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Abstract001

Sparse Autoencoders (SAEs) have recently002
emerged as powerful tools for interpreting and003
steering the internal representations of large004
language models (LLMs). However, conven-005
tional approaches to analyzing SAEs typically006
rely solely on input-side activations, without007
considering the influence between each latent008
feature and the model’s output. This work009
is built on two key hypotheses: (1) activated010
latents do not contribute equally to the con-011
struction of the model’s output, and (2) only012
latents with high influence are effective for013
model steering. To validate these hypotheses,014
we propose Gradient Sparse Autoencoder015
(GradSAE), a simple yet effective method016
that identifies the most influential latents by017
incorporating output-side gradient information.018
Our code is available at https://anonymous.019
4open.science/r/sae_gradient-10FF.020

1 Introduction021

Sparse Autoencoders (SAEs) (Shu et al., 2025)022

have recently emerged as promising tools for in-023

terpreting the inner workings of large language024

models (LLMs) (Cunningham et al., 2023; Bricken025

et al., 2023; Gao et al., 2025; Rajamanoharan et al.,026

2024b). A core challenge in understanding LLMs027

is the polysemanticity of neurons, where each neu-028

ron encodes multiple features (Arora et al., 2018;029

Scherlis et al., 2022). This is largely due to super-030

position (Elhage et al., 2022), a phenomenon where031

the number of features an LLM needs to represent032

vastly exceeds the number of available neurons.033

SAEs address this by learning an overcomplete034

latent space, allowing each latent to represent a035

single, disentangled feature. For any given LLM036

representation, only a small number of these latents037

are activated, and the combination of these sparse038

active latents can accurately reconstruct the original039

LLM representation. This sparsity makes it easier040

to interpret the concepts an LLM is processing.041

Although interpretability was the original mo- 042

tivation for developing SAEs, they have proven 043

useful for other applications as well, particularly 044

in steering model behaviors (Chalnev et al., 2024; 045

He et al., 2025; Zhao et al., 2024; Galichin et al., 046

2025). Traditionally, researchers associate each 047

latent with a human-interpretable concept by an- 048

alyzing which input texts tend to activate it. By 049

modifying selected latents in the SAE space that 050

have desired concepts, ideally we can influence the 051

LLM outputs toward our expectation in a control- 052

lable way (Templeton et al., 2024; O’Brien et al., 053

2024). However, these approaches assume that the 054

latent’s activation based on input reflects an in- 055

fluence on the model output, which has never 056

been proven. Recent evidence suggests that this 057

assumption may not always hold, and steering can 058

sometimes produce unintended effects on the out- 059

put (Durmus et al., 2024; Wu et al., 2025). 060

In this paper, we argue that identifying latents 061

solely from input activations is insufficient for re- 062

liable model steering. Instead, the relationship be- 063

tween SAE latents and LLM output should also 064

be considered when determining which latents are 065

most relevant for intervention. To address this, 066

we propose Gradient SAE (GradSAE), a simple 067

yet effective method that can be applied to any 068

instruction-tuned LLM’s SAE. Our key insight is 069

that not all latents activated by the input con- 070

tribute equally to generating the model’s output. 071

Rather, only those latent variables whose activa- 072

tions, when set to zero, lead to a significant change 073

in the model’s outputs are likely to exert substan- 074

tial influence. In our paper, we prove that this 075

ablation process can be approximated with a more 076

efficient gradient-based approach. To validate our 077

hypothesis, we design two experiments. First, we 078

demonstrate that activated latents have different 079

impacts when used to generate model outputs. Sec- 080

ond, we show that the influential latents, identified 081

by GradSAE, are more effective for output steering. 082
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Figure 1: Methodology overview in the perturbation experiment. Subfigure (a) illustrates the GradSAE framework,
where the symbol σ denotes the ReLU function. Subfigure (b) shows the experiment process, which contains two
settings and both share the same architecture with the GradSAE framework but differ in masking strategies.

