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ABSTRACT

Parameter-efficient fine-tuning (PEFT) is a new paradigm for fine-tuning language
models at scale. Unlike standard fine-tuning, PEFT adjusts only a small number of
parameters, making it more computationally accessible and enabling practitioners
to develop personalized services by fine-tuning models on user data. Because the
models are trained on user data, this emerging paradigm may attract adversaries
who want to extract sensitive information from fine-tuning data. However, to date,
their privacy implications have not been well-understood yet in the literature.
In this paper, we study the impact of this new fine-tuning paradigm on privacy.
We use an off-the-shelf data extraction attack as a vehicle to evaluate the privacy
risk on two pre-trained language models fine-tuned on 2 datasets, repeated 5 times
with different random seeds, resulting in a total of 100 variations. Our main find-
ings are: (1) for practitioners employing PEFT to construct personalized models,
the fine-tuned models have lower privacy risks while maintaining reasonable util-
ity; (2) for developers designing new PEFT algorithms, while safer than standard
fine-tuning, certain design choices in the algorithms increases memorization in an
unexpected way; and (3) for researchers auditing the privacy of fine-tuned models,
employing weak differential privacy is sufficient to mitigate existing data extrac-
tion risks without significantly compromising model utility. We hope our work
encourages the safe adoption and development of PEFT algorithms in practice, as
well as future work on advancing stronger privacy auditing mechanisms.

1 INTRODUCTION

“Pre-training and fine-tuning” is a common paradigm in developing AI services built on commercial-
scale language models. Model providers like Google1, Meta2, or OpenAI3 handle the pre-training
stage, while service providers fine-tune the ready-made models on their own datasets. Because those
models have a large number of parameters, the fine-tuning process requires extensive computational
resources. As a potential solution, there has been active research on reducing these computational
demands, such as parameter-efficient fine-tuning (PEFT) (Han et al., 2023).

Against this common paradigm, recent work has demonstrated data extraction attacks (Carlini et al.,
2023). To breach the confidentiality of AI services, an adversary exploits the model’s query inter-
faces to reconstruct training data from the fine-tuned models. Given that the data used for fine-tuning
likely includes private records of service users, this poses a significant privacy risk, with models po-
tentially leaking personally identifiable information (PII), such as patient names or email addresses.

In this work, we study the risk of data extraction attacks given rise to by the emerging paradigm:
PEFT. Most work on data extraction targets pre-trained models as-is (Carlini et al., 2019; 2021;
2023; Nasr et al., 2023) or focuses on scenarios where the entire parameters are fine-tuned (Pono-
mareva et al., 2022; Jayaraman et al., 2024). However, it remains unknown how vulnerable these
fine-tuned models, especially those constructed using PEFT algorithms, are to data extraction at-
tacks. It is also unclear which design choices in PEFT algorithms make them more (or less) vulnera-

1https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
2https://www.llama.com/docs/how-to-guides/fine-tuning
3https://platform.openai.com/docs/guides/fine-tuning
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ble to data extraction attacks. Moreover, it is essential to understand how the formal defense against
privacy attacks—differential privacy—mitigate this risk while maintaining model utility.

Contributions. We first address these questions by comprehensively evaluating the privacy risks of
language models fine-tuned with various PEFT algorithms. We use an off-the-shelf data extraction
attack, developed by (Carlini et al., 2019), as a vehicle to assess this privacy threat. We fine-tune
two commercial-scale language models using five different fine-tuning algorithms on two datasets
repeated five times with different random seeds, to achieve 80 variations of PEFT-trained models,
and 20 with full-model finetuning.

We demonstrate that models constructed using PEFT algorithms achieve 2–14× times less exposure,
while standard fine-tuning leads to the successful extraction of secrets from the resulting models. We
also observe variations in memorization across models fine-tuned with different PEFT algorithms.

Second, we characterize key factors that influence the memorization of secrets across different fine-
tuning algorithms. We show that secrets containing substrings likely to appear in the pre-training
corpus are less likely to be memorized by fine-tuned models. In contrast to the prior work’s findings,
we observe that the increase in the number of tunable parameters does not necessarily mean more
memorization in models. Moreover, we find that certain design choices in PEFT algorithms can lead
to different memorization patterns. In prefix-tuning, for example, secrets located at the beginning of
a training record are more easily memorized than those placed at the end.

