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Abstract
The techniques of data-driven backmapping from
coarse-grained (CG) to fine-grained (FG) repre-
sentation often struggle with accuracy, unstable
training, and physical realism, especially when ap-
plied to complex systems such as proteins. In this
work, we introduce a novel iterative framework
by using conditional Variational Autoencoders
and graph-based neural networks, specifically de-
signed to tackle the challenges associated with
such large-scale biomolecules. Our method en-
ables stepwise refinement from CG beads to full
atomistic details. We outline the theory of iter-
ative generative backmapping and demonstrate
via numerical experiments the advantages of mul-
tistep schemes by applying them to proteins of
vastly different structures with very coarse rep-
resentations. This multistep approach not only
improves the accuracy of reconstructions but also
makes the training process more computationally
efficient for proteins with ultra-CG representa-
tions.

1. Introduction
Coarse-grained (CG) models simplify complex molecular
systems by clustering atoms into larger particles, known
as CG beads, effectively eliminating certain internal de-
grees of freedom (Liwo et al., 2021; Noid, 2013). This
reduction leads to fewer interactions, resulting in more effi-
cient computational models that enable spatial and temporal
scales inaccessible with fine-grained (FG) simulations.By
internally contracting and consolidating the intricacies of
atomic interactions, CG models enable simulations that can
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provide more meaningful and realistic insights into phenom-
ena at mesoscopic and macroscopic scales (Zhang et al.,
2024). This trade-off, however, comes with the challenge
of preserving essential molecular characteristics in the CG
representation, such as the structure, dynamics, and ener-
getics of the FG system. Consequently, CG models must
be carefully designed to retain these core properties while
gaining computational efficiency (Fu et al., 2022). Such
models are invaluable in many fields including biomolec-
ular research and materials science, where exploring long-
timescale processes is critical but computational resources
are often limited.

While CG models greatly enhance computational efficiency,
significant challenges emerge when reconstructions of the
original atomic details are desired. The results of CG simu-
lations often have to be converted back to the FG scale in or-
der for several properties and interatomic interactions to be
investigated through atom-level representations. Backmap-
ping (or de-coarsening or inverse coarsening) is a process
which seeks to restore atomistic resolution from the CG
representation.

This problem has been tackled in several ways in the past.
One of the earliest successful attempts was given by Wasse-
naar et. al (Wassenaar et al., 2014): initial placement of the
atoms followed by force field relaxation restores interatomic
distances. However, this method is very time-consuming
because of the need to run all-atom MD. Recently, several
ML-based solutions have been proposed. A solution using
conditional Generative Adversarial Networks (Stieffenhofer
et al., 2021; 2020) was proposed, but is limited to condensed
phase systems and uses voxelization. The idea of voxeliza-
tion also appeared in a model trained to de-coarsen entire
trajectories by conditioning the coordinate prediction on the
current CG structure and the previous-timestep FG structure
(Shmilovich et al., 2022). Later advancements using condi-
tional Variational Autoencoders (Wang et al., 2022; Yang
& Gómez-Bombarelli, 2023) introduced equivariant opera-
tors with the use of the appropriate graph neural networks
(GNN). Lately, the most recent trends include diffusion mod-
els (Han et al., 2024; Jones et al., 2023; Liu et al., 2023), but
they are usually trained and tested on Cα traces or on CG
resolutions like MARTINI (Marrink et al., 2007), CABS
(Koliński, 2004), UNRES (Liwo et al., 2014), meaning they
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Figure 1: An illustration of the multistep generative backmapping scheme. Starting from a UCG structure, we restore
atomistic resolution using independent priors (blue networks) and decoders (red networks), one resolution-step at a time.

restore the atomistic details from the residue-based coarse-
graining (RBCG) resolution or a higher one – more than
one bead per residue. On the other hand, there are models
designed to work for arbitrary CG resolutions (Wang et al.,
2022; Li et al., 2024), but they are tested only on either
small molecules, or larger molecules with high-resolution
CG. Furthermore, previous work emphasizes the chemical
transferability of some models (Stieffenhofer et al., 2021;
Yang & Gómez-Bombarelli, 2023; Liu et al., 2023).

Despite the recent advancements and their applicability to
a variety of CG resolutions, little attention has been given
to ultra-coarse graining (UCG), a regime in which each CG
bead corresponds to tens or even hundreds of atoms (Dama
et al., 2013). The speedup of UCG simulations is more
pronounced (Yu et al., 2021; Yesudasan et al., 2018; Liang
et al., 2023), and work on this class of applications, where
the current methods underperform, manifests our focuses.

Inspired by super-resolution imaging (Saharia et al., 2022),
we introduce iterative backmapping as a practical tool to
alleviate the weaknesses of the previous methods on such
CG representations. We develop a theoretical formulation
and demonstrate the benefits of our scheme. We verify our
hypothesis experimentally by applying a 2-step generative
backmapping scheme to proteins with different structural
and functional characteristics. An illustration of the mul-
tistep scheme is depicted in Fig. 1. When compared to
the baseline CGVAE model developed by Wang and Bom-
barelli (Wang et al., 2022), the resulting structures are more
accurate in restoring the FG structure’s geometry and in
conforming with the rules of basic science.

