to ex- 610

plore the promise of REFILL for other semantic 611

parsing tasks and also in multilingual settings. 612
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6 Ethical Considerations613

Our goal with REFILL is to synthesize parallel data614

for adapting Text-to-SQL parsers to new schemas.615

We believe that the real-world deployment of Text-616

to-SQL or any semantic parser trained on text gen-617

erated by language models must go through careful618

review of potential biases. Also, the intended users619

of any Text-to-SQL service must be made aware620

that the answers given by the systems are likely to621

be incorrect. We do not immediately foresee any622

serious negative implications of the contributions623

that we make through this work.624
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A Appendix865

A.1 Dataset Details866

Group Number of queries by hardness
easy medium hard extra total

Group 1 24 60 25 6 115
• concert_singer 4 24 13 4 45
• singer 6 18 6 0 30
• orchestra 14 18 6 2 40
Group 2 14 58 16 36 124
• dog_kennels 10 36 10 26 82
• pets_1 4 22 6 10 42
Group 3 46 60 32 26 164
• students_transcripts_tracking 26 24 8 20 78
• course_teach 8 14 8 0 30
• network_1 12 22 16 6 56
Group 4 24 46 20 60 120
• world_1 24 46 20 60 120

Table 6: Number of schemas and statistics of query workload for each group. Related schemas were grouped
together in order to obtain larger evaluation sets per group.

Dataset Number of queries by hardness
easy medium hard extra total

Geoquery (Geo) 224 32 220 77 553
Academic (Acad) 20 29 25 107 181
IMDB 23 12 48 26 109
Yelp 13 29 25 24 111

Table 7: Statistics of queries in additional (non-spider) datasets. We utilize the pre-processed versions of these
datasets provided by Yu et al. (2018).

A.2 Results in low or medium SQL workload setting867

Group 1 Group 2 Group 3 Group 4 Average
Method EM EX EM EX EM EX EM EX EM EX

Results with 30% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 82.6 84.3 60.5 65.3 61.6 63.4 26.7 26.7 57.8 59.9
GAZP 83.5 84.3 61.3 64.5 66.5 67.1 45.8 37.5 64.3 63.3
SNOWBALL 80.0 83.5 59.7 63.7 67.7 68.3 39.2 32.5 61.6 62.0
REFILL 86.1 86.1 65.6 65.6 68.3 67.1 48.3 36.7 67.1 63.8

Results with 50% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 89.6 88.7 66.1 68.5 57.9 58.5 41.7 35.8 63.8 62.8
GAZP 87.8 87.0 58.9 63.7 65.9 68.9 45.0 35.0 64.4 63.6
SNOWBALL 83.5 85.2 55.6 66.1 65.2 66.5 40.0 32.5 61.1 62.6
REFILL 88.7 91.3 67.2 69.7 70.7 67.1 45.8 38.3 68.1 66.6

Results with 70% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 88.7 87.8 61.3 62.1 62.8 61.0 42.5 35.0 63.8 61.4
GAZP 85.2 85.2 58.9 66.9 70.1 60.5 52.5 40.8 66.6 63.3
SNOWBALL 85.2 87.8 59.7 60.5 64.0 65.9 44.2 38.3 63.2 63.1
REFILL 88.7 87.0 69.7 73.8 73.2 70.1 55.8 45.0 71.8 68.9

Table 8: Evaluation on four groups of schemas held out from Spider’s dev set, for varying sizes of query workload
{30%, 50%, 70%} used for SQL-to-Text translation.
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Method Geo Acad IMDB Yelp Average
Results with 30% SQL workload

BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 27.9 14.4 24.8 19.8 21.7
GAZP 20.8 16.0 19.3 10.8 16.7
SNOWBALL 25.6 8.8 21.1 18.9 18.6
REFILL 30.1 27.6 26.6 29.7 28.5

Results with 50% SQL workload
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 33.6 20.4 25.7 18.0 24.4
GAZP 21.5 11.1 23.9 14.4 17.7
SNOWBALL 26.0 24.3 18.3 27.9 24.1
REFILL 27.9 37.6 28.4 35.1 32.2

Results with 70% SQL workload
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 33.9 19.3 29.4 23.4 26.5
GAZP 25.4 13.8 22.0 15.3 19.1
SNOWBALL 30.9 20.9 20.1 35.1 26.7
REFILL 32.8 37.0 33.0 35.1 34.4

Table 9: EM evaluation on four additional datasets outside
Spider, for varying sizes of query workload {30%, 50%, 70%}
used for SQL-to-Text translation. Since the contents of Acad,
IMDB, and Yelp databases were not publicly accessible to us,
we are unable to report EX results on these databases. EX results
for GeoQuery appear in Table 10.