Third, we investigate the interaction between a privacy defense with the formal guarantee (differen-
tial privacy, ϵ) and model utility across five fine-tuning algorithms. We demonstrate that, even with
a large ϵ, data extraction can be completely rendered ineffective across all PEFT algorithms, while
preserving model utility. One can also reduce ϵ to 2.0–5.0, depending on the PEFT algorithm used,
without significant performance loss. We find that PEFT algorithms that fine-tune fewer parameters
are better at preserving model utility under strong privacy guarantees, ϵ ∈ [0.2, 2.0]. We also show
that lower ranks are preferable for keeping model utility under small ϵ values.

We hope our work will serve as a Hitchhiker’s Guide to fine-tuning language models with privacy.

2 BACKGROUND AND RELATED WORK

Parameter-efficient fine-tuning (PEFT) enables to fine-tune large-scale models in a computation-
ally accessible way while maintaining performance comparable to standard fine-tuning. Instead of
adjusting the entire model parameters, PEFT reduces the number of tunable parameters through
various methods Han et al. (2024). A common approach is to use additive methods: we alter the
model architectures by injecting small learnable modules (or parameters). Representative methods
include (1) adapters (Houlsby et al., 2019) where small learnable modules are added to transformer
blocks; (2) prefix-tuning (Li & Liang, 2021), which introduces learnable vectors added to keys
and values across all transformer layers; and (3) prompt-tuning (Lester et al., 2021) that applies
learnable vectors only at the initial token embedding layer to enhance training and inference effi-
ciency. An alternative yet emerging approach is Low-Rank Adaptation (LoRA) Hu et al. (2022),
which constructs a low-rank parameterization of transformer layers to reduce the number of tunable
parameters. Our work studies memorization of models fine-tuned though these PEFT algorithms.
Concurrently, Anonymous (2024) studies tight auditing of memorization in standard fine-tuning.
But our focus is more on the impact of memorization under these emerging fine-tuning techniques.

Privacy risks in language model ecosystem. Data extraction attacks present a major risk to the lan-
guage model ecosystem: an adversary aims to extract private information from the training data used
to train (or fine-tune) language models. Because language models are deployed in a black-box man-
ner, most prior attacks have demonstrated their feasibility by exploiting query-based interactions.
Initial work on data extraction focuses on extracting private information, unintentionally memorized
during pre-training (Carlini et al., 2019; 2021; Nasr et al., 2023; Carlini et al., 2023; Bai et al., 2024),
but as fine-tuning becomes more common, recent work explores the extraction of sensitive data from
fine-tuning data (Lukas et al., 2023; Liu et al., 2024). Our work falls into the latter category, as we
study data extraction against fine-tuned models, which is under-explored in the prior work.

How precisely an attacker queries the target model varies depending on their knowledge. The weak-
est attacker has only query access to the target model and no knowledge of the training data. This

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

attacker will choose prompts that are likely to trigger the generation of memorized data, which may
take forms, such as random Internet strings Carlini et al. (2021); Nasr et al. (2023) or special char-
acters (Bai et al., 2024). These attacks are untargeted, aiming to reconstruct any training examples
verbatim. On the other hand, a strong adversary has (partial) access to the training data and knows
the context associated with private information. The adversary can prompt the target model using
these prefixes to reconstruct the remaining specific tokens in the training records to which the prefix
belongs (Carlini et al., 2023; Lukas et al., 2023). Because our work uses data extraction attacks as a
privacy auditing mechanism, we perform a membership-inference style attack, where the adversary
knows the context associated with a secret and has a list of secret candidates to compare.