2 Methodology083

2.1 Problem Statement084

Let V be the vocabulary, X ∈ VN an input se-085

quence, and Y ∈ VM the corresponding LLM-086

generated output. The hidden representation at087

layer l is Z(l) ∈ RN×D, where D is the hidden088

dimension. We omit the superscript (l) for simplic-089

ity in the rest of the paper. An SAE is inserted090

at layer l with parameters Wenc ∈ RD×C and091

Wdec ∈ RC×D, where C is the latent dimension092

of SAE and C ≫ D. Given the representation093

Z of input X , SAE first decomposes Z as sparse094

latent activations H ∈ RN×C , and then loselessly095

restores Ẑ ∈ RN×D with H as:096

Ẑ = HWdec = σ(ZWenc)Wdec. (1)097

Here, σ is a non-linear activation function, and Ẑ098

is subsequently passed to the rest of layers. We099

aim to identify which learned latent c in H is most100

influential in generating Y .101

2.2 Proposed GradSAE Framework102

We illustrate our proposed GradSAE framework103

for estimating the influences of sparse latent activa-104

tions c = 1, ..., C in Figure 1a. Following previous105

work (Feng et al., 2018; Wu et al., 2024), we define106

the influence of a certain latent c at the n-th input107

token on the output Y as the change in prediction108

with and without sparse latent activation Hn,c ∈ R:109

gn,c = p(Y|H)− p(Y|Hn,/c), (2)110

where Hn,/c indicates setting the c-th value of the111

n-th row at Z as 0, and probability p(Y|·) is pre-112

dicted logits of LLM on Y with original H or113

masked Hn,/c sparse latent activations of SAE.114

For efficiency, we approximate gn,c in Equa- 115

tion (2) with the gradients of the output logit 116

with respect to the latent activations Zn,c at the 117

n-th input token (see proof in Appendix A). Let 118

H = {H1, ...,HN} represent token-wise latent ac- 119

tivations of the input sequence. Thus, the influence 120

of the c-th latent activation on the n-th token is: 121

gn,c ≈
∂p(Y|h(Z))

∂Hn,c
⊙Hn,c, (3) 122

where ⊙ indicates element-wise multiplication. In 123

practice, we only focus on the latents that show 124

positive influences to outputs. Equation (3) reveals 125

that the magnitude of the raw sparse latent activa- 126

tion (i.e., Hn,c) alone cannot effectively estimate 127

its influence on LLM outputs, whereas many exist- 128

ing works (Templeton et al., 2024; O’Brien et al., 129

2024) overlook this fact and simply use the latent 130

activations to interpret SAEs and/or steer LLMs. 131

We finally define the overall influence on the c-th la- 132

tent by averaging individual influence scores across 133

the input sequence, i.e., gc = 1
N

∑N
n=1 gn,c. 134

3 Experiments 135

We empirically investigate the following research 136

questions (RQs). RQ1: Do all activated latents 137

contribute equally to construct the model’s output? 138

RQ2: How effectively does GradSAE identify the 139

latents that significantly influence the model’s out- 140

put? RQ3: Can the latents selected by GradSAE 141

lead to better output steering? 142

3.1 General Settings 143

3.1.1 Dataset and Metrics 144

In this paper, we use the SQuAD dataset (Rajpurkar 145

et al., 2016), where each example consists of a con- 146
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text passage, a question, and an answer. We adopt147