Our contributions can be summarized as follows:

• We identified the weaknesses of existing generative
backmapping techniques — single-step schemes — on
proteins with UCG representation.

• We developed a theoretical formulation for iterative
generative backmapping of proteins using variational
inference, and derive the objective’s lower bound, i.e.,
the loss function of the model.

• We demonstrated numerically, through 2-step schemes,
the advantages over the state-of-the-art 1-step baselines

with a variety of metrics on two very different proteins.

2. Theory
Consider a molecule with n0 atoms whose coordinates are
x0 ∈ Rn0×3. Let k be a positive integer, such that xk ∈
Rnk×3 is the final CG representation with nk beads, which
we aim to reconstruct. As shown in Fig. 2, we consider k
coarsening operators Γ0,Γ1, . . . ,Γk−1 such that

Γi(xi) = xi+1 ∈ Rni+1×3,

leading to progressively “coarser” CG representations
x1,x2, . . . ,xk with varying CG bead numbers n0 > n1 >
n2 > · · · > nk.

We define the ratio of the number of residues to the num-
ber of CG beads (# residues / # CG beads) as the average
CG bead size and denote it by ρ. Notice that for higher
k, ρ is higher, since each bead represents—on average—a
bigger number of residues. For reference, ρ = 1 is equiv-
alent to RBCG, while ρ ≫ 1 corresponds to some UCG
representations.

Given this formulation, xk is the result of applying succes-
sive coarsening operators to the FG structure:

xk = (Γk−1 ◦ Γk−2 ◦ . . . ◦ Γ1 ◦ Γ0)(x0).

We define and decompose the conditional distribution
p(x0|xk) as:

p(x0|xk) =
k−1∏
i=0

pi(xi|xi+1).

The distribution is factorized into multiple conditional dis-
tributions, considering the intermediate CG representations.
The Markov property, which dictates conditional indepen-
dence between a representation xi and its non-immediate
coarser versions xj , j > i + 1, is required for this factor-
ization to hold. In backmapping, given a representation
xi of some resolution, the property implies that any addi-
tional knowledge of non-adjacent coarse representations
xj , j > i + 1 does not provide more information about
xi than the adjacent coarse representation xi+1. For in-
stance, in Fig. 2, xk−1 is more informative than xk. In
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Figure 2: An FG conformation x0 with k progressively coarser and less informative CG conformations xi. The average CG
bead size ρ is increasing.

principle, this property is not guaranteed, which can be
rectified by defining appropriate coarsening operators Γi
through topology-conserving algorithms to preserve the FG
molecule’s geometry (Wang et al., 2022; Freddolino et al.,
2009; Arkhipov et al., 2006; Wang & Gómez-Bombarelli,
2019).

First, we focus on pi(xi|xi+1), the probability of recon-
structing a true, high-resolution xi given an input CG xi+1.
Employing variational inference (Blei et al., 2017) and fol-
lowing (Wang et al., 2022), we parametrize the conditional
distribution by introducing the approximate posterior dis-
tribution qϕi(zi|xi,xi+1) with parameters ϕi, where zi de-
notes a latent space variable. Also, we describe the original
conditional distribution as an integral over the latent space
with

pi(xi|xi+1) =

∫
pθi(xi|xi+1, zi) pψi(zi|xi+1) dzi,

where the integrand distributions have parameters {θi, ψi}.
Due to the complexity and high dimensionality of the FG
conformation space, pi(xi|xi+1) is intractable. So, when
designing the de-coarsening operator, instead of maximiz-
ing the log-likelihood log pi(xi|xi+1), we maximize the
evidence lower bound (ELBO):

log pi(xi|xi+1) ≥ E qϕi (zi|xi,xi+1)

[
log pθi(xi|xi+1, zi)

]
+ DKL

(
pψi(zi|xi+1)

∥∥ qϕi(zi|xi, xi+1)
)
,

(1)

where we used Jensen’s inequality, andDKL is the Kullback–
Leibler divergence, a measure of the statistical distance be-
tween two distributions. The derived ELBO, consisting of a
reconstruction term and a regularization term, can be maxi-
mized with the relevant pθi(xi|xi+1, zi), pψi(zi|xi+1), and
qϕi(zi|xi,xi+1) (by using neural networks) to be illustrated
in Section 3.

Following the above inequality, we derive the k-step
backmapping ELBO:

log p(x0|xk) ≥
k−1∑
i=0

(
E qϕi (zi|xi,xi+1)

[
log pθi

(
xi|xi+1, zi

)]
+ DKL

(
pψi

(
zi|xi+1

) ∥∥ qϕi(zi|xi, xi+1

)))
.

(2)
where the new ELBO is split into k independent compo-
nents, each consisting of a reconstruction term and a reg-
ularization term. Due to the terms’ independence, we can
design k models, each trying to reconstruct xi from xi+1.
We can thus set up k independent optimization processes to
approximate the ELBO of log p(x0|xk) for a k-step scheme
with the following apparent advantages:

• Optimized utilization of processing power and
RAM: Even with high-performance computing and
modern GPUs, the demands for RAM are high in the
case of a single model restoring the FG resolution from
a CG structure with very few beads, particularly due to
expensive operations on graphs.

