

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE IMITATION GAME: TURING MACHINE IMITATOR IS LENGTH GENERALIZABLE REASONER

Anonymous authors

Paper under double-blind review

ABSTRACT

Length generalization, the ability to solve problems of longer sequences than those observed during training, poses a core challenge of Transformer-based large language models (LLMs). Although existing studies have predominantly focused on data-driven approaches for particular arithmetic operations or symbolic manipulation tasks, these approaches tend to be task-specific with limited performance on individual tasks. To pursue a more general solution, this paper focuses on a broader classes of reasoning problems that are *computable*, *i.e.*, problems that algorithms can solve, thus can be solved by the Turing machine, which operates over inputs of unbounded length. From this perspective, this paper proposes **Turing mAchine Imitation Learning (TAIL)** to improve the length generalization ability of LLMs. TAIL uses computer programs to directly synthesize chain-of-thought (CoT) data that imitate the execution process of a Turing machine, which *linearly* expands the reasoning steps into *atomic* states to alleviate shortcut pattern learning and explicit *memory* fetch mechanism to reduce the difficulties of dynamic and long-range data access. To validate the universality and reliability of TAIL, we construct a challenging synthetic dataset covering 8 classes of algorithms and 18 tasks. With only synthetic data, TAIL significantly improves the length generalization ability as well as the performance of Qwen2.5-7B in individual tasks, surpassing previous data-driven methods and DeepSeek-R1. The experimental results reveal that the key concepts in the Turing machine, instead of the human-like thinking styles, are indispensable for TAIL for length generalization, through which the model exhibits read-and-write behaviors consistent with the properties of the Turing machine in their attention layers. This work provides a promising direction for future research in the learning of LLM reasoning from synthetic data.

1 INTRODUCTION

Length generalization (Press et al., 2021), *i.e.*, the ability to handle a problem with input sequences of various lengths in the open world, especially those *longer* than previously seen, is a fundamental aspect of human intelligence and serves as a crucial evaluation criterion for AI systems (Anil et al., 2022; Sinha et al., 2024; Ahuja & Mansouri, 2024; Shi et al., 2022). Although the ability and generalizability of large language models (LLMs) to solve complex problems have been significantly improved by chain-of-thought (CoT) (Wei et al., 2022), recent studies (Saparov & He, 2022; Anil et al., 2022; Zhou et al., 2024) indicate that LLMs still struggle with length generalization, which sometimes explores and falls into shortcuts that eventually cause errors (Saparov et al., 2024).

To address the challenge, existing works (Zhou et al., 2024; 2023; Lee et al., 2023; Shen et al., 2023; McLeish et al., 2024) primarily focus on data-driven approaches, which refine the training data by modifying the structure of CoT to be more effective and generalizable. However, these methods remain inherently task-specific, *e.g.*, Index Hint (Zhou et al., 2024; 2023) for symbolic reasoning tasks and Reversed Format (Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; McLeish et al., 2024) for arithmetic problems, and yield only moderate performance gains. Thus, a question arises: *Is there a universal and effective CoT structure for length generalization?*

This paper aims to answer this question by first taking a deeper look at the commonalities among the problems. Notably, we observe that many of these tasks admit well-defined stepwise procedures that can be solved by program algorithms that generalize to inputs of arbitrary length. We refer to

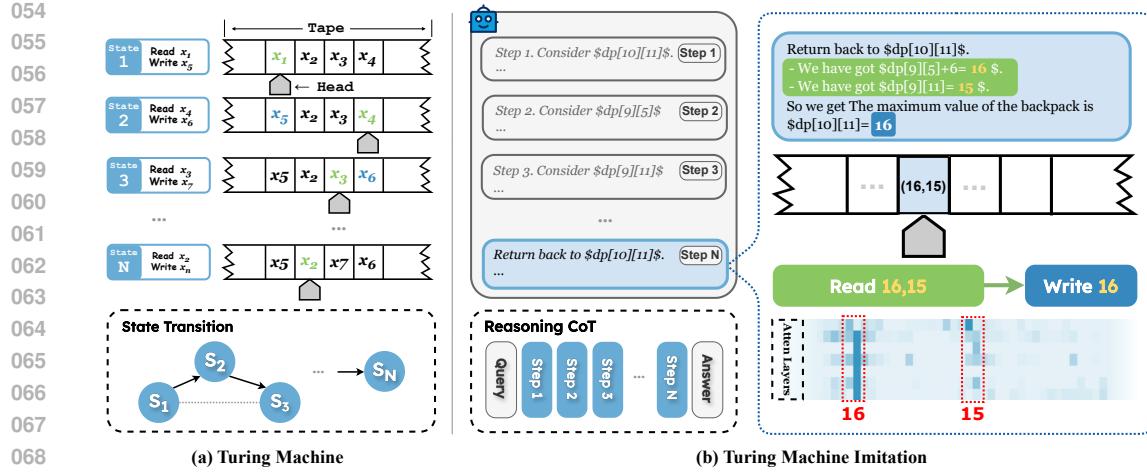


Figure 1: Turing machine and its imitation in LLMs. **(a)** Illustration of a Turing machine performing algorithmic execution over a symbolic tape via sequential state transitions. **(b)** TAIL simulates Turing machine execution by linearly structuring CoT into atomic read-write steps. Attention maps reveal operand retrieval and memory update patterns analogous to symbolic computation.

such tasks as **Computable Problems**, which serve as the focus of investigation in this paper. Thus, the core of achieving length generalization lies in letting LLMs faithfully simulate the execution process of the corresponding programs within their CoT for each problem. In essence, the LLM acts like a Turing machine (Figure 1a), performing a sequence of fundamental operations on a memory tape, guided by finite states and logical transitions.

From this perspective, we propose **Turing mAchine Imitation Learning (TAIL)**, which contains the three key structures in the synthesized CoT data that emulate three core properties of Turing machine execution: Linear Transition, Atomic State, and Memory Fetcher. First, similar to the Turing machine execution process, **Linear Transition** enforces a complete and linear arrangement of reasoning steps to eliminate potential shortcut learning. Second, TAIL decomposes the reasoning content into minimal units, termed **Atomic States** to reduce difficulty and further reduce shortcut learning, which essentially correspond to the states of a Turing Machine, including read, write, and logical control operations. Third, because LLMs can only append instead of modify in-place the tokens in their context due to their auto-regressive nature, the context of LLMs, which essentially serves as a memory, will keep growing as the reasoning continues. This poses difficulties for LLMs because of their attention mechanisms when they need to conduct elementary operations on operands that have long and dynamic distances among them. Therefore, TAIL further adopts a mechanism, termed **Memory Fetcher**, to read the necessary operand data and explicitly output them in the current step before conducting elementary operations.

To assess the universality and effectiveness of TAIL, we construct a challenging dataset spanning 18 tasks across 8 algorithms, substantially harder than those in prior length generalization studies. Fine-tuning Qwen2.5-7B (Yang et al., 2024) on this dataset yields high label accuracy across length ranges, with consistent gains on longer sequences, demonstrating strong length generalization over difficult samples. The model outperforms prior methods (Zhou et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martínez et al., 2023; McLeish et al., 2024) and surpasses DeepSeek-R1 (Guo et al., 2025). Ablation studies show that removing any core module of TAIL severely degrades long-sequence performance. Notably, even minimalist CoT data containing only core modules without any thinking styles¹ maintains full effectiveness, confirming TAIL as the key data-driven enabler of length generalization. We also visualize the attention maps of the TAIL-fine-tuned model and observe that the attention during write operations focuses on fetched operands within the same state, resembling Turing machine behavior (Figure 1b).

¹Thinking styles refers to the human-like linguistic expressions in CoT reasoning which are very common in existing large reasoning models, *i.e.*, the surface-level natural language narrative rather than the underlying reasoning mechanism.

108

2 PRELIMINARIES

109

110 2.1 LENGTH GENERALIZATION AND COMPUTABLE PROBLEMS

111
112 For large language models (LLMs), length generalization means that a model can process long input
113 sequences, although it is only trained on short sequences. For example, a model trained on 10-
114 30 digit addition can maintain strong performance on 30-50 digit addition tasks. Fundamentally,
115 successful length generalization implies that the model has extracted a structural pattern from the
116 training data. This pattern should be general and can scale adaptively with input length.117 After a deeper look at the problem, incorporating insights from prior indirect conclusions (Delétang
118 et al., 2022), we observe that many tasks can essentially be solved through discrete symbolic trans-
119 formations governed by bounded algorithmic computational rules (Turing et al., 1936; Sipser, 1996;
120 Arora & Barak, 2009; Boolos et al., 2002). For example, Parity can be solved through a simple
121 enumeration procedure, while arithmetic addition can be handled by simulating the full digit-wise
122 addition process, including carry propagation. We refer to such tasks as *Computable Problems*,
123 whose commonality lies in being solvable by a well-defined, deterministic algorithmic procedure.
124 Such algorithms inherently handle inputs of arbitrary length, which aligns with the goal of length
125 generalization. Training LLMs to learn their step-by-step execution thus enables generalization
126 across input lengths when solving computable problems.127

128 2.2 TURING MACHINE

129 While all computable problems are solvable by algorithms, their structural diversity makes chain-
130 of-thought (CoT) design impractical. Therefore, a more abstract and general framework is essential
131 to unify the CoT paradigm for computable problems. Based on the Church-Turing thesis (Copeland,
132 1997), a Turing machine can solve any algorithmically computable problem, thereby providing a
133 universal and higher-level framework for problem solving. In other words, the computational trace
134 data of any computable problem can be constructed by simulating the execution of a Turing machine.135 The formal definition of the Turing machine (Turing et al., 1936; Hopcroft et al., 2001) consists of
136 an infinite-length tape, a read/write head, and a table containing a finite set of state transitions. It
137 can be represented as a 7-tuple:

138
$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F), \quad (1)$$

139 where Q is a finite set of states, δ is the transition function, $q_0 \in Q$ refers to the initial state (see
140 Appendix A for full definitions). In any non-accepting state $q_s \in Q$, the head reads a symbol a
141 from the tape, overwrites it with a new symbol b , and moves the head to a new position, thereby
142 transitioning to the next state q_{s+1} , which can be formally defined as:

143
$$\delta(q_s, a) = (q_{s+1}, b, D), \quad (2)$$

144 where the head moves one position in direction D . Thus, δ represents a complete state transition
145 conflating two logically independent states, and a linear unfolding of states $q_0 \rightarrow q_1 \rightarrow \dots \rightarrow q_n$
146 represents the complete process of Turing machine implementing the program. In order to align
147 the reasoning process of LLMs with Turing Machine, the reasoning procedure can be unfolded into
148 multi-step reasoning with the help of CoT. Each single reasoning step can be formalized as x_i in CoT,
149 deriving the current reasoning result based on the preceding reasoning steps $x_{<i}$. It is important to
150 note that the granularity of x_i is determined by the size of the reasoning step in the specific task.
151 Typically, it corresponds to the prediction of multiple tokens, forming an intermediate reasoning
152 outcome at each stage. x_0 represents the query and thus the complete reasoning path (CoT) can
153 be expressed as $x_0 \rightarrow x_1 \rightarrow \dots \rightarrow x_n$. In line with the Turing machine, each reasoning step x
154 corresponds to a Turing Machine state q in Eq.(2), which includes reading an input symbol a . The
155 entire CoT is formed by a linear composition of such steps, analogous to the full unrolling of the
156 Turing Machines state transitions δ from q_1 to q_n .157 Previous work (Li et al., 2024) has theoretically shown that Transformers can achieve Turing Com-
158 pleteness given sufficiently long CoT, but has not provided concrete guidelines for constructing such
159 CoT sequences in a wide range of tasks. Based on our analysis, multi-step reasoning CoT can be
160 structurally aligned with the computation process of a Turing machine. This leads us to hypothe-
161 size that, by endowing the reasoning process of LLMs with key properties of a Turing machine, the
model can effectively simulate algorithmic execution and achieve length generalization.

