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ABSTRACT

Length generalization, the ability to solve problems of longer sequences than those
observed during training, poses a core challenge of Transformer-based large lan-
guage models (LLMs). Although existing studies have predominantly focused on
data-driven approaches for particular arithmetic operations or symbolic manipu-
lation tasks, these approaches tend to be task-specific with limited performance
on individual tasks. To pursue a more general solution, this paper focuses on a
broader classes of reasoning problems that are computable, i.e., problems that al-
gorithms can solve, thus can be solved by the Turing machine, which operates over
inputs of unbounded length. From this perspective, this paper proposes Turing
mAchine Imitation Learning (TAIL) to improve the length generalization ability
of LLMs. TAIL uses computer programs to directly synthesize chain-of-thought
(CoT) data that imitate the execution process of a Turing machine, which linearly
expands the reasoning steps into atomic states to alleviate shortcut pattern learn-
ing and explicit memory fetch mechanism to reduce the difficulties of dynamic
and long-range data access. To validate the universality and reliability of TAIL,
we construct a challenging synthetic dataset covering 8 classes of algorithms and
18 tasks. With only synthetic data, TAIL significantly improves the length gen-
eralization ability as well as the performance of Qwen2.5-7B in individual tasks,
surpassing previous data-driven methods and DeepSeek-R1. The experimental
results reveal that the key concepts in the Turing machine, instead of the human-
like thinking styles, are indispensable for TAIL for length generalization, through
which the model exhibits read-and-write behaviors consistent with the properties
of the Turing machine in their attention layers. This work provides a promising
direction for future research in the learning of LLM reasoning from synthetic data.

1 INTRODUCTION

Length generalization (Press et al., 2021), i.e., the ability to handle a problem with input sequences
of various lengths in the open world, especially those longer than previously seen, is a fundamental
aspect of human intelligence and serves as a crucial evaluation criterion for AI systems (Anil et al.,
2022; Sinha et al., 2024; Ahuja & Mansouri, 2024; Shi et al., 2022). Although the ability and
generalizability of large language models (LLMs) to solve complex problems have been significantly
improved by chain-of-thought (CoT) (Wei et al., 2022), recent studies (Saparov & He, 2022; Anil
et al., 2022; Zhou et al., 2024) indicate that LLMs still struggle with length generalization, which
sometimes explores and falls into shortcuts that eventually cause errors (Saparov et al., 2024).

To address the challenge, existing works (Zhou et al., 2024; 2023; Lee et al., 2023; Shen et al., 2023;
McLeish et al., 2024) primarily focus on data-driven approaches, which refine the training data by
modifying the structure of CoT to be more effective and generalizable. However, these methods
remain inherently task-specific, e.g., Index Hint (Zhou et al., 2024; 2023) for symbolic reasoning
tasks and Reversed Format (Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; McLeish et al.,
2024) for arithmetic problems, and yield only moderate performance gains. Thus, a question arises:
Is there a universal and effective CoT structure for length generalization?

This paper aims to answer this question by first taking a deeper look at the commonalities among
the problems. Notably, we observe that many of these tasks admit well-defined stepwise procedures
that can be solved by program algorithms that generalize to inputs of arbitrary length. We refer to
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Figure 1: Turing machine and its imitation in LLMs. (a) Illustration of a Turing machine performing
algorithmic execution over a symbolic tape via sequential state transitions. (b) TAIL simulates
Turing machine execution by linearly structuring CoT into atomic read-write steps. Attention maps
reveal operand retrieval and memory update patterns analogous to symbolic computation.

such tasks as Computable Problems, which serve as the focus of investigation in this paper. Thus,
the core of achieving length generalization lies in letting LLMs faithfully simulate the execution
process of the corresponding programs within their CoT for each problem. In essence, the LLM acts
like a Turing machine (Figure 1a), performing a sequence of fundamental operations on a memory
tape, guided by finite states and logical transitions.

From this perspective, we propose Turing mAchine Imitation Learning (TAIL), which contains
the three key structures in the synthesized CoT data that emulate three core properties of Turing
machine execution: Linear Transition, Atomic State, and Memory Fetcher. First, similar to the
Turing machine execution process, Linear Transition enforces a complete and linear arrangement
of reasoning steps to eliminate potential shortcut learning. Second, TAIL decomposes the reasoning
content into minimal units, termed Atomic States to reduce difficulty and further reduce shortcut
learning, which essentially correspond to the states of a Turing Machine, including read, write, and
logical control operations. Third, because LLMs can only append instead of modify in-place the
tokens in their context due to their auto-regressive nature, the context of LLMs, which essentially
serves as a memory, will keep growing as the reasoning continues. This poses difficulties for LLMs
because of their attention mechanisms when they need to conduct elementary operations on operands
that have long and dynamic distances among them. Therefore, TAIL further adopts a mechanism,
termed Memory Fetcher, to read the necessary operand data and explicitly output them in the
current step before conducting elementary operations.

To assess the universality and effectiveness of TAIL, we construct a challenging dataset spanning
18 tasks across 8 algorithms, substantially harder than those in prior length generalization stud-
ies. Fine-tuning Qwen2.5-7B (Yang et al., 2024) on this dataset yields high label accuracy across
length ranges, with consistent gains on longer sequences, demonstrating strong length generaliza-
tion over difficult samples. The model outperforms prior methods (Zhou et al., 2024; Lee et al.,
2023; Shen et al., 2023; Zhou et al., 2023; Martı́nez et al., 2023; McLeish et al., 2024) and sur-
passes DeepSeek-R1 (Guo et al., 2025). Ablation studies show that removing any core module of
TAIL severely degrades long-sequence performance. Notably, even minimalist CoT data containing
only core modules without any thinking styles1 maintains full effectiveness, confirming TAIL as the
key data-driven enabler of length generalization. We also visualize the attention maps of the TAIL-
fine-tuned model and observe that the attention during write operations focuses on fetched operands
within the same state, resembling Turing machine behavior (Figure 1b).

1Thinking styles refers to the human-like linguistic expressions in CoT reasoning which are very common
in existing large reasoning models, i.e., the surface-level natural language narrative rather than the underlying
reasoning mechanism.
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2 PRELIMINARIES

2.1 LENGTH GENERALIZATION AND COMPUTABLE PROBLEMS

For large language models (LLMs), length generalization means that a model can process long input
sequences, although it is only trained on short sequences. For example, a model trained on 10-
30 digit addition can maintain strong performance on 30-50 digit addition tasks. Fundamentally,
successful length generalization implies that the model has extracted a structural pattern from the
training data. This pattern should be general and can scale adaptively with input length.

After a deeper look at the problem, incorporating insights from prior indirect conclusions (Delétang
et al., 2022), we observe that many tasks can essentially be solved through discrete symbolic trans-
formations governed by bounded algorithmic computational rules (Turing et al., 1936; Sipser, 1996;
Arora & Barak, 2009; Boolos et al., 2002). For example, Parity can be solved through a simple
enumeration procedure, while arithmetic addition can be handled by simulating the full digit-wise
addition process, including carry propagation. We refer to such tasks as Computable Problems,
whose commonality lies in being solvable by a well-defined, deterministic algorithmic procedure.
Such algorithms inherently handle inputs of arbitrary length, which aligns with the goal of length
generalization. Training LLMs to learn their step-by-step execution thus enables generalization
across input lengths when solving computable problems.