the standard SQuAD evaluation metrics: Exact148

Match (EM) and token-level F1. Detailed dataset149

statistics and description are provided in Appendix150

B.1, and metric descriptions are in Appendix B.2.151

3.1.2 Perturbation Experiment (RQ1 & RQ2)152

Experimental Designs. As shown in Figure 1b,153

our GradSAE experiments involve two settings. Be-154

fore conducting these, we define two sets of latents:155

Zhigh = argmaxZ′⊂ZNZ,|Z′|=K

∑
c∈Z′

gc, (4)156

Zlow = argminZ′⊂ZNZ,|Z′|=K

∑
c∈Z′

gc, (5)157

where ZNZ = {c | gc > 0, c = 1, .., C} are the158

indices of positive latent influences. In our experi-159

ments, we define K ∈ {1, 10, 20, 30, 50%}, where160

“50%” denotes half the number of non-zero latents161

count in the SAE activation of the last token.162

Let H ∈ RN×C denote the sequence of token-163

wise activations. In the first setting, for each token’s164

activation vector, we zero out all latents in Zhigh. In165

the second setting, we instead zero out the latents166

in Zlow. The modified activation is then passed167

through Wdec to reconstruct Ẑ and resume the for-168

ward pass. If masking Zhigh leads to degraded per-169

formance while masking Zlow has no impact, this170

supports our hypothesis that not all activated latents171

contribute equally to the model’s output. Note that172

we focus only on samples where the LLM can cor-173

rectly answer with greedy decoding, resulting in174

100% accuracy without any perturbation. If mask-175

ing Zlow truly has no impact, the performance after176

perturbation should remain close to 100%.177

Baseline. We repeat the GradSAE framework in178

Section 2.2 but without using gradient informa-179

tion. Specifically, we compute the mean over the180

original token-wise SAE activations, skipping the181

gradient calculation: gc = 1
N

∑N
n=1Hn,c We then182

extract Zhigh and Zlow from this baseline vector and183

compare performance when masking these sets.184

3.1.3 Local Steering Experiment (RQ3)185

This experiment aims to address RQ3 following a186

similar design to the perturbation experiment (Sec-187

tion 3.1.2). The key difference in the steering ex-188

periment is that, when extracting the TopK and189

BottomK latents, we also extract the corresponding190

value. This allows us to adjust the activations using191

these values in the subsequent settings.192

Mask

Inject 

...

LLM

GradSAE
LLM

Context +Context +

Context +

GradSAE

Figure 2: Local steering methodology overview.
Experimental Designs. We consider a particu- 193

lar steering task, called local steering, leveraging a 194

unique property of the SQuAD dataset: each con- 195

text passage is paired with multiple questions. This 196

allows us to investigate whether the model’s output 197

for one question can be steered by latent activations 198

derived from a different question that shares the 199

same context. As shown in Figure 2 upper part, for 200

each data point d = (context, q, a) ∈ D, we define 201

a set of examples with the same context but differ- 202

ent questions as Dsame = {dt = (context, qt, at) | 203

qt ̸= q}. We randomly select one such example 204

dt ∈ Dsame, and denote its TopK set as Zt
high. 205

As shown in the lower part of Figure 2, during 206

the experiment, the Zhigh in the original activation 207

Hn for all tokens N are zeroed out. The steering la- 208

tents Zt
high from dt are then injected. Intuitively, if 209

these steering latents carry meaningful information, 210

the model’s output may shift toward answering at 211

for question qt, even though the input is question q. 212

We repeat the same experiment for BottomK. 213

Implementation Details. We primarily conduct 214

experiments using the SAE from the Gemma 215

Scope series (Lieberum et al., 2024), trained on 216

the 9th layer of the Gemma 2 9B Instruct model. 217

For results related to the impact of layer choice, 218

please refer to Appendix D.2. Additionally, in Ap- 219

pendix D.3, we extend our experiments to an SAE 220

trained on the LLaMA 3 model to evaluate the gen- 221

eralizability of our method. Full implementation 222

details are provided in Appendix C. 223

3.2 Perturbation Experiment Analysis 224

Table 1 upper section presents the Exact Match 225

(EM) and F1 scores, comparing the performance 226

of masking TopK and BottomK latent sets un- 227

der both the Baseline and our proposed GradSAE 228

method. The results are reported across values of 229

K ∈ {1, 10, 20, 30, 50%}, as defined earlier. As 230

shown in the “w/o Task” column, the initial LLM 231
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Table 1: Results of both perturbation and local steering. The upper section shows perturbation results, where for the
TopK rows, lower scores indicate greater influence on the model output, and for the BottomK rows, higher scores
indicate less influence. The best performance in each column is in bold. The lower section shows local steering
results, where for the TopK rows, higher scores indicate stronger steering effects on the model output, and for the
BottomK rows, lower scores indicate weaker steering effects. The highest score in each column is in underlined.