• Varied reconstruction strategies: We get to look at
the k tasks separately and introduce variations to the
network architectures, the inductive bias, or even the
objective functions. This allows adjusting the model to
properties aligned with each scale independently and,
likely, more efficiently.

• Enhanced detection of errors: A lumped single-step
model lacks the ability to reveal model or implementa-
tion errors, unlike the k-step model that progressively
advances to show all details including errors.

• Reduced and smoother search spaces: It is less likely
for each task to be trapped in local minima during
training because the search space for each problem is
reduced, and it can be explored more thoroughly and
differently.

Overall, k-step backmapping, essentially a “divide and con-
quer” strategy, divides a challenging task into k relatively
easier sub-tasks and then “conquers” them. However, the
cost of the extra human and computing resources in RAM
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and floating-point operations in executing the k optimization
processes must be well balanced with the gain of accuracy
of the k-step backmapping scheme. Choosing a proper k
for the “most gain and least pain” requires a given task and,
in our work, schemes with k = 2, i.e., 2-step backmapping
schemes, allow demonstration of the schemes’ features.

3. Method
The theoretical framework, especially the ELBO derivation,
has indicated the choice of architecture and form of the
objective function. After elaborating on the design of 1-step
schemes, including successful implementations by other
groups, we describe our multistep method.

3.1. Relevant architectures

The variational inference and the derivation of the ELBO
evoke the use of a conditional Variational Autoencoder
(c-VAE) (Sohn et al., 2015), an extension of the original
VAE (Kingma & Welling, 2013). The c-VAEs are used in
semi-supervised learning for approximating distributions
conditioned on some auxiliary variables. In this case, the
low-resolution CG representation we aim to reconstruct is
considered the auxiliary variable. Following the examples
of recent backmapping solutions with c-VAEs (Wang et al.,
2022; Yang & Gómez-Bombarelli, 2023) we employ neural
networks pθi(xi|xi+1, zi), pψi(zi|xi+1), qϕi(zi|xi,xi+1)
with parameters {θi, ψi, ϕi} to approximate the correspond-
ing conditional distributions. They are the decoder, prior,
and encoder, respectively, following the conventional ter-
minology. The encoder approximates a lower dimensional
posterior distribution (xi,xi+1)→ zi, shaping it as a multi-
variate Gaussian with learnable mean vector and covariance
matrix. Similarly, during the inference stage—when the
higher resolution information is unknown—the prior ap-
proximates the posterior distribution xi+1 → zi. With the
KL divergence in Eq. 1, we make sure that the encoder and
the prior give rise to similar latent representations. Finally,
a sample of the latent space passes through the decoder to
complete the reconstruction (xi+1, zi)→ xi.

Additionally, molecular representations necessitate graph-
based algorithms when designing the encoder, prior, and
decoder. In order to accurately predict interatomic forces
and other physical and geometric properties at the quantum,
atomic, and molecular levels, researchers (Gilmer et al.,
2017; Gasteiger et al., 2020; Schütt et al., 2021; Satorras
et al., 2021; Schütt et al., 2017; Unke & Meuwly, 2019) have
developed several neural models for graph-structured data,
and their architectures proved versatile across diverse tasks
(Reiser et al., 2022). For instance, Message Passing Neural
Networks (MPNNs) (Gilmer et al., 2017) predicted the local
minima in the energy landscape of molecules (Mansimov
et al., 2019) as well as the primary structures of conforma-

tions of alpha carbon traces (Dauparas et al., 2022), while
the continuous-filter convolution network SchNet enabled
the correct derivation of CG force fields (Husic et al., 2020).
These same architectures can function as the backbone for
the various components of the c-VAE.

3.2. Backmapping solutions and 1-step baseline

Our reference 1-step scheme is CGVAE (Wang et al., 2022),
which uses a c-VAE and the variational inference framework
with k = 1, and such a choice has a compelling ratio-
nale. First, this model, equivariant under translations and
rotations, is probabilistic, and thus the same input CG can
generate diverse—while accurate and natural—FG outputs.
Unlike some of its predecessors (Stieffenhofer et al., 2021;
2020), it is not limited to condensed phase systems. Second,
among the models handling CG representations of vary-
ing resolutions, this model is much coarser than the typical
MARTINI or RBCG, and is among the most accurate. The
encoder and prior consist of continuous convolution steps
with SchNet-like models (Schütt et al., 2017). In particu-
lar, they use MPNNs (Gilmer et al., 2017) with radial basis
transformations (Gasteiger et al., 2020) to process informa-
tion at the FG and CG level, as well as pooling operations to
map numerical representations from the FG to the CG space.
Similarly, the decoder is designed to process the CG confor-
mation and samples of the latent space through convolutions
and lifting operations that ensure equivariance. The model’s
objective function is based on the ELBO of Eq. 1, in which
the reconstruction term Eqϕ0 (z0|x0,x1) log pθ0(x0|x1, z0) of
the right-hand side is computed as a weighted sum of the
MSD between the true x0 and the generated x̂0, and a term
penalizing incorrect bond lengths of adjacent atoms in the
generated graph.