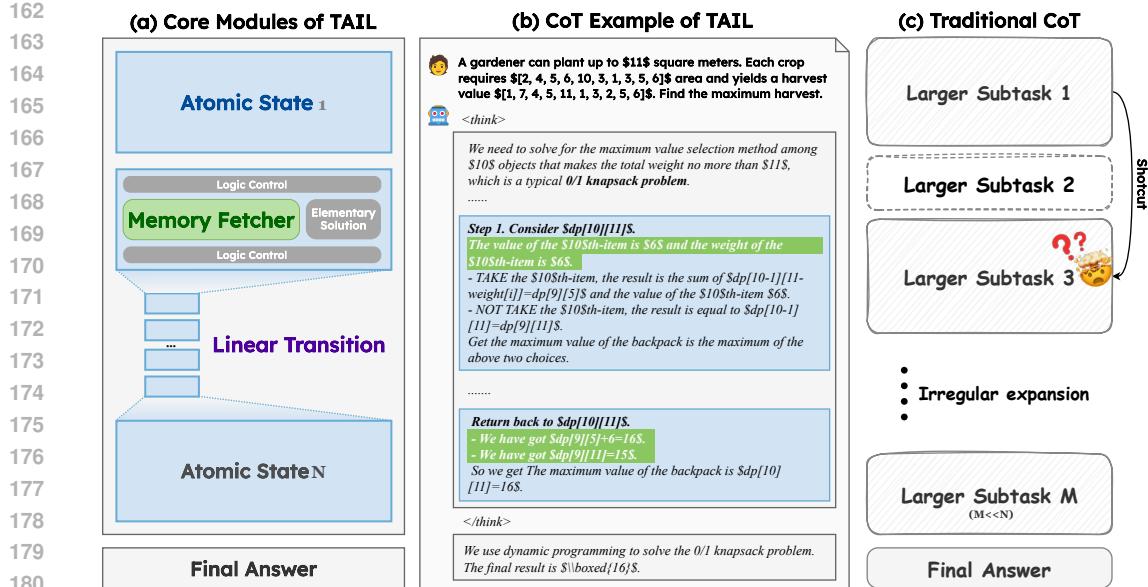


Figure 2: An overview of TAIL. **(a) Core Modules of TAIL** imitate a Turing Machine, containing a Linear Transition of Atomic State with Memory Fetcher of previous reasoning results. **(b) CoT generated by TAIL**: the solution to a 0/1 knapsack problem using a dynamic programming algorithm. **(c) Traditional CoT** consists of oversized subtasks, shortcut learning, and irregular expansion.

3 TURING MACHINE IMITATION LEARNING

Based on the preceding analysis, this paper proposes **Turing mAchine Imitation Learning (TAIL)** to align the Chain-of-thought (CoT) of large language models (LLMs) to simulate the execution of a Turing machine for achieving universal and effective length generalization. TAIL imitates key properties of a Turing Machine (Figure 2), comprising three core modules spanning macro to micro levels: Linear Transition (Section 3.1), Atomic State (Section 3.2) and Memory Fetcher (Section 3.3).

3.1 LINEAR TRANSITION

According to the RASP-Generalization Conjecture (Zhou et al., 2023), Transformer-based LLMs struggle with problems that involve intricate control structures, such as loops. This suggests the need to transform these structures into simpler forms that align better with the capabilities of the model. In particular, complex reasoning structures (like trees and graphs) can be linearly unrolled and traversed to enable complete and non-redundant execution of all reasoning steps, thereby preventing shortcuts in the reasoning process. Similarly, in a Turing machine, the execution of a complete program corresponds to a linear unfolding of states $q_1 \rightarrow q_2 \rightarrow \dots \rightarrow q_n$ as shown in Eq.(2), where even control structures such as loops can be flattened into a sequential process. To align with this characteristic, we introduce Linear Transition, which describes from a macro-level perspective how individual reasoning steps are composed into a linear and orderly structure within the overall reasoning process, and collectively form the CoT.

3.2 ATOMIC STATE

Although Linear Transition defines the overall structure of CoT reasoning as a linear sequence of reasoning steps, it does not impose constraints on the size of each step. Overly large reasoning steps not only increase the difficulty of learning for the model but also risk introducing shortcuts within a single step. Therefore, we attempt to constrain the size of a reasoning step by enforcing a standardized internal structure. Inspired by the Turing machine, each state encompasses a sequence of simple operations: *reading* data from the tape, *writing* new data, and *transitioning* to the next state. Following this principle, we define Atomic State consisting of operand retrieval (realized via Memory Fetcher, detailed in Section 3.3), the elementary solution produced within the reasoning

216 step, and a set of logical control statements, as shown in Figure 2(a). Meanwhile, following the
 217 RASP-L hypothesis², we argue that each Atomic State should adhere to the principles of realizability
 218 and simplicity. Specifically, since we use Python programs to synthesize CoT, we define an Atomic
 219 State as a single algorithmic step in the program without internal loops.
 220

221 **3.3 MEMORY FETCHER**
 222

223 In a Turing machine, every state reads data from the tape and replaces it with processed result. How-
 224 ever, auto-regressive models (*e.g.*, Transformer) can only extend the token sequence by appending
 225 new tokens instead of in-place token modification. So the action of data reading is typically achieved
 226 by constructing attention mechanisms over previous tokens. As reasoning progresses, the sequence
 227 grows longer, requiring the model to retrieval over increasingly distant and dynamically shifting
 228 tokens. Furthermore, simultaneously performing data retrieval and generating the elementary solution
 229 at the same time increases the learning difficulty for the model. To address this, we propose
 230 Memory Fetcher to decouple these two operations by: (1) *first* explicitly outputting all relevant
 231 operands at the beginning of every Atomic State, (2) *then* performing reasoning and outputting local
 232 results. As shown in an example in Figure G1, Memory Fetcher changes the attention structure by
 233 localizing operands and improves reasoning accuracy, which has been theoretically proved by recent
 234 work (Wang et al., 2025). Figure G2 compares the attention structures with and without Memory
 235 Fetcher. It is obvious that Memory Fetcher enables precise localization of relevant operands during
 236 reasoning through prominent local attention. See more details in Appendix G.
 237

238 **4 EXPERIMENT**
 239

240 **4.1 DATASET SYNTHESIS**

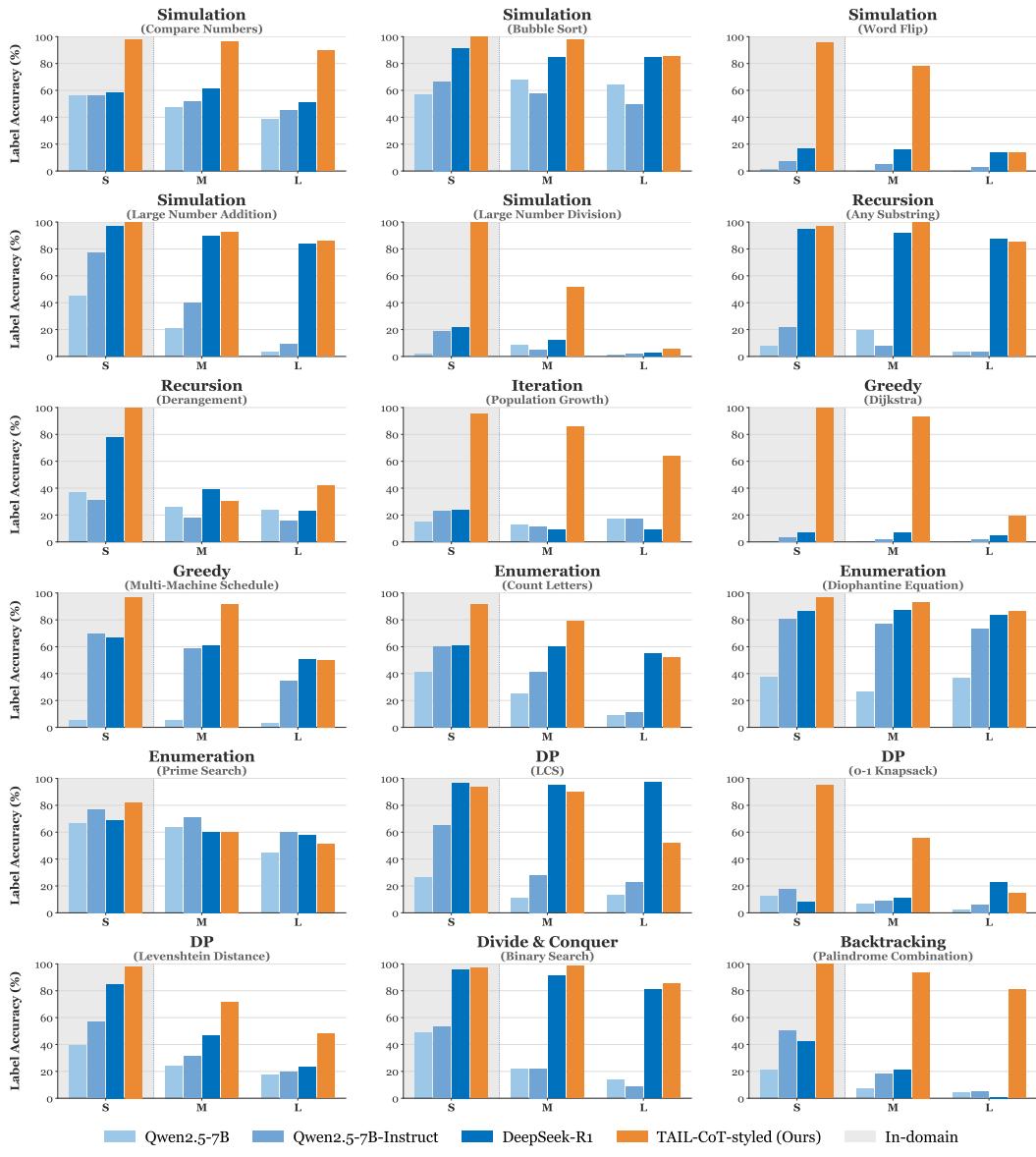
241 **Task Selection.** This work focuses on length generalization in hard samples rather than unlimited
 242 extension in simple tasks. So we synthesize a set of *challenging* tasks based on 8 classic algorithmic
 243 paradigms in computable problems to verify the effectiveness of TAIL. As shown in Table B1,
 244 the dataset comprises 18 tasks, including previously studied problems such as addition, but with
 245 randomized digit lengths and decimal places to increase difficulty. Each task has a high degree
 246 of diversity in query narratives, some of which incorporate real-world problems (*e.g.*, Diophantine
 247 Equation, 0-1 Knapsack, etc).