Tasks w/o Task
K=1 K=10 K=20 K=30 K=50%

EM F1 EM F1 EM F1 EM F1 EM F1

Perturbation
Baseline

TopK ↓
100.0

94.79 97.04 91.81 94.46 85.47 88.49 75.42 79.62 53.42 58.46
BottomK ↑ 100.0 100.0 98.51 99.93 98.51 99.93 98.51 99.93 98.41 99.84

GradSAE
TopK ↓

100.0
80.45 82.67 51.21 60.46 39.48 50.51 37.80 49.37 30.58 43.33

BottomK ↑ 100.0 100.0 98.14 99.68 98.14 99.68 98.14 99.68 98.21 99.66

Local Steering
Baseline

TopK ↑
0.00

4.18 5.77 4.59 6.69 2.19 3.32 1.00 1.62 0.20 0.55
BottomK ↓ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GradSAE
TopK ↑

0.00
4.58 6.43 7.99 10.21 4.78 6.63 3.59 4.88 3.39 4.58

BottomK ↓ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

performance without any perturbation is 100%.232

Across all K settings, masking the TopK latents233

identified by both Baseline and GradSAE leads to234

a drop in EM and F1 scores, while masking Bot-235

tomK latents maintains near-perfect performance.236

For example, both methods yield F1 scores around237

99% across K = 10, 20, 30, 50% when masking238

BottomK latents. This confirms our RQ1 hypothe-239

sis that not all activated latents equally contribute240

to output construction, with TopK latents having241

far greater influence.242

Comparing GradSAE and the Baseline, mask-243

ing GradSAE’s TopK latents results in a more244

substantial performance drop. For instance, with245

K = 1, GradSAE yields 80.45% EM and 82.67%246

F1, decreasing to 30.58% EM and 43.33% F1 at247

K = 50%. This consistent degradation highlights248

that GradSAE more precisely identifies latents crit-249

ical to output, while the Baseline shows only mod-250

erate degradation. These results support RQ2,251

demonstrating GradSAE’s superior effectiveness in252

identifying influential latents.253

3.3 Local Steering Experiment Analysis254

As shown in Table 1 lower section “w/o Task”255

column, the initial LLM performance without lo-256

cal steering is 0%. After applying local steering,257

both Baseline and GradSAE exhibit steering ef-258

fects when the original TopK latents are replaced259

with those from a different question sharing the260

same context. GradSAE consistently outperforms261

the Baseline, especially at K = 10, achieving a262

steering F1 score of 10.21%. This supports RQ3,263

demonstrating that GradSAE-identified latents can264

steer the model toward answering a different ques-265

tion even when the input remains unchanged. How-266

ever, as K increases, the steering effect diminishes.267

This is because replacing more TopK latents de-268

grades output coherence as SAE reconstruction be- 269

comes less accurate. This aligns with findings from 270

the first experiment, confirming that TopK latents 271

are crucial for output construction, and excessive 272

modification leads to output collapse. 273

Masking and replacing BottomK latents results 274

in negligible steering across all K values (near 275

0% EM and F1). Deeper analysis shows that lo- 276

cal steering BottomK latents leaves the model’s 277

output unchanged. This is consistent with earlier 278

results showing that BottomK latents have minimal 279

influence. These findings confirm that modifying 280

non-influential latents does not meaningfully steer 281

or disrupt the output. For detailed statistical analy- 282

sis, see Appendix D.1. 283

4 Related Work 284

SAEs have shown great promise in interpreting 285

LLMs (Cunningham et al., 2023; Bricken et al., 286

2023; Gao et al., 2025). However, most existing 287

work focuses solely on input activations and as- 288

sumes that these activations have an influence on 289

the model’s output (Templeton et al., 2024; O’Brien 290

et al., 2024). In contrast, our work challenges this 291

assumption. A detailed discussion on related work 292

is provided in Appendix E. 293

5 Conclusions 294

In this work, we revisited the problem of identify- 295

ing and local steering activated latents in SAEs for 296

LLMs. We proposed two key hypotheses: (1) not 297

all activated latents equally affect output, and (2) 298

only highly influential latents are effective for steer- 299

ing. Through a series of experiments, we demon- 300

strated that GradSAE more accurately identifies in- 301

fluential latents and enables more reliable steering, 302

with results generalizing across different SAEs. 303
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Limitations304

