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ABSTRACT

Visible-infrared object detection has attracted increasing attention for its ability to
fuse complementary information from visible and infrared sensors. While such fu-
sion improves detection accuracy and robustness, it remains vulnerable to seman-
tic conflicts due to inconsistent object representations across modalities. Existing
works typically address these conflicts by aligning cross-modal features or adjust-
ing modality weights using heuristic cues. However, they often overlook modality
reliability, which reflects how well each modality captures object-relevant infor-
mation, resulting in performance drops when unreliable features are used. To ad-
dress this, we introduce RaGrad, a model-agnostic method for reliability-guided
gradient correction to mitigate cross-modal semantic conflicts. Specifically, we
first propose the reliability estimation via parameter attribution (REPA) module,
which estimates the reliability of modality-specific parameters by evaluating their
effectiveness via counterfactual reasoning and sensitivity via gradient variation.
Second, we propose the reliability-guided conflict resolution (RGCR) module,
which resolves cross-modal conflicts by correcting the gradients of less reliable
modalities under the guidance of more reliable ones, thereby promoting the learn-
ing of more reliable features and enhancing cross-modal consistency. Extensive
experiments on three challenging datasets demonstrate the efficacy and generaliz-
ability of RaGrad, consistently improving performance across various baselines.

1 INTRODUCTION

Visible-infrared object detection improves both accuracy and robustness by leveraging the comple-
mentary information between modalities (Zhang et al., 2023d; Zeng et al., 2024). For example,
visible (RGB) images provide rich semantic details under favorable lighting conditions but struggle
in low-light or complex environments (Rothmeier et al., 2023). In contrast, infrared (IR) sensors
capture stable thermal signals that remain consistent regardless of lighting conditions, thereby en-
hancing detection performance across a wide range of challenging scenarios (Sun et al., 2024).

Despite the benefits of RGB-IR fusion, intrinsic modality differences often result in inconsistent
representations of the same object in RGB and IR images, thereby causing semantic conflicts (He
et al., 2023). These conflicts degrade both localization and classification accuracy, ultimately lim-
iting the performance and robustness of multimodal detection systems (Fu et al., 2024; Bao et al.,
2025). To address this, recent studies have explored two main strategies. One approach focuses
on aligning modality-specific representations before fusion by leveraging relevant features from the
other modality to promote semantic consistency (Zhu et al., 2023; Tian et al., 2024; Yuan & Wei,
2024). Another approach dynamically adjusts modality importance based on heuristic cues such
as illumination intensity, emphasizing the more informative modality under specific conditions to
mitigate inconsistencies (Zhang et al., 2023c; Hu et al., 2025; Shang et al., 2025).

However, most existing methods overlook a critical issue: the features selected by the model may
not always be reliable (Zhang et al., 2025), often manifesting as insufficient attention to object-
relevant regions or emphasis on irrelevant areas. Such unreliable features may mislead the fusion
process, impairing fusion quality and ultimately degrading overall detection accuracy and robust-
ness. Fig. 1 shows how unreliable modality features compromise detection. In CALNet, the RGB
features fail to attend to the “other” target (red dashed circle), whereas the IR features exhibit mod-
est attention. However, the unreliable RGB features interfere with the fusion process and in turn
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Figure 1: Comparison of modality-specific saliency maps and predictions across CALNet He et al.
(2023), CDC-YOLOFusion Wang et al. (2024c), and our method. IR and RGB saliency maps are
generated via gradient saliency Simonyan et al. (2014), where brighter regions indicate stronger
focus on modality-specific features.

lead to the missed detection of the “other” target. In CDC-YOLOFusion, the RGB features reliably
capture both the “camping car” and “other” targets. In contrast, the IR features are unreliable, as
they poorly represent the “camping car” and fail to capture the “other” target, which compromises
the fused representation, resulting in misclassifying the “camping car” as “truck” and missing the
“other” target entirely. In comparison, our method maintains reliable and consistent features across
both modalities, ensuring accurate classification and localization. These cases demonstrate that the
unreliable features critically undermine detection performance.

Therefore, learning reliable modality features is essential for robust and accurate detections. Since
these features are learned through their corresponding parameters, we assess modality reliability,
which reflects how well each modality captures object-relevant information, by evaluating param-
eter behavior during training. This reliability information is then used to guide parameter updates,
promoting the learning of more reliable modality-specific features. promoting the learning of more
reliable modality-specific features.

Based on the above insight, we propose RaGrad, a model-agnostic method that performs reliability-
guided gradient correction to enhance feature reliability across modalities, thereby alleviating cross-
modal semantic conflicts in visible-infrared object detection. RaGrad consists of two key compo-
nents. First, we propose the reliability estimation via parameter attribution (REPA) module, which
quantifies the reliability of modality-specific parameters by jointly evaluating their effectiveness
via counterfactual reasoning and sensitivity via gradient variation, yielding a comprehensive reli-
ability estimate. Second, we introduce the reliability-guided conflict resolution (RGCR) module,
which resolves cross-modal conflicts by performing reliability-guided gradient correction. RGCR
refines the parameter updates of less reliable modalities using the gradients of more reliable ones
as guidance, thereby improving the consistency between modalities and enhancing overall detection
performance. We validate RaGrad by integrating it into multiple detection frameworks on three
challenging benchmark datasets, including VEDAI (Razakarivony & Jurie, 2016), LLVIP (Jia et al.,
2021), and DroneVehicle (Sun et al., 2022). The results consistently show improved performance
across all baseline methods. Our main contributions are summarized as follows:

• We propose RaGrad, a model-agnostic method for reliability-guided gradient correction
to alleviate cross-modal semantic conflicts, which can be applied to most existing visible-
infrared object detection frameworks.
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• We propose the reliability estimation via parameter attribution module, which evaluates
modality reliability by assessing the effectiveness and sensitivity of model parameters, pro-
viding a more accurate basis for cross-modal optimization.