Another model of interest is GENZPROT (Yang & Gómez-
Bombarelli, 2023), which, resembling CGVAE with subtle
differences, is uniquely suited for specific backmapping
tasks. Like CGVAE, GENZPROT employs a c-VAE frame-
work and leverages GNNs to encode structural informa-
tion, incorporating node embeddings with both atomic and
residue-type information. However, it differs by adopting
an internal coordinate-based representation, predicting bond
lengths, bond angles, and torsion angles instead of Cartesian
coordinates. This approach preserves physical plausibility
and chemical connectivity, a crucial feature for proteins. Ad-
ditionally, GENZPROT introduces a hierarchical message-
passing scheme that operates on three levels: atom–atom,
atom–residue, and residue–residue interactions, capturing
both short and long-ranged dependencies. Its key strength
lies in its transferability, achieved through training on di-
verse protein structures, enabling it to generalize across a
wide range of protein structures and environments. While
GENZPROT excels in reconstructing FG structures from
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Algorithm 1 Backmapping a protein in k steps (inference
phase)

Input: Γ0,Γ1, . . . ,Γk−1; trained networks
pθi(xi|xi+1, zi) and pψi(zi|xi+1)
xk ← (Γk−1 ◦ · · · ◦ Γ0)(x0)
for i = k − 1 down to 0 do

Sample zi ∼ pψi
(
zi|xi+1

)
x̂i ∼ pθi

(
xi|xi+1, zi

)
xi ← x̂i

end for

RBCG mappings, it is not compatible with very coarse map-
pings, limiting the scope of its applications. Nevertheless,
its ability to provide chemically accurate and reliable FG
structures makes it an excellent tool we see in parallel to our
proposed multistep schemes.

3.3. k-step schemes

We describe how to build the 2-step scheme, which can be
scaled to any multistep scheme. Starting from a very coarse
representation x2, we use a c-VAE model to predict the
coordinates of the alpha carbon (Cα) traces of the molecule
x1, instead of the atomistic representation. In the absence
of a real chemical structure with covalent bonds between
atoms, but artificial bond–graph edges between beads or Cα
atoms, we use a CGVAE, because it is designed to work
with arbitrary CG mapping protocols. During the second
step, we restore the atomistic resolution x0 given the gen-
erated RBCG representation x1. To take advantage of the
uniformity of amino acids as protein building blocks, as
well as the chemical transferability of the RBCG→ FG re-
construction (Yang & Gómez-Bombarelli, 2023), we choose
GENZPROT for this task. Because proteins can be in mul-
tiple protonation states, we ignore hydrogens and focus on
reconstructing heavier atoms. In total, we combine CG-
VAE’s flexibility with GENZPROT’s chemical specificity.
Both models could be replaced by similar c-VAE models if
they are more accurate or suitable for each of the two tasks.

Given x0,x1,x2, we separately and simultaneously design
two operators, one for each step, namely the x2 → x1 and
x1 → x0 reconstructions. Thus, the search space of each
optimization task is simplified and can be explored diversely.
For example, during RBCG→ FG, we penalize unphysical
bond, angle, or dihedral magnitudes, incorporating physics
and chemistry insights into the training, while using amino
acid types as node embeddings. Moreover, we relax the
computational and memory limitations; each model can
be deeper, allowing it to focus on more details for better
optimization, as escapes from local minima are unrealistic
structures. Their synergistic impact yields a more precise
operator. Figure 1 illustrates the more general k-step recon-

struction process, while Algorithm 1 outlines the steps.

3.4. Evaluation Metrics

We adapt the following metrics to assess the performance
of a given scheme:

• Reconstruction Accuracy: The accuracy is quantified
with the RMSD between the true x0 and the generated
x̂0 FG structures computed using only the n0 heavy
(non-hydrogen) atom coordinates:

RMSD(x0, x̂0) =

√
∥x0 − x̂0∥22

n0
,

averaged over multiple samples. We ignore hydrogens
to account for the multiple protonation states of pro-
teins.

• Sample Quality: We quantify how accurately the
bond-graph is restored during backmapping. We com-
pute the Graph Edit Distance (Sanfeliu & Fu, 1983) of
the true G and generated Ĝ bond graph, and divide it
by the number of edges, to normalize the value:

λ(G, Ĝ) =
GED(G, Ĝ)

|E|
,

given the bond graphs G = (V,E) and Ĝ = (V̂ , Ê).
A lower GED means that it takes fewer edit operations,
i.e., vertex/edge insertions/deletions/substitutions, to
transform one graph into another, accounting for the
total number of edges |E| for normalization purposes.