Differential privacy (DP) (Dwork et al., 2006) is originally developed to reduce the difference in
outcome from querying two databases which differ by a single record. Abadi et al. (2016) developed
a training algorithm, differentially-private stochastic gradient descent (DP-SGD), that employs DP
to guarantee protection of a model against the worst-case private information leakage. DP-SGD
formally quantifies the leakage with the parameter ϵ. We set ϵ to a desired value before training, and
once the total leakage exceeds the pre-defined ϵ during training, we stop training and save the model
with its parameters. To date, DP-SGD is the standard practice for training (or fine-tuning) private
models (Ponomareva et al., 2022; Li et al., 2022; Yu et al., 2022). However, the privacy guaran-
tee comes at the cost of performance: a stronger guarantee often results in significant performance
degradation. Thus, it is important to understand the privacy-utility trade-off (Jayaraman & Evans,
2019) and how to train private models with performance comparable to non-private models (Pono-
mareva et al., 2023). Our work also studies the privacy-utility trade-off in fine-tuned models.

A separate line of work studies defensive mechanisms in the context of language models to miti-
gate empirical privacy risks. Deduplication reduces the number of secret occurrences in the training
data to mitigate data extraction attacks (Kandpal et al., 2022; Lee et al., 2022). Adversarial train-
ing (Goodfellow et al., 2015), a standard countermeasure against adversarial examples, is used with
a privacy regularizer to jointly optimize for both privacy and utility (Mireshghallah et al., 2021).
While these defenses effectively reduce the success rate of existing privacy attacks (Rigaki & Gar-
cia, 2023), we exclude them from our investigation as they do not provide formal guarantees.

3 METHODOLOGY

3.1 DEFINITION OF MEMORIZATION

We adopt the definition of memorization from Carlini et al. (2023), with adaptations in blue.
Definition 3.1. (Memorization) A secret s is memorized by a model f with k tokens of context if
there exists a (length-k) string p, such that the insertion of s into p, denoted as p ⊕ s is present in
the training data for f , and f achieves the lowest perplexity, when prompted with p ⊕ c where c is
s, across all possible secret candidates c in C.

This definition differs from prior work (Carlini et al., 2021; 2023; Nasr et al., 2023; Bai et al., 2024).
Instead of prompting the model with a context p and then generating next N tokens using a given
decoding method, we compute the perplexity directly on a list of prompts p⊕ c, each differing only
by the secret candidate c. The difference lies in the purpose of employing data extraction. Prior
work focuses on demonstrating the feasibility of data extraction against language models in use,
but we leverage the same attack for auditing privacy risks. Hence, rather than prompting the model
with p and hoping greedy decoding extracts the correct final token, we assume a strong adversary by
limiting their search space to a set of candidate secret tokens C, expecting the true secret s to yield
the lowest perplexity compared to the others. One can view this definition as an edge-case of Carlini
et al. (2023), where the attacker has all but the final token of a training record.

3.2 QUANTIFYING MEMORIZATION

Threat model. We consider an emerging scenario where a victim develops natural language pro-
cessing services by fine-tuning a commercial-scale pre-trained language model on their data, which
may contain private information of users. Because these models have more than billions of param-
eters, we assume that the victim employs PEFT methods to reduce the computational demands for
fine-tuning. We assume a data extraction adversary (Carlini et al., 2021; 2023; Nasr et al., 2023; Bai
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et al., 2024; Lukas et al., 2023), also an emerging concern to language model ecosystem, who aims
to extract private information from a target model. In our scenario, we assume an oracle adversary
with black-box access, exploiting the model’s prompting interface.

Exposure as a metric for quantifying memorization. Our definition above is strict: memorization
is only confirmed when the prompt containing the secret achieves the lowest perplexity. However, in
our initial investigation, we find the need to relax this definition slightly. While the strict definition
is useful for determining the success of an attack, it does not provide a measure of the degree to
which a secret is memorized by a model. In consequence, in most cases where the perplexity is not
the lowest (even when the value is a close second or runner-up), it is considered as not-memorized.

Definition 3.2. (Exposure) Given a secret s and a model f , the exposure of s is defined as:

exposuref (s) =log2|C|−log2 rankf (s)

We follow the definition of Carlini et al. (2019). The cardinarlity of the candidate space C, is set to
approximately 400. The rank of a secret s is defined as its index in the list of all possible candidates
in C, ordered by the model perplexity. In our case, the “candidate space C” refers to the number
of possible candidates a secret s could be, instead of every possible character combinations with
the same length as s. We make this decision for computationally practical threat modeling. In the
medical record dataset (MIMIC) we use, a 10-character secret, such as a patient’s name in English,
has 2710 combinations. But we reduce the space to 400, by selecting only common English names.