248 **Synthesis Approach.** We employed supervised fine-tuning (SFT) with synthetic data to internalize
 249 the model’s ability to generate Chain-of-Thought (CoT) with TAIL’s core modules. Figure C1
 250 illustrates the data synthesis process of TAIL. We claim that TAIL is task *universal*³ because for
 251 each task belonging to a specific algorithm, it’s feasible to construct a Python program and add
 252 string append statements to assemble CoT. When the program runs, the resulting CoT reflects the
 253 complete program execution flow. We implement the injection of three core modules in CoT through
 254 the following methods: (1) Treating each algorithmic step as an Atomic State, especially each time
 255 entering a loop. (2) Unfolding the algorithmic process sequentially as Linear Transition, achieved
 256 by using programs to synthesize CoT itself. (3) Explicitly outputting all relevant operands of current
 257 algorithm step as Memory Fetcher in CoT. During the generation process, we performed strict de-
 258 duplication and ensured that none of the data in the evaluation set was included in the training set.
 259 For training data, we first validated the sufficiency of the TAIL architecture by synthesizing **TAIL**-
 260 **CoT** that only includes three core modules in a format similar to that shown in Figure C3. Then we
 261 enrich TAIL-CoT into **TAIL-CoT-styled** using natural language (see Figure C4) and verify length
 262 generalization ability on all 18 tasks, as shown in Figure 3. See Appendix C for more details.
 263

264 **Dataset Size.** To better facilitate training and evaluation of length generalization, we defined three
 265 length ranges for each task: Short (**S**), Medium (**M**) and Long (**L**). For comprehensive training, we
 266 synthesized 100,000 training samples and 500 evaluation samples for each length range, resulting in
 267 1,500 evaluation samples per task. The validation of length generalization refers to whether a model
 268

269 ²We do not strictly follow RASP-L to constrain each reasoning step, but use it to indicate problems directly
 270 solvable by Transformers. This relaxed view shows strong length generalization in our experiments.

³Previous methods like Index Hint or Reversed Format, due to their structural specificity, cannot be effec-
 271 tively constructed for tasks beyond simple bit-matching operations.



308 Figure 3: Length generalization performance of Qwen2.5-7B finetuned with TAIL-CoT-style across
309 all 18 tasks, in comparison with Qwen2.5-7B (base model), Qwen2.5-7B Instruct and DeepSeek-R1.

310 trained on the S-range training set can avoid sharp performance degradation on the M- and L-range
311 evaluation sets. The length ranges of each task are detailed in Table E1.

313 4.2 EXPERIMENTAL SETTINGS

315 **Metrics.** Previous work (Saparov & He, 2022) has demonstrated experimentally that *label accuracy*
316 is well suited to measure reasoning capability of LLMs. We use pass@1 label accuracy under the
317 zero-shot setting and use greedy decoding to evaluate.

318 **Training.** We fine-tuned Qwen2.5-7B with training 2 epochs for most tasks and more epochs for
319 a few more challenging ones with a global batch size of 1024. The initial learning rate was 1e-5,
320 decaying to 7e-7, with a weight decay of 0.1.

322 **Evaluation.** To facilitate a more efficient evaluation procedure, we follow a dual-model framework.
323 First, a small 1.5B specialized model extracts the answers. Then, Qwen2.5-72B-Instruct performs
evaluations, outputting \boxed{YES} or \boxed{NO} to represent the evaluation result.

324
325
326
327
328

	S	M	L
Index Hint	57.0	34.5	24.0
Reversed Format	39.5	35.5	35.0
TAIL (Ours)	97.0	92.5	86.5

329
330
Table 1: Pass@1 accuracy comparison of TAIL with previous works, *i.e.* index hint and reversed
format, in large number addition task (belonging to simulation algorithm).331
4.3 PERFORMANCE333
334
335
336
337
338
339
340
341
342
343
344
Overall Performance. Due to its greater readability, we synthesized TAIL-CoT-*styled* (as shown
in Figure C4) on all 18 tasks across 8 classes of algorithms, and fine-tuned Qwen2.5-7B. As shown
in Figure 3, We observe length generalization on most difficult tasks, where there was no sharp
performance degradation on out-of-domain length sequences. Several tasks like *Compare Numbers*,
Bubble Sort and *Any Substring* reach near saturation in out-of-domain sequences. Moreover, TAIL
also outperformed Qwen2.5-7B (representing the base model), Qwen2.5-7B Instruct (representing
fine-tuning on a large amount of traditional non-TAIL-CoT data), and DeepSeek-R1 671B (a rep-
resentative open-source reasoning model) in both label accuracy and length generalization abilities.
Compared with reasoning models (*i.e.*, DeepSeek-R1), we conclude that the huge leap in perfor-
mance lies in their different underlying mechanisms. Reasoning models often try many approaches
but only scratch the surface and exploit shortcuts to bypass the structured reasoning process, instead
of delving into a step-by-step approach (see more details in section 4.5). However, we also find
some limitations of TAIL, details can be seen in Appendix L.345
346
347
348
349
350
351
352
353
354
Comparison with Previous Works. Since previous methods (Index Hint (Zhou et al., 2024; Lee
et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martínez et al., 2023; McLeish et al., 2024) and
Reversed Format (Zhou et al., 2023; 2024)) have proven effective on limited problems such as large
number operations, we choose *Large Number Addition* of *Simulation* algorithm as a common task
for comparison. Unlike prior work using fixed-length integers, our setup samples two operands with
random lengths and optional **decimal points**, greatly expanding the state space. We followed the
method in previous works to construct the same amount of training data (see details in Appendix F),
and fine-tuned Qwen2.5-7B separately. As shown in Table 1, models trained with Index Hint and
Reversed Format under-perform TAIL by a large margin, highlighting the inadequacy of prior meth-
ods in addressing the challenges of length generalization in difficult tasks.355
356
357
358
359
360
361
362
363
364
Length Generalization Activation. In previous experiments, we only trained on S-range data to
evaluate the generalization performance on longer sequences (M, L). For tasks that haven't achieved
saturation, we gradually introduce longer examples into the training set and analyze the optimal
proportion for effective length generalization at minimal token cost. We explored five training
configurations of $\langle S, M, L \rangle$ data while keeping the total number of samples constant: $\langle 1 : 0 : 0 \rangle$ (the
previous method using only short sequences), $\langle 8 : 1 : 1 \rangle$, $\langle 7 : 2 : 1 \rangle$, $\langle 5 : 3 : 2 \rangle$, and $\langle 4 : 3 : 3 \rangle$.
As shown in Figure D1, for almost all tasks, even a small addition of longer sequence data (*i.e.*, at
 $\langle 8 : 1 : 1 \rangle$) led to a rapid saturation in long-sequence reasoning, a phenomenon we refer to as *length
generalization activation*. This observation is quite different from the "balanced length" conclusion
of training data in previous works (Lee et al., 2023), indicating that TAIL has the potential to expand
to much longer sequences at a lower cost in the future. See more details in Appendix D.365
366
4.4 ABLATION STUDY367
368
369
370
371
372
373
374
375
376
Key module ablation. To assess the necessity of each core module, we ablate them individually and
examine the performance drop. As shown in Table 2, removing any module leads to a notable de-
cline in length generalization. Importantly, the impact varies by task: for example, Memory Fetcher
is critical for Population Growth (iteration-based), but less so for Compare Numbers (simulation-
based). We attribute this variation to differences in task structure. Tasks like Compare Numbers
involve only local transitions and weak long-range dependencies, making Memory Fetcher less es-
sential. In contrast, recursion-heavy tasks benefit significantly from Linear Transition. Most tasks
are also sensitive to scale, highlighting the general need for Atomic State decomposition. Overall,
TAIL integrates all three modules synergistically to support diverse reasoning structures.377
Thinking style ablation. To investigate the influence of different CoT styles on performance, we
conducted fine-tuning experiments using both standard TAIL-CoT and TAIL-CoT-*styled* data. As

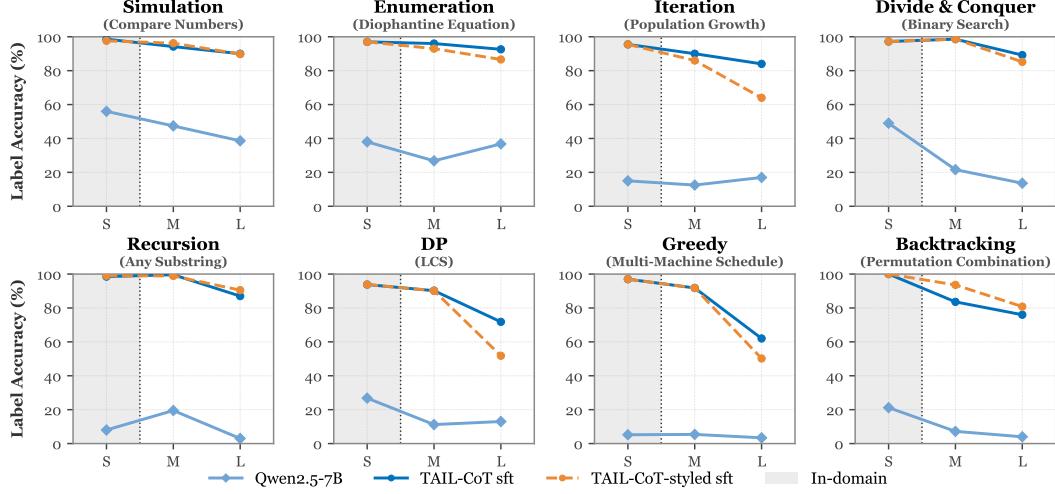


Figure 4: Comparison of fine-tuned Qwen2.5-7B with TAIL core module and the base model. For each algorithm, we select a representative task. After fine-tuning, model demonstrates length generalization on sequences that are 5 to 10 times longer than those in training.