In this paper, we focus on SAEs trained on305

instruction-tuned LLMs. While GradSAE is theo-306

retically applicable to any SAEs, LLMs, and tasks,307

this study focuses on one of the most fundamental308

capabilities of modern LLMs with GradSAE, i.e.,309

instruction following for question answering. Ex-310

tending GradSAE to a broader range of scenarios,311

including but not limited to pre-trained LLMs, is312

an exciting direction for future work.313
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Table 2: Datasets Statistics (Avg. = Average, #Ex. =
Number of Examples)

DATASET SQuAD
Train Valid

Context Avg. Length 119.76 123.95
Question Avg. Length 10.06 10.22
Answer Avg. Length 3.16 3.02
Avg. Questions / Context 4.64 5.11
#Ex. 87.6k 10.6k

A Proof of Gradiant Approximation477

We aim to prove that the influence of latent acti-478

vation gn,c = p(Y|H) − p(Y|Hn,/c) defined in479

Equation (2) can be approximated by the gradient-480

based approach described in Equation (3). To start481

with, we consider that p(·|·) implemented by an482

LLM is continued over its input domain (Wu et al.,483

2024). Thus, we could extend p(Y|H) around the484

Hn,/c with the First-order Taylor expansion:485

p(Y|H) ≈ p(Y|Hn,/c) +

∂p(Y|H)

∂H

∣∣∣∣∣
Hn,/c

(H−Hn,/c).
(6)486

Note that, since the only difference between H487

and Hn,/c is the latent activation at the c-th latent488

on the n-th word, i.e., Hn,c, Equation (6) can be489

simplified as:490

p(Y|H) ≈ p(Y|Hn,/c) +
∂p(Y|H)

∂Hn,c
Hn,c. (7)491

Bringing this simplified form to the definition of492

influence gn,c in Equation (2), we have gn,c ≈493
∂p(Y|H)
∂Hn,c

Hn,c. To this end, the influence of latent494

activations can be approximated with this gradient-495

based approach.496

B General Settings497

B.1 Dataset498

In this paper, we use the SQuAD dataset (Rajpurkar499

et al., 2016), where each example consists of a con-500

text passage, a question, and an answer. Detailed501

dataset statistics are provided in Table 2. Each502

context is associated with multiple questions, on503

average around five per context. The answer to504

each question is a span extracted directly from the505

corresponding context. We choose this dataset for506

several reasons. First, the answers are short, aver-507

aging around three words, which makes evaluation508

Context:
In meteorology, precipitation is any 

product of the condensation of atmospheric 
water vapor that falls under gravity?  Short, 
intense periods of rain in scattered locations 
are called ?showers?.

Question 1:
What causes precipitation to fall?

Answer 1:
gravity

Question 2:
What is another main form of precipitation 
besides drizzle, rain, snow, sleet and hail?

Answer 2:
graupel

More Questions:
...

Figure 3: SQuAD dataset example.

more straightforward. Second, the context passages 509

are sufficiently long, averaging about 120 words, 510

which helps activate a diverse set of latent variables 511

in the SAEs. This allows our GradSAE method to 512

better identify the most critical latents from among 513

multiple activated ones. Since our GradSAE is a 514

training-free approach, we use only the validation 515

set to evaluate its performance. We have shown an 516

example of the data in Figure 3. 517

B.2 Metrics 518

We adopt the standard SQuAD evaluation metrics: 519

Exact Match (EM) and token-level F1. EM mea- 520

sures the percentage of predictions that exactly 521

match a ground-truth answer, while F1 captures the 522

overlap at the token level between predictions and 523

references. To ensure fair and consistent evaluation, 524

we normalize text by lowercasing, removing punc- 525

tuation, trimming extra whitespace, and excluding 526

uninformative words such as “a”, “an”, and “the”. 527

These two metrics together offer a balanced and 528

comprehensive assessment of span-level prediction 529

quality. 530

C Implementation Details 531

Since our experimental design involves instruction- 532

based question answering, in theory, our GradSAE 533

method can be applied to any SAE model supported 534
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by the SAE-Lens (Bloom et al., 2024). However, in535