3.3 PREPARING THE EVALUATION DATA

We prepare two different types of datasets for our evaluation. The first dataset represents the most
challenging scenario for our data extraction adversary: a single insertion of a secret s. In this case,
we randomly select a record p from the training data and concatenate the secret, forming [p||s]. This
construction follows the same methodology as in Carlini et al. (2023). We take a dataset and repeat
this process five times with different random seeds to construct five distinct fine-tuning datasets.

While commonly used in the literature, the previous construction may not capture the variations in
the secret’s location within a context. For instance, when the secret is a patient’s name, the training
record could be “John Doe is diagnosed with granulosa cell tumor” rather than “Granulosa cell
tumor is the disease for John Doe.” To study the impact of a secret’s location on memorization, we
select 50-token-length training records from a dataset, insert the same secret at 5 different positions,
and save each version as a separate fine-tuning dataset. We also examine how duplication affects
memorization by increasing the number of duplications from 1 to 500 for each fine-tuning dataset.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We fine-tune models using two datasets: MIMIC-III (Johnson et al., 2016) and the Enron
corpus4. The MIMIC-III dataset contains 112,000 de-identified electronic health records, including
vital signs, lab results, and patient status reports. Due to the size complexity, we sample a subset
of the entire data, focusing on 13,431 records of patient bedside checkups. The Enron email cor-
pus, widely used in data extraction research (Carlini et al., 2019; Lukas et al., 2023), contains over
600,000 emails exchanged between Enron Corporation employees, collected by the Federal Energy
Regulatory Commission during its investigation. We use it to ensure comparable and generalizable
findings. We extract a subset of 13,399 records to match the size of our MIMIC dataset.

Secrets. We insert a synthetic patient name “mary smith,” once into the MIMIC-III dataset,
and a faux email address, “Leo.Moreno@gmail.com,” into the Enron corpus. This testing strat-
egy is similar to the prior work (Jayaraman et al., 2024; Liu et al., 2024), where artificial se-
crets are inserted into training datasets. In order to compute exposure, we also prepare 400 ad-
ditional secret candidates using other common names and emails, such as “james henderson” or
“Maria.Hernandez@yahoo.com.” Please refer to Appendix B.13 for example records we insert.

4https://www.cs.cmu.edu/ enron/

4
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Models. We use autoregressive models, GPT-2 and GPT-2 XL (Radford et al., 2019), in our ex-
periments, as these models are widely employed in data extraction research and are predecessors
of commercial-scale language models like GPT-4 (Achiam et al., 2023). GPT-2 is a decoder-only
transformer model with 124M parameters, while GPT-2 XL is a production-scale version of GPT-2,
with 4× the number of layers, and ∼ 2× the parameters per layer, resulting in a total of 1.5 billion
parameters. Please refer to the Appendix A for details on our fine-tuning hyperparameter selections.

Metrics. As described in Sec 3.2, we compute exposure to quantify memorization of a secret by fine-
tuned models. To measure the performance of these models, we compute perplexity, the exponential
of the model loss over a given sequence, on the evaluation data.

4.2 MEMORIZATION OF FINE-TUNED MODELS

We first compare the memorization of a secret across models fine-tuned using standard fine-tuning
and four PEFT methods: fine-tuning with Adapters, Prefix-tuning, Prompt-tuning, and LoRA.

PEFT Method
Dataset Models Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

MIMIC-III

GPT-2 Exp. 8.64±0.00 3.71±0.97 3.72±1.46 2.70±0.41 1.88±1.25
PPL. 1.15±0.00 1.30±0.01 1.24±0.00 1.23±0.00 1.17±0.00

GPT-2 XL Exp. 8.64±0.00 4.46±0.28 4.48±1.18 1.51±0.56 5.29±1.01
PPL. 1.15±0.00 1.30±0.00 1.27±0.01 1.20±0.00 1.13±0.00

Pythia-2.8B Exp. 8.64±0.00 2.69±1.54 1.56±0.04 0.89±0.16 2.83±2.21
PPL. 1.16±0.00 1.12±0.00 1.27±0.01 1.16±0.00 1.12±0.00