2.2 TURING MACHINE

While all computable problems are solvable by algorithms, their structural diversity makes chain-
of-thought (CoT) design impractical. Therefore, a more abstract and general framework is essential
to unify the CoT paradigm for computable problems. Based on the Church-Turing thesis (Copeland,
1997), a Turing machine can solve any algorithmically computable problem, thereby providing a
universal and higher-level framework for problem solving. In other words, the computational trace
data of any computable problem can be constructed by simulating the execution of a Turing machine.

The formal definition of the Turing machine (Turing et al., 1936; Hopcroft et al., 2001) consists of
an infinite-length tape, a read/write head, and a table containing a finite set of state transitions. It
can be represented as a 7-tuple:

M = (Q,Σ,Γ, δ, q0, B, F ), (1)

where Q is a finite set of states, δ is the transition function, q0 ∈ Q refers to the initial state (see
Appendix A for full definitions). In any non-accepting state qs ∈ Q, the head reads a symbol a
from the tape, overwrites it with a new symbol b, and moves the head to a new position, thereby
transitioning to the next state qs+1, which can be formally defined as:

δ(qs, a) = (qs+1, b,D), (2)

where the head moves one position in direction D. Thus, δ represents a complete state transition
conflating two logically independent states, and a linear unfolding of states q0 → q1 → · · · → qn
represents the complete process of Turing machine implementing the program. In order to align
the reasoning process of LLMs with Turing Machine, the reasoning procedure can be unfolded into
multi-step reasoning with the help of CoT. Each single reasoning step can be formalized as xi in CoT,
deriving the current reasoning result based on the preceding reasoning steps x<i. It is important to
note that the granularity of xi is determined by the size of the reasoning step in the specific task.
Typically, it corresponds to the prediction of multiple tokens, forming an intermediate reasoning
outcome at each stage. x0 represents the query and thus the complete reasoning path (CoT) can
be expressed as x0 → x1 → · · · → xn. In line with the Turing machine, each reasoning step x
corresponds to a Turing Machine state q in Eq.(2), which includes reading an input symbol a. The
entire CoT is formed by a linear composition of such steps, analogous to the full unrolling of the
Turing Machines state transitions δ from q1 to qn.

Previous work (Li et al., 2024) has theoretically shown that Transformers can achieve Turing Com-
pleteness given sufficiently long CoT, but has not provided concrete guidelines for constructing such
CoT sequences in a wide range of tasks. Based on our analysis, multi-step reasoning CoT can be
structurally aligned with the computation process of a Turing machine. This leads us to hypothe-
size that, by endowing the reasoning process of LLMs with key properties of a Turing machine, the
model can effectively simulate algorithmic execution and achieve length generalization.

3
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Figure 2: An overview of TAIL. (a) Core Modules of TAIL imitate a Turing Machine, containing a
Linear Transition of Atomic State with Memory Fetcher of previous reasoning results. (b) CoT gen-
erated by TAIL: the solution to a 0/1 knapsack problem using a dynamic programming algorithm.
(c) Traditional CoT consists of oversized subtasks, shortcut learning, and irregular expansion.

3 TURING MACHINE IMITATION LEARNING

Based on the preceding analysis, this paper proposes Turing mAchine Imitation Learning (TAIL)
to align the Chain-of-thought (CoT) of large language models (LLMs) to simulate the execution
of a Turing machine for achieving universal and effective length generalization. TAIL imitates
key properties of a Turing Machine (Figure 2), comprising three core modules spanning macro
to micro levels: Linear Transition (Section 3.1), Atomic State (Section 3.2) and Memory Fetcher
(Section 3.3).

3.1 LINEAR TRANSITION

According to the RASP-Generalization Conjecture (Zhou et al., 2023), Transformer-based LLMs
struggle with problems that involve intricate control structures, such as loops. This suggests the
need to transform these structures into simpler forms that align better with the capabilities of the
model. In particular, complex reasoning structures (like trees and graphs) can be linearly unrolled
and traversed to enable complete and non-redundant execution of all reasoning steps, thereby pre-
venting shortcuts in the reasoning process. Similarly, in a Turing machine, the execution of a com-
plete program corresponds to a linear unfolding of states q1 → q2 → · · · → qn as shown in Eq.(2),
where even control structures such as loops can be flattened into a sequential process. To align with
this characteristic, we introduce Linear Transition, which describes from a macro-level perspective
how individual reasoning steps are composed into a linear and orderly structure within the overall
reasoning process, and collectively form the CoT.

3.2 ATOMIC STATE

Although Linear Transition defines the overall structure of CoT reasoning as a linear sequence of
reasoning steps, it does not impose constraints on the size of each step. Overly large reasoning
steps not only increase the difficulty of learning for the model but also risk introducing shortcuts
within a single step. Therefore, we attempt to constrain the size of a reasoning step by enforcing a
standardized internal structure. Inspired by the Turing machine, each state encompasses a sequence
of simple operations: reading data from the tape, writing new data, and transitioning to the next
state. Following this principle, we define Atomic State consisting of operand retrieval (realized via
Memory Fetcher, detailed in Section 3.3), the elementary solution produced within the reasoning

4
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step, and a set of logical control statements, as shown in Figure 2(a). Meanwhile, following the
RASP-L hypothesis2, we argue that each Atomic State should adhere to the principles of realizability
and simplicity. Specifically, since we use Python programs to synthesize CoT, we define an Atomic
State as a single algorithmic step in the program without internal loops.

3.3 MEMORY FETCHER

In a Turing machine, every state reads data from the tape and replaces it with processed result. How-
ever, auto-regressive models (e.g., Transformer) can only extend the token sequence by appending
new tokens instead of in-place token modification. So the action of data reading is typically achieved
by constructing attention mechanisms over previous tokens. As reasoning progresses, the sequence
grows longer, requiring the model to retrieval over increasingly distant and dynamically shifting
tokens. Furthermore, simultaneously performing data retrieval and generating the elementary solu-
tion at the same time increases the learning difficulty for the model. To address this, we propose
Memory Fetcher to decouple these two operations by: (1) first explicitly outputting all relevant
operands at the beginning of every Atomic State, (2) then performing reasoning and outputting local
results. As shown in an example in Figure G1, Memory Fetcher changes the attention structure by
localizing operands and improves reasoning accuracy, which has been theoretically proved by recent
work (Wang et al., 2025). Figure G2 compares the attention structures with and without Memory
Fetcher. It is obvious that Memory Fetcher enables precise localization of relevant operands during
reasoning through prominent local attention. See more details in Appendix G.

4 EXPERIMENT

4.1 DATASET SYNTHESIS

Task Selection. This work focuses on length generalization in hard samples rather than unlimited
extension in simple tasks. So we synthesize a set of challenging tasks based on 8 classic algorithmic
paradigms in computable problems to verify the effectiveness of TAIL. As shown in Table B1,
the dataset comprises 18 tasks, including previously studied problems such as addition, but with
randomized digit lengths and decimal places to increase difficulty. Each task has a high degree
of diversity in query narratives, some of which incorporate real-world problems (e.g., Diophantine
Equation, 0-1 Knapsack, etc).