practice, we find that only instruction-tuned LLMs536

are capable of successfully answering questions537

during our experiments. Consequently, in the main538

paper, we primarily conduct experiments using the539

SAE from the Gemma Scope series (Lieberum540

et al., 2024). Specifically, we use the gemma-scope-541

9b-it-res-canonical SAE, which is trained on activa-542

tions from the 9th layer of the Gemma 2 9B Instruct543

model. This SAE features an overcomplete latent544

space with 131,000 dimensions. Additionally, in545

Appendix D.3, we extend our experiments to an546

SAE trained on the LLaMA 3 8B Instruct model to547

evaluate the generalizability of our method across548

different instruction-tuned LLMs. All experiments549

are performed on an A100 SXM4 GPU with 80 GB550

of memory. For experiments involving randomness,551

we fix the random seed at 42 to ensure reproducibil-552

ity. Additionally, we evaluate our approach on the553

same SAEs trained on activations from the 20th554

and 31st layers of the Gemma 2 9B Instruct model.555

Table 3: Empirical analysis of SAE activations. “Avg.”
denotes the average number of non-zero latent activa-
tions per input.

Baseline GradSAE

Activation Avg. 103.41
50% Avg. 51.46
Cross TopK Overlap 18.06%
Cross BottomK Overlap 0.33%
Inner TopK Overlap 89.91% 50.46%
Inner BottomK Overlap 92.17% 0.15%

D More Experiment Results556

D.1 Statistic Analysis557

In this section, we empirically analyze and com-558

pare the activated latents identified by the Base-559

line and GradSAE. As shown in Table 3, both560

approaches yield, on average, approximately 103561

non-zero latent activations per example in the SAE562

activation. The average value of 50% (defined in563

Section 3.1.2) is approximately 51. To measure the564

overlap between the two methods, we compute the565

cross overlap between the TopK (K = 50%) sets566

selected by Baseline and GradSAE. We observe567

that, on average, only 18.06% of the latents in the568

Baseline’s TopK set are also present in GradSAE’s569

TopK set. This suggests that many latents with570

high input-side activation may not correspond to571

high output-side gradients. This highlights input572

Table 4: Results of the perturbation experiment using
SAEs trained on different layers of the LLM. This table
evaluates how the choice of layer affects the effective-
ness of GradSAE and Baseline.