Enron

GPT-2 Exp. 8.04±1.20 1.47±0.68 0.55±0.34 0.45±0.31 1.28±0.76
PPL. 1.08±0.00 1.18±0.01 1.11±0.01 1.12±0.01 1.06±0.00

GPT-2 XL Exp. 7.63±1.58 1.35±0.57 0.86±0.53 0.73±0.50 0.50±0.34
PPL. 1.06±0.00 1.21±0.00 1.16±0.01 1.13±0.01 1.07±0.00

Pythia-2.8B Exp. 8.64±0.00 1.05±1.03 1.95±0.03 1.17±0.87 1.52±0.51
PPL. 1.07±0.00 1.05±0.00 1.18±0.00 1.07±0.00 1.05±0.00

Table 1: Comparison of data extraction success across language models. We compute the expo-
sure (Exp.) and the evaluation perplexity (PPL.) of language models fine-tuned using six different
algorithms. Each cell reports the average over five runs along with the standard deviation. In each
case, the secret is inserted once into the fine-tune dataset. We bold the lowest evaluation perplexity,
as well as lowest exposure for each model-dataset pair.

Results. Table 1 summarizes our results. We find that the models fine-tuned through PEFT algo-
rithms are less vulnerable to data extraction. Standard fine-tuning (Baseline) results in the exposure
values close to maximum (∼8.64=log2401), but when we employ PEFT algorithms, the exposures
are reduced by 2–14× times (0.50–4.46). We also compare the perplexity of fine-tuned models to
verify that the reduction is not from the performance loss. We observe a slight increase in perplexity
(0.01—0.15), but the increase is too small to result in a significant decrease in the exposure. We also
show in Appendix B.11 that the reduction in exposure is not due to performance degradation. Even
with the comparable perplexity (see LoRA columns), we find the exposure is reduced by 14× times.

Note that we fix the number of training epochs we use for fine-tuning, e.g., fine-tuning of GPT-2
on Enron uses 10 epochs, to reflect the real-world training practice. If we increase the number of
epochs to 50 and beyond, while there is no performance benefit, the exposure values computed on
the fine-tuned models increase. But we do not evaluate such cases, as there is no reason a victim
will use 5× more training epochs with computationally-efficient fine-tuning algorithms.

Across the different PEFT methods, we find that prompt-tuning and LoRA consistently demonstrate
the lowest exposure values. In prompt-tuning, we attribute the low exposure to the type of parameters
are trained. While other PEFT mechanisms tunes the parameters across all the transformer layers,
including the attention and the fully-connected layers, prompt-tuning only fine-tunes the subset of
a model’s embedding layers. Due to this design choice, prompt-tuning may make it more difficult
for the model to associate a secret with various contexts in the training data. In LoRA, the reduced
rank in the latent representation space acts as an information bottleneck, making it difficult for the
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model to memorize outliers, such as the secret, which the model first encounters during fine-tuning
(as we ensure the secret is not present in the pre-training corpus; see Appendix B.8). Please refer to
Appendix B.12 for a detailed investigation of our hypothesis.

4.3 FACTORS INFLUENCING MEMORIZATION IN FINE-TUNING

We now shift our focus to the factors influencing memorization during fine-tuning. This includes
our experimental design, such as the datasets and secrets we use, or the PEFT hyper-parameters.

Impact of the secret types. In our experiments (Table 1), the reduction in the exposures in Enron
are greater than that observed in MIMIC-III. We attribute this difference to the secrets we choose. In
MIMIC-III, we use a patient name with medical records; both the models pre-trained on the curated
Internet sources are not likely to encounter medical records. The memorization of the patient name
may be easier than that of the secret we use in Enron—a synthetic Gmail address that the pre-training
data corpus is likely to contain. During fine-tuning, it could be difficult for the model to distinguish
our secret email address from the other Gmail addresses learned from the pre-training step. We run
additional experiments with rare names and email addresses as secrets in the MIMIC dataset and
make consistent observations. The details can be found in Appendix B.10.
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Figure 1: Impact of tunable parameter count on memorization. On the left, we compare the
exposure of fine-tuned models with varying number of tunable parameters. We also show the evalu-
ation perplexity of these models on the right. We run this evaluation on MIMIC-III.