Fraction of SQL workload
Method 30% 50% 70%
BASE-M 27.2 27.2 27.2
L2S 30.4 35.1 37.5
GAZP 20.8 22.9 29.2
SNOWBALL 28.7 28.5 33.8
REFILL 33.0 34.2 38.9

Table 10: EX accuracy evaluation on Geo-
Query dataset, for varying sizes of query work-
load {30%, 50%, 70%}.

A.3 Examples rejected by cycle-consistency but retained by our filtering model 868

Generated text How many countries are governed by Islamic Emirate?
Gold SQL SELECT count(*) FROM country WHERE GovernmentForm = ’Islamic Emirate’
Predicted SQL SELECT COUNT(*) FROM country WHERE country.code NOT IN (SELECT

countrylanguage.countrycode FROM countrylanguage)
Generated text What is the number of languages that are official in Australia?
Gold SQL SELECT COUNT(*) FROM country AS T1 JOIN countrylanguage AS T2 ON

T1.Code = T2.CountryCode WHERE T1.Name = ’Australia’ AND IsOfficial =
’T’

Predicted SQL SELECT COUNT(*) FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE country.name =
’Australia’

Generated text How many countries have both “Karen" and “Mandarin Chinese" languages?
Gold SQL SELECT COUNT(*) FROM (SELECT T1.Name FROM country AS T1 JOIN

countrylanguage AS T2 ON T1.Code = T2.CountryCode WHERE T2.Language
= ’Karen’ INTERSECT SELECT T1.Name FROM country AS T1 JOIN
countrylanguage AS T2 ON T1.Code = T2.CountryCode WHERE T2.Language =
’Mandarin Chinese’)

Predicted SQL SELECT COUNT(*) FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE countrylanguage.language
= ’Karen’

Generated text Find the language of the country that has the head of state Salahuddin Abdul Aziz Shah Alhaj and is official.
Gold SQL SELECT T2.Language FROM country AS T1 JOIN countrylanguage AS T2 ON

T1.Code = T2.CountryCode WHERE T1.HeadOfState = ’Salahuddin Abdul Aziz
Shah Alhaj’ AND T2.IsOfficial = ’T’

Predicted SQL SELECT countrylanguage.language FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE country.headofstate =
’Salahuddin Abdul Aziz Shah Alhaj’

Generated text What are the names of countries with surface area greater than the smallest area of any country in Antarctica?
Gold SQL SELECT Name FROM country WHERE SurfaceArea > (SELECT min(SurfaceArea)

FROM country WHERE Continent = ’Antarctica’)
Predicted SQL SELECT country.name FROM country WHERE country.surfacearea > (SELECT

MAX(country.surfacearea) FROM country WHERE country.continent =
’Antarctica’)

Table 11: Consistent SQL-Text pairs rejected by cycle-consistency but retained by our filtering model. Predicted
SQL is the output of the Text-to-SQL model used for checking cycle consistency, and does not match the gold SQL
often due to minor errors.
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A.4 Examples of masking869

SQL SELECT T1.template_type_code , count(*) FROM Templates AS T1
JOIN Documents AS T2 ON T1.template_id = T2.template_id GROUP BY
T1.template_type_code [Schema Name: Document Template Management]

Reference Show all template type codes and the number of documents using each type.
Retrieved SQL T1.FacID , count(*) FROM Faculty AS T1 JOIN Student AS T2 ON T1.FacID =

T2.advisor GROUP BY T1.FacID [Schema Name: Faculty Student Activity]

Retrieved Text Show the faculty id of each faculty member, along with the number of students he or she
advises.

Sch-match
Mask

Show the MASK of each MASK member , along with the number of MASK he or she advises
.

Filled Text Show the type code of each template member, along with the number of documents he or
she advises.