Model	Simulation		Enumeration		Iteration		Divide & Conquer		Recursion		DP		Greedy		Backtracking	
	M	L	M	L	M	L	M	L	M	L	M	L	M	L	M	L
Qwen2.5-7B Base	47.4	38.6	26.8	36.8	12.4	17.0	21.6	13.6	19.4	3.0	11.2	13.0	5.4	3.4	7.2	4.0
w/o Atomic State	82.6	73.6	68.2	69.0	77.2	61.2	86.2	71.0	52.2	32.0	77.4	61.0	39.0	16.0	75.8	61.4
w/o Linear Transition	80.0	75.4	63.6	58.8	76.2	54.0	85.0	75.6	43.0	30.8	77.4	74.2	20.6	11.2	79.0	62.8
w/o Memory Fetcher	90.2	88.0	64.2	63.6	73.8	67.6	92.4	88.2	87.2	84.8	80.8	74.8	45.6	30.8	80.0	69.2
TAIL	94.2	90.0	96.0	92.6	90.0	84.4	98.6	89.2	99.6	87.0	90.2	71.8	91.8	62	83.6	76

Table 2: Ablation study in core modules of TAIL. For each algorithm, we select a representative task and evaluate pass@1 accuracy only on sequences that exceed the training length. Clearly, the absence of any core module leads to a sharp degradation in length generalization performance.

illustrated in Figure 4, the results indicate that the choice of CoT style has minimal impact on the final performance. This suggests that for the length generalization task, the specific style of CoT is not a critical factor. Instead, key modules of TAIL appears to play a more significant role in determining the overall performance.

Attention visualization of Memory Fetcher. As shown in Figure G2, when Memory Fetcher is present, we observe strong and focused attention on the corresponding tokens (highlighted in selected Transformer layers). In contrast, the attention patterns become sparse and disorganized without Memory Fetcher, showing insufficient focus on the operands. See more details in Appendix G.

4.5 COMPARISON WITH REASONING MODELS

It seems that both TAIL-CoT(-styled) and reasoning models (*i.e.*, DeepSeek-R1) can improve performance by extending the CoT length, but underlying principles are quite different. Reasoning models aim to expand the search space by prolonging the reasoning trajectory, encouraging **broad method exploration** instead of delving into the problem step by step (as shown in Section K.1). In contrast, TAIL focuses on **controllable** and **structured** reasoning chains that support stable generalization to longer sequences (as shown in Section K.2). See Appendix K for more details.

Despite appearances suggesting that the linear expansion of small reasoning steps with explicit operands output make TAIL-CoT(-styled) longer than traditional CoT, experimental results show that TAIL-CoT can achieve significantly higher accuracy at comparable CoT length to DeepSeek-R1 (as shown in Table I1). It demonstrates that TAIL’s core modules are essential for promoting length generalization. See Appendix I for more details.

To rigorously evaluate the difference, we also fine-tuned Qwen2.5-7B using an equal amount of correct data distilled by DeepSeek-R1. As shown in Table J1, R1-Distilled-Qwen2.5-7B exhibits lower accuracy and generalization ability. See Appendix J for more details.

432 5 RELATED WORK

434 **Length Generalization.** Large language models (LLMs) often struggle to process inputs longer
 435 than those seen during training, a limitation referred to as length generalization (Dubois et al., 2019;
 436 Newman et al., 2020; Saparov & He, 2022; Anil et al., 2022). Previous works primarily focus
 437 on model architecture enhancements and data-driven approaches to improve length generalization.
 438 However, architectural enhancements modify the components (e.g., forward mechanism (Fan et al.,
 439 2024), attention mechanisms (Duan et al., 2023), position encodings (Ruoss et al., 2023; Li et al.,
 440 2023; Kazemnejad et al., 2023) and external queries (Giannou et al., 2023)) of Transformers for
 441 specific tasks and further adaptation to be applicable to prevailing LLMs. Data-driven approaches
 442 construct specific chain-of-thought (CoT) structures for training, such as digit-order reversal (Zhou
 443 et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martínez et al., 2023; McLeish
 444 et al., 2024), sequence padding (Jelassi et al., 2023), and index hints (Zhou et al., 2023; 2024),
 445 which are task-specific and lack universality. Our TAIL focuses on universal data-driven approaches,
 446 exploring a more general and effective CoT structure, and directly adopting mainstream LLMs (Bai
 447 et al., 2023; Yang et al., 2024; Touvron et al., 2023; Liu et al., 2024; Team, 2023; Cai et al., 2024;
 448 Bai et al., 2025) for fine-tuning, without modifying any components of the pretrained model. Similar
 449 to ours, recent work (Hou et al., 2024) adopts a Turing-like step-by-step tape update, but it is limited
 450 to specific positional encodings and data settings, and lacks verification across diverse tasks.

451 **Structured Chain-of-Thought Construction.** Structured thinking demonstrably enhances the rea-
 452 soning capabilities of LLMs (Wei et al., 2022). Prior research explored various recognition heuris-
 453 tics within CoT paradigm, aiming to imbue LLMs with more human-like thoughts (Suzgun & Kalai,
 454 2024; Zou et al., 2023; Zheng et al., 2023). Concurrently, investigations into diverse structured data
 455 formats, including linear chains (Wei et al., 2022), hierarchical trees (Yao et al., 2023), intercon-
 456 nected graphs (Besta et al., 2024), and dynamically adapting structures (Pandey et al., 2025), which
 457 enable LLMs to search easily and improve the complex problem-solving performance. In this paper,
 458 we introduce a novel approach to synthesizing structured CoT data by drawing inspiration from a
 459 Turing machine, which can handle inputs of arbitrary length. This emulation offers a theoretically
 460 powerful advantage: length-generalizability, enabling the model to tackle problems of varying com-
 461 plexity, and broad applicability to the entire domain of *computable* problems. Notably, the search
 462 capability and different graph structures (Besta et al., 2024; Pandey et al., 2025; Yao et al., 2023) and
 463 their targeted tasks can all be taken as instances of a Turing machine solving computable problems.

464 6 LIMITATIONS

465 Despite the strong length generalization in individual tasks, our experiments indicate that compo-
 466 sitional generalization still leaves room for improvement (Appendix H). This work further centers
 467 on computable problems with deterministic algorithms, leaving nondeterministic cases as open di-
 468 rections. Finally, while TAIL markedly improves open-source models on challenging samples, a
 469 notable gap with closed-source models remains. These limitations (Appendix L) point to promising
 470 avenues for future research.

471 7 CONCLUSION

472 We introduced Turing mAchine Imitation Learning (TAIL), a data-driven framework that instanti-
 473 ates three core modules (*i.e.*, Linear Transition, Atomic State, and Memory Fetcher) to align CoT
 474 structure with program execution and thereby promote universal and effective length generaliza-
 475 tion. Across 8 algorithm classes and 18 tasks, fine-tuning on TAIL-synthesized data yields strong
 476 length generalization on out-of-distribution sequence lengths, with consistent gains on difficult cases
 477 and performance that surpasses DeepSeek-R1. Unlike reasoning models that expand trajectories to
 478 explore many heuristics, TAIL enforces a controllable and step-by-step execution, which supports
 479 stable extrapolation to inputs of arbitrary length.

486 REFERENCES
487

488 Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization. *arXiv*
489 *preprint arXiv:2402.04875*, 2024.

490 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
491 brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
492 in large language models. *Advances in Neural Information Processing Systems*, 35:38546–38556,
493 2022.

494 Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge Uni-
495 versity Press, 2009.

496 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
497 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

498 Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen,
500 Pengcheng Chen, Ying Chen, Yongkang Chen, et al. Intern-s1: A scientific multimodal foun-
501 dation model. *arXiv preprint arXiv:2508.15763*, 2025.

502 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
503 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
504 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI*
505 *Conference on Artificial Intelligence*, volume 38, pp. 17682–17690, 2024.

506 George S Boolos, John P Burgess, and Richard C Jeffrey. *Computability and logic*. Cambridge
507 university press, 2002.

508 Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
509 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*,
510 2024.

511 B Jack Copeland. The church-turing thesis. 1997.

512 Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
513 Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
514 hierarchy. *arXiv preprint arXiv:2207.02098*, 2022.

515 Shaoxiong Duan, Yining Shi, and Wei Xu. From interpolation to extrapolation: Complete length
516 generalization for arithmetic transformers. *arXiv preprint arXiv:2310.11984*, 2023.

517 Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation
518 to longer sequences. *arXiv preprint arXiv:1911.03872*, 2019.

519 Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
520 generalization. *arXiv preprint arXiv:2409.15647*, 2024.

521 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
522 Papailiopoulos. Looped transformers as programmable computers. In *International Conference*
523 *on Machine Learning*, pp. 11398–11442. PMLR, 2023.

524 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
525 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
526 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

527 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, lan-
528 guages, and computation. *Acm Sigact News*, 32(1):60–65, 2001.

529 Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
530 length generalization with turing programs. *arXiv preprint arXiv:2407.03310*, 2024.

531 Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
532 Charton. Length generalization in arithmetic transformers. *arXiv preprint arXiv:2306.15400*,
533 2023.

540 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
 541 Reddy. The impact of positional encoding on length generalization in transformers. *Advances*
 542 *in Neural Information Processing Systems*, 36:24892–24928, 2023.

543 Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
 544 Teaching arithmetic to small transformers. *arXiv preprint arXiv:2307.03381*, 2023.

545 Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
 546 Shanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
 547 relative positions improves long context transformers. *arXiv preprint arXiv:2310.04418*, 2023.

548 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
 549 solve inherently serial problems. *arXiv preprint arXiv:2402.12875*, 1, 2024.

550 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 551 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 552 *arXiv:2412.19437*, 2024.

553 Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and
 554 Rik Sarkar. Combining generative artificial intelligence (ai) and the internet: Heading towards
 555 evolution or degradation? *arXiv preprint arXiv:2303.01255*, 2023.

556 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian Bartoldson, Bhavya
 557 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
 558 arithmetic with the right embeddings. *Advances in Neural Information Processing Systems*, 37:
 559 108012–108041, 2024.

560 Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and
 561 length extrapolation. *arXiv preprint arXiv:2010.07174*, 2020.

562 Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive graph of
 563 thoughts: Test-time adaptive reasoning unifying chain, tree, and graph structures. *arXiv preprint*
 564 *arXiv:2502.05078*, 2025.

565 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 566 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.

567 Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Ben-
 568 nani, Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization
 569 of transformers. *arXiv preprint arXiv:2305.16843*, 2023.

570 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 571 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.

572 Abulhair Saparov, Srushti Pawar, Shreyas Pimpalgaonkar, Nitish Joshi, Richard Yuanzhe Pang,
 573 Vishakh Padmakumar, Seyed Mehran Kazemi, Najoung Kim, and He He. Transformers struggle
 574 to learn to search. *arXiv preprint arXiv:2412.04703*, 2024.