Synthesis Approach. We employed supervised fine-tuning (SFT) with synthetic data to internalize
the model’s ability to generate Chain-of-Thought (CoT) with TAIL’s core modules. Figure C1
illustrates the data synthesis process of TAIL. We claim that TAIL is task universal3 because for
each task belonging to a specific algorithm, it’s feasible to construct a Python program and add
string append statements to assemble CoT. When the program runs, the resulting CoT reflects the
complete program execution flow. We implement the injection of three core modules in CoT through
the following methods: (1) Treating each algorithmic step as an Atomic State, especially each time
entering a loop. (2) Unfolding the algorithmic process sequentially as Linear Transition, achieved
by using programs to synthesize CoT itself. (3) Explicitly outputting all relevant operands of current
algorithm step as Memory Fetcher in CoT. During the generation process, we performed strict de-
duplication and ensured that none of the data in the evaluation set was included in the training set.
For training data, we first validated the sufficiency of the TAIL architecture by synthesizing TAIL-
CoT that only includes three core modules in a format similar to that shown in Figure C3. Then we
enrich TAIL-CoT into TAIL-CoT-styled using natural language (see Figure C4) and verify length
generalization ability on all 18 tasks, as shown in Figure 3. See Appendix C for more details.

Dataset Size. To better facilitate training and evaluation of length generalization, we defined three
length ranges for each task: Short (S), Medium (M) and Long (L). For comprehensive training, we
synthesized 100,000 training samples and 500 evaluation samples for each length range, resulting in
1,500 evaluation samples per task. The validation of length generalization refers to whether a model

2We do not strictly follow RASP-L to constrain each reasoning step, but use it to indicate problems directly
solvable by Transformers. This relaxed view shows strong length generalization in our experiments.

3Previous methods like Index Hint or Reversed Format, due to their structural specificity, cannot be effec-
tively constructed for tasks beyond simple bit-matching operations.
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Figure 3: Length generalization performance of Qwen2.5-7B finetuned with TAIL-CoT-style across
all 18 tasks, in comparison with Qwen2.5-7B (base model), Qwen2.5-7B Instruct and DeepSeek-R1.

trained on the S-range training set can avoid sharp performance degradation on the M- and L-range
evaluation sets. The length ranges of each task are detailed in Table E1.

4.2 EXPERIMENTAL SETTINGS

Metrics. Previous work (Saparov & He, 2022) has demonstrated experimentally that label accuracy
is well suited to measure reasoning capability of LLMs. We use pass@1 label accuracy under the
zero-shot setting and use greedy decoding to evaluate.

Training. We fine-tuned Qwen2.5-7B with training 2 epochs for most tasks and more epochs for
a few more challenging ones with a global batch size of 1024. The initial learning rate was 1e-5,
decaying to 7e-7, with a weight decay of 0.1.

Evaluation. To facilitate a more efficient evaluation procedure, we follow a dual-model framework.
First, a small 1.5B specialized model extracts the answers. Then, Qwen2.5-72B-Instruct performs
evaluations, outputting \boxed{YES} or \boxed{NO} to represent the evaluation result.
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S M L

Index Hint 57.0 34.5 24.0
Reversed Format 39.5 35.5 35.0

TAIL (Ours) 97.0 92.5 86.5

Table 1: Pass@1 accuracy comparison of TAIL with previous works, i.e. index hint and reversed
format, in large number addition task (belonging to simulation algorithm).

4.3 PERFORMANCE

Overall Performance. Due to its greater readability, we synthesized TAIL-CoT-styled (as shown
in Figure C4) on all 18 tasks across 8 classes of algorithms, and fine-tuned Qwen2.5-7B. As shown
in Figure 3, We observe length generalization on most difficult tasks, where there was no sharp
performance degradation on out-of-domain length sequences. Several tasks like Compare Numbers,
Bubble Sort and Any Substring reach near saturation in out-of-domain sequences. Moreover, TAIL
also outperformed Qwen2.5-7B (representing the base model), Qwen2.5-7B Instruct (representing
fine-tuning on a large amount of traditional non-TAIL-CoT data), and DeepSeek-R1 671B (a rep-
resentative open-source reasoning model) in both label accuracy and length generalization abilities.
Compared with reasoning models (i.e., DeepSeek-R1), we conclude that the huge leap in perfor-
mance lies in their different underlying mechanisms. Reasoning models often try many approaches
but only scratch the surface and exploit shortcuts to bypass the structured reasoning process, instead
of delving into a step-by-step approach (see more details in section 4.5). However, we also find
some limitations of TAIL, details can be seen in Appendix L.

Comparison with Previous Works. Since previous methods (Index Hint (Zhou et al., 2024; Lee
et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martı́nez et al., 2023; McLeish et al., 2024) and
Reversed Format (Zhou et al., 2023; 2024)) have proven effective on limited problems such as large
number operations, we choose Large Number Addition of Simulation algorithm as a common task
for comparison. Unlike prior work using fixed-length integers, our setup samples two operands with
random lengths and optional decimal points, greatly expanding the state space. We followed the
method in previous works to construct the same amount of training data (see details in Appendix F),
and fine-tuned Qwen2.5-7B separately. As shown in Table 1, models trained with Index Hint and
Reversed Format under-perform TAIL by a large margin, highlighting the inadequacy of prior meth-
ods in addressing the challenges of length generalization in difficult tasks.

Length Generalization Activation. In previous experiments, we only trained on S-range data to
evaluate the generalization performance on longer sequences (M, L). For tasks that haven’t achieved
saturation, we gradually introduce longer examples into the training set and analyze the optimal
proportion for effective length generalization at minimal token cost. We explored five training con-
figurations of <S,M,L> data while keeping the total number of samples constant: <1:0:0> (the
previous method using only short sequences), <8:1:1>, <7:2:1>, <5:3:2>, and <4:3:3>.
As shown in Figure D1, for almost all tasks, even a small addition of longer sequence data (i.e., at
<8:1:1>) led to a rapid saturation in long-sequence reasoning, a phenomenon we refer to as length
generalization activation. This observation is quite different from the ”balanced length” conclusion
of training data in previous works (Lee et al., 2023), indicating that TAIL has the potential to expand
to much longer sequences at a lower cost in the future. See more details in Appendix D.

4.4 ABLATION STUDY

Key module ablation. To assess the necessity of each core module, we ablate them individually and
examine the performance drop. As shown in Table 2, removing any module leads to a notable de-
cline in length generalization. Importantly, the impact varies by task: for example, Memory Fetcher
is critical for Population Growth (iteration-based), but less so for Compare Numbers (simulation-
based). We attribute this variation to differences in task structure. Tasks like Compare Numbers
involve only local transitions and weak long-range dependencies, making Memory Fetcher less es-
sential. In contrast, recursion-heavy tasks benefit significantly from Linear Transition. Most tasks
are also sensitive to scale, highlighting the general need for Atomic State decomposition. Overall,
TAIL integrates all three modules synergistically to support diverse reasoning structures.