• Steric Clash Score: A steric clash occurs when two
non-bonded atoms of the protein are unnaturally close
to each other — such a positioning would normally
lead to a strong repulsion force. When it comes to
backmapping, the fewer the steric clashes, the more
realistic the resulting conformation. If the distance be-
tween any two heavy (non-hydrogen) sidechain atoms
from neighboring residues falls within a threshold dis-
tance, then we report a steric clash. The threshold dis-
tance is set to 1.2 Å, as in (Yang & Gómez-Bombarelli,
2023). We compute the percentage of residues with a
steric clash.

For each setup, we carry out statistical analysis, and re-
port the mean and standard deviation of each metric by
performing independent experiments. We also conduct vi-
sual assessment of the secondary structure of reconstructed
conformations by examining the Ramachandran plot (Ra-
machandran et al., 1963) to illustrate the distributions of
the main backbone dihedrals. A strong match between the
Ramachandran plots of the true and generated FG structures
signifies a more accurate backmapping scheme.
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4. Implementation
We apply the 2-step iterative scheme to two proteins and
compare it with CGVAE, our 1-step baseline. We choose
CGVAE because it is probabilistic, equivariant under trans-
lations and rotations, and the most accurate model applied
to UCG protein representations.

4.1. Data

The first molecule we apply the models to is the eukaryotic
translation initiation factor 4E, namely the protein eIF4E
(PDB: 4TPW (Papadopoulos et al., 2014)). The structure we
use has 181 residues, and long trajectories of the molecule
can be found in (Hasegawa et al., 2024). Also, we choose
mappings with very few beads, specifically n2 = 10, 19, 50.
Considering the number of residues in the molecule, this cor-
responds to average CG bead sizes ρ = 18.10, 9.53, 3.62,
respectively. The second molecule is a structural ensem-
ble of a Nuclear Localization Signal (NLS 99–140) peptide
(Fuertes et al., 2017), labeled as PED000151 in the Pro-
tein Ensemble Database (Ghafouri et al., 2024). It has 48
residues and was reduced to n2 = 5, 8 beads, leading to
average CG bead sizes of ρ = 9.60, 6.00, respectively. In
contrast, previous works (Wang et al., 2022; Yang & Gómez-
Bombarelli, 2023; Li et al., 2024) have reported CG bead
sizes ranging from 0.33 to 1.67.

We choose two proteins with different structural and dynami-
cal features. eIF4E is globular, compact, with a more limited
range of conformations. On the other hand, PED00151 is
an Intrinsically Disordered Protein (IDP), meaning its three-
dimensional structure is not stable under normal conditions.
The radius of gyration Rg (Lobanov et al., 2008) of the
two proteins over the course of 1µs equilibrium simulations
shows their flexibility or lack thereof. More specifically,
with a mean Rg of 1.627 nm and a standard deviation of
0.027, as opposed to a mean of 2.152 nm and a larger stan-
dard deviation of 0.285, eIF4E is clearly more compact than
the flexible PED00151.

4.2. Training

Prior to model training, we collect three independent 1µs
simulations of eIF4E from (Hasegawa et al., 2024), leading
to a total of 3000 FG conformations. Similarly, we collect
9 746 simulation frames of the PED000151e000 ensemble
from (Yang & Gómez-Bombarelli, 2023). We use AUTO-
GRAIN (Wang et al., 2022) to form various CG operators:

x0→x2, x0→x3, x1→x2, x1→x3, and x2→x3.

AUTOGRAIN’s objective function prevents distant beads
in a high-resolution representation from being assigned to
the same low-resolution CG bead. This way, we create
geometry-conserving CG mapping operators with the speci-
fied number of beads. Moreover, we form the corresponding

x0 → x1 mappings and representation x1 using MDTraj
(McGibbon et al., 2015) by selecting the alpha carbon Cα
of each residue. By visual inspection, we claim that knowl-
edge of the coarser representation does not provide more
information than the RBCG representation. This way we
can invoke the Markov property and take advantage of con-
ditional independence, as described in Section 2. For a more
detailed look at the CG representations, plots are provided
in Appendix G.

We train multiple CGVAE-like models with a
train–validation–test split (80-10-10). In a similar
way, GENZPROT, trained on a variety of proteins (Yang
& Gómez-Bombarelli, 2023), is fine-tuned on eIF4E and
PED000151 structures with an additional split on the
corresponding datasets. We set a number of epochs with
early stopping and an adaptive learning-rate scheduler,
in case the validation-loss improvement stagnates. To
search the hyperparameter space efficiently and extensively
we use the Weights and Biases software (Biewald, 2020)
with the hyperband algorithm (Li et al., 2018). For the
2-step scheme, the batch size was set to 2. Due to memory
overload, the batch size for the 1-step scheme was set to 1
with gradient accumulation (Hermans et al., 2017). You can
find detailed tables with the hyperparameters corresponding
to each condition in Appendix D.

We train our models on a high-performance computing clus-
ter. For 1-step backmapping, we use two NVIDIA A100
Tensor Core 80 GB GPUs with an Intel Haswell CPU due
to the heavy memory and computational load, mostly origi-
nating from operations on graphs. We incorporate data par-
allelization (Li et al., 2020) in the original PyTorch (Paszke
et al., 2019) code. For 2-step backmapping, the memory
and computational load from the UCG→ RBCG reconstruc-
tion is much lower, so we only use one NVIDIA Tesla K80
24 GB GPU with an Intel Ice Lake CPU for each step.