• We propose the reliability-guided conflict resolution module, which resolves cross-modal
conflicts by leveraging the gradients of reliable modalities to guide parameter updates,
improving consistency and detection performance.

• We conduct comprehensive experiments across multiple detection frameworks on three
challenging datasets, validating the efficacy and generalizability of our method.

2 RELATED WORK

Visible-Infrared Object Detection. Visible-infrared object detection benefits from the complemen-
tary information of RGB and IR modalities, but suffers from semantic conflicts due to inconsistent
object representations across modalities. To address this, prior works have mainly explored two
strategies. The first focuses on refining modality-specific features before fusion by leveraging cross-
modal contextual similarities to enhance semantic consistency (He et al., 2023; Yuan & Wei, 2024;
Chen et al., 2024). The second dynamically weights modalities based on heuristic cues like illu-
mination to guide feature fusion (Zhang et al., 2019; Lai et al., 2023; Hu et al., 2025; Shang et al.,
2025). However, they overlook that the selected modality features may be unreliable, which can
degrade performance. In contrast, we estimate the modality reliability and utilize this information
to refine parameter optimization, facilitating the learning of more reliable features.

Gradient Correction. During training, gradients from different modalities may conflict, hindering
optimization and degrading performance. This issue has been well studied in multi-task learning (Yu
et al., 2020; Liu et al., 2023; Chen & Er, 2025) and has also emerged in multimodal learning (Wu
et al., 2022; Hua et al., 2024). Existing methods address this by removing conflicting components or
adjusting gradients based on modality reliability or convergence speed (Wang et al., 2024a; Lin et al.,
2024). However, these methods generally rely on coarse conflict detection criteria, which may lead
to unnecessary adjustments, potentially resulting in suboptimal corrections (Liu et al., 2021a). In
contrast, we jointly consider gradient direction and modality reliability to better identify significant
conflicts and perform reliability-guided correction for more efficient and robust optimization.

3 METHOD

Overview. To alleviate semantic conflicts in visible-infrared object detection, we propose RaGrad, a
model-agnostic method that estimates modality reliability and leverages it to guide gradient correc-
tion for more coherent backbone optimization, as shown in Fig. 2. Specifically, paired RGB and IR
images are fed into separate backbones to extract modality-specific features, which are subsequently
fused and passed through a shared detection head to generate the final predictions. During backprop-
agation, the reliability estimation via parameter attribution (REPA) module evaluates the reliability
of each modality by analyzing the effectiveness and sensitivity of parameters. These reliability
scores are then leveraged by the reliability-guided conflict resolution (RGCR) module to guide gra-
dient correction and optimize parameter updates, thereby promoting consistent cross-modal learning
and mitigating semantic conflicts.

3.1 RELIABILITY ESTIMATION VIA PARAMETER ATTRIBUTION

Motivation. Existing work has shown that the features extracted by the model may be unreliable
(Laakom et al., 2021; Chen et al., 2023), potentially degrading performance when such features
are utilized. Since features are acquired through their corresponding parameters, we propose the
reliability estimation via parameter attribution (REPA) module to assess modality reliability, thereby
guiding subsequent gradient correction to learn more reliable features. As shown in the upper-right
part of Fig. 2, the REPA module estimates parameter reliability from two complementary aspects:
effectiveness and sensitivity (Zhu et al., 2024). Effectiveness quantifies the effect of parameters on
prediction performance using counterfactual reasoning, while sensitivity gauges the extent to which
the parameter is optimized based on gradient variation. Combining these two measures, we derive a
comprehensive reliability score to guide parameter updates.
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Figure 2: Overview of the proposed RaGrad method. RaGrad consists of two key modules: the
reliability estimation via parameter attribution (REPA) module and the reliability-guided conflict
resolution (RGCR) module, which are integrated into existing detection frameworks comprising
modality-specific backbones and a fusion module followed by a detection head.

3.1.1 EFFECTIVENESS EVALUATION VIA COUNTERFACTUAL REASONING

Given an input x from modality m ∈ {RGB, IR} and the complete model parameters Θ, the
modality-specific parameter Θm

l,i denotes the weights corresponding to the i-th output channel of
the l-th layer in the backbone for modality m. We use counterfactual reasoning (Schwab & Karlen,
2019; Li et al., 2025) to evaluate the effectiveness of Θm

l,i. An intuitive way is first to generate coun-
terfactual parameters Θ\Θm

l,i by intervention that sets Θm
l,i to zero (Elsayed & Mahmood, 2024).

The effectiveness of Θm
l,i is then quantified as the change in loss when the parameter is removed:

Em
l,i(x) = L(Θ\Θm

l,i;x)− L(Θ;x), (1)

where L is the loss function. When Em
l,i(x) > 0, it represents that removing Θm

l,i would incur
greater loss, suggesting that Θm

l,i has a positive effect on model prediction. Conversely, a negative
value implies a negative effect.