Layer 20 Layer 31
EM F1 EM F1

Baseline
TopK 73.83 82.53 69.52 77.69

BottomK 96.14 99.39 96.73 99.68

GradSAE
TopK 9.06 38.35 6.53 17.38

BottomK 96.81 99.74 96.73 99.80

activation alone does not reliably indicate influence 573

on the output. 574

Interestingly, the cross overlap between the Bot- 575

tomK sets of Baseline and GradSAE is even lower, 576

around 0.33%. This suggests that only a few low- 577

activation latents in the Baseline may still carry 578

some gradient signal, whereas other majority la- 579

tents might have zero gradient. Despite this mini- 580

mal overlap, Table 1 upper section shows that mask- 581

ing either method’s BottomK latents has almost no 582

negative impact on performance. This implies that 583

the vast majority of latents are non-influential to 584

the model’s output, and the number of truly uninflu- 585

ential latents is significantly greater than the value 586

of “50%”. 587

Other than the cross overlap, we also measure 588

the inner TopK and BottomK latent overlap (with K 589

= 50%) across different prompts sharing the same 590

context. Specifically, since each context in our 591

dataset corresponds to multiple questions, we calcu- 592

late the overlap of activated latents across these dif- 593

ferent questions within the same context. As shown 594

in Table 3, the baseline approach exhibits a high 595

degree of overlap: 89.91% for TopK latents and 596

92.17% for BottomK latents. In contrast, GradSAE 597

shows much lower overlaps: 50.46% for TopK and 598

only 0.15% for BottomK. This discrepancy is ex- 599

pected, as the baseline activations are purely input- 600

driven and reflect prompt-level similarity. Since 601

prompts with the same context are textually simi- 602

lar except for minor changes in the question, their 603

activations tend to be similar as well. However, 604

GradSAE’s activations are guided by both the in- 605

put and the output gradient. This gradient signal 606

selectively filters out latents that do not influence 607

the final prediction, leading to more diverse and 608

dynamic activation patterns. These findings fur- 609

ther reinforce our earlier results, demonstrating 610

that GradSAE is more effective in identifying truly 611

influential latents that contribute to model output. 612
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Table 5: Results from the perturbation experiment using SAE trained on the LLaMA 3 8B Instruct model. This
table evaluates the generalization ability of GradSAE.

K = 1 K = 10 K = 50%
EM F1 EM F1 EM F1

Baseline
TopK 88.57 95.97 80.02 88.73 65.71 78.94

BottomK 100.0 100.0 97.14 99.78 97.14 99.78

GradSAE
TopK 65.71 79.24 58.14 72.98 48.57 60.99

BottomK 100.0 100.0 97.14 99.78 97.14 99.78

D.2 Different Layer613

While the main experiment focused on an SAE614

trained on layer 9 of Gemma 2 9B Instruct model,615

Lieberum et al. (2024) also developed SAEs for616

layers 20 and 31. To investigate the impact of the617

choice of layer on GradSAE, we repeated our first618

experiment using SAEs from these different layers.619

Specifically, we compared the effects of masking620

the TopK versus BottomK latents for both Baseline621

and GradSAE, using K = 50%. The results, pre-622

sented in Table 4, reveal two key findings. First,623

consistent with our previous results (Table 1 upper624

section), masking the TopK latents harms model625

performance more than masking BottomK latents626

for both methods across all layers (9, 20, 31). This627

reinforces our previous idea that not all activated628

latents have the same influence on the model out-629

put.630

Second, we observe differing trends between the631

methods across layers. For the Baseline method,632

the performance gap between TopK and BottomK633

masking decreasing at deeper layers (comparing634

layer 9 vs. 20 vs. 31). This suggests that latents635

activated solely on input becomes less effective at636

influencing outputs in later layers. However, for637

GradSAE, the significant performance gap between638

TopK and BottomK masking is maintained across639

all layers. This highlights GradSAE’s robustness640

to layer choice, likely because it selects latents641

based on both input activation and output gradients.642

These results further validate GradSAE’s ability643

to identify latents truly influential to the model’s644

output.645

D.3 Different SAE646

In addition to experiments on the Gemma 2 9B647

Instruct model, we also evaluated our first experi-648

ment setup using an SAE trained on the LLaMA 3649

8B Instruct model. Specifically, we use the llama-650

3-8b-it-res-jh SAE, which was trained on activa-651

tions from the 25th layer and features a latent space652

with 65,536 dimensions. In this setting, we set 653

K ∈ {1, 10, 50%}, where K = 50% corresponds 654

to approximately 26 latents, given that the llama- 655

3-8b-it-res-jh SAE activates around 52 latents per 656

token on average. As shown in Table 5, the perfor- 657

mance trends are consistent with our main exper- 658

iment that masking the TopK latents identified by 659

GradSAE results in a substantial drop in model per- 660

formance, whereas masking the BottomK latents 661

has negligible impact. While the Baseline method 662

also exhibits this general trend, the performance 663

gap between TopK and BottomK masking is no- 664

tably smaller compared to GradSAE. These results 665

further support RQ2, demonstrating that GradSAE 666

can effectively identify the most influential latents 667

even when applied to different SAEs trained on 668

different instruction-tuned LLMs. 669

E Related Works 670

E.1 Sparse AutoEncoder 671

SAEs have emerged as a widely used and highly 672

promising tool for interpreting the internal mecha- 673

nisms of LLMs (Cunningham et al., 2023; Bricken 674

et al., 2023; Gao et al., 2025; Rajamanoharan et al., 675

2024b). An SAE is a neural network framework 676

designed to learn an overcomplete and sparse rep- 677

resentation of model activations, which helps dis- 678

entangle the superimposed features within LLMs 679

(Elhage et al., 2022). This directly addresses the 680

polysemanticity problem, where a single neuron 681

responds to multiple unrelated concepts. Tradi- 682

tionally, training a SAE involves balancing recon- 683

struction fidelity with strong sparsity constraints, 684

ensuring that only a small subset of latents activate 685

for any given input. As a result, SAEs can extract 686

more interpretable, monosemantic features, offer- 687

ing a clearer and more human-understandable view 688

of LLM internal behaviors. 689

Beyond the traditional SAE, a variety of SAE 690

variants have been proposed to further enhance in- 691
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terpretability, improve reconstruction quality, or692