Thinking style ablation. To investigate the influence of different CoT styles on performance, we
conducted fine-tuning experiments using both standard TAIL-CoT and TAIL-CoT-styled data. As
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Figure 4: Comparison of fine-tuned Qwen2.5-7B with TAIL core module and the base model. For
each algorithm, we select a representative task. After fine-tuning, model demonstrates length gener-
alization on sequences that are 5 to 10 times longer than those in training.

Simulation Enumeration Iteration Divide & Conquer Recursion DP Greedy Backtracking
Model M L M L M L M L M L M L M L M L

Qwen2.5-7B Base 47.4 38.6 26.8 36.8 12.4 17.0 21.6 13.6 19.4 3.0 11.2 13.0 5.4 3.4 7.2 4.0

w/o Atomic State 82.6 73.6 68.2 69.0 77.2 61.2 86.2 71.0 52.2 32.0 77.4 61.0 39.0 16.0 75.8 61.4
w/o Linear Transition 80.0 75.4 63.6 58.8 76.2 54.0 85.0 75.6 43.0 30.8 77.4 74.2 20.6 11.2 79.0 62.8
w/o Memory Fetcher 90.2 88.0 64.2 63.6 73.8 67.6 92.4 88.2 87.2 84.8 80.8 74.8 45.6 30.8 80.0 69.2

TAIL 94.2 90.0 96.0 92.6 90.0 84.4 98.6 89.2 99.6 87.0 90.2 71.8 91.8 62 83.6 76

Table 2: Ablation study in core modules of TAIL. For each algorithm, we select a representative
task and evaluate pass@1 accuracy only on sequences that exceed the training length. Clearly, the
absence of any core module leads to a sharp degradation in length generalization performance.

illustrated in Figure 4, the results indicate that the choice of CoT style has minimal impact on the
final performance. This suggests that for the length generalization task, the specific style of CoT
is not a critical factor. Instead, key modules of TAIL appears to play a more significant role in
determining the overall performance.

Attention visualization of Memory Fetcher. As shown in Figure G2, when Memory Fetcher is
present, we observe strong and focused attention on the corresponding tokens (highlighted in se-
lected Transformer layers). In contrast, the attention patterns become sparse and disorganized with-
out Memory Fetcher, showing insufficient focus on the operands. See more details in Appendix G.

4.5 COMPARISON WITH REASONING MODELS

It seems that both TAIL-CoT(-styled) and reasoning models (i.e., DeepSeek-R1) can improve perfor-
mance by extending the CoT length, but underlying principles are quite different. Reasoning models
aim to expand the search space by prolonging the reasoning trajectory, encouraging broad method
exploration instead of delving into the problem step by step (as shown in Section K.1). In contrast,
TAIL focuses on controllable and structured reasoning chains that support stable generalization to
longer sequences (as shown in Section K.2). See Appendix K for more details.

Despite appearances suggesting that the linear expansion of small reasoning steps with explicit
operands output make TAIL-CoT(-styled) longer than traditional CoT, experimental results show
that TAIL-CoT can achieve significantly higher accuracy at comparable CoT length to DeepSeek-
R1 (as shown in Table I1). It demonstrates that TAIL’s core modules are essential for promoting
length generalization. See Appendix I for more details.

To rigorously evaluate the difference, we also fine-tuned Qwen2.5-7B using an equal amount of
correct data distilled by DeepSeek-R1. As shown in Table J1, R1-Distilled-Qwen2.5-7B exhibits
lower accuracy and generalization ability. See Appendix J for more details.
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5 RELATED WORK

Length Generalization. Large language models (LLMs) often struggle to process inputs longer
than those seen during training, a limitation referred to as length generalization (Dubois et al., 2019;
Newman et al., 2020; Saparov & He, 2022; Anil et al., 2022). Previous works primarily focus
on model architecture enhancements and data-driven approaches to improve length generalization.
However, architectural enhancements modify the components (e.g., forward mechanism (Fan et al.,
2024), attention mechanisms (Duan et al., 2023), position encodings (Ruoss et al., 2023; Li et al.,
2023; Kazemnejad et al., 2023) and external queries (Giannou et al., 2023)) of Transformers for
specific tasks and further adaptation to be applicable to prevailing LLMs. Data-driven approaches
construct specific chain-of-thought (CoT) structures for training, such as digit-order reversal (Zhou
et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martı́nez et al., 2023; McLeish
et al., 2024), sequence padding (Jelassi et al., 2023), and index hints (Zhou et al., 2023; 2024),
which are task-specific and lack universality. Our TAIL focuses on universal data-driven approaches,
exploring a more general and effective CoT structure, and directly adopting mainstream LLMs (Bai
et al., 2023; Yang et al., 2024; Touvron et al., 2023; Liu et al., 2024; Team, 2023; Cai et al., 2024;
Bai et al., 2025) for fine-tuning, without modifying any components of the pretrained model. Similar
to ours, recent work (Hou et al., 2024) adopts a Turing-like step-by-step tape update, but it is limited
to specific positional encodings and data settings, and lacks verification across diverse tasks.

Structured Chain-of-Thought Construction. Structured thinking demonstrably enhances the rea-
soning capabilities of LLMs (Wei et al., 2022). Prior research explored various recognition heuris-
tics within CoT paradigm, aiming to imbue LLMs with more human-like thoughts (Suzgun & Kalai,
2024; Zou et al., 2023; Zheng et al., 2023). Concurrently, investigations into diverse structured data
formats, including linear chains (Wei et al., 2022), hierarchical trees (Yao et al., 2023), intercon-
nected graphs (Besta et al., 2024), and dynamically adapting structures (Pandey et al., 2025), which
enable LLMs to search easily and improve the complex problem-solving performance. In this paper,
we introduce a novel approach to synthesizing structured CoT data by drawing inspiration from a
Turing machine, which can handle inputs of arbitrary length. This emulation offers a theoretically
powerful advantage: length-generalizability, enabling the model to tackle problems of varying com-
plexity, and broad applicability to the entire domain of computable problems. Notably, the search
capability and different graph structures (Besta et al., 2024; Pandey et al., 2025; Yao et al., 2023) and
their targeted tasks can all be taken as instances of a Turing machine solving computable problems.

6 LIMITATIONS

Despite the strong length generalization in individual tasks, our experiments indicate that compo-
sitional generalization still leaves room for improvement (Appendix H). This work further centers
on computable problems with deterministic algorithms, leaving nondeterministic cases as open di-
rections. Finally, while TAIL markedly improves open-source models on challenging samples, a
notable gap with closed-source models remains. These limitations (Appendix L) point to promising
avenues for future research.

7 CONCLUSION

We introduced Turing mAchine Imitation Learning (TAIL), a data-driven framework that instanti-
ates three core modules (i.e., Linear Transition, Atomic State, and Memory Fetcher) to align CoT
structure with program execution and thereby promote universal and effective length generaliza-
tion. Across 8 algorithm classes and 18 tasks, fine-tuning on TAIL-synthesized data yields strong
length generalization on out-of-distribution sequence lengths, with consistent gains on difficult cases
and performance that surpasses DeepSeek-R1. Unlike reasoning models that expand trajectories to
explore many heuristics, TAIL enforces a controllable and step-by-step execution, which supports
stable extrapolation to inputs of arbitrary length.
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A FORMAL DEFINITION OF TURING MACHINE

A Turing machine (Turing et al., 1936; Hopcroft et al., 2001) can be formally defined as a seven-
tuple:

M = (Q,Σ,Γ, δ, q0, B, F ), (A1)

where Q is a finite set of states, Σ is a non-empty finite input alphabet, Γ denotes the set of tape
symbols, δ is the transition function, q0 ∈ Q refers to the initial state, B ∈ Γ − Σ is the blank
symbol, and F denotes the set of final states.