However, directly estimating the effect by intervening on each parameter is computationally ex-
pensive. To address this, we approximate the counterfactual loss L(Θ\Θm

l,i;x) by performing a
second-order Taylor expansion around the current parameter Θm

l,i Elsayed & Mahmood (2024), and
derive the following quadratic approximation for the effectiveness:

Em
l,i(x) = L(Θ\Θm

l,i,x)− L(Θ,x)

≈ L(Θ,x) +
∂L(Θ,x)

∂Θm
l,i

(0−Θm
l,i) +

1

2

∂2L(Θ,x)

∂(Θm
l,i)

2
(0−Θm

l,i)
2 − L(Θ,x)

= −∂L(Θ,x)

∂Θm
l,i

Θm
l,i +

1

2

∂2L(Θ,x)

∂(Θm
l,i)

2
(Θm

l,i)
2.

(2)

In practice, we employ the AdaHessian method (Yao et al., 2021), which uses the Hutchinson esti-
mator to approximate the Hessian diagonal, reducing the computational complexity from quadratic
to linear. This approximation method maintains computational efficiency while preserving the accu-
racy of the estimation, thus enabling scalable and accurate effectiveness assessment during training.

Since raw effectiveness scores may vary significantly across parameters and modalities, we apply
z-score normalization followed by a sigmoid function to stabilize the values and enable consistent
comparison. The normalized effectiveness score Êm

l,i is defined as:

Êm
l,i = σ

(
Em

l,i − µe

se + ϵ

)
, (3)
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where µe and se denote the mean and standard deviation of effectiveness scores computed across
both modalities, ϵ is a small constant for numerical stability, and σ(·) is the sigmoid function. The
normalized score Êm

l,i ∈ (0, 1) is a scalar, with higher values indicating a greater contribution of the
corresponding parameter to the model’s prediction.

3.1.2 SENSITIVITY EVALUATION VIA GRADIENT VARIATION

During training, different parameters may receive varying levels of optimization attention (Frankle
& Carbin, 2019). To identify actively optimized parameters, we define a sensitivity score that re-
flects optimization intensity based on temporal gradient variation. A higher score indicates greater
variation, suggesting that the model more actively optimizes the corresponding parameter (Wang
et al., 2024b). Specifically, we compute this score as the exponential moving average of squared de-
viations between the current gradient and its historical mean, effectively combining past and current
gradient information to yield a more robust estimate against noise (Tarvainen & Valpola, 2017). At
training step t, the gradient of the parameter subset Θm

l,i is denoted as ∇Θm,t
l,i , with µm,t

l,i representing
its historical mean. The sensitivity Sm,t

l,i is defined as:

Sm,t
l,i = αSm,t−1

l,i + (1− α)(∇Θm,t
l,i − µm,t

l,i )2, (4)

where the decay factor α balances the influence of current and historical gradient information. The
sensitivity score Sm,t

l,i is normalized following the same procedure as in Eq. 3, yielding the final
scalar score Ŝm

l,i ∈ (0, 1). Higher values suggest that the model places greater optimization focus on
the corresponding parameter during training.

After normalizing the effectiveness and sensitivity scores, we compute the final reliability score as:

Rm
l,i = Êm

l,i · Ŝm
l,i. (5)

The score Rm
l,i ∈ (0, 1) reflects the reliability of the corresponding modality-specific parameter,

where higher values indicate more reliable feature extraction. This score subsequently serves as a
guiding signal for gradient correction.

3.2 RELIABILITY-GUIDED CONFLICT RESOLUTION

Motivation. Semantic conflicts occur when the same object is represented inconsistently across
modalities, often leading to gradient conflicts (Wu et al., 2022). These conflicts can disrupt coherent
parameter updates and hinder the learning of reliable features (Zhang et al., 2023a). To address this,
we propose the reliability-guided conflict resolution (RGCR) module, which leverages modality
reliability to guide gradient correction. As shown in the lower-right part of Fig. 2, RGCR first
identifies conflicts using a dual-criteria strategy that jointly considers gradient direction and modality
reliability. It then resolves these conflicts via reliability-guided gradient correction, refining the
gradients of less reliable modalities using signals from more reliable ones. This promotes more
consistent feature learning and mitigates cross-modal semantic conflicts.

3.2.1 DUAL-CRITERIA CONFLICT IDENTIFICATION

Effective gradient correction relies on accurately detecting conflicts during training. Conventional
methods (Wang et al., 2024a) typically define conflicts as any pair of gradients with negative co-
sine similarity and adjust them accordingly. However, such a criterion may lead to unnecessary
adjustments when gradient directions deviate only slightly from the threshold (Liu et al., 2021a).

To overcome the above limitations, we introduce a dual-criteria conflict identification strategy that
jointly considers gradient direction inconsistency and reliability gap across modalities. Specifically,
a directional inconsistency is detected when the cosine similarity between gradients of correspond-
ing RGB and IR backbone parameters falls below the mean of negative similarities in the layer.
The reliability gap is considered significant if it exceeds the layer-wise average, indicating that one
modality is more reliable than the other. A conflict is identified only when both conditions are simul-
taneously satisfied. Formally, the conflict set C is defined as the index pairs (l, i) over all backbone
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parameter positions that meet both criteria:

C =
{
(l, i)

∣∣ (cosl,i < µcos
l ) ∧ (

∣∣RRGB
l,i −RIR

l,i

∣∣ > µR
l )

}
, (6)

where cosl,i is the cosine similarity between the gradients of ΘRGB
l,i and ΘIR

l,i. µcos
l and µR

l denote
the average negative cosine similarity and reliability gap across all output channels in the l-th layer,
respectively. By jointly considering directional inconsistency and reliability disparity, it establishes
a robust and discerning criterion for conflict identification.