Impact of tunable parameter counts. Prior work has demonstrated that increasing the number of
tunable parameters leads to greater memorization (Carlini et al., 2023). This holds true at scale:
standard fine-tuning of GPT-2 and GPT-2 XL models results in perfect memorization of a secret—
even when the secret appears only once in the fine-tuning data. However, it remains under-explored
whether this observation holds in the context of PEFT. To evaluate this hypothesis, we compare the
exposure in fine-tuned models based on the number of parameters tuned by each PEFT algorithm.

Figure 1 summarizes our results in MIMIC-III. We have consistent findings from our Enron experi-
ments (refer to Appendix B.1 for our Enron results). We compare the difference between fine-tuned
GPT-2 and GPT-2 XL models. Because GPT-2 XL have more parameters than GPT-2, applying
PEFT algorithms to GPT-2 XL result in tuning more parameters during fine-tuning. Prior work’s
findings are not consistent with our observations across different PEFT algorithms. In both Adapter
and LoRA, fine-tuned GPT-2 XL models exhibit higher exposure values, as expected. However, we
do not observe any significant differences in prefix tuning. Surprisingly, we find GPT-2 XL models
fine-tuned with prompt tuning exhibit exposure values lower than GPT-2 models.

One possiblity is that a smaller number of tunable parameters could lead to performance degradation
in fine-tuned models for the task at hand. To analyze further, we compare the evaluation perplexity
across various fine-tuned models. In LoRA, our result aligns with existing knowledge: an increase
in the number of tunable parameters reduces evaluation perplexity, which unintentionally leads to
the increase in memorization of secrets. However, in other three PEFT techniques, we observe the
decrease in exposure as the model become accurate on a desired task.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.4 DOES THE POSITION OF A SECRET WITHIN A SENTENCE MATTER?

Most prior work follows the definition of memorization from (Carlini et al., 2019; 2023), where a
secret s is concatenated at the end of a context p. Now we challenge this practice and analyze further
how the position of a secret within a context impacts memorization. Our hypothesis is that PEFT
methods, which only tune parameters corresponding to specific token positions in the input, may be
better at memorizing secrets in those locations than secrets placed at the end. Here we focus on our
findings in MIMIC-III. Please refer to Appendix B.3, B.5, and B.6 for our full results.

Figure 2: Illustrating the impact of secret position on memorization. The figures show the impact
of a secret’s location in a context on exposure. The top row shows the results from GPT-2 models,
while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to
standard fine-tuning, fine-tuning with adapters, and LoRA. We show the results on MIMIC-III.

On standard fine-tuning, fine-tuning with adapters, and LoRA. Figure 2 illustrates our findings
in MIMIC-III. We first observe that when a secret is inserted only once in the fine-tuning data,
there is no discernible impact on the secret’s exposure across the three methods. However, when
the number of insertions is increased to 500, we observe that secrets are more easily memorized if
they appear in later positions within the target context, particularly when fine-tuning with adapters
and LoRA are employed. Our observation align with prior work (Carlini et al., 2023): due to the
autoregressive nature of modern language models, tokens in later positions within a sequence are
more likely to be memorized.

On prompt-tuning. We observe in prompt-tuning consistently low exposure across the dataset and
secret positions (less than ∼2.0). We also find no significant increase in exposure when the number
of secret insertions is increased from 1 to 500. While prompt-tuning fine-tunes a few parameters at
the earlier positions in prompts, it does not imply that the method can effectively memorize secrets
in those positions. Prompt-tuning adds virtual tokens (or virtual prefixes) to each training record and
tunes only the corresponding embedding layers. Thus, even if we place secrets in earlier positions
of our training records, virtual tokens introduced by prompt-tuning will always be preceding. Please
refer to Appendix B.7 for our full results on prompt-tuning.

