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Abstract
Label distribution learning (LDL) is a novel learn-
ing paradigm that emulates label polysemy by
assigning label distributions over the label space.
However, recent LDL work seems to exhibit a
notable contradiction: 1) existing LDL methods
employ auxiliary tasks to enhance performance,
which narrows their focus to specific applications,
thereby lacking generalizability; 2) conversely,
LDL methods without auxiliary tasks rely on
losses tailored solely to the primary task, lack-
ing beneficial data to guide the learning process.
In this paper, we propose S-LDL, a novel and
minimalist solution that generates subtask label
distributions, i.e., a form of extra supervised in-
formation, to reconcile the above contradiction.
S-LDL encompasses two key aspects: 1) an al-
gorithm capable of generating subtasks without
any prior/expert knowledge; and 2) a plug-and-
play framework seamlessly compatible with exist-
ing LDL methods, and even adaptable to deriva-
tive tasks of LDL. Our analysis and experiments
demonstrate that S-LDL is effective and efficient.
To the best of our knowledge, this paper repre-
sents the first endeavor to address LDL via sub-
tasks.

1. Introduction
Multi-label learning (MLL) (Zhang & Zhou, 2013) handles
label polysemy in a binary manner, whereas label distribu-
tion learning (LDL) (Geng, 2016) offers a more nuanced
perspective by answering: “How much does each label y
describe the instance x?”. This is accomplished through the
concept of a label distribution d, which is a form of probabil-
ity simplex that assigns a real value (i.e., description degree
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dyx) to each label of each instance. This form introduces a
quantitative manner to address label polysemy and extends
LDL’s practical applications to a wider range, e.g., counting
(or grading) (Geng et al., 2013; Wu et al., 2019), sentiment
analysis (Chen et al., 2020; Le et al., 2023), segmentation
(Gao et al., 2017; Li et al., 2023b), etc.

However, LDL encounters a spectrum of challenges: 1)
dyxs interfere with each other since d is subject to two con-
straints, non-negativity (i.e., dyx ≥ 0) and sum-to-one (i.e.,∑

y∈Y d
y
x = 1), and d is often formed from mixture distri-

butions, posing significant hurdles for fitting, particularly
when employing a maximum entropy model (Shen et al.,
2017); 2) ds are usually obtained via crowdsourcing, which
is time-consuming and labor-intensive, so one often copes
with scarce and low-quality datasets (Wang et al., 2023).
These two key issues stand as formidable barriers to perfor-
mance improvement in LDL.

With the widespread use of multi-task learning, some LDL
work tries to compensate for performance from the perspec-
tive of auxiliary tasks, which are learned concurrently along-
side the primary task, thereby refining its representations
and ultimately boosting performance. Unfortunately, though
these methods can exploit additional supervised information,
they 1) neglect the first key issue mentioned above; and 2)
require prior/expert knowledge (e.g., facial characteristics
(Chen et al., 2020), pathology criteria (Wu et al., 2019),
emotion wheel theory in psychology (Yang et al., 2017a),
etc.), limiting their generalizability to those corresponding
specific applications. Conversely, LDL methods that do not
take advantage of auxiliary tasks, despite their efforts in loss
function engineering and network structure design, they 1)
neglect the second key issue mentioned above; and 2) focus
solely on one aspect of label correlations (e.g., correlation
of local instances (Jia et al., 2019), ranking relation (Jia
et al., 2023), suboptimal label (Wang, Jing and Geng, Xin,
2019), etc.), each with its own set of limitations.

The generalizability appears to conflict with the ability to ex-
ploit additional data, so benefiting from both simultaneously
seems elusive. However, we can still see the light from some
MLL methods, which partition the label space and apply
operations on the subspaces (Tsoumakas et al., 2008; 2010).
These methods construct subtasks without involving extra
knowledge. Intuitively, in the context of LDL, reliable su-
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pervised information can be generated from these subtasks,
which can eventually be aggregated and reconstructed to
the information of the primary task via ensemble strategies.
In this paper, we introduce S-LDL, a novel and minimalist
LDL algorithm that constructs and exploits subtasks, to rec-
oncile the contradiction between the generalizability across
various domains and the ability to exploit extra data. Serving
as auxiliary tasks, subtasks of LDL can 1) provide different
views of the primary task distribution, rendering the mixture
of distributions more traceable (i.e., the key issue one); 2)
furnish constructed supervised data to mitigate the scarcity
and ambiguity inherent in LDL datasets (i.e., the key issue
two); 3) require no prior/expert knowledge from specific
applications; and 4) emphasize various label correlations
via partitioning of the label space.

The main contributions of this paper are outlined below: 1)
we propose S-LDL, which is considered the first endeavor
to address LDL via subtasks; 2) our analysis shows the va-
lidity and reconstructability of these subtasks; 3) we present
a plug-and-play framework seamlessly compatible with ex-
isting LDL methods, and adaptable to derivative tasks of
LDL; and 4) the code will be available on GitHub soon,
facilitating reproducible research endeavors.

2. Related work
LDL Our work is mainly related to LDL. Initially em-
ployed to tackle age estimation (Geng et al., 2013), LDL
has evolved into a novel machine learning paradigm (Geng,
2016), which is supported by theoretical underpinnings
(Wang & Geng, 2019). Concurrently, more and more deriva-
tive tasks of LDL (González et al., 2021b; Lu & Jia, 2022;
Wang, Jing and Geng, Xin, 2019; Xu & Zhou, 2017; Xu
et al., 2019) are emerging to offer assistance in various
real-world dilemmas. Most methods focus on improving
performance via loss function engineering (Jia et al., 2019;
2023; Ren et al., 2019; Wen et al., 2023) or efficient model
structures (González et al., 2021a; Jin et al., 2024; Shen
et al., 2017; Yang et al., 2017b), while some work is dedi-
cated to practical application scenarios (Gao et al., 2017; Li
et al., 2023a; Shirani et al., 2019). However, the scarcity of
LDL datasets and the complexity of the label distribution
itself make it difficult to further improve performance, at
which point one may think of leveraging auxiliary tasks.

LDL with auxiliary tasks While there are LDL methods
that leverage auxiliary tasks to enhance performance, they
often rely on prior/expert knowledge from specific appli-
cations, extending beyond the scope of the LDL task. For
example, LDL-ALSG (Chen et al., 2020) designs auxiliary
tasks dedicated to facial emotion recognition, necessitat-
ing the use of external tools to extract facial points and
action units from human faces. Wu et al. (2019) exploit the

Hayashi criterion, a rule for counting and grading in acne le-
sions, which results in their method being only applicable in
a small branch of the dermatology field. Yang et al. (2017a)
employ a multi-task framework for image emotion classifi-
cation, designing constraints inspired by Mikel’s wheel, a
psychological emotion model. It also suffers from similar
limitations. The need for prior/expert knowledge signifi-
cantly narrows the application scenarios of these methods.

MLL with partitioning of the label space For reference,
there exist MLL methods based on partitioning of the la-
bel space, which can construct multi-label subtasks without
involving additional knowledge and can be widely used in
various domains. The most classic related work is that of
HOMER (Tsoumakas et al., 2008) and RAkEL (Tsoumakas
et al., 2010), the former forms a hierarchy of label subspaces
while the latter randomly selects label subspaces. Many sub-
sequent papers have been inspired by them (Prabhu et al.,
2018; Read et al., 2013; Wang et al., 2021). Read et al.
(2014) present a general framework of label subspaces and
provide theoretical justification for it. Since label distribu-
tion contains rich knowledge, we can follow the patterns of
these methods to construct label distribution subtasks.

LDL with ensemble strategy It is imperative to aggre-
gate the output of subtasks. Fortunately, ensemble-based
LDL methods have demonstrated promising performance.
For instance, LDLFs (Shen et al., 2017) learns different la-
bel distributions on the leaf nodes of differentiable decision
trees and learns weights that aggregate these label distribu-
tions. DF-LDL (González et al., 2021a) aggregates the label
distribution of output of multiple base models by simple
averaging, while Zhai et al. (2018) focus on aggregating the
results of various neural networks via a combining learner.
However, 1) the above methods are not suitable for incom-
plete label spaces (i.e., subtask label spaces); and 2) none
of them involve label space partitioning, therefore no extra
supervised information of label distributions is constructed.

3. Subtask construction
3.1. Preliminary

Notation Vectors are denoted by lowercase bold letters,
e.g., v, and the corresponding regular letter with subscript
i, i.e., vi, indicates its i-th element. Matrices are denoted
by uppercase bold letters, e.g., A, with ai as the i-th row
and a•j as the j-th column. Aij is the element in i-th row
and j-th column of A. The superscript (t) indicates that a
symbol corresponds to the t-th subtask. Table 1 outlines the
key notation in this paper.