575 Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
 576 description matters for transformers arithmetic. *arXiv preprint arXiv:2311.14737*, 2023.

577 Kensen Shi, Joey Hong, Manzil Zaheer, Pengcheng Yin, and Charles Sutton. Compositional gen-
 578 eralization and decomposition in neural program synthesis. *arXiv preprint arXiv:2204.03758*,
 579 2022.

580 Sania Sinha, Tanawan Premsri, and Parisa Kordjamshidi. A survey on compositional learning of ai
 581 models: Theoretical and experimetal practices. *arXiv preprint arXiv:2406.08787*, 2024.

582 Michael Sipser. Introduction to the theory of computation. *ACM Sigact News*, 27(1):27–29, 1996.

583 Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
 584 agnostic scaffolding. *arXiv preprint arXiv:2401.12954*, 2024.

585 InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities,
 586 2023.

594 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 595 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 596 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

597
 598 Alan Mathison Turing et al. On computable numbers, with an application to the entscheidungsprob-
 599 lem. *J. of Math.*, 58(345-363):5, 1936.

600 Ru Wang, Wei Huang, Selena Song, Haoyu Zhang, Yusuke Iwasawa, Yutaka Matsuo, and Jiax-
 601 ian Guo. Beyond in-distribution success: Scaling curves of cot granularity for language model
 602 generalization. *arXiv preprint arXiv:2502.18273*, 2025.

603
 604 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 605 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 606 *neural information processing systems*, 35:24824–24837, 2022.

607 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 608 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 609 *arXiv:2412.15115*, 2024.

610 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 611 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 612 *vances in neural information processing systems*, 36:11809–11822, 2023.

614 Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le,
 615 and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
 616 *arXiv preprint arXiv:2310.06117*, 2023.

617 Hattie Zhou, Arwen Bradley, Eta Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
 618 and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
 619 *arXiv preprint arXiv:2310.16028*, 2023.

621 Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
 622 formers can achieve length generalization but not robustly. *arXiv preprint arXiv:2402.09371*,
 623 2024.

624 Anni Zou, Zhuosheng Zhang, Hai Zhao, and Xiangru Tang. Generalizable chain-of-thought prompt-
 625 ing in mixed-task scenarios with large language models. *arXiv preprint arXiv:2310.06692*, 2023.

626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A FORMAL DEFINITION OF TURING MACHINE
649650 A Turing machine (Turing et al., 1936; Hopcroft et al., 2001) can be formally defined as a seven-
651 tuple:
652

653
654
$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F), \quad (A1)$$

655

656 where Q is a finite set of states, Σ is a non-empty finite input alphabet, Γ denotes the set of tape
657 symbols, δ is the transition function, $q_0 \in Q$ refers to the initial state, $B \in \Gamma - \Sigma$ is the blank
658 symbol, and F denotes the set of final states.
659660 B TASK INTRODUCTION
661662 The dataset consists of purely synthetic data, covering 8 major algorithms and 18 tasks, as shown in
663 Table B1. Most tasks have approximately 100,000 training samples and 500 test samples (a small
664 subset of tasks, which are more difficult to construct, retain 20,000 training samples and 200 test
665 samples). All test queries have been verified and are not included in the training set.
666

667 Algorithm	668 Task Name	669 Task Content
670 Simulation	Large Number Addition	$x_1 + x_2^* \text{ (len}(x_1) = n, \text{len}(x_2) = m)$
	Large Number Division	$x_1 \div x_2^* \text{ (len}(x_1) = n, \text{len}(x_2) = m)$
	Bubble Sort	Bubble sort list of n non-repeat numbers
	Word Flip	Flip a sentence containing n letters
	Compare Numbers	Compare x_1 and $x_2^* \text{ (len}(x_1) = n, \text{len}(x_2) = m)$
674 Recursion	Any Substring	Find all substrings of given string with length n
	Derangement	Derangement count for n elements
676 Iteration	Population Growth	Calculate total pairs after n units, starting reproduction at x -th unit ($x < n$) with initial y pairs, z pairs produced per unit ($y, z \in \mathbb{N}^+$)
679 Greedy	Dijkstra	Shortest path values in graph with n vertices
	Multi-Machine Schedule	Maximum benefit of n tasks on x queues ($x < n$)
682 Enumeration	Count Letters	Count letters in sentence of length n
	Diophantine Equation	Find integer solutions to $x_1a + x_2b = n$ ($a, b \geq 0$)
	Prime Search	All prime numbers in the interval $[n, m]$ ($n < m$)
685 DP	0-1 Knapsack	Maximum benefit of n -element 0-1 knapsack
	LCS	LCS of string X_1 and X_2 ($\text{len}(X_1) = n, \text{len}(X_2) = m$)
	Levenshtein Distance	Minimum operations converting string X_1 to X_2
687 Divide & Conquer	Binary Search	Binary search index in list of n increasing numbers
688 Backtracking	Permutation Combination	Number of combinations in n -element list (step by step)

691 Table B1: Dataset synthesised under instruction of TAIL, containing 8 algorithms and 18 tasks. n
692 and m represent length in a given range $G \in \{S, M, L\}$. $*$ indicates that a decimal point can be
693 inserted in any bit of the operand in specific task.
694
695
696
697
698
699
700
701

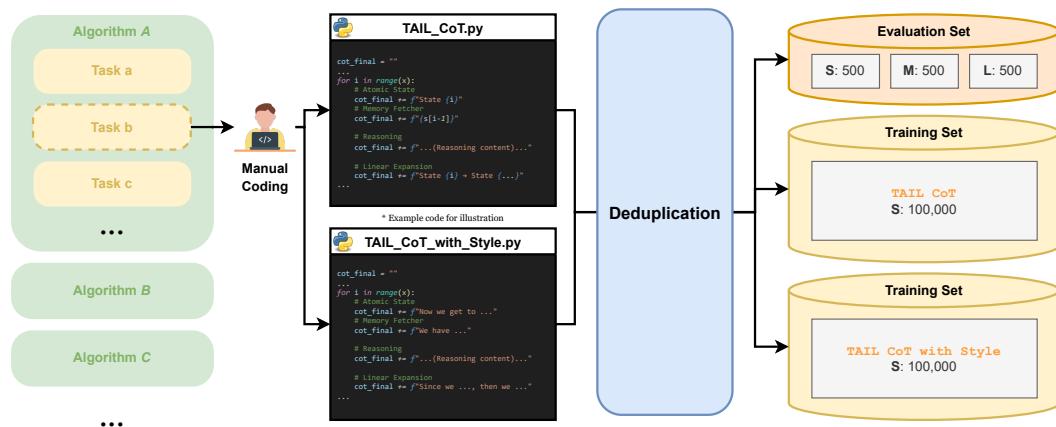
702 C DATA SYNTHESIS AND CoT EXAMPLES

704
 705 Figure C1 illustrates our data synthesis process. Specifically, for each task, we manually write a
 706 Python program that can accept any input under that task. Because each task is assigned to an algo-
 707 rithm, writing this program is very convenient and well-reasoned. We then add string concatenation
 708 statements to the program to link the reasoning process and form a complete Chain-of-Thought
 709 (CoT). Since CoTs are generated as the program executes, they completely follow the program's
 710 execution process, which is the core idea behind TAIL. As the synthetic CoTs strictly follows the
 711 running process of Python programs, they will *exhaustively explore all possible solutions*.

712 During this process, we can output two types of CoT: (1) **TAIL-CoT** contains only the TAIL core
 713 module, without any other verbiage and is more symbolic. (2) **TAIL-CoT-styled** adds more style
 714 statements and is more human-readable and interpretable, which adds more cohesive and planning
 715 statements.

716 In experiments, we trained TAIL-CoT-styled on 18 tasks across all 8 algorithm classes and verified
 717 its strong length generalization performance, as shown in Figure 3. We then verified that removing
 718 all explicit style statements (TAIL-CoT) did not lead to a performance degradation, as shown in Fig-
 719 ure 4, demonstrating that length generalization is the core module of TAIL, not the style statement.

720 Take *Binary Search* task in *Divide & Conquer* algorithm as an example. Figure C2 is the query as
 721 direct input to LLMs. For each task, we constructed more than 20 query templates to simulate the
 722 diversity. Figure C3 is an example of TAIL-CoT and Figure C4 is an example of TAIL-CoT-styled.



723
 724 Figure C1: Overall pipeline of data synthesis. We manually code task-specific python programs
 725 and use them to massively generate chain-of-thought (CoT) data, either in plain form (TAIL-CoT)
 726 or with stylistic variations (TAIL-CoT-styled). After deduplication, we construct large-scale train-
 727 ing sets and balanced evaluation sets for subsequent experiments. (S = Short sequence data, M =
 728 Medium sequence data, L = Long sequence data)

729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756
757
758**Query: (Example 1)**759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Determine the index of -5259 in the sorted list $[-5957, -5259, -4195, -2263, 1289, 3514, 3632, 4284, 5991, 6578, 7333]$ with binary search (start from 0). Other search methods are not allowed.

Query: (Example 2)

Find the index of -5259 in the sorted list $-5957, -5259, -4195, -2263, 1289, 3514, 3632, 4284, 5991, 6578, 7333$, starting from 0 . For teaching purposes, you must use binary search and show the process step by step.

Query: (Example 3)

Provide the 0-based binary search index for -5259 in $[-5957, -5259, -4195, -2263, 1289, 3514, 3632, 4284, 5991, 6578, 7333]$.

Figure C2: Example queries belonging to the Binary Search task (Divide & Conquer algorithm).

Minimalist reasoning chain of TAIL:

```

<Atomic State> {0,10}
<Memory Fetcher> [( $s_0 = -5957$ ), ( $s_1 = -5259$ ), ( $s_2 = -4195$ ), ( $s_3 = -2263$ ),
( $s_4 = 1289$ ), ( $s_5 = 3514$ ), ( $s_6 = 3632$ ), ( $s_7 = 4284$ ), ( $s_8 = 5991$ ), ( $s_9 = 6578$ ),
( $s_{10} = 7333$ )]
<Memory Fetcher> Find =  $-5259$ 
Mid = 5,  $s_5 = 3514$  > Find
<Linear Transition> {0,10}  $\rightarrow$  {0,4}

<Atomic Subtask> {0,4}
<Memory Fetcher> [( $s_0 = -5957$ ), ( $s_1 = -5259$ ), ( $s_2 = -4195$ ), ( $s_3 = -2263$ ),
( $s_4 = 1289$ )]
<Memory Fetcher> Find =  $-5259$ .
Mid = 2,  $s_2 = -4195$  > Find
<Linear Transition> {0,4}  $\rightarrow$  {0,1}

<Atomic Subtask> {0,1}
<Memory Fetcher> [( $s_0 = -5957$ ), ( $s_1 = -5259$ )]
<Memory Fetcher> Find =  $-5259$ 
Mid = 0,  $s_0 = -5957$  < Find
<Linear Transition> {1,1}  $\rightarrow$  {1,1}.

<Atomic Subtask> {1,1}
<Memory Fetcher> [( $s_1 = -5259$ )]
<Memory Fetcher> Find =  $-5259$ 
Mid = 1,  $s_1 = -5259$  = Find
<Linear Transition> {1,1}  $\rightarrow$  F

Final Answer: Index 1.