On prefix-tuning. An interesting observation from our prefix-tuning experiments is that secrets
located at the beginning of training records are more likely to be memorized. Figure 3 shows this
observation. The left figure shows results from models trained without differential privacy (DP),
while the right figure presents results with DP at ϵ=10.0. Note that due to the space constraints,
we include the DP results in Figure 3. When a single secret is inserted into the fine-tuning data,
exposure slightly decreases as the secret’s position within the target record moves to later locations.
This trend becomes more distinct when 500 secrets are inserted into the fine-tuning data. In the left
figure, the exposure at position 1 is ∼3, while it decreases to ∼2 at position 50. Note that exposure
is measured on a log-scale; a decrease of 1 in exposure equals to a 2× reduction in privacy risk.
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Figure 3: Prefix tuning memorizes secret closer to beginning of record better. In these figures,
we show the effect of secret position in record vs. exposure when using the prefix-tuning, without
DP (ϵ = inf; left) and ϵ = 10.0 (right). We run this evaluation on GPT-2 in MIMIC-III.

4.5 MEMORIZATION OF MODELS FINE-TUNED WITH PRIVACY

We further test how the standard practice in training models with a privacy guarantee, differentially-
private (DP) model training (Abadi et al., 2016), interacts with the four PEFT methods. We fine-
tune both GPT-2 models using standard fine-tuning and four PEFT methods with varying epsilons in
{0.01, 0.05, 0.075, 0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 10.0}. For GPT-2, we run fine-tuning five times with
different random seeds, but due to the resource limits, we fine-tune GPT-2 XL only once on ϵ of 0.1.
We fine-tune for the same number of epochs as in the non-DP setting, ensuring a low, comparable
evaluation perplexity reached at a loose privacy guarantee (ϵ of 10.0). We use the FastDP library (Bu
et al., 2024), compatible with all four PEFT algorithms we employ.

Method Metric Privacy Budget (ϵ)
∞ 10.0 8.0 4.0 2.0 1.0 0.5 0.1

Baseline Exp. 8.64±0.00 2.20±1.78 2.21 ±1.78 2.34 ±1.64 2.50 ±1.24 2.47 ±1.00 2.41 ±0.95 1.75 ±0.66
PPL. 1.15 ±0.00 1.12±0.00 0.12±0.00 1.12±0.00 1.13±0.00 1.13±0.00 1.13±0.00 1.15±0.00

Adapter Exp. 3.71±0.00 2.94±0.92 3.28 ±1.57 3.00±2.07 3.36±1.60 2.94±1.98 2.65±1.75 2.10±1.32
PPL. 1.30±0.01 1.42±0.01 1.43±0.00 1.46±0.02 1.59±0.11 1.63±0.11 1.78±0.25 5.43±2.79

Prefix-tuning Exp. 3.72±1.46 3.22±1.03 3.16±1.02 3.24±1.22 3.15±1.24 3.18±1.15 3.27±0.10 2.83±0.91
PPL. 1.24±0.00 10.36±12.36 13.74±17.01 24.44±24.80 43.35±32.94 73.42±44.06 127.94±61.56 815.65±800.74

Prompt-tuning Exp. 2.70±0.41 1.99±0.51 2.00±0.53 2.02±0.54 2.00±0.57 2.01±0.58 1.98±0.60 1.96±0.60
PPL. 1.23±0.00 1.92 ±0.03 2.45±0.07 11.43±1.06 70.75±2.24 202.32±2.18 438.74±3.92 1448.78±10.66

LoRA Exp. 1.88±1.25 2.68±0.85 2.70±0.87 2.74±0.96 2.72±0.97 2.63±0.95 2.57±0.91 2.16±0.30
PPL. 1.17±0.00 1.20±0.00 1.20±0.00 1.21±0.00 1.21±0.00 1.21±0.00 1.22±0.00 1.28±0.00

Table 2: Comparison of DP epsilon against exposure and perplexity. We compute the expo-
sure (Exp.) and the evaluation perplexity (PPL.) of language models fine-tuned using five different
finetuning methods for eight different DP epsilons (including without any privacy - ∞). Each cell
reports the average over five runs along with the standard deviation.