1HA, SA, SU, AN, DI, FE, and NE represent 7 common emo-
tions in sentiment analysis datasets, namely happiness, sadness,
surprise, anger, disgust, fear, and neutral, respectively.
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Table 1. Key notation and terminology in this paper
Symbol Description Example
Y = {yj}Lj=1 Label space (with L labels) Y = {HA, SA, SU, AN, DI, FE}
Y◦ Subtask label spaces Y◦ = {· · · , Y(t) = {HA, SA, SU, FE}, · · · }
d
yj
xi Description degree of xi about yj dy0xi

= 0.4, i.e., HA describes xi by 0.4
di = (d

yj
xi)

L
j=1 Label distribution of xi di = (0.4, 0.05, 0.3, 0.1, 0.1, 0.05)

D = (di)
N
i=1 = (d•j)

L
j=1 Label distribution matrix (with N samples) D = (· · · , di, · · · )

d
(t)
i = (d

(t)yj
xi )

|Y(t)|
j=1 Subtask label distribution d

(t)
i = (0.5, 0.0625, 0.375, 0.0625)

D◦ Subtask label distribution matrices D◦ = {· · · , D(t), · · · }
M = (mt)

T
t=1 = (Mtj) Mask matrix (with T anticipated tasks) M = (· · · , mt = (1, 1, 1, 0, 0, 1), · · · )

7 labels: over 1014 partitions
when T = 10.
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Figure 1. (a) is sourced from the emotion6 (Yang et al., 2017b)
dataset, which has only 7 labels, but the number of potential parti-
tions is huge. (The upper part of) (b) exemplifies a subtask label
space {FE, AN, DI}, which is challenging to describe (a). (The
lower part of) (b)’s two subtask label spaces encompass all descrip-
tive information, meaning no new knowledge is generated about
(a). This example vividly illustrates the limitations that may result
from local ignorance and lack of diversity in subtask label spaces.

Problem definition Let x ∈ X = RP denote the feature
of the instance and d ∈ ∆L−1 denote the label distribution,
where ∆K−1 ≜ {v ∈ RK |1v⊤ = 1, v ≥ 0} is the (K −
1)-dimensional probability simplex. LDL’s goal is to find
a mapping ζ : X 7→ ∆L−1. In this paper, we partition
the label space Y to obtain the subtask label space set Y◦,
then accordingly generate extra supervised information, i.e.,
subtask distribution matrix set D◦, to guide ζ’s learning.

Technical challenges Our first challenge arises from the
exponential growth in partitions as the number of labels in-
creases (Tsoumakas et al., 2010). When generating T tasks
from a label space with L labels, the number of unique par-
titions is given by (2L−L−2)!/(T !(2L−L−2−T )!). This makes
it impractical to calculate metric for each case to select sub-
tasks. We tackle this challenge in a mask matrix learning
manner. The second challenge lies in discerning reasonable
partitions. Since the label distribution matrix is usually im-
balanced in average description degree (Zhao et al., 2023),
some partitions exhibit unreasonable local ignorance. As
a result, the corresponding spaces struggle to handle the

majority of instances, because 1) theoretically, there is no
objective standard for the degree of negative correlation; and
2) empirically, weakly or negatively correlated information
is easily overlooked by human annotators in crowdsourced
datasets. To mitigate this, we incorporate the description
degree as a metric for the reliability of supervised infor-
mation in guiding the generation of subtask masks. The
third challenge is avoiding analogous extra supervised in-
formation, i.e., to generate label distributions containing
new knowledge (González et al., 2021b). This necessitates
fostering richness and diversity in both subtask label spaces
and distributions. To achieve this objective, we 1) minimize
pairwise similarity among subtask masks; and 2) normalize
each subtask label distribution to yield brand new insights
distinct from the label distribution of the primary task. Fig.
1 portraits an illustrative example of these challenges.

3.2. Learning subtask masks

Let M ∈ {0, 1}T×L be the subtask mask matrix, where
T represents the number of anticipated tasks. To ensure
that the subtask label spaces contain as reliable informa-
tion as possible, the learning of the subtask mask matrix
can be converted into this problem: maxM

∑
t∈[T ] d̄m

⊤
t ,

where d̄ = (
∑

i∈[N] di)/N . Obviously, a senseless solution is
mt = 1 for all t ∈ [T ], i.e., all extra supervised information
is equivalent to the primary task information. Therefore,
solving the above problem alone is inappropriate. To ad-
dress this, we consider pairwise similarity among subtask
masks. We also employ exponential tricks to convert maxi-
mization into minimization. Finally, M is calculated as

M∗ = argmin
M

 1

T

∑
t∈[T ]

exp (−d̄mT
t )+

2λ

(T (T − 1))

∑
i, j∈[T ], i>j

mim
⊤
j

∥mi∥ ∥mj∥

 ,

s.t.Mtj ∈ {0, 1}; t ∈ [T ]; j ∈ [L],

(1)

where λ is a trade-off parameter. Eq. (1) is slightly more
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Algorithm 1 Subtask construction
Input: Input matrix D, trade-off parameter λ, anticipated number
of subtasks T .
Output: Subtask distribution matrices D◦ (with corresponding
subtask label spaces Y◦).
1: Initialization: Y◦ ← {∅}, D◦ ← {∅};
2: Calculate M using L-BFGS; ▷ (Eq. (1))
3: for t← 1 to T do
4: Y(t) ← {∅};
5: for j ← 1 to L do
6: if Mtj = 1 then
7: Y(t) ← Y(t) ∩ {yj};
8: end if
9: end for

10: if |Y(t)| = L or |Y(t)| ≤ 1 then
11: continue; /* Ignore invalid subtask masks. */
12: end if
13: /* The clip(x, a, b) function restricts x to [a, b]R. */
14: D(t) ← [];
15: for j ← 1 to L do
16: if yj ∈ Y(t) then
17: D(t) ← concatenate(D(t), clip(d•j , ε, 1));
18: /* ε is a very small positive number. */
19: end if
20: end for
21: for i← 1 to N do
22: Normalization: d(t)

i ← NSUM(d
(t)
i ); ▷ (Eq. (2))

23: end for
24: Y◦ ← Y(t) ∪ Y◦, D◦ ←D(t) ∪ D◦;
25: end for

complicated than conventional integer programming. For
convenience, we solve it using the L-BFGS method, with
its constraint enforced via sigmoid (a conversion threshold
is set, where outputs greater than it are set to 1, while those
below are set to 0). Refer to Section 4.1 for an analysis of
the validity of Eq. (1).

3.3. Generating subtask distributions

We slice D according to Y(t)s. To generate diversified d(t)s,
we perform normalization on each slice with

NSUM(v)j =
vj∑|v|
i=1 vi

. (2)

The rationale for utilizing NSUM as the normalization func-
tion can be found in Section 4.2. The overall subtask con-
struction process, denoted by SC, is illustrated in Alg. 1.
Then, one can naturally come up with an adaptive LDL
pipeline based on the shallow regime, as depicted in Alg. 2.

4. Analysis about subtask construction
In this section, we analyze the subtask construction algo-
rithm SC by studying the following questions:

• Q1: Are Y(t)s provided by Eq. (1) valid and meet ex-

Algorithm 2 S-LDL (shallow regime)
Input: Feature matrix X , label distribution matrix D, testing
instance x′.
Output: Predicted label distribution d′ for instance x′.
1: Initialize parameter of each estimator;
2: D◦ ← SC(D);
3: for t← 1 to |D◦| do
4: Fit an estimator f (t) on dataset {X, D(t)};
5: d(t)′ ← f (t)(x′);
6: end for
7: Concatenate X and all D(t)s to get Z, where t ∈ [|D◦|];
8: Fit an estimator f on dataset {Z, D};
9: Concatenate x′ and all d(t)′s to get z′, where t ∈ [|D◦|];

10: d′ ← f(z′);

pectations? How do they compare to those generated by
random selection?

• Q2: Are D(t)s provided by Eq. (2) reconstructable? Can
one replace it with other normalization functions?

• Q3: What is the overall time complexity of SC? Is it
practical for large-scale datasets?

The validity, reconstructability, and complexity analysis are
conducted for Q1, Q2, and Q3, respectively.

4.1. Validity analysis

Eq. (1) manages the intricate task of selecting Y(t)s via λ
and T , and the main idea is to suppress local ignorance and
increase diversity of each Y(t) simultaneously. To check
whether the subtasks are valid and meet expectations, we
design two metrics, the information index and the diversity
index, both of which are based on the mask valid rate.