4.3. Results

To evaluate the performance of our proposed iterative
backmapping schemes, we conduct a comparative analy-
sis against the 1-step CGVAE baseline using two proteins
of different structural characteristics: the globular protein
eIF4E and the intrinsically disordered protein PED00151.
We apply the 2-step backmapping scheme to both proteins.
The results are reported in Tables 1 and 2 and are illustrated
in Fig. 3 — note that the vertical axis for sample quality
and steric-clash scores is in logarithmic scale. We record
the mean and standard deviation from three experiments
with different random seeds. We observe consistent im-
provements across multiple reconstruction metrics when
employing multistep schemes.
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Table 1: Results on the protein eIF4E.

METRIC SCHEME 18.10 (10) 9.53 (19) 3.62 (50)

RECONSTRUCTION ACCURACY RMSD (Å) 1-STEP 7.563 ± 0.027 2.718 ± 0.018 1.364 ± 0.024
2-STEP 1.503 ± 0.045 1.337 ± 0.123 0.997 ± 0.111

SAMPLE QUALITY (NORMALIZED GED) 1-STEP 49.562 ± 0.437 1.476 ± 0.009 0.301 ± 0.032
2-STEP 0.016 ± 0.002 0.012 ± 0.001 0.009 ± 0.001

STERIC CLASH SCORE (%) 1-STEP 99.999 ± 0.001 23.030 ± 1.287 3.144 ± 0.057
2-STEP 4.264 ± 0.728 3.733 ± 0.809 1.716 ± 0.315

Table 2: Results on the protein PED00151.

METRIC SCHEME 9.60 (5) 6.00 (8)

RECONSTRUCTION ACCURACY RMSD (Å) 1-STEP 7.488 ± 0.129 5.707 ± 0.244
2-STEP 5.368 ± 0.059 4.118 ± 0.066

SAMPLE QUALITY (NORMALIZED GED) 1-STEP 29.665 ± 0.753 15.000 ± 2.799
2-STEP 0.330 ± 0.015 0.197 ± 0.010

STERIC CLASH SCORE (%) 1-STEP 99.970 ± 0.032 99.099 ± 0.799
2-STEP 25.611 ± 0.258 13.631 ± 0.474

Quantitative Evaluation We assess reconstruction accu-
racy using heavy-atom RMSD, sample quality via normal-
ized GED, and structural plausibility through the steric clash
score. For eIF4E, the 2-step scheme significantly reduces
the RMSD, especially at the highest CG bead size (10 beads,
ρ = 18.10), where the RMSD drops from 7.56 Å (1-step)
to 1.50 Å (2-step). Improvements are also consistent at finer
resolutions (ρ = 9.53 and 3.62), with RMSD values falling
below 1.00 Å for the finest CG. This performance gain con-
firms that intermediate CG representations help guide the
reconstruction towards more accurate FG configurations.
The sample quality improves by more than an order of mag-
nitude across all resolutions; for instance, at ρ = 18.10
it decreases from 49.56 to 0.016. The steric-clash score
demonstrates a pattern similar to the other metrics, indicat-
ing that intermediate resolutions lead to more chemically
plausible reconstructions.

For PED00151, the more flexible IDP, results show a clear
but more moderate improvement with the 2-step scheme.
The RMSD decreases from 7.49 Å (1-step) to 5.37 Å (2-step)
at ρ = 9.60 and from 5.71 Å to 4.12 Å at ρ = 6.00. These
gains are less dramatic than in eIF4E, highlighting the inher-
ent challenges in backmapping disordered proteins. In terms
of steric clashes, PED00151 shows extremely high scores
with the 1-step baseline (nearly 100 %), indicating severe
structural artifacts. The 2-step scheme dramatically reduces
these values to 25.61 % and 13.63 %, respectively, show-
ing that iterative refinement significantly enhances physical
realism.

Notice that, unlike sample quality and steric-clash score,

reconstruction accuracy had a more modest improvement.
This is because normalized GED and steric-clash score per-
centages are structurally binary, whereas RMSD is continu-
ous. Even if atom positions are slightly off in a way that still
contributes to RMSD, correcting just enough to form cor-
rect or remove incorrect bonds dramatically reduces GED.
That is why GED can improve significantly even when
RMSD does not shift much. An example is illustrated in
Fig. 4, where the modest improvement of RMSD(x0, x̂0)
from 5.64 Å for 1-step to 3.65 Å for 2-step actually leads
to a much more realistic structure. This example also raises
questions about the reliability of RMSD as a metric often
used in the literature to quantify structural deviation.

Secondary Structure Recovery We further validate back-
mapping quality by analyzing the Ramachandran plots of
reconstructed FG structures, shown in Appendix C for more
clarity. For eIF4E, the 2-step scheme yields dihedral-angle
distributions that closely match the native FG dataset, par-
ticularly at ρ = 3.62. In contrast, the 1-step scheme fails
to reproduce realistic backbone angles at high ρ, indicat-
ing distorted or unnatural secondary structures. This trend
highlights the necessity of using intermediate resolutions
to preserve features such as alpha helices and beta sheets
during reconstruction.