```

Figure C3: Example of TAIL-CoT, with only core modules aligned with Turing machines. <TAG> is for demonstration purposes only and does not exist in the actual CoT content.

810
811
812
813
814
815**User-friendly CoT of TAIL:**

Let's perform the binary search step by step.

816 1. The currently processed interval is [-5957, -5259, -4195, -2263, 1289, 3514, 3632,
817 4284, 5991, 6578, 7333].

First we map each number to its index:

- Original index 0: -5957
- Original index 1: -5259
- Original index 2: -4195
- Original index 3: -2263
- Original index 4: 1289
- Original index 5: 3514
- Original index 6: 3632
- Original index 7: 4284
- Original index 8: 5991
- Original index 9: 6578
- Original index 10: 7333

The left boundary index is 0 and the right boundary index is 10.

Median index $\lfloor (0 + 10)/2 \rfloor = 5$, the median number is 3514.

The target number -5259 is less than the median number 3514, continue these operations on the left subinterval [-5957, -5259, -4195, -2263, 1289].

833 2. The currently processed interval is [-5957, -5259, -4195, -2263, 1289].

First we map each number to its index:

- Original index 0: -5957
- Original index 1: -5259
- Original index 2: -4195
- Original index 3: -2263
- Original index 4: 1289

The left boundary index is 0 and the right boundary index is 4.

Median index $\lfloor 0 + 4 \rfloor = 2$, the median number is -4195.

The target number -5259 is less than the median number -4195, continue these operations on the left subinterval [-5957, -5259].

844 3. The currently processed interval is [-5957, -5259].

First we map each number to its index:

- Original index 0: -5957
- Original index 1: -5259

The left boundary index is 0 and the right boundary index is 1.

Median index $\lfloor 0 + 1 \rfloor = 0$, the median number is -5957.

The target number -5259 is greater than the median number -5957, continue these operations on the right subinterval [-5259].

853 4. The currently processed interval is [-5259].

First we map each number to its index:

- Original index 1: -5259

The left boundary index is 1 and the right boundary index is 1.

Median index $\lfloor 1 + 1 \rfloor = 1$, the median number is -5259.

The target number -5259 is equal to the median number -5259, the search ends.

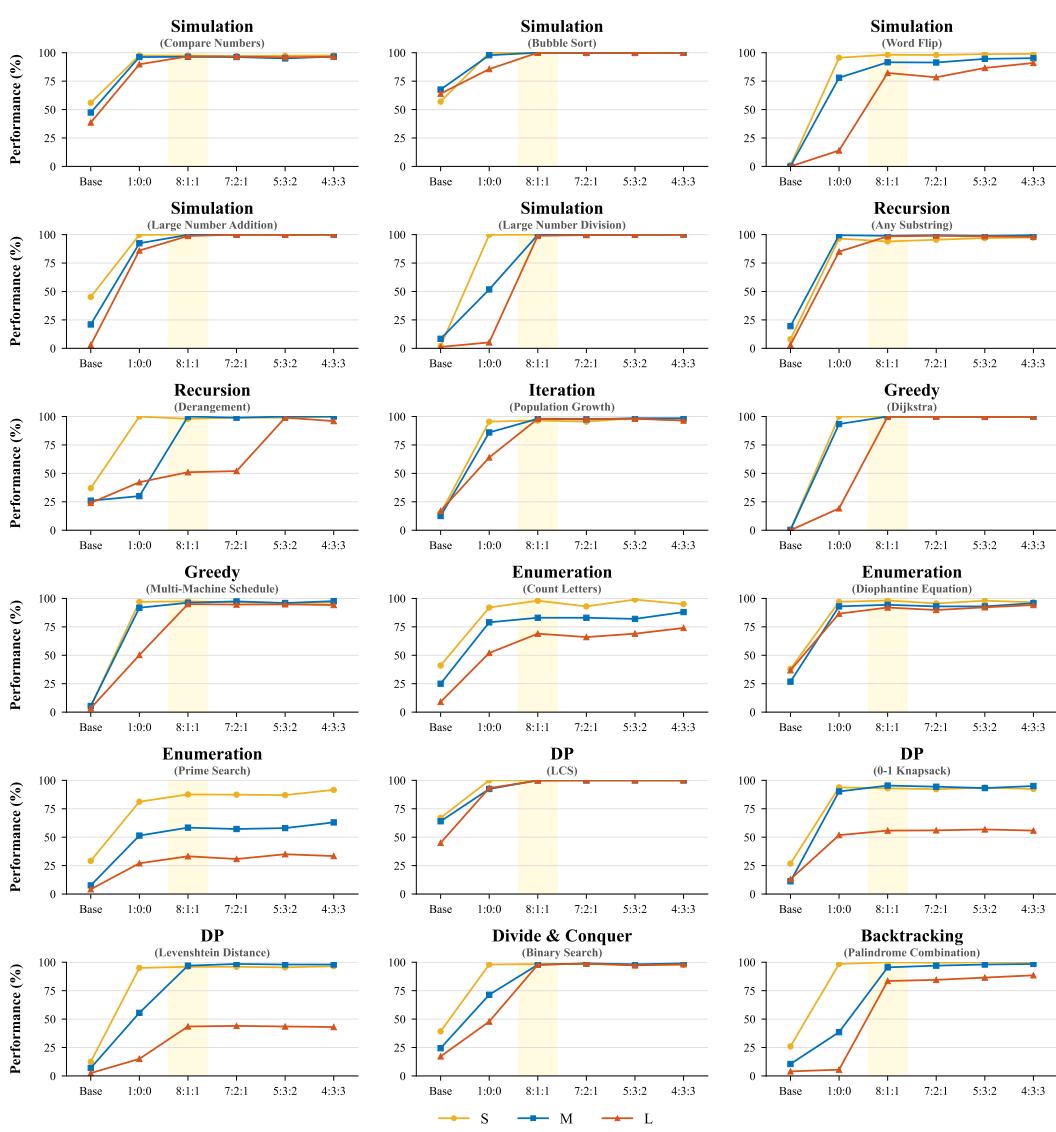
The target number -5259 is located at index 1.860
861
862
863

Figure C4: Example of TAIL-CoT-styled, improving human readability on top of core modules

864 **D DATA PROPORTION STUDY**
865

866 For each task, we divided the data into three length ranges (S, M, and L), and synthesized 100,000
867 training samples for each range. In studying length generalization, we trained solely on the S-range
868 data without including any M- or L-range samples (*i.e.*, the data proportion is $<1:0:0>$), and then
869 evaluated on all three ranges to assess the ability to generalize to longer sequences. In this section,
870 for tasks that haven't reached saturation, we progressively incorporate longer sequences into the
871 S-range training data and investigate the data proportion that achieves saturation performance with
872 the minimal number of training tokens. Specifically, we keep the total number of training samples
873 fixed, while varying the proportions of the three length ranges as $<1:0:0>$, $<8:1:1>$, $<7:2:1>$,
874 $<5:3:2>$, and $<4:3:3>$.

875 As shown in Figure D1, we found that using TAIL-CoT, performance saturation can be quickly
876 achieved by simply *adding a small amount of long data* to a large amount of short data. Guided by
877 this observation, TAIL-CoT can leverage imbalanced sequence length proportions to reduce training
878 costs. We call this **length generalization activation**.



915 Figure D1: Mixed scale experiments with data on 18 tasks. We find that adding a small amount of
916 long data to most unsaturated tasks achieves fast performance gains.
917

918 E TASK LENGTH RANGE
919
920

921 Algorithm	922 Task Name	923 Small (S)	924 Medium (M)	925 Long (L)
926 Simulation	927 Large Number Addition	928 [10, 30]	929 [31, 40]	930 [41, 50]
	931 Large Number Division	932 [2, 5]	933 [6, 10]	934 [11, 20]
	935 Bubble Sort	936 [2, 4]	937 [5, 6]	938 [7, 8]
	939 Word Flip	940 [10, 20]	941 [21, 50]	942 [51, 100]
	943 Compare Numbers	944 [5, 10]	945 [11, 20]	946 [21, 50]
947 Recursion	948 Any Substring	949 [3, 5]	950 [6, 9]	951 [10, 14]
	952 Derangement	953 [3, 30]	954 [31, 60]	955 [61, 100]
956 Iteration	957 Population Growth	958 [1, 10]	959 [11, 25]	960 [26, 50]
961 Greedy	962 Dijkstra	963 [3, 5]	964 [6, 10]	965 [11, 20]
	966 Multi-Machine Schedule	967 [5, 10]	968 [11, 20]	969 [21, 50]
970 Enumeration	971 Count Letters	972 [2, 6]	973 [7, 10]	974 [11, 20]
	975 Diophantine Equation	976 [10, 50]	977 [51, 100]	978 [101, 200]
	979 Prime Search	980 [5, 100]	981 [101, 200]	982 [201, 300]
983 DP	984 0-1 Knapsack	985 [2, 3]	986 [4, 5]	987 [6, 8]
	988 LCS	989 [2, 6]	990 [7, 9]	991 [10, 12]
	992 Levenshtein Distance	993 [2, 4]	994 [5, 7]	995 [8, 9]
996 Divide & Conquer	997 Binary Search	998 [5, 20]	999 [21, 40]	1000 [41, 70]
1001 Backtracking	1002 Palindrome Combination	1003 [2, 4]	1004 [5, 6]	1005 [7, 8]

940
941 Table E1: The setting of length ranges across all tasks. See Table B1 for the definitions of *length*.
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 F BASELINE DATA CONSTRUCTION
973974 This section describes the data construction methods for the baseline methods (*i.e.*, Index Hint and
975 Reversed Format). The experimental task was Large Number Addition (Simulation algorithm), and
976 unlike the experiments in previous works, in this paper we contain a random number of decimals.
977 We followed data construction methods accordingly based on the principles of these baselines.
978979 F.1 INDEX HINT
980981 The Index Hint(Zhou et al., 2023; 2024) method refers to adding a hint of indexes to the correspond-
982 ing numeric or logical bits of two operands for positioning in arithmetic or parity operations. This
983 method has been extensively proven to be effective in both tasks. To compare the performance of
984 Index Hint and TAIL, we refer to the method (Zhou et al., 2024) that displays the indexes to locate
985 as follows:
986

987
$$3a6b1c + 5a7b6c = 9a3b7c$$

988 However, the above approach is for the case where two operands have the same number of digits
989 without decimals, so we make following improvements for non-fixed-length cases with decimals:
990