Definition 4.1 (Mask valid rate). For all t ∈ [T ], the fol-
lowing are considered invalid masks: 1) mt = 1, or 2)
|mt|! = 1, or, 3) excluding masks in cases 1) and 2), for
any remaining mask index i, mi = mj where j ∈ [i].2 The
mask valid rate is defined as:

ρ(M) =
1

T

∑
t∈[T ]


0, mt = 1,
0, |mt|! = 1,{
0, ϱt(mt) > 1,
1, o/w,

o/w,
(3)

where ϱi(m) =
∑T

j=i I(m = mj) and I is the indicator
function.

Definition 4.2 (Information index). We call it informative
if Mtj = 1 where t ∈ [T ] and j ∈ [L]. The information

2These three cases correspond to 1) masks that are exactly
the same as the primary task; 2) masks that fail to form label
distributions; and 3) duplicate masks among the remaining masks,
respectively.
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Figure 2. Information/diversity index w.r.t. λ on emotion6.

index is defined as:

α(M) =
ρ

T

∑
t∈[T ]

d̄m⊤
t . (4)

Definition 4.3 (Diversity index). We call it diverse if two
mts reflect disjoint labels. The diversity index is defined
as:

β(M) =
2ρ

T (T − 1)

T−1∑
i=1

T∑
j=i+1

d̄(mi ⊕mj)
⊤. (5)

We calculate the two metrics of M generated by SC with
varying λ, results on the emotion6 dataset are shown in
Fig. 2 (red curve). For comparison, we also study these
two metrics of masks generated by random selection with
varying probability γ (blue curve). Results on other datasets
are provided in the appendix. All results indicate that the
red curve is always higher than the blue curve, suggesting
that the subtasks generated by SC are more informative and
diverse than those generated by random selection, as long
as the parameters are appropriate. Parameter selection is
discussed in Section 6.

4.2. Reconstructability analysis

Reconstructability ensures the effectiveness of the path from
d(t)s to d. We strive to choose a normalization function so
that d(t)s retain more information, even efficacious enough
to reconstruct d. Theorem 4.4 illustrates that Eq. (2) is the
only possibility.

Theorem 4.4. Let each subtask label space form a con-
nected graph with its each label as a node. Then merge
these graphs according to their respective labels to form G.
If and only if NSUM is used for normalization, the primary
label distribution can be reconstructed from these subtask
label distributions, when the following conditions are satis-
fied: 1) G is connected; 2) G covers all labels in the label
space, and 3) corresponding description degrees of all cut

vertices of G are not zero.3

Proof. We solely discuss the extreme case where two sub-
task label spaces overlap with just one label. Further spe-
cialized cases can be deduced by the reader via induc-
tion. With a little bit of symbol abuse, let the general
normalization function be defined as N (v) ≜ p(v)/q(v).
Assume that there is a label distribution d = (d1, · · · , dL)
and its corresponding label space is Y = {y1, · · · , yL}.
The two decompositions of Y are Ya = {y1, · · · , yk}
and Yb = {yk, · · · , yL}, respectively. It is obvious that
Ya ∪ Yb = Y and Ya ∩ Yb = {yk}. Let the subspace label
distribution corresponding to these two decompositions be
a = (a1, · · · , ak) and b = (bk, · · · , bL). According to
our assumptions, dk ̸= 0. Then, for any integer j ∈ [1, k]Z,
we have

aj
ak

=
N (d)j
N (d)k

=
p(d)j
q(d)j

q(d)k
p(d)k

. (6)

Typically, for most normalization functions, q(·) is a nor-
malizing constant, i.e., q(d)j = q(d)k. Thus Eq. (6)
can be rewritten into ajp(d)k = akp(d)j . Plug it into∑k

j=1 aj = 1, and do the same for b as well, and get

ak
∑k

j=1 p(d)j

p(d)k
= 1,

bk
∑L

j=k p(d)j

p(d)k
= 1. (7)

Add these two equations together, we have

p(d)k +

L∑
j=1

p(d)j =
p(d)k
ak

+
p(d)k
bk

. (8)

Eq. (8) implies that
∑L

j=1 p(d)j must be given a priori, and
p(d)k is related to dk, and only dk. To make it possible, the
only thing we can exploit is the sum-to-one constraint of d,
i.e.,

∑L
j=1 dj = 1. Note that any nonlinear operations here

will lead to inconsistencies with the problem constraints.
Therefore p(v)j = vj for all j is the simplest nontrivial
solution. Since

∑|v|
i N (v)i = 1, we have q(v) =

∑|v|
i vi,

i.e., the finally deduced normalization function is Eq. (2).
In this case, for any integer j ∈ [1, L]Z, we have

dj =


ajbk

ak + bk − akbk
, j = 1, · · · , k,

akbj
ak + bk − akbk

, j = k + 1, · · · , L,
(9)

which illustrates that the original label distribution d can be
reconstructed by subtask label distributions a and b. This is
possible thanks to the use of NSUM.

Theorem 4.4 also states that it is not appropriate to replace
Eq. (2) with the min-max or softmax function because doing
so destroys the reconstruction information.

3Maintaining non-zero description degrees for all cut vertices
is essential for preserving the proportional information.
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4.3. Complexity analysis

The overall time cost of SC is primarily influenced by the
calculation of M and the normalization process. The time
complexity of computing and updating M are O(L(TN +
T 2)) and O(LT ), respectively. The time complexity of
the normalization process is O(LTN). The overall time
complexity of each iteration of SC is O(L(TN + T 2)),
which is linear with respect to the number of instances and
labels. Therefore, it is clear that SC can be applied to large-
scale datasets.

5. S-LDL of the deep regime
The aforementioned analysis has exposed the problems of
the shallow regime: 1) shallow methods as base estima-
tors have low potential in themselves; 2) there is a training
gap between the primary task and subtasks, i.e., no repre-
sentation learning is involved. Therefore, it is necessary
to introduce our proposed S-LDL of the deep regime, the
overview of which is illustrated in Fig. 3. We illustrate our
framework by introducing the learnable parts one by one.

• φ(·) is guided by subtasks to learn a powerful representa-
tion, i.e., R = φ (X).

• ψ(·) is responsible for predicting subtask label distribu-

tions, i.e., (D̃
(1)
, · · · ) = ψ(R). To ensure the precise

prediction of subtask label distributions for reconstruc-
tion, we employ the mean absolute error function for
subtask learning. The loss is weighted by the summation
of the description degrees corresponding to the primary
tasks, allowing more reliable label spaces to receive more
attention. The subtask learning loss has the following
form:

ℓSUB

(
D◦; D̃◦

)
=

1

N |Y◦|
∑

Y(t)∈Y◦

∑
i∈[N ] ∑

yk∈Y(t)

dyk
xi

 ∑
j∈[|Y(t)|]

∣∣∣d(t)yj
xi − d̃

(t)yj
xi

∣∣∣ .
(10)

• ω(·) can be any existing method that can be expressed as
a network structure theoretically. Since the concatenation
of the representation and subtask label distributions, we
have Z = (R, ψ(R)) and D̃ = ω(Z). In the case of
the primary task being vanilla LDL, the primary task loss
ℓPRI can be

ℓKL

(
D, D̃

)
=

1

N

∑
i∈[N ]

∑
j∈[L]

d
yj
xi ln

d
yj
xi

d̃
yj
xi

, ℓKL ∈ LLDL.

(11)

( )  ( )  
( ) 

Subtask Loss
Primary Task Loss

Identity

Subtask Construction Primary Task Matrix

Subtask Matrices

D
 (2)
D

 (1)
D

R

RX

Figure 3. The overview of S-LDL (deep regime). White, red and
gray highlight our proposed, existing methods, and loss functions,
respectively.

Note that ℓPRI changes as the primary task changes. Finally,
we can learn the model parameters Θ by

Θ∗ = argmin
Θ

(ℓPRI + µℓSUB), (12)

where µ is a trade-off parameter. Compared with the shallow
regime, S-LDL of the deep regime has the following advan-
tages: 1) There is no two-stage training gap, which makes
the representation contain insights from both the primary
task and the subtasks; 2) the framework not only serves
LDL, but can also be directly applied to derivative tasks
of LDL, e.g., LDL for classification (LDL4C) (Wang, Jing
and Geng, Xin, 2019), incomplete LDL (IncomLDL) (Xu
& Zhou, 2017), label enhancement (LE) (Xu et al., 2019).
The modifications involved are shown in Table 2, where LX
indicates the set of losses for adaptable methods in the task
of type “X”. Special mathematical procedures of LDL4C
and IncomLDL are defined as

(
D̄

(t)
)
ij
≜

{
1, if yj = argmaxȳ∈Y(t) dȳxi

,
0, o/w,

(13)

(RΩ (D))ij ≜

{
(D)ij , if (i, yj) ∈ Ω,
0, o/w,

(14)

respectively, where (·)ij represents the element in i-th row
of the matrix corresponding to label yj , and Ω represents
observed elements sampled uniformly at random from D
in IncomLDL. Such modifications are rational since: 1)
targets of LDL4C and IncomLDL, i.e., D̄ and RΩ(D),
are essentially different forms of degradation of the label
distribution matrix; and 2) the target of LE is a logical label
matrix L, the same as the target of MLL, which is actually
a special case of LDL.