3.2.2 RELIABILITY-GUIDED GRADIENT CORRECTION

After identifying the conflicting set C, we determine the more reliable modality R for each (l, i) ∈ C
based on its reliability score:

R = arg max
m∈{RGB,IR}

Rm
l,i. (7)

Accordingly, the less reliable modality is denoted as m̄. To mitigate the adverse impact of less reli-
able gradients, we perform orthogonal decomposition on the gradient from m̄, removing its projec-
tion onto the more reliable gradient and retaining only the informative components in the orthogonal
direction. Formally, given the gradients of the unreliable and reliable modalities, denoted as gm̄l,i and
gRl,i respectively. The orthogonal component of gm̄l,i relative to gRl,i is computed as:

ĝm̄l,i = gm̄l,i −
gm̄l,i · gRl,i

∥gRl,i∥22 + ϵ
· gRl,i, (8)

where ϵ is the same stability constant as in Eq. 3. We then refine the gradient from the less reliable
modality through reliability-guided blending, which combines it with the gradient from the more re-
liable one, weighted by their respective reliability, thereby promoting more consistent optimization.
The final corrected gradient g̃m̄l,i is obtained as:

g̃m̄l,i = (1− λl,i)ĝ
m̄
l,i + λl,ig

R
l,i, (9)

where the weighting factor λl,i ∈ [0, 1] controls the contribution of the more reliable modality in
blending, with larger values indicating stronger guidance, and is given by:

λl,i = σ


∣∣∣RRGB

l,i −RIR
l,i

∣∣∣
RRGB

l,i +RIR
l,i + ϵ

 , (10)

where σ(·) denotes the sigmoid function. Finally, the corrected gradients g̃m̄l,i and the reliable modal-
ity gradients gRl,i are used to update the model parameters, promoting the learning of more reliable
feature and alleviating cross-modal semantic conflicts.

Figure 3: Illustration of the reliability-guided gradient cor-
rection after conflict identification. It involves two steps:
orthogonal decomposition to remove the conflicting compo-
nent from the unreliable modality gradient, and reliability-
guided blending to combine the orthogonal component with
the reliable modality gradient, weighted by their reliability.

To better illustrate the above proce-
dure, Fig. 3 illustrates the reliability-
guided gradient correction after con-
flict identification. First, we per-
form orthogonal decomposition on
the unreliable modality gradient gm̄l,i,
removing its conflicting component
and obtaining the orthogonal com-
ponent ĝm̄l,i (Eq. 8). Then, we ap-
ply reliability-guided blending, com-
bining ĝm̄l,i and the reliable modal-
ity gradient gRl,i based on their re-
liability, producing gurl,i and grl,i as
their respective weighted compo-
nents, which correspond to the two
terms in Eq. 9 and jointly form the
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Table 1: Performance comparison on VEDAI.

Detector Method mAP50 mAP75 mAP

S2A-Net

S2A-Net 73.0 29.5 35.4
S2A-Net + Ours 73.6 29.9 37.3
CSSA 74.0 31.7 38.1
CSSA + Ours 74.5 32.8 38.7
C2Former 78.1 32.3 39.1
C2Former + Ours 79.7 33.4 40.3

YOLOv5
(OBB)

CALNet 84.3 56.8 52.1
CALNet + Ours 86.5 57.3 53.8
CDC-YF 82.2 54.4 48.3
CDC-YF + Ours 84.3 56.7 50.7
EI2Det 86.5 62.8 54.0
EI2Det + Ours 87.8 64.6 55.3

Table 2: Performance comparison on LLVIP.

Detector Method AP50 AP75 mAP

Faster
R-CNN

Faster R-CNN 93.1 63.5 56.8
Faster R-CNN + Ours 93.5 64.3 57.8
CSSA 94.4 66.3 59.0
CSSA + Ours 95.1 66.9 59.9
C2Former 95.7 71.2 61.3
C2Former + Ours 95.9 72.4 62.1

YOLOv5

CALNet 97.1 76.2 66.1
CALNet + Ours 97.3 76.9 67.2
CDC-YF 96.4 75.0 64.1
CDC-YF + Ours 96.5 75.3 64.8
EI2Det 97.0 77.1 66.7
EI2Det + Ours 97.3 78.9 67.5

corrected gradient g̃m̄l,i. Reliability-guided gradient correction ensures consistent parameter updates
across modalities, promotes the learning of more reliable features, and mitigates semantic conflicts.
The detailed algorithm and analysis of the time and space complexity for our proposed RaGrad are
provided in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Following existing works (Wang et al., 2024c; Shang et al., 2025), we conduct exper-
iments on three widely used visible-infrared object detection datasets. VEDAI (Razakarivony &
Jurie, 2016) is an aerial-view vehicle dataset consisting of 1,210 visible-infrared image pairs at two
resolutions. Following prior works (Zhang et al., 2023b; 2024), we adopt the higher-resolution ver-
sion and the eight-category setting, with 1,089 pairs for training and 121 for testing. LLVIP (Jia
et al., 2021) comprises 15,488 well-aligned pedestrian image pairs, tailored for low-light scenarios
and split into 12,025 for training and 3,463 for testing. DroneVehicle (Sun et al., 2022) is a drone-
captured dataset containing 28,439 visible-infrared image pairs across five vehicle categories, split
into 17,990 for training, 1,469 for validation, and 8,980 for testing.

Evaluation Metrics. Following prior works (Hu et al., 2025), we adopt Average Precision (AP)
as the evaluation metric, which considers a prediction correct if its Intersection over Union (IoU)
with the ground-truth box exceeds a specified threshold. We report AP at IoU thresholds of 0.50
and 0.75 (denoted as AP50 and AP75), and compute mAP50 and mAP75 as the mean AP across all
categories. In addition, we report mAP averaged over IoU thresholds from 0.50 to 0.95 with a step
size of 0.05, providing a more comprehensive evaluation. Higher mAP indicates better performance.
All reported results are averaged over five runs with different random seeds.