For PED00151, even the 2-step scheme produces broader
and noisier dihedral angle distributions than those of the
reference FG dataset. This aligns with the nature of IDPs,
where the high entropy of conformational states imposes a
hard limit on reconstruction precision.
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Figure 3: The results for eIF4E (left) and PED00151 (right).
The vertical axis in the bottom two rows is shown on a
logarithmic scale.

Importance of Bead Size and Molecule Properties Our
experiments also reveal that the benefits of multistep
schemes are more pronounced at higher average CG bead
sizes. At lower ρ and for more compact molecules, 1-step
schemes are capable of achieving decent reconstructions
because the task is less ambiguous. For instance, for eIF4E
at ρ = 3.62 all three metrics approach their ideal values, and
the additional step in the 2-step scheme yields only modest
improvements. At coarser resolutions, however, single-step
models struggle owing to their limited capacity and the com-
putational burden of restoring high-resolution detail from
minimal input. Hardware constraints further emphasize this
issue: because of GPU-memory limits we could train only
1-step models with shallow architectures (e.g., batch size =
1, encoder-convolution depth = 1), resulting in a restricted
search space. By contrast, our 2-step scheme enables deeper
networks for each stage, leading to more thorough opti-
mization and a lower risk of convergence to sub-optimal
minima.

5. Conclusion, Limitations, and Future Work
We present a practical framework for improving backmap-
ping from ultra-coarse-grained (UCG) protein representa-
tions using multistep generative models. By decompos-
ing the reconstruction into smaller, intermediate steps, our
method enables deeper, more specialized networks at each
resolution level—reducing memory bottlenecks and improv-

Figure 4: (a) Starting from x2 with n2 = 8, we restore the
FG representation x0 of PED00151 using 1-step and 2-step
schemes. (b) The ground truth x0.

ing accuracy, especially for high CG bead sizes. Compared
to single-step methods, multistep schemes offer not only
better reconstruction metrics but also practical benefits such
as modular design, improved convergence, and easier de-
bugging.

While 2-step backmapping improves structural realism over
direct baselines, challenges remain, especially for IDPs,
where coarse-grained representations carry less recoverable
information. In future work, we aim to implement 3-step
schemes, investigate more thoroughly the effect of inher-
ent flexibility on backmapping success, apply multistep
schemes to more proteins or even other macromolecules, as
well as explore different strategies to accurately reconstruct
disordered proteins or embed additional information into
the reconstruction process when targeting flexible residues.
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A. Table of Notations

Table 3: Explanation of symbols and notation in the paper.

Symbol Meaning

xi Coordinates at step i
ni Number of particles at step i
zi Latent space variable at step i
Γi Coarsening operator at step i
pθi(x) Distribution of x with parameters θi
x̂i Predicted coordinates at step i
p(x|y) Conditional probability of x given y
DKL(p∥q) Kullback–Leibler Divergence of p and q
ρ Average CG bead size in unit of residue count

B. Detailed Derivations
Given two representations xi,xi+1, we derive the Evidence Lower Bound (ELBO):

log pi(xi|xi+1) = log E qϕi (zi|xi,xi+1)

[
pi(xi|xi+1)

qϕi (zi|xi,xi+1)

]
≥ E qϕi (zi|xi,xi+1)

[
log

pi(xi|xi+1, zi) pψi (zi|xi+1)

qϕi (zi|xi,xi+1)

]
= E qϕi (zi|xi,xi+1)

[
log pθi(xi|xi+1, zi)

]
+ E qϕi (zi|xi,xi+1)

[
log

pψi (zi|xi+1)

qϕi (zi|xi,xi+1)

]
= E qϕi (zi|xi,xi+1)

[
log pθi(xi|xi+1, zi)

]
+ DKL

(
pψi(zi|xi+1)

∥∥ qϕi(zi|xi, xi+1)
)
,

(1)

In the second row, we have applied Jensen’s inequality.

Moreover, we can combine multiple ELBO’s to compute a lower bound for log p(x0|xk):

log p(x0|xk) = log

k−1∏
i=0

pi
(
xi|xi+1

)

=

k−1∑
i=0

log pi
(
xi|xi+1

)

≥
k−1∑
i=0

(
E qϕi (zi|xi,xi+1)

[
log pθi

(
xi|xi+1, zi

)]
+ DKL

(
pψi

(
zi|xi+1

) ∥∥ qϕi(zi|xi, xi+1

)))
.

(2)

11



An Iterative Framework for Generative Backmapping of Coarse Grained Proteins

C. Secondary Structure
The Ramachandran plots illustrating the dihedral angle distributions across the true FG and generated/backmapped structures.

Figure 5: Ramachandran plots for different schemes and CG bead sizes: (a) eIF4E, (b) PED00151. The contours correspond
to the true distribution while the color corresponds to the probability density of the (ϕ, ψ) angle combinations across the
backmapped structures.