6. Experiments
In this section, we evaluate S-LDL via a series of experi-
ments. Due to page limitations, datasets, comparison meth-
ods, parameter settings, and full experimental results are
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Table 2. Modifications of different task adaptations
Type Subtask construction ℓPRI ℓSUB

Vanilla LDL (D(1), · · · )← SC(D) ℓ(D, D̃) ∈ LLDL ℓSUB(D
(1), · · · ; D̃(1)

, · · · )
LDL4C D̄

(1)
, · · · ← SC(D̄) ℓ(D, D̄, D̃) ∈ LLDL4C ℓSUB(D̄

(1)
, · · · ; D̃(1)

, · · · )
IncomLDL (D

(1)
Ω , · · · )← SC(RΩ(D)) ℓ(RΩ(D), RΩ(D̃)) ∈ LIncomLDL ℓSUB(D

(1)
Ω , · · · ; RΩ(D̃

(1)
), · · · )

LE (L(1), · · · )← SC(L) ℓ(L, D̃) ∈ LLE ℓSUB(L
(1), · · · ; D̃(1)

, · · · )
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Figure 4. (a) and (b) are visualized results of the parameter sensitivity analysis of SC, which is on the emotion6 dataset. The blue lines
in (a) and (b) represent performance without auxiliary tasks. (c) is visualized results of the ablation study and the parameter sensitivity
analysis of deep regime S-LDL on the Natural Scene dataset.

introduced in the appendix. Details of all implementations
are openly accessible at GitHub.4

Metrics For LDL, we use the same metrics suggested by
Jia et al. (2023). Due to page limitations, we mainly present
results on Cheby. ↓ (Chebyshev distance), Clark ↓ (Clark
distance), Cosine ↑ (cosine similarity), and Spear. ↑
(Spearman’s coefficient) in the main paper, where ↓ (↑)
indicates “the lower (higher) the better”. Note that these
metrics are not as intuitive as accuracy or error rate, i.e.,
small changes can mean large performance differences. For
LDL4C, objective of which is different from LDL, we use
0/1 loss ↓ (zero one loss) and Err. prob. ↓ (error proba-
bility) as metrics (Wang, Jing and Geng, Xin, 2019).

Results and discussion We apply S-LDL to existing
methods to demonstrate performance improvements. For
each dataset we conduct ten-fold experiments repeated 10
times, and the average performance is recorded. Tables 3
to 6 show representative results of the shallow/deep regime
S-LDL and the remainder are in the appendix, where • (◦)
indicates that more than half of the metrics support that
“S-X” is statistically superior (inferior) to the correspond-
ing methods “X” (pairwise t-test at 0.05 significance level);
there is no significant if neither • nor ◦ is shown.

For S-LDL of the shallow regime, f (t)s and f are imple-
mented by a representative LDL method, LDSVR (Geng

4https://github.com/SpriteMisaka/PyLDL

& Hou, 2015). It is important to highlight that S-LDL of
the shallow regime (Alg. 2) relies on naive concatenation
operations and is not tied to representation learning. Con-
sequently, any performance improvement over f is solely
attributed to the effects of d(t)s and the original performance
of f . The results in Tables 3 and 4 show that S-LDL sig-
nificantly improves the performance of the base estimator
LDSVR.

In Tables 5 to 6, LRR focuses on the label ranking rela-
tionship, which is also emphasized by each subtask. We
believe this is why S-LDL and LRR fit so well. Note that
our method has the least improvement in SCL, which may
be attributed to its reliance on shallow regime methods in
the prediction phase. It is also worth noting that the improve-
ment in vanilla KLD is considerable, which just illustrates
the limitations of loss function engineering that considers
label correlation one-sidedly. QFD2 and CJS are tailored
for ordinary LDL, and may have better results than LRR
on this regard. Powered by S-LDL, these methods can all
achieve better level. For LDL4C, S-LDL significantly im-
proves both HR and LDLM. However, it can be observed
that S-LDL4C is unstable on the Flickr dataset, which is
not surprising since LDL4C itself fails on it. This is caused
by the combined effect of the sparsity of the dataset and the
information entropy operation involved in LDL4C.

Parameter sensitivity analysis First, we employ S-LDL
of the shallow regime for parameter sensitivity analysis of
SC (Alg. 1). With λ varying and T fixed at 10, we conduct

7
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Table 3. Experimental results of LDL on the JAFFE dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .0959±.013 .3280±.027 .6778±.058 .0476±.011 .9549±.010 .8838±.012 .5175±.102 .4508±.086

S-LDSVR (shallow) .0859±.012 .3024±.033 .6143±.066 .0449±.012 .9580±.011 .8941±.012 .5237±.091 .4580±.079

Table 4. Experimental results of LDL on the Natural Scene dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .4899±.016 2.0831±.025 5.7724±.092 2.0862±.085 .5740±.017 .4430±.015 .4997±.015 .3695±.012

S-LDSVR (shallow) .4692±.017 1.9231±.034 5.2307±.113 2.2261±.121 .5893±.018 .4602±.018 .5236±.017 .3888±.013

Table 5. Experimental results of LDL on JAFFE and Yeast diau formatted as (mean± std(rank))

Algorithms
JAFFE (Lyons et al., 1998)

Algorithms
Yeast diau (Geng, 2016)

Clark ↓ Cosine ↑ Cheby. ↓ Spear. ↑
LDSVR (Geng & Hou, 2015) .3280±.027 (6) .9549±.010 (7) CPNN (Geng et al., 2013) .0385±.001 (9) .2962±.034 (10)

AA-kNN (Geng, 2016) .3483±.032 (8) .9497±.010 (9) AA-kNN .0385±.001 (9) .3674±.029 (9)

LDLFs (Shen et al., 2017) .3637±.032 (10) .9494±.009 (10) LDLFs .0371±.001 (8) .4088±.021 (8)

DF-BFGS (González et al., 2021a) .3062±.025 (3) .9633±.007 (2) DF-BFGS .0368±.001 (5) .4161±.027 (5)

KLD (Geng, 2016) • .3608±.031 (9) .9538±.008 (8) LRR • .0370±.001 (7) .4154±.023 (6)

S-KLD .3007±.032 (2) .9625±.009 (3) S-LRR .0366±.001 (1) .4198±.023 (2)

SCL (Jia et al., 2019) • .3358±.024 (7) .9592±.006 (6) QFD2 (Wen et al., 2023) • .0369±.001 (6) .4118±.025 (7)

S-SCL .3184±.025 (4) .9604±.008 (5) S-QFD2 .0366±.001 (1) .4203±.021 (1)

LRR (Jia et al., 2023) • .3230±.027 (5) .9616±.008 (4) CJS (Wen et al., 2023) .0367±.001 (4) .4164±.025 (4)

S-LRR .2934±.028 (1) .9635±.008 (1) S-CJS .0366±.001 (1) .4198±.024 (2)

Table 6. Experimental results of LDL4C on sBU 3DFE and Flickr formatted as (mean± std(rank))

Algorithms
sBU 3DFE (Geng, 2016)

Algorithms
Flickr (Yang et al., 2017b)

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C (Wang, Jing and Geng, Xin, 2019) .5578±.028 (6) .7671±.007 (5) LDL4C .8971±.008 (6) .8884±.004 (6)

S-LDL4C .5526±.025 (5) .7686±.006 (6) S-LDL4C .8705±.138 (5) .8702±.100 (5)

HR (Wang & Geng, 2021a) • .5167±.027 (3) .7596±.006 (2) HR • .4513±.015 (4) .5823±.007 (4)

S-HR .5069±.025 (2) .7598±.006 (3) S-HR .4219±.015 (1) .5639±.007 (1)

LDLM (Wang & Geng, 2021b) • .5258±.034 (4) .7619±.009 (4) LDLM • .4384±.014 (3) .5740±.007 (3)

S-LDLM .4809±.024 (1) .7524±.005 (1) S-LDLM .4321±.016 (2) .5667±.007 (2)

ten-fold experiments repeated 10 times on the emotion6

dataset and record the average Spearman’s coefficient. Re-
sults are shown in Fig. 4(a). The panels from left to right
display examples of Y(t)s when the λ is 0.01, 0.05, 0.2, 1,
and 10, respectively. When λ is suitable, Y(t)s are diverse
and do not have excessive local ignorance; as λ decreases,
Y(t)s tend to be homogeneous, and invalid masks account
for the majority; as λ increases, the local ignorance of each
Y(t) becomes significant.