Implementation Details. We compare our method with 7 baselines, including the extended dual-
modality S2ANet (Han et al., 2022) and Faster R-CNN (Ren et al., 2015), as well as 5 visible-
infrared object detection methods: CSSA (Cao et al., 2023), CALNet (He et al., 2023), CDC-
YOLOFusion (abbreviated as CDC-YF) (Wang et al., 2024c), C2Former (Yuan & Wei, 2024), and
EI2Det (Hu et al., 2025). These methods are built upon 4 detectors: S2ANet and YOLOv5(OBB)
(Yang & Yan, 2022) for oriented detection; Faster R-CNN and YOLOv5 (Jocher, 2020) for horizon-
tal detection. For fair comparison, we use the official implementations of all baselines and integrate
our method as a plug-in module with their default hyperparameter settings. The sensitivity decay
factor α in REPA is set to 0.95. All experiments use a single NVIDIA Tesla V100 GPU. More
details are provided in Appendix C.

4.2 MAIN RESULTS

Results on VEDAI Dataset. As shown in Table 1, our method consistently improves detection
performance across all six baselines on the VEDAI dataset. The most significant gains appear on
CALNet and CDC-YF. Specifically, integrating our approach into CALNet boosts mAP50 from
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Figure 4: Visual comparison of detection results on the VEDAI dataset. Red dashed boxes highlight
zoomed-in regions for clarity. Triangles denote typical errors: red for misclassifications, yellow for
missed detection, and green for false positives.

84.3% to 86.5%, mAP75 from 56.8% to 57.3%, and overall mAP from 52.1% to 53.8%. For CDC-
YF, our method raises the scores from 82.2%, 54.4%, and 48.3% to 84.3%, 56.7%, and 50.7%,
respectively. Notably, EI2Det with our method achieves the best overall performance, reaching
87.8% mAP50, 64.6% mAP75, and 55.3% mAP. Across all baselines, our approach achieves average
improvements of 1.4% in mAP50, 1.2% in mAP75, and 1.5% in mAP, demonstrating its effectiveness
in enhancing detection accuracy under aerial-view conditions.

Results on LLVIP Dataset. Table 2 summarizes the results on the LLVIP dataset, designed for
pedestrian detection under extreme low-light conditions. Our method achieves consistent gains
across all baselines, particularly in AP75 and mAP, indicating enhanced fine-grained localization.
When combined with EI2Det, our method achieves the highest overall accuracy, improving AP50

from 97.0% to 97.3%, AP75 from 77.1% to 78.9%, and mAP from 66.7% to 67.5%. On average, it
achieves improvements of 0.3% in AP50 and 0.9% in both AP75 and mAP, highlighting the robust-
ness of our method in low-illumination scenarios. Further results on the DroneVehicle dataset are
shown in Appendix D.

4.3 ABLATION STUDY

Table 3: Ablation study on the effectiveness and sensi-
tivity components of the REPA module on the VEDAI
dataset.

Effectiveness Sensitivity mAP50 mAP75 mAP

× × 86.5 62.8 54.0
× ✓ 85.8 62.1 53.6
✓ × 87.4 63.9 54.8
✓ ✓ 87.8 64.6 55.3

We conduct ablation studies on the VEDAI
dataset with EI2Det as baseline to assess
the contributions of effectiveness and sen-
sitivity components in the REPA module.
As shown in Table 3, the baseline without
either component achieves 86.5% mAP50,
62.8% mAP75, and 54.0% mAP. Activating
only the sensitivity component slightly de-
grades performance, likely because it cap-
tures update intensity without assessing ac-
tual contribution to prediction, leading to
suboptimal correction. In contrast, en-
abling only the effectiveness component improves all metrics, highlighting its ability to identify
effective parameters. The full REPA module achieves the best performance with 87.8% mAP50,
64.6% mAP75, and 55.3% mAP, confirming their complementary benefits in enhancing detection
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Figure 5: Visual comparisons of saliency maps on the VEDAI dataset. Brighter regions indicate
stronger model attention. Red dashed circles mark attention to irrelevant regions, and yellow dashed
circles indicate overlooked target regions.

performance. In addition, we evaluate the impact of the hyperparameter α in the sensitivity com-
putation (defined in Eq. 4) and analyze the contribution of each component in the RGCR module.
Detailed results are provided in Appendix E.

4.4 VISUALIZATION RESULTS

Visualization of Detection Results. Fig. 4 presents qualitative comparisons of detection results.
Each row depicts a distinct scene: the first column displays the ground truth annotations, and the
remaining columns present results from C2Former, CDC-YF, EI2Det, and our method. As illus-
trated, the baselines exhibit common errors, including misclassifications, missed detections, and
false positives. Specifically, in row (a), C2Former completely misses the “car” (yellow triangles),
while CDC-YF and EI2Det misclassify it as a “pickup” (red triangles); in row (b), all baselines miss
the “tractor”; and in row (c), they produce false positives on the “camping car” (green triangles). In
contrast, our method accurately recalls missed objects, corrects misclassifications, and suppresses
false positives, resulting in more precise and complete detections in challenging aerial scenarios.