991
$$\begin{aligned} 1 & (-c) 2 (-b) 3 (-a) . 4 (a) 5 (b) + 6 (-b) 7 (-a) . 8 (a) 9 (b) \\ & = 1 (-c) 9 (-b) 1 (-a) . 3 (a) 4 (b) \end{aligned}$$

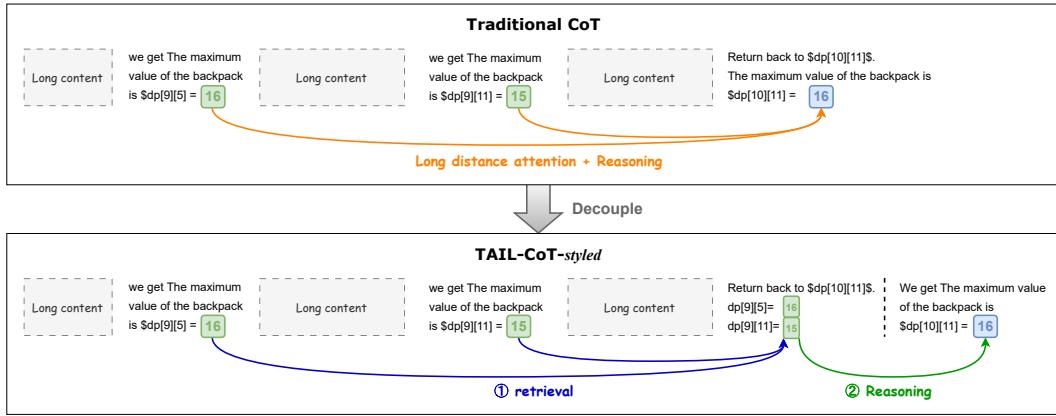
992

993 F.2 REVERSED FORMAT
994995 Reversed Format (Zhou et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martínez
996 et al., 2023; McLeish et al., 2024) refers to reversing each of the two operands in arithmetic opera-
997 tions such as addition. The rationale for this method is that the addition is usually performed from
998 the first digit, *i.e.*, from right to left. However, the order of next token prediction (NTP) in large
999 language models (LLMs) is from left to right, which leads to overly complex search paths during
1000 model learning and affects the length generalization performance. This method is also a widely
1001 proven effective length generalization facilitation method, constructed as follows:
1002

1003 (Origin) 123.45+67.89=191.34
1004 (Reversed Format) 54.321+98.76=43.191
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 G DETAILS ABOUT MEMORY FETCHER

1028 This section presents the details of the Memory Fetcher in TAIL. As shown in Figure G1, the Memory
 1029 Fetcher is designed to *decouple* long-range attention from the reasoning action. It first retrieves
 1030 all relevant operands from the long sequence to the end, and then performs more precise reasoning
 1031 through local attention.



1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Figure G1: Comparison of traditional CoT and TAIL's Memory Fetcher, which can decouple the long-range attention construction and the reasoning process.

We visualize this local attention and compare it with the traditional CoT. As shown in Figure G2, attention across layers tends to focus on the end of the sequence. With the introduction of the Memory Fetcher, operands are captured more accurately. In contrast, traditional CoT must simultaneously attend to reasoning actions (via local attention) and the retrieval of distant operands (via long-range attention), which results in a significant sparsification of long-range attention.

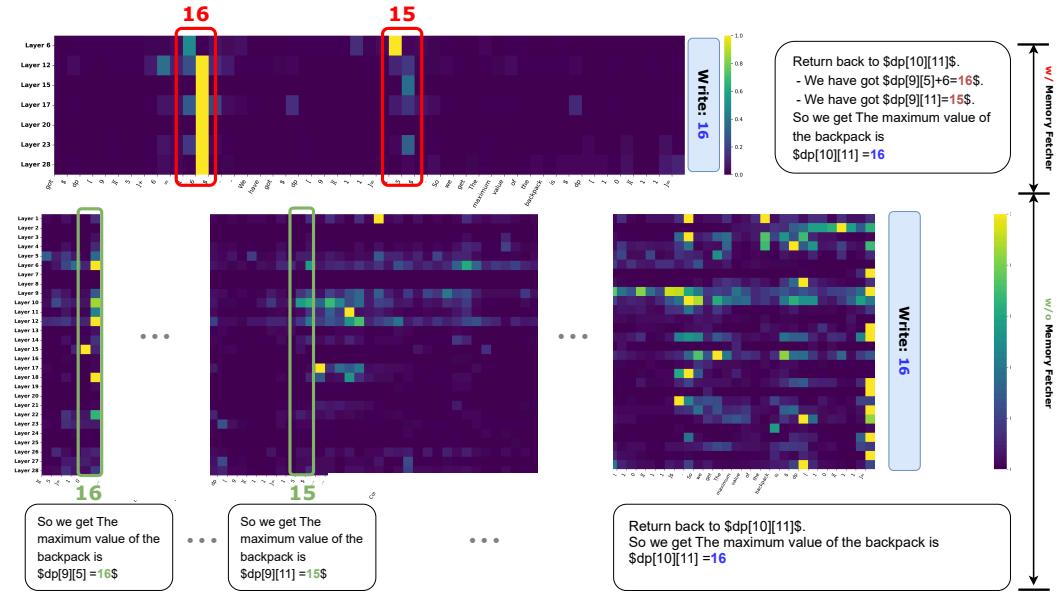
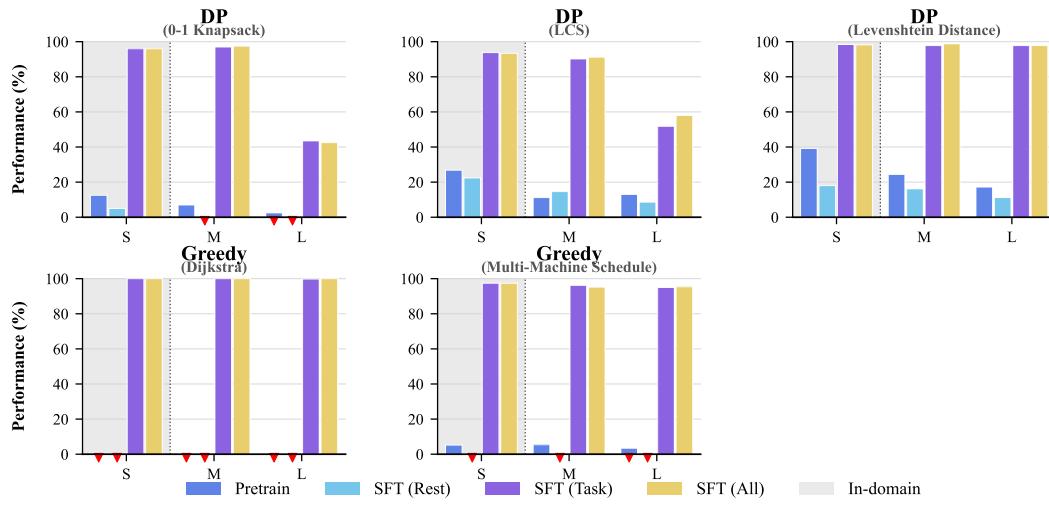


Figure G2: Ablation study on attention visualization of Memory Fetcher.

1080 H COMBINATORIAL GENERALIZATION RESULTS

1081
 1082 For tasks that belong to the same algorithmic idea, we test whether they have combinatorial general-
 1083 ization (*i.e.*, generalization between tasks). As shown in Figure H1, the combinatorial generalization
 1084 property is not significant, which is the target of our future works.
 1085



1102
 1103 Figure H1: Generalization performance between tasks within a single algorithm (*e.g.*, DP and
 1104 Greedy). **Pretrain** represents Qwen 2.5-7B as the basis for subsequent SFT. For each task,
 1105 **SFT(Rest)** indicates training using data from other tasks within the algorithm, **SFT(Task)** indicates
 1106 training using data from this task, and **SFT(All)** indicates training using data from all tasks
 1107 within this algorithm. \blacktriangledown indicates that this piece of data has a label accuracy of less than 5%.

1134 **I COT LENGTH COMPARISON**
11351136 Since TAIL simulates the implementation of a Turing machine, where all algorithm steps are
1137 expanded and explicit recall of operands is added, it may lead to a significant increase in CoT. There-
1138 fore, taking *Compare Number* task of *Simulation* algorithm as an example, we compared the average
1139 lengths of TAIL-CoT and DeepSeek-R1 CoT.1140 As shown in Table I1, despite the increased length, the average number of tokens of TAIL remains
1141 on par with that of DeepSeek-R1. With such acceptable length, it significantly outperforms the 671B
1142 reasoning model with only 7B parameters, which demonstrates the efficiency of TAIL.
1143

Metric	TAIL-CoT (7B, Finetuned Qwen2.5 7B)	DeepSeek-R1 (671B)
avg. Tokens	1455	1461
Label Accuracy	90.0	51.2

1144 Table I1: Comparison between TAIL-CoT (7B, Finetuned Qwen2.5 7B) and DeepSeek-R1 (671B)
1145 on average token usage and label accuracy. The average number of tokens retains the integer part.
11461147 **J DEEPSEEK-R1-DISTILL TRAINING RESULTS**
11481149 For a fairer comparison, we fine-tuned Qwen2.5-7B using the same amount of DeepSeek-R1-Distill
1150 data and TAIL-CoT. As shown in Table J1, although DeepSeek-R1's CoT can significantly improve
1151 in-domain performance, the improvement is not as significant as TAIL-CoT, and the performance
1152 shows a sharp decline in longer sequences. Since DeepSeek-R1 has a low accuracy rate on some
1153 tasks, distilling the same amount of training data requires a large number of tokens, so this exper-
1154 iment was not conducted on a large scale.
1155

Setting	TAIL (7B)	R1-Distill-Qwen2.5-7B
S (In Domain)	98.0	72.2
M	94.2	67.2
L	90.0	61.8

1156 Table J1: Performance comparison between TAIL (7B) and R1-Distill-Qwen2.5-7B across different
1157 sequence lengths. (S = Short sequence data, M = Medium sequence data, L = Long sequence data)
11581159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 K COT STRUTURE COMPARISON OF DEEPSEEK-R1 AND TAIL

1189
1190 Take a *Word Flip* task of *Simulation* algorithm as an example.

1191
1192 **Zero-shot Query:** Provide the flipped string based on "As he measured, he said, Every Ollivander
1193 wand has a core of a powerful magical substance". Reverse the entire string character by character
1194 (including spaces).