Besides, we also study the parameter sensitivity of T with
λ fixed at 0.2. Results are shown in Fig. 4(b), illustrating
that having a plethora of auxiliary tasks are detrimental to
performance, which may be due to overfitting.

For S-LDL of the deep regime, we check the sensitiv-
ity of the trade-off parameter µ on the LDL task with
the Natural Scene dataset by varying the parameter in
{0.01, 0.05, 0.1, 0.5, 1, 5}. Results are shown in Fig. 4(c).
Spearman’s coefficient of S-LDL first increases and then
decreases as µ varies, demonstrating a desirable bell-shaped
curve. This justifies our motivation of jointly learning the

primary task and subtasks, as a good trade-off between them
can enhance the performance.

Ablation study Here we are interested in the importance
of each part of S-LDL, thus an ablation study is performed
with S-KLD: 1) we replace NSUM in SC with the min-max
function to examine the importance of the subtask distribu-
tion reconstruction, and this model is denoted as S-KLD
(min-max); 2) we remove the identity mapping in Fig. 3 to
examine the importance of the prediction via subtask repre-
sentation, and this model is denoted as S-KLD w/o id.; 3)
we train without the term of ℓSUB (i.e., setting µ = 0) to ex-
amine the importance of subtask learning, and this model is
denoted as S-KLD w/o ℓSUB. Results are also shown in Fig.
4(c), which confirms that each part of S-LDL contributes as
long as there is a good trade-off.

7. Limitations and conclusion
Limitations First, S-LDL of the shallow regime is pro-
posed out of intuition, and in Section 5, we have discussed
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its limitations, which are addressed via the designing of
S-LDL of the deep regime. Second, when the label space
is large, especially when labels are continuous and result
in unimodal label distributions (e.g., age estimation), our
proposed cannot be rationally applied. Fortunately, one pos-
sible workaround is to use a binning tricks for preprocessing,
and then construct subtasks.

Conclusion We propose S-LDL, a subtask learning frame-
work nested into LDL. S-LDL is generic: it generates extra
supervised information via subtask construction without any
extra knowledge; S-LDL is minimalist: it can be attached
to existing methods and handle derivative tasks; S-LDL is
efficient: it captures a wide variety of label correlations.
The analysis shows the validity and reconstructability of
subtasks, and experiments show the superiority of our frame-
work.

Impact statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix: details of experiments
Here we try our best to provide as much information as possible for reproducible research.

Table 7. Summary of the metrics
Name Formula Name Formula

Cheby. ↓ Dis1(u, v) = maxj |uj − vj | Cosine ↑ Sim1(u, v) =
∑L

j=1 ujvj√∑L
j=1 u2

j

√∑L
j=1 v2

j

Clark ↓ Dis2(u, v) =
√∑L

j=1

(uj−vj)
2

(uj+vj)
2 Int. ↑ Sim2(u, v) =

∑L
j=1 min (uj , vj)

Can. ↓ Dis3(u, v) =
∑L

j=1

|uj−vj |
uj+vj

Spear. ↑ Rnk1(u, v) = 1− 6
∑L

j=1(ρ(uj)−ρ(vj))
2

L(L2−1)

KLD ↓ Dis4(u, v) =
∑L

j=1 uj ln
uj

vj
Ken. ↑ Rnk2(u, v) =

2
∑

j<k sgn(uj−uk)sgn(vj−vk)

L(L−1)

0/1
loss ↓

C1(u, v) = δ(argmax(u),
argmax(v))

Err.
prob. ↓ C2(u, v) = 1− uargmax(v)

A.1. Metrics

For LDL, IncomLDL, and LE, we use the same metrics suggested by Geng (2016), which are Cheby. ↓ (Chebyshev
distance), Clark ↓ (Clark distance), Can. ↓ (Canberra distance), KLD ↓ (Kullback-Leibler divergence), Cosine ↑ (cosine
similarity), and Int. ↑ (intersection similarity), respectively. Here ↓ (↑) indicates “the lower (higher) the better”. For
LDL and IncomLDL, we additionally use two ranking metrics: Spear. ↑ (Spearman’s coefficient) and Ken. ↑ (Kendall’s
coefficient) (Jia et al., 2023). Note that these metrics are not as intuitive as accuracy or error rate, i.e., small changes can
mean large performance differences. For LDL4C, objective of which is different from LDL, we use 0/1 loss ↓ (zero one
loss) and Err. prob. ↓ (error probability) as metrics (Wang, Jing and Geng, Xin, 2019). Let the real distribution be denoted
by u = {uj}Lj=1, and the predicted distribution be denoted by v = {vj}Lj=1, then the above metrics can be summarized in
Table 7, where ρ(·) and δ(·, ·) are the ranking function and the Kronecker delta function, respectively.

Table 8. Summary of datasets
Dataset # Instances N # Features P # Labels L
JAFFE 213 243 6
sBU 3DFE 2500 243 6
Movie 7755 1869 5
Nature Scene 2000 294 9
fbp5500 5500 512 5
Yeast heat 2465 24 6
Yeast diau 2465 24 7
Yeast cold 2465 24 4
Yeast dtt 2465 24 4
emotion6 1980 168 7
Twitter 10045 168 8
Flickr 11150 168 8

A.2. Datasets

We adopt several widely used label distribution datasets, including: JAFFE (Lyons et al., 1998);5 fbp5500 (Liang et al.,
2018);6 sBU 3DFE, Movie, Natural Scene, Yeast heat, Yeast diau, Yeast cold, and Yeast dtt provided by Geng
(2016);7 emotion6, Twitter, and Flickr provided by Yang et al. (2017b).8 The information of these datasets are
summarized in Table 8.

5https://zenodo.org/records/3451524
6https://github.com/HCIILAB/SCUT-FBP5500-Database-Release
7https://palm.seu.edu.cn/xgeng/LDL/download.htm
8https://cv.nankai.edu.cn/projects
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A.3. Comparison methods

On the one hand, we apply our proposed S-LDL to existing methods to demonstrate performance improvements in the LDL
task (denoted by the “S-” prefix). These methods are BFGS-LLD (KLD) (Geng, 2016), SCL (Jia et al., 2019), LRR (Jia
et al., 2023), QFD2 (Wen et al., 2023), and CJS (Wen et al., 2023) (the losses of these methods constitute the set LLDL).
On the other hand, we compare S-LDL with methods that have specialized structure, which our proposed cannot directly
adapt to. These methods are CPNN (Geng et al., 2013), LDSVR (Geng & Hou, 2015), AA-kNN (Geng, 2016), LDLFs
(Shen et al., 2017), and DF-LDL (denoted by DF-BFGS since we use BFGS-LLDs as base estimators) (González et al.,
2021a). Moreover, we apply our proposed to derivative tasks of LDL (i.e., LDL4C, IncomLDL, and LE) and the comparison
methods involved are LDL4C (Wang, Jing and Geng, Xin, 2019), HR (Wang & Geng, 2021a), LDLM (Wang & Geng,
2021b), IncomLDL (Xu & Zhou, 2017), LP (Xu et al., 2019), GLLE (Xu et al., 2019), LEVI (Xu et al., 2023), and LIBLE
(Zheng et al., 2023).

Table 9. Summary of algorithms and parameter settings
Algorithms Parameter Value (Range)
AA-kNN k: # Neighbors 5

LDLFs
# Estimators (trees) 5
Depth 6
Latent units (leaves) 64

BFGS-LLD
ε: Convergence criterion 10−6

Max iteration 600

SCL
m: # Clusters 5
λ1, λ2, λ3: Trade-off 10−3, 10−3, 0.1

LRR
λ: Trade-off (ranking loss) 10{−5,−4,−3,−2,−1}

β: Trade-off (regularization) 10{−3,−2,−1, 0, 1, 2}

LDL4C
C1, C2: Balance coefficients 10−2, 10−6

ρ: Margin 10−2

HR
λ1, λ2, λ3: Trade-off 10−2, 10−6

ρ: Margin 10−2

LDLM
λ1, λ2, λ3: Trade-off 10−6, 10{−3,−2,−1}, 10{−3,−2,−1}

ρ: Margin 10−2

IncomLDL
ε: Convergence criterion 10−6

γ: Factor of Lipschitz constant 2
λ: Trade-off 1

LP α: Balance coefficient 0.5

GLLE
λ1, λ2: Trade-off 10−2, 10−4

σ: Width parameter for similarity calculation 10
LEVI λ: Trade-off 1
LIBLE α, β: Trade-off 10{−3,−2,−1, 0, 1, 2}

S-LDL µ, λ, T 0.1, 0.2, 10

A.4. Parameter settings and experimental environment

The parameter settings of the proposed S-LDL and comparison algorithms are summarized in Table 9. Note that DF-LDL is
parameter-free, and we use BFGS-LLDs as its base estimators, parameter settings of which are the same as BFGS-LLD as
the comparison algorithm. We use Adam (Kingma & Ba, 2015) for the optimization of S-LDL. For all methods of the deep
regime, the learning rate is chosen among {1, 2, 5} × 10{−4,−3,−2}, and the selection of the number of epochs is nested
into a ten-fold cross validation. All the results are obtained on a Linux workstation with Intel Core i9 (3.70GHz), NVIDIA
GeForce RTX 3090 (24GB), and 32GB memory.