Freq Mask Show the MASK of each MASK , MASK with the number of MASK he or she MASK .
Filled Text Show the code of each template type, together with the number of documents correspond-

ing to it.
SQL SELECT T2.name , T2.capacity FROM concert AS T1 JOIN stadium AS

T2 ON T1.stadium_id = T2.stadium_id WHERE T1.year >= 2014 GROUP BY
T2.stadium_id ORDER BY count(*) DESC LIMIT 1 [Schema Name: Concert Singer]

Reference Show the stadium name and capacity with most number of concerts in year 2014 or after.
Retrieved SQL SELECT T2.name , T1.team_id_winner FROM postseason AS T1 JOIN team AS

T2 ON T1.team_id_winner = T2.team_id_br WHERE T1.year = 2008 GROUP BY
T1.team_id_winner ORDER BY count(*) DESC LIMIT 1 [Schema Name: Baseball 1]

Retrieved Text What are the name and id of the team with the most victories in 2008 postseason?
Sch-match
Mask

What are the MASK and MASK of the MASK with the most victories in MASK

Filled Text What are the name and capacity of the stadium with the most victories in year 2014?
Freq Mask What are the MASK and MASK of the MASK with the most MASK in MASK
Filled Text What are the name and capacity of the stadium with the most concerts in 2014?

Table 12: Masking the text based on string matches Vs. our method of frequency based masking. Schema-relevant
words like ‘victories’, ‘members’, ‘advises’ that do not have a sufficient string match with any of the table or column
names of their schema, get left out when using string-match based matches. Thus failing to mask the words in the
original schema might lead to copying of the word in the target schema, thus making the generated text semantically
inconsistent. Words in blue are schema relevant words for the target database and should appear in the generated
output.

14



A.5 Hyperparameters870

Our Edit and Fill model (139.2M parameters) is871

based on a pretrained BART-BASE (Lewis et al.,872

2020) model. We fine-tune this model for 100873

epochs with learning rate of 3×10−5, weight decay874

of 0.01 and batch size of 64. The pretrained model875

is obtained from HuggingFace2.876

The proposed binary classifier (124.6M params)877

is pretrained ROBERTA-BASE (Liu et al., 2020)878

(obtained from HuggingFace3) finetuned for 100879

epochs on our data with learning rate 10−5, weight880

decay 0.01 and batch size 16 for 100 epochs.881

For SMBOP experiments, we use a smaller SM-882

BOP model with 4 RAT layers and ROBERTA-883

BASE (Liu et al., 2020) encoder as a baseline. The884

number of parameters in this model is 132.9M.885

All the adaptation experiments use learning rate886

of 5 × 10−6, learning rate of language model of887

3× 10−6 and batch size of 8. All the models were888

trained for 100 epochs.889

All the experiments were performed on NVIDIA890

RTX 3060 GPU. Training times for template fill-891

ing model and binary classifiers were ≈ 4.5 hrs892

and ≈ 6.5 hrs respectively. Each of the finetuning893

experiment took 3− 4 hrs to complete.894

A.6 Cost function for Tree Edit Distance895

Group Value Cost
Equal Equal 0
Equal Unequal 0.5

Unequal Equal 0
Unequal Unequal 1

Table 13: Cost function of nodes n1 and n2 based on
their groups and value.

We use APTED library (Pawlik and Augsten,896

2015, 2016) to compute TED between 2 parsed897

SQL trees. For every node in the tree, a group898

is assigned according to table 14. Then the cost899

for various combinations of node groups and node900

values is described in table 13. If either of the901

nodes does not belong to any of the groups in table902

14, their groups are considered to be “unequal" and903

cost will be assigned based on their values.904

A.7 Examples of TED neighbours905

2https://huggingface.co/facebook/
bart-base

3https://huggingface.co/roberta-base

Group SQL elements
Aggregation MAX, MIN, AVG, COUNT, SUM
Order ORDERBY_ASC,

ORDERBY_DESC
Boolean OR, AND
Set UNION, INTERSECT, EXCEPT
Leaf VAL_LIST, VALUE, LITERAL,

TABLE
Similarity LIKE, IN, NOT_IN
Comparison >, ≥, <, ≤, =, ̸=

Table 14: Group definitions for TED calculation.

Table

Agg

Value(*)

Table

Predicate

Value(age) Value(56)

Table(head)

(a) SELECT count(*) FROM head WHERE age > 56

Table

Agg

Value(*)

Table

Predicate

Value(season) Value(2007)

Table(game)

(b) SELECT count(*) FROM game WHERE season > 2007

Figure 5: Example of tree pair with TED=0

Table

Agg

Value(*)

Table(county_public_safety)

(a) SELECT count(*) FROM county_public_safety

Table

Agg

Value(Gross_in_dollar)

Table(film)

(b) SELECT avg(Gross_in_dollar) FROM film

Figure 6: Example of tree pair with non-zero TED
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