Visualization of Saliency Maps. To further analyze how different methods allocate attention to
target regions, we visualize their fused saliency maps in Fig. 5 using the LayerCAM (Jiang et al.,
2021). Each row represents a different scene, where the first column shows the ground truth an-
notations and the remaining columns display the saliency maps of CALNet, CDC-YF, EI2Det, and
our method, respectively. As observed, the baseline methods may attend to irrelevant areas (red
dashed circles) or overlook critical target regions (yellow dashed circles). Specifically, in row (a),
all baselines incorrectly focus on non-target areas, increasing the risk of false positives; in row (b),
all fail to attend to the “tractor”, which may result in missed detection. In contrast, our method sup-
presses irrelevant distractions and accurately attends to target regions, thereby reducing both false
positives and missed detections. These results confirm that our approach facilitates the learning of
more reliable features, enhancing detection performance in complex scenarios.

5 CONCLUSION

In this paper, we propose RaGrad, a model-agnostic approach that mitigates cross-modal semantic
conflicts in visible–infrared object detection via reliability-guided gradient correction. Specifically,
we first propose the reliability estimation via parameter attribution (REPA) module, which evaluates
modality reliability by assessing parameter effectiveness via counterfactual reasoning and sensitiv-
ity via gradient variation. Second, we introduce the reliability-guided conflict resolution (RGCR)
module, which leverages reliability scores to optimize parameter updates of less reliable modalities
via gradient correction, thereby improving cross-modal consistency and detection performance. Ex-
tensive experiments across multiple detection frameworks on three challenging datasets demonstrate
the superiority and generalizability of our method.
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A ALGORITHM AND COMPLEXITY ANALYSIS OF RAGRAD

Algorithm 1: RaGrad for Visible-Infrared Object Detection

Input: dataset D, model parameters Θ, number of epochs e
Output: Updated model parameters Θ

1: for epoch = 1 to e do
2: for each mini-batch x ⊂ D do
3: Compute loss L(Θ,x)

4: Estimate effectiveness Êm by Eq. 2– 3
5: Estimate sensitivity Ŝm by Eq. 3– 4
6: Compute reliability Rm by Eq. 5
7: Identify conflict set C by Eq. 6
8: for each (l, i) ∈ C do
9: Determine reliable modality R by Eq. 7

10: Perform gradient correction by Eq. 8– 10
11: end for
12: Update Θ using corrected gradients
13: end for
14: end for

Algorithm 1 describes the RaGrad
method for visible-infrared object de-
tection. Given a training dataset D
consisting of paired visible and in-
frared images with annotations, and
the initial model parameters Θ, the
training proceeds for e epochs. In
each epoch, for every mini-batch x ⊂
D, the task loss L(Θ,x) is com-
puted according to the original base-
line detector. RaGrad then estimates
the parameter-level effectiveness Êm

and sensitivity Ŝm for each modality
(Eq. 2– 4). These are further com-
bined to derive the reliability score
Rm (Eq. 5). Based on the com-
puted reliability scores and the gradi-
ent direction, a conflict set C is iden-
tified (Eq. 6). For each conflict, the
more reliable modality is determined
(Eq. 7), and the gradient from the less reliable modality is corrected via orthogonal projection and
reliability-guided blending (Eq. 8– 10). After all corrections, the model parameters Θ are updated
using the corrected gradients, and the final output is Θ after e training epochs. This procedure
promotes the learning of more reliable features and enhances cross-modal consistency.

RaGrad introduces only minimal computational overhead compared to standard backpropagation
during training. For each baseline method, standard backpropagation has both time and space com-
plexity of O(P ), where P denotes the number of model parameters. When integrated into these
methods, RaGrad performs several lightweight operations. First, the effectiveness score Êm is ap-
proximated using a second-order Taylor expansion, where the diagonal approximation of the Hessian
enables efficient computation in linear time, incurring a cost of O(P ). Second, identifying conflicts
requires scanning all parameters, contributing an additional O(P ) cost. Finally, gradient correction
over the conflict set C introduces an overhead of O(|C|), where |C| ≪ P . As a result, RaGrad adds
an extra time complexity of O(P + P + |C|) ≈ O(P ), which remains linear and comparable to
standard backpropagation. In terms of space, RaGrad maintains only a few scalar statistics per pa-
rameter (e.g., effectiveness, sensitivity, and reliability), resulting in an additional space complexity
of O(P ). Therefore, both the time and space overhead introduced by RaGrad are negligible, and the
overall computational complexity remains linear in the number of parameters, consistent with that
of each baseline method. Importantly, RaGrad introduces no additional overhead during inference,
and the inference speed remains identical to that of the baseline methods.

Table 4 further validates the theoretical complexity analysis by comparing the training efficiency and
inference speed of baseline EI2Det and our method integrated into it. Both methods are evaluated on
the VEDAI dataset with a batch size of 8 and an input resolution of 1024. RaGrad does not increase
the number of model parameters, remaining identical to the baseline. In terms of memory usage
during training, RaGrad incurs only a marginal increase in peak memory, rising from 21.60 GB
for the baseline to 21.85 GB. Similarly, RaGrad introduces slight overhead in training throughput
and latency, processing 11.71 images per second with an iteration time of 683.43 ms, while the
baseline achieves 12.10 images per second with 661.40 ms per iteration. Importantly, the inference
speed of RaGrad remains virtually unchanged, reaching 16.05 FPS compared to 16.06 FPS for the
baseline. These results demonstrate that RaGrad introduces only negligible overhead during training
and imposes no additional cost during inference, fully aligning with the theoretical analysis.

B COMPARISON BASELINES

We provide a brief overview of each baseline method used in our experiments, including the ex-
tended dual-modality S2ANet (Han et al., 2022) and Faster R-CNN (Ren et al., 2015), as well as
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Table 4: Comparison of training efficiency and inference speed across different methods.