B TASK INTRODUCTION

The dataset consists of purely synthetic data, covering 8 major algorithms and 18 tasks, as shown in
Table B1. Most tasks have approximately 100,000 training samples and 500 test samples (a small
subset of tasks, which are more difficult to construct, retain 20,000 training samples and 200 test
samples). All test queries have been verified and are not included in the training set.

Algorithm Task Name Task Content

Simulation

Large Number Addition x1 + x2
∗ (len(x1) = n, len(x2) = m)

Large Number Division x1 ÷ x2
∗ (len(x1) = n, len(x2) = m)

Bubble Sort Bubble sort list of n non-repeat numbers
Word Flip Flip a sentence containing n letters
Compare Numbers Compare x1 and x2

∗ (len(x1) = n, len(x2) = m)

Recursion
Any Substring Find all substrings of given string with length n

Derangement Derangement count for n elements

Iteration Population Growth
Calculate total pairs after n units, starting reproduction
at x-th unit (x < n) with initial y pairs, z pairs produced
per unit (y, z ∈ N+)

Greedy
Dijkstra Shortest path values in graph with n vertices
Multi-Machine Schedule Maximum benefit of n tasks on x queues (x < n)

Enumeration
Count Letters Count letters in sentence of length n

Diophantine Equation Find integer solutions to x1a+ x2b = n (a, b ≥ 0)
Prime Search All prime numbers in the interval [n,m] (n < m)

DP
0-1 Knapsack Maximum benefit of n-element 0-1 knapsack
LCS LCS of string X1 and X2 (len(X1) = n, len(X2) = m)
Levenshtein Distance Minimum operations converting string X1 to X2

Divide & Conquer Binary Search Binary search index in list of n increasing numbers

Backtracking Permutation Combination Number of combinations in n-element list (step by step)

Table B1: Dataset synthesised under instruction of TAIL, containing 8 algorithms and 18 tasks. n
and m represent length in a given range G ∈ {S,M,L}. ∗ indicates that a decimal point can be
inserted in any bit of the operand in specific task.
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C DATA SYNTHESIS AND COT EXAMPLES

Figure C1 illustrates our data synthesis process. Specifically, for each task, we manually write a
Python program that can accept any input under that task. Because each task is assigned to an algo-
rithm, writing this program is very convenient and well-reasoned. We then add string concatenation
statements to the program to link the reasoning process and form a complete Chain-of-Thought
(CoT). Since CoTs are generated as the program executes, they completely follow the program’s
execution process, which is the core idea behind TAIL. As the synthetic CoTs strictly follows the
running process of Python programs, they will exhaustively explore all possible solutions.

During this process, we can output two types of CoT: (1) TAIL-CoT contains only the TAIL core
module, without any other verbiage and is more symbolic. (2) TAIL-CoT-styled adds more style
statements and is more human-readable and interpretable, which adds more cohesive and planning
statements.

In experiments, we trained TAIL-CoT-styled on 18 tasks across all 8 algorithm classes and verified
its strong length generalization performance, as shown in Figure 3. We then verified that removing
all explicit style statements (TAIL-CoT) did not lead to a performance degradation, as shown in Fig-
ure 4, demonstrating that length generalization is the core module of TAIL, not the style statement.

Take Binary Search task in Divide & Conquer algorithm as an example. Figure C2 is the query as
direct input to LLMs. For each task, we constructed more than 20 query templates to simulate the
diversity. Figure C3 is an example of TAIL-CoT and Figure C4 is an example of TAIL-CoT-styled.

...

Algorithm A

Algorithm B

Algorithm C

Task a

Task b

Task c

...
TAIL_CoT_with_Style.py

TAIL_CoT.py

cot_final = ""
...
for i in range(x):
    # Atomic State
    cot_final += f"State {i}"
    # Memory Fetcher
    cot_final += f"{s[i-1]}"

    # Reasoning
    cot_final += f"...(Reasoning content)..."

    # Linear Expansion
    cot_final += f"State {i} → State {...}"
...

cot_final = ""
...
for i in range(x):
    # Atomic State
    cot_final += f"Now we get to ..."
    # Memory Fetcher
    cot_final += f"We have ..."

    # Reasoning
    cot_final += f"...(Reasoning content)..."

    # Linear Expansion
    cot_final += f"Since we ..., then we ..."
...

* Example code for illustration

Manual
Coding

Evaluation Set

S: 500 L: 500M: 500

Deduplication

Training Set

Training Set

TAIL CoT
S: 100,000

TAIL CoT with Style
S: 100,000

Figure C1: Overall pipeline of data synthesis. We manually code task-specific python programs
and use them to massively generate chain-of-thought (CoT) data, either in plain form (TAIL-CoT)
or with stylistic variations (TAIL-CoT-styled). After deduplication, we construct large-scale train-
ing sets and balanced evaluation sets for subsequent experiments. (S = Short sequence data, M =
Medium sequence data, L = Long sequence data)
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Query: (Example 1)

Determine the index of $-5259$ in the sorted list $[-5957, -5259, -4195, -2263,
1289, 3514, 3632, 4284, 5991, 6578, 7333]$ with binary search (start from $0$). Other
search methods are not allowed.

Query: (Example 2)

Find the index of $-5259$ in the sorted list $-5957, -5259, -4195, -2263, 1289,
3514, 3632, 4284, 5991, 6578, 7333$, starting from $0$. For teaching purposes, you must
use binary search and show the process step by step.

Query: (Example 3)

Provide the 0-based binary search index for $-5259$ in $[-5957, -5259, -4195, -
2263, 1289, 3514, 3632, 4284, 5991, 6578, 7333]$.

Figure C2: Example queries belonging to the Binary Search task (Divide & Conquer algorithm).

Minimalist reasoning chain of TAIL:

<Atomic State> {0,10}
<Memory Fetcher> [(s0 = −5957), (s1 = −5259), (s2 = −4195), (s3 = −2263),
(s4 = 1289), (s5 = 3514), (s6 = 3632), (s7 = 4284), (s8 = 5991), (s9 = 6578),
(s10 = 7333)]
<Memory Fetcher> Find = −5259
Mid = 5, s5 = 3514 > Find
<Linear Transition> {0,10} → {0,4}

<Atomic Subtask> {0,4}
<Memory Fetcher> [(s0 = −5957), (s1 = −5259), (s2 = −4195), (s3 = −2263),
(s4 = 1289)]
<Memory Fetcher> Find = −5259.
Mid = 2, s2 = −4195 > Find
<Linear Transition> {0,4} → {0,1}

<Atomic Subtask> {0,1}
<Memory Fetcher> [(s0 = −5957), (s1 = −5259)]
<Memory Fetcher> Find = −5259
Mid = 0, s0 = −5957 < Find
<Linear Transition> {1,1} → {1,1}.