optimize training efficiency. These advancements693

can be broadly categorized into two areas: architec-694

tural improvements and training strategy improve-695

ments (Shu et al., 2025). In terms of architectural696

improvements, models such as Gated SAE (Raja-697

manoharan et al., 2024a), TopK SAE (Gao et al.,698

2025), Batch TopK SAE (Bussmann et al., 2024),699

ProLU SAE (Taggart, 2024), JumpReLU SAE (Ra-700

jamanoharan et al., 2024b), and Switch SAE (Mu-701

dide et al., 2024) introduce modifications to the ac-702

tivation mechanisms (e.g., TopK selection or gated703

activations) to better enforce sparsity and refine704

feature selection. On the other hand, improvements705

in training strategies include approaches like Layer706

Group SAE (Ghilardi et al., 2024), Feature Choice707

SAE (Ayonrinde, 2024), Mutual Choice SAE (Ay-708

onrinde, 2024), Feature Aligned SAE (Marks et al.,709

2024), and End-to-end SAE (Braun et al., 2025).710

These methods enhance feature selection, align-711

ment, and training efficiency while preserving the712

core architecture of traditional SAEs. In this paper,713

GradSAE introduces a training-free approach that714

leverages output gradients falling under architec-715

tural improvements.716

E.2 Model Steering717

SAEs have emerged as a powerful tool not only718

for interpreting the internal mechanisms of LLMs719

but also for steering their behavior, since SAEs720

can identify distinct, human-interpretable features721

within LLMs. Once these features are identified,722

interventions can be performed by activating or723

suppressing the corresponding latents during in-724

ference. Several recent studies have explored and725

enhanced the use of SAEs for steering LLMs. SAIF726

(He et al., 2025) proposes a framework for inter-727

preting instruction-following capabilities in LLMs728

by identifying instruction-relevant SAE features729

and demonstrates how manipulating these features730

can effectively steer instruction-following behav-731

ior. SAE-TS (Chalnev et al., 2024) introduces a732

method to construct steering vectors that precisely733

target specific SAE features while minimizing unin-734

tended side effects, leading to more controlled and735

coherent model outputs. SpARE (Zhao et al., 2024)736

leverages SAE representations to detect and resolve737

context-memory knowledge conflicts at inference738

time, enabling LLMs to selectively use contextual739

or parametric knowledge. Mutual Information-740

Based Explanations (MIE) (Wu et al., 2025) ad-741

dresses frequency bias in SAE feature interpreta-742

tions and proposes runtime steering strategies that 743

adjust feature activations based on more meaning- 744

ful, discourse-level explanations. FGAA (Soo et al., 745

2025) further refines activation steering by optimiz- 746

ing over SAE latents, creating highly targeted and 747

interpretable steering vectors that improve steer- 748

ing effectiveness while maintaining output quality. 749

SSAEs (Joshi et al., 2025) propose a new unsuper- 750

vised method that learns sparse, identifiable latent 751

representations of multi-concept shifts, enabling 752

accurate concept-level steering without requiring 753

curated supervision. However, these approaches 754

implicitly assume a direct correspondence between 755

latents activated solely by the input and the aspects 756

of the output they aim to steer. In contrast, Grad- 757

SAE challenges this assumption by arguing that 758

the model’s output must also be considered when 759

identifying influential latents for steering. By in- 760

corporating output-side gradient information, Grad- 761

SAE provides a more accurate attribution of which 762

latents truly drive model outputs, leading to more 763

effective and reliable steering interventions. 764
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