Method
Training Inference

Params
(M)↓

Peak mem
(GB)↓

Throughput
(img/s)↑

Latency
(ms/iter)↓

FPS
(img/s)↑

EI2Det 129.59 21.60 12.10 661.40 16.06
EI2Det+Ours 129.59 21.85 11.71 683.43 16.05

Table 5: Training settings for all baseline methods. “–” denotes not applicable. “*” indicates settings
that vary across datasets.

Method Optimizer Learning rate Momentum Weight decay Epoch* Batch size*

Faster R-CNN SGD 0.0025 0.9 0.0001 24 8
S2ANet SGD 0.01 0.9 0.0001 24 8
CSSA AdamW 0.00025 – 0.0001 10 16
CALNet SGD 0.035 0.85 0.001 50 4
CDC-YF SGD 0.001 0.937 0.0005 500 8
C2Former SGD 0.001 0.9 0.0001 24 2
EI2Det SGD 0.01 0.8 0.001 120 32

5 representative visible-infrared object detection methods: CSSA (Cao et al., 2023), CALNet (He
et al., 2023), CDC-YOLOFusion (abbreviated as CDC-YF) (Wang et al., 2024c), C2Former (Yuan
& Wei, 2024), and EI2Det (Hu et al., 2025). These methods are built upon 4 widely used detec-
tors: S2ANet and YOLOv5(OBB) (Yang & Yan, 2022) for oriented detection; Faster R-CNN and
YOLOv5 (Jocher, 2020) for horizontal detection.

• The extended dual-modality versions of S2ANet and Faster R-CNN first extract features
from RGB and IR modalities using separate backbones, then fuse them via simple element-
wise addition, and finally pass the fused features to the detection heads for prediction.

• CSSA introduces a lightweight fusion module that integrates RGB and IR features through
a combination of channel switching and spatial attention mechanisms, aiming to balance
detection performance and computational efficiency in multimodal object detection.

• CALNet tackles the challenge of semantic conflicts in multispectral object detection by first
rectifying inconsistent modality features based on contextual similarity, then selectively
fusing semantically coherent and complementary features across modalities.

• CDC-YF introduces a cross-scale dynamic fusion module to adaptively extract and inte-
grate RGB and IR features based on data distribution. It further enhances cross-modal
representation by leveraging a data swapping strategy, disparity-aware attention, and a ker-
nel interaction loss tailored for bimodal feature learning.

• C2Former introduces a calibrated and complementary transformer architecture that aligns
and fuses RGB-IR features using inter-modality cross-attention, while reducing computa-
tional cost via adaptive feature sampling.

• EI2Det addresses the challenge of balancing the contributions of RGB and IR informa-
tion under varying lighting conditions by introducing an illumination-aware detector that
adaptively fuses multimodal features based on scene illumination and leverages edge infor-
mation to enhance boundary localization.

C IMPLEMENTATION DETAILS

Since our method can be seamlessly integrated into most existing detection frameworks, we adopt
the original training configurations of each baseline to evaluate the performance improvements
brought by our method. For clarity and reproducibility, we summarize the complete training config-
urations for all baseline methods in Table 5. These settings, including the optimizer type, learning
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Figure 6: Performance variation with different values of α in the sensitivity computation.

rate, momentum, and weight decay, strictly follow the original implementations provided in the re-
spective papers. Notably, the number of training epochs and batch sizes may vary slightly across
datasets. For the LLVIP and DroneVehicle datasets, we follow the settings listed in Table 5, which
are consistent with the original papers. For the VEDAI dataset, due to its relatively small scale and
the lack of reported configurations in most baseline papers, we follow existing works (Zhang et al.,
2023b; Wang et al., 2024c) and adopt a unified setup of 300 epochs and a batch size of 4 for all
methods to ensure consistent comparison.

D RESULTS ON DRONEVEHICLE DATASET

Table 6: Performance comparison on DroneVehicle.

Detector Method mAP50 mAP75 mAP

S2A-Net

S2A-Net 71.4 45.8 42.7
S2A-Net + Ours 71.9 46.1 43.0
CSSA 71.8 46.4 43.2
CSSA + Ours 72.1 47.2 43.4
C2Former 74.3 50.0 45.1
C2Former + Ours 74.8 50.3 45.6

YOLOv5
(OBB)

CALNet 75.5 62.6 53.9
CALNet + Ours 76.2 63.2 54.5
CDC-YF 76.4 63.9 55.1
CDC-YF + Ours 77.0 64.5 55.5
EI2Det 78.3 67.5 57.0
EI2Det + Ours 79.0 68.7 57.6

Table 6 presents the evaluation results
on the DroneVehicle dataset, com-
prising large-scale aerial images with
complex backgrounds and varying il-
lumination. Our method consistently
enhances the performance of all six
baselines. Notably, EI2Det achieves
the highest overall accuracy when in-
tegrated with our method, reaching
79.0% mAP50, 68.7% mAP75, and
57.6% mAP. On average, our method
contributes a 0.5% gain in each met-
ric, underscoring its effectiveness and
robustness in handling challenging
aerial scenarios with diverse illumi-
nation conditions.

E ABLATION STUDY

RGCR Module Components. To assess the contributions of the dual-criteria conflict identification
(DCCI) and reliability-guided gradient correction (RGGC) in the RGCR module, we conduct an
ablation study using the EI2Det model as the baseline on the VEDAI dataset. As shown in Table 7,
when neither component is applied, the method relies solely on cosine similarity for conflict identifi-
cation and orthogonal decomposition for conflict resolution, resulting in 85.4 mAP50, 60.8 mAP75,
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Figure 7: Visual comparison of detection results on the DroneVehicle dataset. Green dashed boxes
mark zoomed-in regions. Red triangles indicate misclassifications, green triangles denote false pos-
itives, and yellow circles highlight missed detections.