<Atomic Subtask> {1,1}
<Memory Fetcher> [(s1 = −5259)]
<Memory Fetcher> Find = −5259
Mid = 1, s1 = −5259 = Find
<Linear Transition> {1,1} → F

Final Answer: Index 1 .

Figure C3: Example of TAIL-CoT, with only core modules aligned with Turing machines. <TAG>
is for demonstration purposes only and does not exist in the actual CoT content.
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User-friendly CoT of TAIL:

Let’s perform the binary search step by step.

1. The currently processed interval is [-5957, -5259, -4195, -2263, 1289, 3514, 3632,
4284, 5991, 6578, 7333].
First we map each number to its index:
- Original index 0: −5957
- Original index 1: −5259
- Original index 2: −4195
- Original index 3: −2263
- Original index 4: 1289
- Original index 5: 3514
- Original index 6: 3632
- Original index 7: 4284
- Original index 8: 5991
- Original index 9: 6578
- Original index 10: 7333
The left boundary index is 0 and the right boundary index is 10.
Median index ⌊(0 + 10)/2⌋ = 5, the median number is 3514.
The target number −5259 is less than the median number 3514, continue these operations
on the left subinterval [−5957,−5259,−4195,−2263, 1289].

2. The currently processed interval is [−5957,−5259,−4195,−2263, 1289].
First we map each number to its index:
- Original index 0: −5957
- Original index 1: −5259
- Original index 2: −4195
- Original index 3: −2263
- Original index 4: 1289
The left boundary index is 0 and the right boundary index is 4.
Median index ⌊0 + 4⌋ = 2, the median number is −4195.
The target number −5259 is less than the median number −4195, continue these opera-
tions on the left subinterval [−5957,−5259].

3. The currently processed interval is [−5957,−5259].
First we map each number to its index:
- Original index 0: −5957
- Original index 1: −5259
The left boundary index is 0 and the right boundary index is 1.
Median index ⌊0 + 1⌋ = 0, the median number is −5957.
The target number −5259 is greater than the median number −5957, continue these
operations on the right subinterval [−5259].

4. The currently processed interval is [−5259].
First we map each number to its index:
- Original index 1: −5259
The left boundary index is 1 and the right boundary index is 1.
Median index ⌊1 + 1⌋ = 1, the median number is −5259.
The target number −5259 is equal to the median number −5259, the search ends.
The target number −5259 is located at index 1 .

Figure C4: Example of TAIL-CoT-styled, improving human readability on top of core modules
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D DATA PROPORTION STUDY

For each task, we divided the data into three length ranges (S, M, and L), and synthesized 100,000
training samples for each range. In studying length generalization, we trained solely on the S-range
data without including any M- or L-range samples (i.e., the data proportion is <1:0:0>), and then
evaluated on all three ranges to assess the ability to generalize to longer sequences. In this section,
for tasks that haven’t reached saturation, we progressively incorporate longer sequences into the
S-range training data and investigate the data proportion that achieves saturation performance with
the minimal number of training tokens. Specifically, we keep the total number of training samples
fixed, while varying the proportions of the three length ranges as <1:0:0>, <8:1:1>, <7:2:1>,
<5:3:2>, and <4:3:3>.

As shown in Figure D1, we found that using TAIL-CoT, performance saturation can be quickly
achieved by simply adding a small amount of long data to a large amount of short data. Guided by
this observation, TAIL-CoT can leverage imbalanced sequence length proportions to reduce training
costs. We call this length generalization activation.
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Figure D1: Mixed scale experiments with data on 18 tasks. We find that adding a small amount of
long data to most unsaturated tasks achieves fast performance gains.
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E TASK LENGTH RANGE

Algorithm Task Name Small (S) Medium (M) Long (L)

Simulation

Large Number Addition [10, 30] [31, 40] [41, 50]

Large Number Division [2, 5] [6, 10] [11, 20]

Bubble Sort [2, 4] [5, 6] [7, 8]

Word Flip [10, 20] [21, 50] [51, 100]

Compare Numbers [5, 10] [11, 20] [21, 50]

Recursion
Any Substring [3, 5] [6, 9] [10, 14]

Derangement [3, 30] [31, 60] [61, 100]

Iteration Population Growth [1, 10] [11, 25] [26, 50]

Greedy
Dijkstra [3, 5] [6, 10] [11, 20]

Multi-Machine Schedule [5, 10] [11, 20] [21, 50]

Enumeration
Count Letters [2, 6] [7, 10] [11, 20]

Diophantine Equation [10, 50] [51, 100] [101, 200]

Prime Search [5, 100] [101, 200] [201, 300]

DP
0-1 Knapsack [2, 3] [4, 5] [6, 8]

LCS [2, 6] [7, 9] [10, 12]

Levenshtein Distance [2, 4] [5, 7] [8, 9]

Divide & Conquer Binary Search [5, 20] [21, 40] [41, 70]

Backtracking Palindrome Combination [2, 4] [5, 6] [7, 8]

Table E1: The setting of length ranges across all tasks. See Table B1 for the definitions of length.
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F BASELINE DATA CONSTRUCTION

This section describes the data construction methods for the baseline methods (i.e., Index Hint and
Reversed Format). The experimental task was Large Number Addition (Simulation algorithm), and
unlike the experiments in previous works, in this paper we contain a random number of decimals.
We followed data construction methods accordingly based on the principles of these baselines.

F.1 INDEX HINT

The Index Hint(Zhou et al., 2023; 2024) method refers to adding a hint of indexes to the correspond-
ing numeric or logical bits of two operands for positioning in arithmetic or parity operations. This
method has been extensively proven to be effective in both tasks. To compare the performance of
Index Hint and TAIL, we refer to the method (Zhou et al., 2024) that displays the indexes to locate
as follows:

3a6b1c+5a7b6c=9a3b7c

However, the above approach is for the case where two operands have the same number of digits
without decimals, so we make following improvements for non-fixed-length cases with decimals:

1(-c)2(-b)3(-a).4(a)5(b)+6(-b)7(-a).8(a)9 (b)
=1(-c)9(-b)1(-a).3(a)4(b)

F.2 REVERSED FORMAT

Reversed Format (Zhou et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023; Martı́nez
et al., 2023; McLeish et al., 2024) refers to reversing each of the two operands in arithmetic opera-
tions such as addition. The rationale for this method is that the addition is usually performed from
the first digit, i.e., from right to left. However, the order of next token prediction (NTP) in large
language models (LLMs) is from left to right, which leads to overly complex search paths during
model learning and affects the length generalization performance. This method is also a widely
proven effective length generalization facilitation method, constructed as follows:

(Origin) 123.45+67.89=191.34
(Reversed Format) 54.321+98.76=43.191
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G DETAILS ABOUT MEMORY FETCHER

This section presents the details of the Memory Fetcher in TAIL. As shown in Figure G1, the Mem-
ory Fetcher is designed to decouple long-range attention from the reasoning action. It first retrieves
all relevant operands from the long sequence to the end, and then performs more precise reasoning
through local attention.