A.5. Full analytical/experimental results

Here we provide complete results of all conducted analysis/experiments. Figures 5 to 9 are full results of validity analysis in
Section 4.1. Tables 10 to 21 are results on the LDL task with different datasets. For IncomLDL, we follow the incomplete
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settings (Xu & Zhou, 2017) and vary the observed rate ω% from 20% to 40%. Tables 22 to 23 are results on the IncomLDL
task. Tables 24 to 25 are on the LDL4C task. For LE, we follow the settings of the recovery experiment (Xu et al., 2019).
Tables 26 to 27 show results on the LE task.
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Figure 5. Information/diversity index w.r.t. λ on emotion6.
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Figure 6. Information/diversity index w.r.t. λ on JAFFE.
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Figure 7. Information/diversity index w.r.t. λ on SBU 3DFE.
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Figure 8. Information/diversity index w.r.t. λ on Twitter.
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Figure 9. Information/diversity index w.r.t. λ on Flickr.
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Table 10. Experimental results of LDL on the JAFFE dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .0959±.013 .3280±.027 .6778±.058 .0476±.011 .9549±.010 .8838±.012 .5175±.102 .4508±.086

S-LDSVR .0859±.012 .3024±.033 .6143±.066 .0449±.012 .9580±.011 .8941±.012 .5237±.091 .4580±.079

AA-kNN .0978±.012 .3483±.032 .7164±.066 .0527±.011 .9497±.010 .8766±.012 .4111±.083 .3514±.070

LDLFs .0940±.010 .3637±.032 .7355±.066 .0550±.009 .9494±.009 .8766±.011 .4364±.108 .3749±.093

DF-BFGS .0827±.009 .3062±.025 .6239±.052 .0388±.007 .9633±.007 .8944±.010 .5244±.087 .4493±.077

KLD • .0925±.010 .3608±.031 .7363±.064 .0508±.009 .9538±.008 .8777±.011 .4572±.097 .3873±.084

S-KLD .0818±.011 .3007±.032 .6132±.067 .0395±.010 .9625±.009 .8960±.012 .5461±.105 .4769±.096

SCL • .0873±.008 .3358±.024 .6874±.051 .0439±.006 .9592±.006 .8851±.009 .4744±.092 .4020±.080

S-SCL .0854±.010 .3184±.025 .6526±.053 .0420±.008 .9604±.008 .8896±.010 .5110±.095 .4388±.084

LRR • .0853±.010 .3230±.027 .6560±.055 .0412±.008 .9616±.008 .8906±.010 .5117±.094 .4420±.084

S-LRR .0804±.009 .2934±.028 .5989±.059 .0383±.009 .9635±.008 .8981±.011 .5448±.092 .4819±.084

Table 11. Experimental results of LDL on the sBU 3DFE dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .1250±.005 .3710±.010 .8009±.021 .0720±.004 .9298±.004 .8559±.004 .3524±.031 .3011±.026

S-LDSVR .1193±.004 .3573±.010 .7600±.022 .0672±.004 .9338±.004 .8625±.004 .3759±.030 .3236±.026

AA-kNN .1272±.004 .4001±.009 .8281±.020 .0801±.004 .9217±.004 .8488±.004 .2053±.030 .1767±.026

LDLFs .1016±.003 .3262±.008 .6841±.017 .0504±.003 .9499±.003 .8776±.003 .4212±.023 .3620±.019

DF-BFGS .1146±.004 .3616±.008 .7627±.019 .0618±.003 .9388±.003 .8626±.004 .3026±.031 .2621±.026

KLD • .1147±.004 .3697±.008 .7804±.019 .0624±.003 .9387±.003 .8604±.003 .3021±.026 .2643±.022

S-KLD .1014±.004 .3203±.009 .6736±.018 .0514±.003 .9487±.003 .8789±.004 .4334±.025 .3729±.022

SCL • .1145±.004 .3648±.008 .7748±.018 .0605±.003 .9404±.003 .8614±.003 .3091±.026 .2701±.021

S-SCL .1041±.004 .3301±.009 .6936±.019 .0535±.003 .9468±.003 .8754±.004 .3956±.030 .3381±.027

LRR • .1067±.003 .3476±.008 .7320±.017 .0543±.003 .9465±.003 .8695±.003 .3626±.026 .3123±.022

S-LRR .0996±.004 .3157±.008 .6610±.017 .0499±.003 .9502±.003 .8812±.003 .4455±.026 .3837±.023

Table 12. Experimental results of LDL on the Yeast heat dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .0419±.001 .1818±.005 .3633±.009 .0125±.001 .9881±.001 .9404±.001 .1507±.034 .1221±.028

AA-kNN .0441±.001 .1913±.005 .3840±.010 .0140±.001 .9867±.001 .9370±.002 .1678±.031 .1384±.026

LDLFs .0420±.001 .1818±.005 .3627±.009 .0125±.001 .9881±.001 .9405±.001 .1731±.032 .1409±.026

DF-BFGS .0420±.001 .1816±.005 .3624±.009 .0125±.001 .9881±.001 .9405±.001 .1964±.034 .1624±.028

LRR • .0423±.001 .1828±.005 .3644±.009 .0126±.001 .9880±.001 .9402±.001 .1655±.033 .1351±.028

S-LRR .0417±.001 .1806±.005 .3609±.009 .0124±.001 .9882±.001 .9408±.001 .1882±.034 .1548±.028

QFD2 • .0423±.001 .1827±.005 .3644±.009 .0126±.001 .9880±.001 .9402±.001 .1677±.032 .1351±.027

S-QFD2 .0417±.001 .1808±.005 .3611±.009 .0124±.001 .9882±.001 .9408±.001 .1880±.032 .1544±.027

CJS • .0423±.001 .1827±.005 .3643±.009 .0126±.001 .9880±.001 .9402±.001 .1632±.032 .1329±.027

S-CJS .0417±.001 .1804±.005 .3603±.009 .0124±.001 .9882±.001 .9409±.001 .1940±.030 .1589±.025
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Table 13. Experimental results of LDL on the Yeast diau dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .0385±.001 .2069±.006 .4439±.012 .0138±.001 .9872±.001 .9383±.002 .2962±.034 .2427±.027

AA-kNN .0385±.001 .2085±.006 .4487±.014 .0145±.001 .9867±.001 .9377±.002 .3674±.029 .2976±.024

LDLFs .0371±.001 .2014±.006 .4324±.012 .0132±.001 .9879±.001 .9401±.002 .4088±.021 .3254±.018

DF-BFGS .0368±.001 .1999±.006 .4294±.013 .0131±.001 .9879±.001 .9405±.002 .4161±.027 .3404±.022

LRR • .0370±.001 .2007±.006 .4307±.012 .0131±.001 .9879±.001 .9403±.002 .4154±.023 .3343±.020

S-LRR .0366±.001 .1983±.006 .4257±.012 .0129±.001 .9881±.001 .9410±.002 .4198±.023 .3389±.019

QFD2 • .0369±.001 .2000±.006 .4296±.012 .0131±.001 .9879±.001 .9404±.002 .4118±.025 .3326±.021

S-QFD2 .0366±.001 .1985±.006 .4261±.012 .0129±.001 .9881±.001 .9409±.002 .4203±.021 .3387±.018

CJS .0367±.001 .1989±.006 .4272±.012 .0130±.001 .9880±.001 .9408±.002 .4164±.025 .3366±.021

S-CJS .0366±.001 .1984±.006 .4260±.012 .0130±.001 .9881±.001 .9409±.002 .4198±.024 .3392±.019

Table 14. Experimental results of LDL on the Yeast cold dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .0510±.002 .1392±.005 .2396±.008 .0121±.001 .9886±.001 .9410±.002 .2651±.036 .2263±.032

AA-kNN .0542±.002 .1476±.005 .2549±.008 .0135±.001 .9872±.001 .9371±.002 .2189±.035 .1866±.031

LDLFs .0511±.002 .1396±.005 .2404±.009 .0122±.001 .9885±.001 .9408±.002 .2482±.038 .2112±.033