1195
1196 K.1 RESPONSE OF DEEPSEEK-R1

```
1197 <think>
1198 We are to flip the string based on the given sentence: "As he measured,
1199     he said, Every Ollivander wand has a core of a powerful magical
1200     substance"
1201 The instruction is to "flip" the string. Let me reverse the entire string
1202     :
1203 Original: "As he measured, he said, Every Ollivander wand has a core of a
1204     powerful magical substance" We can reverse it character by character
1205     .
1206 Steps:
1207 1. Take the string.
1208 2. Reverse the order of the characters.
1209 Example: "hello" becomes "olleh"
1210 Let's do it:
1211 Original: 'A','s',' ',' ','h','e',' ',' ','m','e',' ','a','s',' ','u','r',' ','e','d',' ',' ','
1212     ','h','e',' ',' ','s','a','i','d',' ',' ','E','v','e','r','y',' ','o','l',
1213     ','l','i','v','a','n','d','e','r',' ','w','a','n','d',' ','h','a','s
1214     ',' ','a',' ','c','o','r','e',' ','o','f',' ','a',' ','p','o','w','e
1215     ','r','f','u','l','m','a','g','i','c','a','l',' ','s','u','b','s
1216     ','t','a','n','c','e'
1217 Reverse:
1218 Start from the last character and go to the first.
1219 But note: we can use a simple method in programming to reverse the string
1220     .
1221 However, since we are to do it manually, I'll write the reversed string.
1222 Let me break the original string into parts and then reverse the whole:
1223 Original: "As he measured, he said, Every Ollivander wand has a core of a
1224     powerful magical substance"
1225 We can write the reversed string as:
1226 Last character: 'e' Then: 'c', 'n', 'a', 't', 's', 'b', 'u', 's', ' ', 'l
1227     ', 'a', 'c', 'i', 'g', 'a', 'm', ' ', 'l', 'u', 'f', 'r', 'e', 'w',
1228     'o', 'p', ' ', 'a', ' ', 'f', 'o', ' ', 'e', 'r', 'o', 'c', ' ', 'a',
1229     ' ', 's', 'a', 'h', ' ', 'd', 'n', 'a', 'w', ' ', 'r', 'e', 'd', 'n',
1230     'a', 'v', 'i', 'l', 'l', 'o', ' ', 'y', 'r', 'e', 'v', 'E', ' ',
1231     ' ', 'd', 'i', 'a', 's', ' ', 'e', 'h', ' ', ' ', 'd', 'e', 'r', 'u',
1232     'a', 's', 'e', 'm', ' ', 'e', 'h', ' ', 's', 'A'
1233 But wait, let's do it step by step:
1234     .... (A lot of splitting to achieve the number of digits omitted.)
1235 Wait, I think I made a mistake.
1236 Let me write the entire string without spaces and then add the spaces and
1237     punctuation:
1238 Actually, it's easier to just reverse the entire string as a whole.
1239 We can write the string as: s = "As he measured, he said, Every
1240     Ollivander wand has a core of a powerful magical substance"
1241 Reversed string = s[::-1] in Python.
1242 But manually:
1243 Start from the end: 'e' (from substance) 'c' 'n' 'a' 't' 's' 'b' 'u' 's'
1244     ' ' (space before substance?
1245 but actually the last word is "substance", and before that is "magical",
1246     so there's a space between them)
1247     .... (A lot of repeated verification attempts omitted.)
```

```

1242
1243 Actually, the string is: ... a powerful magical substance So the order in
1244 the original is: ... 'a', space, 'p','o','w','e','r','f','u','l',
1245 space, 'm','a','g','i','c','a','l', space, 's','u','b','s','t','a','n
1246 ', 'c','e' Therefore, when reversed, we start from the last character
1247 of the last word and go backwards: Start: 'e' Then: 'c','n','a','t','
1248 's','b','u','s' -> then space -> then the word "magical" reversed: 'l
1249 ', 'a','c','i','g','a','m' -> then space -> then the word "powerful"
1250 reversed: 'l','u','f','r','e','w','o','p' -> then space -> then 'a'
1251 -> then space -> then the word "of" becomes 'f','o'?
1252 ..... (A lot of attempts at different reversal methods omitted.)
1253 Actually, the comma we already handled? Wait, let me reconstruct: The
1254 original string: "As he measured, he said, Every Ollivander wand has
1255 a core of a powerful magical substance" Breaking down: "As" -> ['A','
1256 s'] space -> [' '] "he" -> ['h','e'] space -> [' '] ...
1257 We can reverse the entire list. The last character is 'e' (from substance
1258 ), then the one before is 'c', then 'n', then 'a', then 't', then ...
1259
1260 Therefore, the flipped string is: "ecnatsbus lacigam lufrewop a fo eroc a
1261 sah dnaw rednavillo yrevE ,dias eh ,derusaem e h sA" But note: the
1262 original had a space at the end? No, the last word is "substance"
1263 without any trailing space. Similarly, the first word "As" has no
1264 leading space. So the reversed string should not have a leading space
1265 ? It ends with "sA", which is correct. Final answer: "ecnatsbus
1266 lacigam lufrewop a fo eroc a sah dnaw rednavillo yrevE ,dias eh ,
1267 derusaem e h sA"
1268
1269 The original string is:
1270 "As he measured, he said, Every Ollivander wand has a core of a powerful
1271 magical substance"
1272
1273 Reversing the entire string character by character (including spaces,
1274 punctuation, and maintaining case) results in:
1275 **"ecnatsbus lacigam lufrewop a fo eroc a sah dnaw rednavillo yrevE ,dias
1276 eh ,derusaem e h sA"**
1277
1278 #### Explanation:
1279 - The reversal is done on a per-character basis, so the last character of
1280 the original string ("e" from "substance") becomes the first
1281 character of the flipped string, and so on.
1282 - Spaces, commas, and capitalization are preserved as they appear in the
1283 original.
1284 - This is not a word reversal (where words are reversed but characters
1285 within words stay in order); it is a full character-level reversal.

```

1283
1284 The final output is "ecnatsbus lacigam lufrewop a fo eroc a sah dnaw rednavillo yrevE ,dias eh
1285 ,derusaem e h sA". The model tried many methods, but did not actually perform the flipping operation
1286 step by step, and directly output an incorrect result at the end of the inference.

1287 K.2 TAIL-COT-styled

```

1289 <think>
1290 Decompose the string bit by bit(starting from $1$):
1291 - Index $1$: 'A'
1292 - Index $2$: 's'
1293 - Index $3$: ' '
1294 - Index $4$: 'h'
1295 - Index $5$: 'e'
- Index $6$: ' '
- Index $7$: 'm'

```

```

1296 - Index $8$: 'e'
1297 - Index $9$: 'a'
1298 - Index $10$: 's'
1299
1300 .... (Omitted and will be expanded in actual reasoning.)
1301 - Index $80$: ' '
1302 - Index $81$: 's'
1303 - Index $82$: 'u'
1304 - Index $83$: 'b'
1305 - Index $84$: 's'
1306 - Index $85$: 't'
1307 - Index $86$: 'a'
1308 - Index $87$: 'n'
1309 - Index $88$: 'c'
1310 - Index $89$: 'e'
1311 We find that 'As he measured, he said, Every Ollivander wand has a core
1312 of a powerful magical substance' has $89$ words, indexed from $1$ to
1313 $89$.
1314 The original string is the concatenation of the letters with indices from
1315 $1$ to $89$. If you reverse it, the result is the reverse
1316 concatenation of the indices, that is, from $89$ to $1$.
1317 Let's perform the reverse stitching step by step:
1318 - Index $89$: 'e', intermediate result is 'e'
1319 - Index $88$: 'c', intermediate result is 'ec'
1320 - Index $87$: 'n', intermediate result is 'ecn'
1321 - Index $86$: 'a', intermediate result is 'ecna'
1322 - Index $85$: 't', intermediate result is 'ecnat'
1323 - Index $84$: 's', intermediate result is 'ecnats'
1324 - Index $83$: 'b', intermediate result is 'ecnatsb'
1325 - Index $82$: 'u', intermediate result is 'ecnatsbu'
1326 - Index $81$: 's', intermediate result is 'ecnatsbus'
1327 - Index $80$: ' ', intermediate result is 'ecnatsbus '
1328 .... (Omitted and will be expanded in actual reasoning.)
1329 - Index $10$: 's', intermediate result is 'ecnatsbus lacigam lufrewop a
1330 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derus'
1331 - Index $9$: 'a', intermediate result is 'ecnatsbus lacigam lufrewop a
1332 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusa'
1333 - Index $8$: 'e', intermediate result is 'ecnatsbus lacigam lufrewop a
1334 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusae'
1335 - Index $7$: 'm', intermediate result is 'ecnatsbus lacigam lufrewop a
1336 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem'
1337 - Index $6$: ' ', intermediate result is 'ecnatsbus lacigam lufrewop a
1338 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem '
1339 - Index $5$: 'e', intermediate result is 'ecnatsbus lacigam lufrewop a
1340 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem e'
1341 - Index $4$: 'h', intermediate result is 'ecnatsbus lacigam lufrewop a
1342 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem eh'
1343 - Index $3$: ' ', intermediate result is 'ecnatsbus lacigam lufrewop a
1344 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem eh '
1345 - Index $2$: 's', intermediate result is 'ecnatsbus lacigam lufrewop a
1346 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem eh s'
1347 - Index $1$: 'A', intermediate result is 'ecnatsbus lacigam lufrewop a
1348 fo eroc a sah dnaw rednavillo yrevE ,dias eh ,derusaem eh sA'
1349
</think>
1348 The final result is 'ecnatsbus lacigam lufrewop a fo eroc a sah dnaw
1349 rednavillo yrevE ,dias eh ,derusaem eh sA'.
```

1350 **L LIMITATION**
13511352 **Challenges in compositional generalization.** Although TAIL improves the length generalization
1353 performance on each single task, the training of one task does not significantly improve the perfor-
1354 mance of other tasks under the same algorithm (as shown in Appendix H). In future work, we will
1355 take individual tasks as the entry point, to explore more diverse data composition strategies, with the
1356 goal of achieving compositional generalization.1357 **Gap with close-source models.** In the experiment, we found that open-source models such as
1358 Qwen2.5 and DeepSeek-R1 series did not perform well on our tasks, but several closed-source
1359 models (*e.g.*, O4-mini) were able to solve these problems well. While we acknowledge the strong
1360 performance of closed-source models, our focus is on bridging this gap solely through supervised
1361 fine-tuning of open-source models with TAIL data.1362 **Challenges in modeling non-deterministic algorithmic tasks.** The scope of this work is limited to
1363 computable problems, and the core idea of simulating a Turing Machine is based on this assumption.
1364 However, for non-deterministic problems or open-ended reasoning, we cannot directly model an
1365 algorithm to solve it, which is a problem that TAIL cannot currently solve. We will actively explore
1366 ways to break through the boundaries of computable and fuzzy problems with structured CoT in
1367 future work.1368
1369 **M STATEMENT ABOUT LLMs USAGE**
13701371 In this paper, we used LLMs only to aid and polish writing. We did NEVER use LLMs for retrieval,
1372 discovery or research ideation.
13731374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403