D. Hyperparameter Tables
We performed hyperparameter optimization using Weights & Biases (Biewald, 2020). For the UCG→RBCG or UCG→FG
reconstructions, we employed CGVAE (Wang et al., 2022), tuned with the hyperband algorithm (Li et al., 2018) to minimize
validation loss. For downstream backmapping (RBCG→FG), we fine-tuned a pretrained GENZPROT, keeping its original
hyperparameters (Yang & Gómez-Bombarelli, 2023).
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Some comments related to the implications of memory overload in 1-step models:

• In 1-step schemes, we used a batch size of 1, with gradient accumulation every 2 steps, leading to an effective batch
size of 2.

• For very coarse CG mappings, convolution depths had to be low.

• The node embedding dimension matches or exceeds the maximum number of mapped FG particles per bead.

Table 4: Hyperparameters for the 1-step backmapping (UCG→ FG) of eIF4E using CGVAE.

# of atoms (FG) n0 = 1488
Dataset size 3000
# of CG beads n1 = 10 n1 = 19 n1 = 50

Hyperparameter Value

Edge feature dimension K 6 6 6
Graph loss weight γ 1.303 29.000 1.188
Encoder Convolution Depth 1 1 1
Prior Convolution Depth 1 1 1
Decoder Convolution Depth 1 4 4
FG cutoff dcut 13.262 14.947 12.865
CG cutoff Dcut 31.738 33.064 23.657
Node embedding dimension F 400 400 400
Batch size 2 2 2
Learning rate 0.000078 0.000064 0.000054
Activation functions swish swish swish
Training epochs 100 100 100
Order for multi-hop graph 3 1 1
Regularization strength β 0.002 0.040 0.002
Factor 0.210 0.131 0.106

Table 5: Hyperparameters for the first step of 2-step backmapping (UCG→ RBCG) of eIF4E using CGVAE.

# of atoms (CG) n1 = 177
Dataset size 3000
# of CG beads n2 = 10 n2 = 19 n2 = 50

Hyperparameter Value

Edge feature dimension K 6 6 6
Graph loss weight γ 0.8014 2.6083 4.3745
Encoder Convolution Depth 4 6 3
Prior Convolution Depth 4 6 3
Decoder Convolution Depth 6 5 7
FG cutoff dcut 40.296 47.771 43.03657
CG cutoff Dcut 81.525 69.453 115.64641
Node embedding dimension F 389 421 563
Batch size 2 2 2
Learning rate 0.0001814 0.0001719 0.00010339
Activation functions swish swish swish
Training epochs 30 30 30
Order for multi-hop graph 1 1 6
Regularization strength β 0.000199 0.00541 0.022151
Factor 0.53875 0.72021 0.76064
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Table 6: Hyperparameters for the 1-step backmapping (UCG→ FG) of PED00151 using CGVAE.

# of atoms (FG) n0 = 376
Dataset size 10000
# of CG beads n1 = 5 n1 = 8

Hyperparameter Value

Edge feature dimension K 6 6
Graph loss weight γ 8.0601 1.6931
Encoder Convolution Depth 1 2
Prior Convolution Depth 1 2
Decoder Convolution Depth 4 4
FG cutoff dcut 14.8905 11.4050
CG cutoff Dcut 29.2027 22.0893
Node embedding dimension F 450 400
Batch size 1 1
Learning rate 0.000165 0.0000986
Activation functions swish swish
Training epochs 100 100
Order for multi-hop graph 1 1
Regularization strength β 0.0214 0.0311
Factor 0.2294 0.7787

Table 7: Hyperparameters for the 2-step backmapping (UCG→ RBCG) of PED00151 using CGVAE.

# of atoms (FG) n1 = 46
Dataset size 10000
# of CG beads n2 = 5 n2 = 8

Hyperparameter Value

Edge feature dimension K 6 6
Graph loss weight γ 2.4581 0.7310
Encoder Convolution Depth 4 5
Prior Convolution Depth 4 5
Decoder Convolution Depth 10 10
FG cutoff dcut 47.9878 57.6470
CG cutoff Dcut 50.1431 100.343
Node embedding dimension F 569 507
Batch size 2 2
Learning rate 0.0000975 0.000116
Activation functions swish swish
Training epochs 30 30
Order for multi-hop graph 1 3
Regularization strength β 0.00057 0.00207
Factor 0.639 0.916
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E. Comparison of CG Bead Sizes
As indicated in previous sections, this work explores reconstruction of UCG representations, unlike

Figure 6: The CG bead sizes ρ in previous papers are much smaller— and closer to ρ = 1.00—than the ones we try in our
work.

F. Radius of Gyration

Figure 7: Radius of gyration distribution of the two proteins we test the schemes on. The difference in variance indicate
eIF4E is more compact, while PED00151 is more flexible.
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G. CG Representations
Using AUTOGRAIN (Wang et al., 2022) and MDTraj (McGibbon et al., 2015) we develop the various CG mapping operators
and apply them to the FG datasets used in the experiments.

Figure 8: The different FG and CG representations of (a) eIF4E and (b) PED00151 used in our experiments.
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