DF-BFGS .0514±.002 .1404±.005 .2424±.008 .0123±.001 .9885±.001 .9403±.002 .2581±.036 .2190±.030

LRR .0511±.002 .1395±.005 .2402±.009 .0122±.001 .9886±.001 .9408±.002 .2490±.035 .2111±.030

S-LRR .0510±.002 .1391±.005 .2395±.009 .0121±.001 .9886±.001 .9410±.002 .2618±.037 .2238±.032

QFD2 .0513±.002 .1401±.005 .2413±.009 .0123±.001 .9885±.001 .9405±.002 .2534±.037 .2158±.032

S-QFD2 .0510±.002 .1391±.005 .2396±.008 .0121±.001 .9886±.001 .9410±.002 .2571±.039 .2197±.033

CJS .0513±.002 .1401±.005 .2412±.008 .0123±.001 .9884±.001 .9406±.002 .2535±.038 .2152±.032

S-CJS .0510±.002 .1392±.005 .2396±.009 .0121±.001 .9886±.001 .9410±.002 .2621±.037 .2241±.031

Table 15. Experimental results of LDL on the Yeast dtt dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .0361±.001 .0984±.004 .1690±.006 .0063±.001 .9941±.000 .9583±.001 .1735±.035 .1494±.030

AA-kNN .0386±.001 .1047±.004 .1797±.006 .0071±.001 .9933±.000 .9556±.001 .1591±.033 .1399±.030

LDLFs .0360±.001 .0981±.004 .1689±.006 .0063±.001 .9941±.000 .9583±.001 .1986±.038 .1727±.034

DF-BFGS .0365±.001 .0995±.004 .1712±.006 .0064±.001 .9939±.000 .9578±.001 .1804±.033 .1592±.030

LRR .0360±.001 .0982±.004 .1690±.006 .0063±.001 .9941±.000 .9583±.001 .2016±.037 .1738±.032

S-LRR .0359±.001 .0977±.004 .1680±.006 .0062±.001 .9941±.000 .9585±.001 .2068±.035 .1811±.031

QFD2 .0362±.001 .0986±.004 .1696±.006 .0063±.001 .9940±.000 .9582±.001 .1917±.035 .1665±.031

S-QFD2 .0359±.001 .0977±.004 .1681±.006 .0062±.001 .9941±.000 .9585±.001 .2086±.036 .1822±.032

CJS .0361±.001 .0984±.004 .1692±.006 .0063±.001 .9941±.000 .9582±.001 .1975±.040 .1722±.035

S-CJS .0359±.001 .0978±.004 .1682±.006 .0062±.001 .9941±.000 .9585±.001 .2080±.035 .1804±.031
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Table 16. Experimental results of LDL on the emotion6 dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR .3152±.010 1.8217±.020 4.1452±.064 1.0744±.081 .6906±.015 .5773±.012 .3915±.030 .3235±.025

S-LDSVR .3132±.010 1.8236±.016 4.1484±.055 1.0672±.072 .6922±.014 .5792±.011 .3952±.028 .3280±.023

AA-kNN .3288±.011 1.7116±.026 3.8757±.076 .9512±.115 .6632±.013 .5564±.010 .2920±.027 .2401±.022

LDLFs .3120±.010 1.6625±.026 3.7330±.075 .5871±.024 .7143±.011 .5802±.010 .3631±.029 .3025±.024

DF-BFGS .3026±.010 1.6765±.025 3.7675±.071 .5805±.026 .7206±.013 .5909±.010 .3940±.027 .3256±.022

KLD • .3037±.010 1.6774±.025 3.7729±.074 .5863±.027 .7191±.013 .5897±.011 .3959±.028 .3259±.023

S-KLD .3024±.010 1.6548±.026 3.6984±.075 .5631±.024 .7282±.012 .5926±.010 .4063±.027 .3361±.023

SCL • .3020±.010 1.6750±.025 3.7642±.073 .5803±.027 .7219±.013 .5917±.011 .4003±.028 .3299±.023

S-SCL .3018±.010 1.6554±.026 3.6993±.076 .5631±.025 .7281±.012 .5936±.010 .4089±.027 .3383±.023

LRR • .3030±.010 1.6736±.025 3.7601±.073 .5804±.026 .7212±.013 .5899±.010 .3941±.027 .3243±.023

S-LRR .3028±.009 1.6524±.026 3.6923±.074 .5607±.023 .7299±.011 .5923±.010 .4078±.027 .3373±.022

Table 17. Experimental results of LDL on the Twitter dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR ◦ .4236±.008 2.6722±.002 7.3015±.009 5.0018±.115 .7627±.008 .5761±.008 .5237±.008 .4246±.007

S-LDSVR .4238±.009 2.6723±.002 7.3018±.010 5.0051±.124 .7623±.009 .5229±.007 .5229±.007 .4238±.006

AA-kNN .3172±.004 2.0142±.012 4.5597±.043 3.1429±.148 .7926±.006 .6024±.005 .5014±.009 .4432±.008

LDLFs .4035±.014 2.5461±.010 6.8269±.040 1.6884±.115 .6756±.018 .5318±.013 .4164±.013 .3349±.010

DF-BFGS .2982±.004 2.4025±.005 6.2416±.020 .6304±.012 .8250±.006 .6220±.004 .5467±.008 .4454±.007

KLD ◦ .2966±.004 2.4059±.005 6.2558±.020 .6307±.013 .8243±.006 .6249±.005 .5470±.008 .4456±.007

S-KLD .2995±.005 2.4112±.005 6.2883±.020 .6491±.013 .8203±.006 .6205±.005 .5384±.009 .4385±.008

SCL • .2977±.004 2.4028±.005 6.2435±.021 .6262±.013 .8256±.006 .6233±.005 .5488±.008 .4471±.007

S-SCL .2940±.005 2.4059±.006 6.2589±.023 .6203±.013 .8268±.006 .6281±.006 .5518±.008 .4497±.007

LRR • .2984±.004 2.4046±.005 6.2525±.019 .6351±.012 .8232±.006 .6220±.004 .5443±.008 .4636±.007

S-LRR .2937±.004 2.4056±.005 6.2589±.019 .6189±.013 .8271±.006 .6283±.005 .5519±.008 .4498±.007

Table 18. Experimental results of LDL on the Flickr dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .5174±.006 2.6364±.002 7.2094±.011 5.0366±.086 .6636±.008 .4683±.006 .4622±.009 .3811±.008

S-LDSVR .4991±.006 2.6201±.003 7.1402±.012 4.9196±.085 .6721±.007 .4814±.006 .4667±.009 .3850±.008

AA-kNN .3286±.005 2.0685±.009 4.9363±.033 2.2172±.107 .7200±.006 .5582±.005 .4265±.009 .3465±.007

LDLFs .4051±.011 2.4012±.012 6.3262±.050 1.4274±.077 .6073±.015 .4822±.011 .3478±.014 .2847±.012

DF-BFGS .3007±.005 2.1995±.007 5.4900±.025 .6309±.011 .7801±.005 .5979±.004 .5102±.009 .4226±.008

KLD ◦ .3015±.005 2.2008±.007 5.4969±.025 .6348±.012 .7787±.005 .5973±.004 .5113±.009 .4234±.008

S-KLD .3052±.005 2.2044±.007 5.5222±.026 .6485±.012 .7720±.005 .5926±.004 .5030±.009 .4166±.008

SCL • .3280±.013 2.2986±.024 5.9247±.099 .8301±.055 .7268±.018 .5713±.015 .4566±.024 .3748±.022

S-SCL .2929±.005 2.2045±.007 5.5289±.028 .6113±.012 .7862±.005 .6070±.005 .5265±.008 .4373±.007

LRR • .3057±.005 2.1969±.007 5.4763±.025 .6431±.012 .7752±.006 .5929±.004 .5047±.009 .4229±.008

S-LRR .2938±.005 2.2013±.006 5.5138±.023 .6105±.012 .7864±.005 .6058±.005 .5261±.009 .4369±.008
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Table 19. Experimental results of LDL on the Natural Scene dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
LDSVR • .4899±.016 2.0831±.025 5.7724±.092 2.0862±.085 .5740±.017 .4430±.015 .4997±.015 .3695±.012

S-LDSVR .4692±.017 1.9231±.034 5.2307±.113 2.2261±.121 .5893±.018 .4602±.018 .5236±.017 .3888±.013

AA-kNN .3113±.014 1.9066±.034 4.5413±.110 1.0874±.082 .7113±.015 .5636±.013 .4921±.021 .3518±.016

LDLFs .2808±.034 2.4329±.024 6.6027±.108 .6464±.118 .7679±.046 .5839±.043 .5406±.058 .4072±.045