Table 7: Ablation study of the dual-criteria conflict
identification (DCCI) and reliability-guided gradi-
ent correction (RGGC) components of the RGCR
module on the VEDAI dataset.

DCCI RGGC mAP50 mAP75 mAP

× × 85.4 60.8 53.1
× ✓ 87.3 63.5 54.3
✓ × 87.2 64.3 55.0
✓ ✓ 87.8 64.6 55.3

Table 8: Performance comparison with
other conflict resolution methods the VEDAI
Dataset. “*” indicates that the conflict res-
olution method is applied to visible-infrared
object detection.

Method mAP50 mAP75 mAP
PCGrad* 84.9 61.8 52.8
IMTL* 86.4 63.4 54.2
Ours 87.8 64.6 55.3

and 53.1 mAP. Activating only RGGC improves the performance to 87.3 mAP50, 63.5 mAP75,
and 54.3 mAP. When DCCI is enabled alone, the model achieves 87.2 mAP50, 64.3 mAP75, and
55.0 mAP. Finally, combining both components yields the best performance, with 87.8 mAP50, 64.6
mAP75, and 55.3 mAP. These results highlight the complementary contributions of both components
in mitigating semantic conflicts and enhancing detection performance.

To further validate the effectiveness of the RGCR module, we compare it with other conflict res-
olution methods, such as PCGrad (Yu et al., 2020) and IMTL (Liu et al., 2021b), on the VEDAI
dataset using EI2Det as the baseline. As shown in Table 8, our method consistently outperforms
both PCGrad and IMTL, highlighting the superiority of our gradient correction approach in resolv-
ing conflicts and enhancing detection accuracy.

Hyperparameter α. We conduct an ablation study on the VEDAI dataset using EI2Det as the
baseline to examine the effect of the hyperparameter α in the sensitivity computation (defined in
Eq. 4). Following prior works (Grill et al., 2020), we vary α across a range from 0.9 to 0.999 to
investigate its impact on detection performance, as illustrated in Fig. 6. The results show that setting
α to 0.95 yields the highest performance, achieving 87.8% mAP50 and 55.3% mAP. When α is either
too small or too large, the model’s performance deteriorates. This trend suggests that an excessively
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Figure 8: Visual comparisons of saliency maps on the DroneVehicle dataset. Brighter regions indi-
cate stronger model attention. Red dashed circles mark attention to irrelevant regions, and yellow
dashed circles indicate overlooked target regions.

low α may amplify short-term fluctuations in gradient dynamics, leading to unstable sensitivity
estimates, while an overly high α may over-smooth the temporal gradient variations, masking the
true optimization intensity of individual parameters. Therefore, a moderate α around 0.95 provides
a favorable trade-off between stability and responsiveness, which is important for both sensitivity
and reliability estimation.

F VISUALIZATION RESULTS ON DRONEVEHICLE DATASET

Visualization of Detection Results. Fig. 7 presents qualitative comparisons of detection results on
the DroneVehicle dataset. Each row corresponds to a distinct scene: the first column presents the
ground truth annotations, followed by detection outputs from CALNet, CDC-YF, EI2Det, and our
method. As observed, the baselines exhibit common errors, including misclassifications, missed
detections, and false positives. In row (a), all baselines incorrectly classify a “freight car” as a
“car” (red triangles); in row (b), the “truck” is entirely missed (yellow circles); in row (c), false
positives appear around the “car” region (green triangles); and in row (d), another misclassification
occurs, where the “freight car” is incorrectly labeled as a “truck.” In contrast, our method enhances
target recall, improves category discrimination, and mitigates the influence of cluttered backgrounds,
enabling more robust and accurate detection in complex aerial scenarios with varying illumination.

Visualization of Saliency Maps. To further analyze how different methods allocate attention within
the fused features, we visualize their saliency maps using LayerCAM (Jiang et al., 2021), as shown
in Fig. 8. Each row corresponds to a distinct scene: the first column displays the ground truth an-
notations, while the remaining columns show the saliency maps generated by CALNet, CDC-YF,
EI2Det, and our method, respectively. Across multiple scenes, the baseline methods consistently
exhibit two types of attention failures: focusing on irrelevant regions (red dashed circles) and over-
looking critical target regions (yellow dashed circles). In row (a), all methods fail to focus on the
“tractor,” and CDC-YF additionally neglects the “car,” potentially leading to missed detections. In
row (b), CALNet shows weak activation on the “freight car,” while CDC-YF and EI2Det incorrectly
attend to background regions, increasing the risk of false positives. In row (c), CALNet and CDC-YF
are distracted by irrelevant regions, while CDC-YF and EI2Det fail to highlight the “car.” In contrast,
our method consistently allocates attention to relevant object regions while effectively suppressing
background interference, resulting in more accurate localization and fewer detection errors. These
results demonstrate that our method improves the reliability of extracted features, thereby enhancing
multi-object detection performance under complex illumination conditions in aerial scenarios.
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G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, we employed Large Language Models (LLMs) primarily for polishing the manuscript.
The LLM was used to refine the text by correcting grammar and improving sentence structure. It is
important to emphasize that the model did not contribute to the formulation of research ideas, the
design of experiments, or the analysis of data.

The authors take full responsibility for the accuracy and integrity of the content and have reviewed
all LLM-generated text to ensure it adheres to ethical standards, avoiding any potential issues such
as plagiarism or misrepresentation.
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