Traditional CoT

TAIL-CoT-styled

we get The maximum
value of the backpack
is $dp[9][5] = 16

we get The maximum
value of the backpack
is $dp[9][11] =          15

Long distance attention + Reasoning

Long contentLong content Long content

Return back to $dp[10][11]$.
The maximum value of the backpack is
$dp[10][11] = 16

we get The maximum
value of the backpack
is $dp[9][5] = 16

we get The maximum
value of the backpack
is $dp[9][11] =          15

Long contentLong content Long content
Return back to $dp[10][11]$. 
dp[9][5]=
dp[9][11]=

16

15

① retrieval

We get The maximum value
of the backpack is 
$dp[10][11] = 16

② Reasoning

Decouple

Figure G1: Comparison of traditional CoT and TAIL’s Memory Fetcher, which can decouple the
long-range attention construction and the reasoning process.

We visualize this local attention and compare it with the traditional CoT. As shown in Figure G2, at-
tention across layers tends to focus on the end of the sequence. With the introduction of the Memory
Fetcher, operands are captured more accurately. In contrast, traditional CoT must simultaneously
attend to reasoning actions (via local attention) and the retrieval of distant operands (via long-range
attention), which results in a significant sparsification of long-range attention.
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Figure G2: Ablation study on attention visualization of Memory Fetcher.
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H COMBINATORIAL GENERALIZATION RESULTS

For tasks that belong to the same algorithmic idea, we test whether they have combinatorial general-
ization (i.e., generalization between tasks). As shown in Figure H1, the combinatorial generalization
property is not significant, which is the target of our future works.
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Figure H1: Generalization performance between tasks within a single algorithm (e.g., DP and
Greedy). Pretrain represents Qwen 2.5-7B as the basis for subsequent SFT. For each task,
SFT(Rest) indicates training using data from other tasks within the algorithm, SFT(Task) indi-
cates training using data from this task, and SFT(All) indicates training using data from all tasks
within this algorithm. ▼ indicates that this piece of data has a label accuracy of less than 5%.
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I COT LENGTH COMPARISON

Since TAIL simulates the implementation of a Turing machine, where all algorithm steps are ex-
panded and explicit recall of operands is added, it may lead to a significant increase in CoT. There-
fore, taking Compare Number task of Simulation algorithm as an example, we compared the average
lengths of TAIL-CoT and DeepSeek-R1 CoT.

As shown in Table I1, despite the increased length, the average number of tokens of TAIL remains
on par with that of DeepSeek-R1. With such acceptable length, it significantly outperforms the 671B
reasoning model with only 7B parameters, which demonstrates the efficiency of TAIL.

Metric TAIL-CoT (7B, Finetuned Qwen2.5 7B) DeepSeek-R1 (671B)
avg. Tokens 1455 1461
Label Accuracy 90.0 51.2

Table I1: Comparison between TAIL-CoT (7B, Finetuned Qwen2.5 7B) and DeepSeek-R1 (671B)
on average token usage and label accuracy. The average number of tokens retains the integer part.

J DEEPSEEK-R1-DISTILL TRAINING RESULTS

For a fairer comparison, we fine-tuned Qwen2.5-7B using the same amount of DeepSeek-R1-Distill
data and TAIL-CoT. As shown in Table J1, although DeepSeek-R1’s CoT can significantly improve
in-domain performance, the improvement is not as significant as TAIL-CoT, and the performance
shows a sharp decline in longer sequences. Since DeepSeek-R1 has a low accuracy rate on some
tasks, distilling the same amount of training data requires a large number of tokens, so this experi-
ment was not conducted on a large scale.

Setting TAIL (7B) R1-Distill-Qwen2.5-7B
S (In Domain) 98.0 72.2
M 94.2 67.2
L 90.0 61.8

Table J1: Performance comparison between TAIL (7B) and R1-Distill-Qwen2.5-7B across different
sequence lengths. (S = Short sequence data, M = Medium sequence data, L = Long sequence data)
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K COT STRUTURE COMPARISON OF DEEPSEEK-R1 AND TAIL

Take a Word Flip task of Simulation algorithm as an example.

Zero-shot Query: Provide the flipped string based on ”As he measured, he said, Every Ollivander
wand has a core of a powerful magical substance”. Reverse the entire string character by character
(including spaces).

K.1 RESPONSE OF DEEPSEEK-R1

<think>
We are to flip the string based on the given sentence: "As he measured,

he said, Every Ollivander wand has a core of a powerful magical
substance"

The instruction is to "flip" the string. Let me reverse the entire string
:

Original: "As he measured, he said, Every Ollivander wand has a core of a
powerful magical substance" We can reverse it character by character

.
Steps:
1. Take the string.
2. Reverse the order of the characters.
Example: "hello" becomes "olleh"
Let’s do it:
Original: ’A’,’s’,’ ’,’h’,’e’,’ ’,’m’,’e’,’a’,’s’,’u’,’r’,’e’,’d’,’,’,’

’,’h’,’e’,’ ’,’s’,’a’,’i’,’d’,’,’,’ ’,’E’,’v’,’e’,’r’,’y’,’ ’,’O’,’l
’,’l’,’i’,’v’,’a’,’n’,’d’,’e’,’r’,’ ’,’w’,’a’,’n’,’d’,’ ’,’h’,’a’,’s
’,’ ’,’a’,’ ’,’c’,’o’,’r’,’e’,’ ’,’o’,’f’,’ ’,’a’,’ ’,’p’,’o’,’w’,’e
’,’r’,’f’,’u’,’l’,’ ’,’m’,’a’,’g’,’i’,’c’,’a’,’l’,’ ’,’s’,’u’,’b’,’s
’,’t’,’a’,’n’,’c’,’e’

Reverse:
Start from the last character and go to the first.
But note: we can use a simple method in programming to reverse the string

.
However, since we are to do it manually, I’ll write the reversed string.
Let me break the original string into parts and then reverse the whole:
Original: "As he measured, he said, Every Ollivander wand has a core of a

powerful magical substance"
We can write the reversed string as:
Last character: ’e’ Then: ’c’, ’n’, ’a’, ’t’, ’s’, ’b’, ’u’, ’s’, ’ ’, ’l

’, ’a’, ’c’, ’i’, ’g’, ’a’, ’m’, ’ ’, ’l’, ’u’, ’f’, ’r’, ’e’, ’w’, ’
o’, ’p’, ’ ’, ’a’, ’ ’, ’f’, ’o’, ’ ’, ’e’, ’r’, ’o’, ’c’, ’ ’, ’a’,
’ ’, ’s’, ’a’, ’h’, ’ ’, ’d’, ’n’, ’a’, ’w’, ’ ’, ’r’, ’e’, ’d’, ’n’,
’a’, ’v’, ’i’, ’l’, ’l’, ’O’, ’ ’, ’y’, ’r’, ’e’, ’v’, ’E’, ’ ’,

’,’, ’d’, ’i’, ’a’, ’s’, ’ ’, ’e’, ’h’, ’ ’, ’,’, ’d’, ’e’, ’r’, ’u’,
’a’, ’s’, ’e’, ’m’, ’ ’, ’e’, ’h’, ’ ’, ’s’, ’A’

But wait, let’s do it step by step:

...... (A lot of splitting to achieve the number of digits omitted.)