DF-BFGS .3074±.013 2.4126±.017 6.5896±.072 .7603±.033 .7381±.013 .5568±.011 .5110±.017 .3837±.013

KLD • .3201±.013 2.4242±.017 6.6560±.070 .8285±.044 .7172±.015 .5485±.011 .4958±.016 .3715±.012

S-KLD .2743±.013 2.3866±.020 6.4733±.077 .6608±.039 .7751±.014 .6133±.012 .5592±.017 .4221±.014

SCL • .3379±.014 2.4800±.018 6.8659±.076 .8867±.035 .7014±.014 .4801±.014 .4109±.018 .3025±.013

S-SCL .2733±.013 2.3734±.018 6.4376±.072 .6703±.043 .7744±.015 .6156±.013 .5573±.018 .4207±.014

LRR • .3138±.013 2.4469±.018 6.7118±.074 .7703±.032 .7363±.013 .5456±.011 .5056±.016 .3782±.012

S-LRR .2740±.018 2.3461±.023 6.3467±.087 .6867±.070 .7715±.021 .6199±.017 .5595±.023 .4228±.018

Table 20. Experimental results of LDL on the Movie dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .1337±.003 .5639±.010 1.0746±.020 .1191±.005 .9194±.003 .8164±.004 .6610±.013 .7080±.002

AA-kNN .1223±.002 .5451±.009 1.0445±.018 .1129±.004 .9254±.003 .8250±.003 .6557±.011 .5710±.010

LDLFs .1172±.003 .5233±.013 1.0134±.026 .1086±.006 .9305±.003 .8324±.004 .6929±.013 .6051±.012

DF-BFGS .1210±.002 .5282±.009 1.0158±.019 .1084±.005 .9289±.003 .8301±.003 .6848±.012 .5963±.012

LRR • .1135±.002 .5101±.009 .9770±.018 .0957±.004 .9369±.002 .8385±.003 .7119±.011 .6203±.011

S-LRR .1125±.002 .5086±.009 .9717±.018 .0945±.004 .9376±.002 .8398±.003 .7126±.011 .6227±.011

QFD2 • .1159±.002 .5200±.009 .9920±.018 .0975±.004 .9355±.002 .8357±.003 .7075±.011 .6158±.011

S-QFD2 .1123±.002 .5073±.009 .9700±.018 .0945±.004 .9376±.002 .8401±.003 .7125±.011 .6224±.011

CJS • .1153±.002 .5127±.009 .9845±.019 .0984±.004 .9352±.002 .8368±.003 .7103±.012 .6178±.011

S-CJS .1123±.002 .5072±.009 .9699±.018 .0945±.004 .9376±.002 .8401±.003 .7125±.011 .6223±.011

Table 21. Experimental results of LDL on the fbp5500 dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
CPNN .1864±.005 1.3367±.009 2.3604±.020 .1664±.005 .9281±.004 .7958±.005 .8688±.005 .7831±.007

AA-kNN .1515±.004 1.0443±.015 1.7295±.031 .1846±.016 .9419±.004 .8317±.005 .8865±.006 .8123±.008

LDLFs .1307±.003 1.2787±.010 2.1703±.024 .1002±.005 .9575±.003 .8552±.004 .9060±.005 .8352±.007

DF-BFGS .1341±.003 1.2889±.010 2.1982±.023 .1050±.005 .9551±.003 .8523±.004 .9047±.005 .8337±.007

LRR .1312±.003 1.2767±.010 2.1655±.024 .1004±.004 .9575±.002 .8547±.003 .9059±.004 .8350±.006

S-LRR .1302±.003 1.2796±.010 2.1717±.024 .0997±.005 .9576±.002 .8558±.003 .9063±.004 .8425±.006

QFD2 • .1380±.003 1.2803±.010 2.1858±.024 .1084±.005 .9535±.003 .8476±.004 .9021±.004 .8297±.006

S-QFD2 .1321±.004 1.2811±.010 2.1779±.024 .1027±.006 .9561±.003 .8537±.004 .9044±.005 .8330±.007

CJS • .1343±.003 1.3057±.010 2.2374±.024 .1084±.005 .9544±.003 .8527±.004 .9044±.004 .8334±.006

S-CJS .1302±.003 1.2802±.010 2.1731±.024 .0997±.005 .9575±.002 .8559±.003 .9066±.004 .8429±.007

Table 22. Experimental results of IncomLDL on the JAFFE dataset formatted as (mean± std)

Algorithms
ω = 20%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .0898±.010 .3304±.024 .6742±.049 .0425±.007 .9598±.007 .8861±.009 .4742±.094 .4017±.082

S-IncomLDL .0863±.013 .3179±.036 .6525±.077 .0433±.012 .9590±.011 .8893±.014 .5034±.114 .4401±.100

Algorithms
ω = 40%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .0946±.010 .3454±.026 .7073±.053 .0465±.007 .9558±.007 .8801±.010 .4231±.086 .3534±.074

S-IncomLDL .0868±.013 .3211±.038 .6568±.081 .0439±.014 .9585±.012 .8886±.015 .5075±.115 .4434±.098
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Table 23. Experimental results of IncomLDL on the SBU 3DFE dataset formatted as (mean± std)

Algorithms
ω = 20%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .1088±.003 .3586±.008 .7586±.017 .0574±.003 .9439±.003 .8655±.003 .3171±.027 .2746±.023

S-IncomLDL .1014±.004 .3208±.009 .6727±.019 .0516±.003 .9485±.003 .8790±.004 .4255±.026 .3679±.023

Algorithms
ω = 40%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .1104±.003 .3621±.008 .7673±.017 .0586±.003 .9426±.003 .8638±.003 .3003±.024 .2595±.020

S-IncomLDL .1016±.004 .3213±.009 .6748±.019 .0516±.003 .9485±.003 .8786±.004 .4232±.025 .3659±.022

Table 24. Experimental results of LDL4C on JAFFE and Twitter formatted as (mean± std)

Algorithms
JAFFE

Algorithms
Twitter

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C • .4973 ±.108 .7665 ±.020 LDL4C .9081 ±.009 .8846 ±.005

S-LDL4C .4453 ±.102 .7600 ±.019 S-LDL4C .8714 ±.207 .8729 ±.156

LDL-HR .4786 ±.097 .7676 ±.020 LDL-HR • .3656 ±.017 .4928 ±.011

S-HR .4653 ±.105 .7655 ±.019 S-HR .2753 ±.013 .4250 ±.008

LDLM .4787 ±.109 .7687 ±.021 LDLM • .2814 ±.013 .4291 ±.008

S-LDLM .4737 ±.097 .7689 ±.019 S-LDLM .2753 ±.014 .4250 ±.008

Table 25. Experimental results of LDL4C on sBU 3DFE and Flickr formatted as (mean± std)

Algorithms
sBU 3DFE

Algorithms
Flickr

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C .5578 ±.028 .7671 ±.007 LDL4C .8971 ±.008 .8884 ±.004

S-LDL4C .5526 ±.025 .7686 ±.006 S-LDL4C .8705 ±.138 .8702 ±.100

LDL-HR • .5167 ±.027 .7596 ±.006 LDL-HR • .4513 ±.015 .5823 ±.007

S-HR .5069 ±.025 .7598 ±.006 S-HR .4219 ±.015 .5639 ±.007

LDLM • .5258 ±.034 .7619 ±.009 LDLM • .4384 ±.014 .5740 ±.007

S-LDLM .4809 ±.024 .7524 ±.005 S-LDLM .4321 ±.016 .5667 ±.007

Table 26. Experimental results of LE on the JAFFE dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑
LP .0812 ±.001 .3446 ±.002 .7125 ±.005 .0424 ±.001 .9618 ±.001 .8808 ±.001

GLLE .0821 ±.002 .3196 ±.013 .6518 ±.028 .0386 ±.003 .9638 ±.002 .8901 ±.004

LEVI .0787 ±.003 .3316 ±.013 .6864 ±.028 .0391 ±.003 .9649 ±.002 .8860 ±.004

LIBLE • .0813 ±.006 .3106 ±.020 .6358 ±.044 .0370 ±.005 .9652 ±.005 .8929 ±.008

S-LIBLE .0770 ±.003 .2942 ±.007 .5997 ±.016 .0332 ±.002 .9685 ±.002 .8987 ±.003

Table 27. Experimental results of LE on the Yeast heat dataset formatted as (mean± std)

Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑
LP .0421 ±.000 .2148 ±.000 .4711 ±.001 .0153 ±.000 .9860 ±.000 .9235 ±.000

GLLE .0481 ±.001 .2114 ±.005 .4282 ±.011 .0168 ±.001 .9842 ±.001 .9298 ±.002

LEVI .0494 ±.007 .2125 ±.027 .4307 ±.056 .0169 ±.004 .9838 ±.004 .9289 ±.009

LIBLE • .0453 ±.000 .1973 ±.001 .3982 ±.003 .0148 ±.000 .9859 ±.000 .9346 ±.000

S-LIBLE .0445 ±.000 .1901 ±.002 .3790 ±.005 .0137 ±.000 .9869 ±.000 .9376 ±.001

19