Wait, I think I made a mistake.
Let me write the entire string without spaces and then add the spaces and

punctuation:
Actually, it’s easier to just reverse the entire string as a whole.
We can write the string as: s = "As he measured, he said, Every

Ollivander wand has a core of a powerful magical substance"
Reversed string = s[::-1] in Python.
But manually:
Start from the end: ’e’ (from substance) ’c’ ’n’ ’a’ ’t’ ’s’ ’b’ ’u’ ’s’

’ ’ (space before substance?
but actually the last word is "substance", and before that is "magical",

so there’s a space between them)

...... (A lot of repeated verification attempts omitted.)
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Actually, the string is: ... a powerful magical substance So the order in
the original is: ... ’a’, space, ’p’,’o’,’w’,’e’,’r’,’f’,’u’,’l’,

space, ’m’,’a’,’g’,’i’,’c’,’a’,’l’, space, ’s’,’u’,’b’,’s’,’t’,’a’,’n
’,’c’,’e’ Therefore, when reversed, we start from the last character
of the last word and go backwards: Start: ’e’ Then: ’c’,’n’,’a’,’t’,’
s’,’b’,’u’,’s’ -> then space -> then the word "magical" reversed: ’l
’,’a’,’c’,’i’,’g’,’a’,’m’ -> then space -> then the word "powerful"
reversed: ’l’,’u’,’f’,’r’,’e’,’w’,’o’,’p’ -> then space -> then ’a’
-> then space -> then the word "of" becomes ’f’,’o’?

...... (A lot of attempts at different reversal methods omitted.)

Actually, the comma we already handled? Wait, let me reconstruct: The
original string: "As he measured, he said, Every Ollivander wand has
a core of a powerful magical substance" Breaking down: "As" -> [’A’,’
s’] space -> [’ ’] "he" -> [’h’,’e’] space -> [’ ’] ...

We can reverse the entire list. The last character is ’e’ (from substance
), then the one before is ’c’, then ’n’, then ’a’, then ’t’, then ...

Therefore, the flipped string is: "ecnatsbus lacigam lufrewop a fo eroc a
sah dnaw rednavillO yrevE ,dias eh ,derusaem e h sA" But note: the

original had a space at the end? No, the last word is "substance"
without any trailing space. Similarly, the first word "As" has no
leading space. So the reversed string should not have a leading space
? It ends with "sA", which is correct. Final answer: "ecnatsbus
lacigam lufrewop a fo eroc a sah dnaw rednavillO yrevE ,dias eh ,
derusaem e h sA"

</think>

The original string is:
"As he measured, he said, Every Ollivander wand has a core of a powerful

magical substance"

Reversing the entire string character by character (including spaces,
punctuation, and maintaining case) results in:

**"ecnatsbus lacigam lufrewop a fo eroc a sah dnaw rednavillO yrevE ,dias
eh ,derusaem e h sA"**

### Explanation:
- The reversal is done on a per-character basis, so the last character of

the original string ("e" from "substance") becomes the first
character of the flipped string, and so on.

- Spaces, commas, and capitalization are preserved as they appear in the
original.

- This is not a word reversal (where words are reversed but characters
within words stay in order); it is a full character-level reversal.

The final output is ”ecnatsbus lacigam lufrewop a fo eroc a sah dnaw rednavillO yrevE ,dias eh
,derusaem e h sA”. The model tried many methods, but did not actually perform the flipping opera-
tion step by step, and directly output an incorrect result at the end of the inference.

K.2 TAIL-COT-styled

<think>
Decompose the string bit by bit(starting from $1$):
- Index $1$: ’A’
- Index $2$: ’s’
- Index $3$: ’ ’
- Index $4$: ’h’
- Index $5$: ’e’
- Index $6$: ’ ’
- Index $7$: ’m’
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- Index $8$: ’e’
- Index $9$: ’a’
- Index $10$: ’s’

.... (Omitted and will be expanded in actual reasoning.)

- Index $80$: ’ ’
- Index $81$: ’s’
- Index $82$: ’u’
- Index $83$: ’b’
- Index $84$: ’s’
- Index $85$: ’t’
- Index $86$: ’a’
- Index $87$: ’n’
- Index $88$: ’c’
- Index $89$: ’e’

We find that ’As he measured, he said, Every Ollivander wand has a core
of a powerful magical substance’ has $89$ words, indexed from $1$ to
$89$.

The original string is the concatenation of the letters with indices from
$1$ to $89$. If you reverse it, the result is the reverse

concatenation of the indices, that is, from $89$ to $1$.

Let’s perform the reverse stitching step by step:
- Index $89$: ’e’, intermediate result is ’e’
- Index $88$: ’c’, intermediate result is ’ec’
- Index $87$: ’n’, intermediate result is ’ecn’
- Index $86$: ’a’, intermediate result is ’ecna’
- Index $85$: ’t’, intermediate result is ’ecnat’
- Index $84$: ’s’, intermediate result is ’ecnats’
- Index $83$: ’b’, intermediate result is ’ecnatsb’
- Index $82$: ’u’, intermediate result is ’ecnatsbu’
- Index $81$: ’s’, intermediate result is ’ecnatsbus’
- Index $80$: ’ ’, intermediate result is ’ecnatsbus ’

.... (Omitted and will be expanded in actual reasoning.)

- Index $10$: ’s’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derus’

- Index $9$: ’a’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusa’

- Index $8$: ’e’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusae’

- Index $7$: ’m’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem’

- Index $6$: ’ ’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem ’

- Index $5$: ’e’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem e’

- Index $4$: ’h’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem eh’

- Index $3$: ’ ’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem eh ’

- Index $2$: ’s’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem eh s’

- Index $1$: ’A’, intermediate result is ’ecnatsbus lacigam lufrewop a
fo eroc a sah dnaw rednavillO yrevE ,dias eh ,derusaem eh sA’

</think>

The final result is ’ecnatsbus lacigam lufrewop a fo eroc a sah dnaw
rednavillO yrevE ,dias eh ,derusaem eh sA’.
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L LIMITATION

Challenges in compositional generalization. Although TAIL improves the length generalization
performance on each single task, the training of one task does not significantly improve the perfor-
mance of other tasks under the same algorithm (as shown in Appendix H). In future work, we will
take individual tasks as the entry point, to explore more diverse data composition strategies, with the
goal of achieving compositional generalization.

Gap with close-source models. In the experiment, we found that open-source models such as
Qwen2.5 and DeepSeek-R1 series did not perform well on our tasks, but several closed-source
models (e.g., O4-mini) were able to solve these problems well. While we acknowledge the strong
performance of closed-source models, our focus is on bridging this gap solely through supervised
fine-tuning of open-source models with TAIL data.

Challenges in modeling non-deterministic algorithmic tasks. The scope of this work is limited to
computable problems, and the core idea of simulating a Turing Machine is based on this assumption.
However, for non-deterministic problems or open-ended reasoning, we cannot directly model an
algorithm to solve it, which is a problem that TAIL cannot currently solve. We will actively explore
ways to break through the boundaries of computable and fuzzy problems with structured CoT in
future work.

M STATEMENT ABOUT LLMS USAGE

In this paper, we used LLMs only to aid and polish writing. We did NEVER use LLMs for retrieval,
discovery or research ideation.
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