Memorization vs. perplexity. We begin with comparing the impact of different privacy guarantees
on empirical privacy risks (measured as exposure) and model performance (measured as evaluation
perplexity). In evaluation, we set the adapter rank to 32, the number of prompt and prefix tokens
both to 64, and the LoRA rank to 16. We find that ϵ values below 10.0 render data extraction
attacks completely ineffective. At ϵ = 10.0, we observe exposure values between 2 and 3, a 4×
reduction in exposure compared to standard fine-tuning without DP, indicating that the secrets rank
between the 50th and 100th positions in the list of candidates, ordered by evaluation perplexity. Most
PEFT methods do not result in significant performance degradation, except for prefix-tuning, which
achieves an evaluation perplexity of approximately 5 at ϵ= 10.0. Setting ϵ below 10.0 completely
breaks the models fine-tuned with prompt tuning and prefix tuning, with their perplexity exceeding
300. LoRA models achieve the best exposure-perplexity trade-off. Our results are consistent with
GPT-2 XL models. Please refer to Appendix B.6 for our full results.
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Figure 4: Impact of privacy guarantee ϵ on model perplexity. We illustrate the trade-off between
ϵ and evaluation perplexity, measured on our fine-tuned GPT-2 models. (from the left) We show the
results from fine-tuning with adapter, prompt-tuning, and prefix-tuning with different configurations.
MIMIC-III datasets are located on top and Enron datasets below.

Trade-off between privacy and utility. Next we analyze the tradeoff between privacy, guaranteed
formally by ϵ, and utility (measured by evaluation perplexity). Figure 4 summarizes our results from
GPT-2 models fine-tuned on MIMIC-III and Enron datasets. We use ϵ in [0.001, 2.0] and explore the
impact of different PEFT hyperparameters: with the adapter ranks in {4, 8, 16, 32}, the number of
prompt and prefix tokens in {16, 32, 64}, and the LoRA ranks in {8, 16, 32}. We focus on a reduced
epsilon range, ϵ ∈ [0.1, 2.0], as perplexity increases by orders of magnitute within this range. If we
use ϵ < 0.1, the fine-tuned models perform no better than random.

Overall, we observe a greater increase in perplexity as we increase the configuration values across
PEFT algorithms. This occurs because the configurations are proportional to the number of tunable
parameters: an increase in tunable parameters requires adding more noise to achieve the same target
ϵ value as when fine-tuning models with fewer tunable parameters. For adapters, we observe an
increase in perplexity from ∼1.1 to ∼8.0 at ϵ=0.1, whereas the increase reaches up to ∼800–2400
for the case of prompt-tuning and prefix-tuning. The notable exception is LoRA, not shown in the
above figure, which impressively maintains low-perplexity even at ϵ=0.1. Our results indicate that
once a sufficiently low-perplexity is achieved with a PEFT method’s configuration, increasing the
number of tunable parameters can lead to a worse trade-off between privacy and utility. We further
investigate the privacy-utility trade-off with the larger GPT2-XL base model in Appendix B.6

However, we do not observe any consistent relationship between PEFT hyper-parameters and the
perplexity under DP. The first observation we had is that the trend differs from the datasets we use.
In the MIMIC-III dataset, larger hyperparameters generally result in higher perplexity (except for
Adapter with r = 32). In contrast, we observe a reduction in perplexity for the Enron dataset
under the same conditions. We hypothesize that there are optimal PEFT hyper-parameters required
to achieve reasonable performance (e.g., in MIMIC-III, the rank ∼4–8 and the prefix tokens ∼16).
Increasing those parameters beyond the optimal range can increase the noise added by DP-SGD and
make the performance fluctuate. We leave the further investigation for future work.

5 CONCLUSION

Our work studies the privacy risks associated with language models fine-tuned using parameter-
efficient fine-tuning (PEFT), an emerging approach that allows for computationally efficient fine-
tuning of large-scale models. To evaluate the privacy, we employ an off-the-shelf data extraction
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attack in a black-box setting, with the stronger assumption of knowing the context in which the secret
is embedded. We fine-tuned two pre-trained GPT-2 models using four popular PEFT methods and
full-model finetuning on datasets containing personally identifiable information (PII). In total, 100
total variations over all fine-tuning methods. Our findings show that models fine-tuned using PEFT
algorithms pose lower privacy risks compared to those fine-tuned through standard methods. All
models achieved reasonable evaluation perplexity, indicating that the privacy benefits do not come
at the cost of performance degradation. Interestingly, increasing the number of tunable parameters
in PEFT models does not necessarily lead to higher privacy risks. However, we demonstrate that
PEFT design can introduce specific privacy risks–for example, prefix-tuning can lead to the leakage
of secrets in the first few tokens of a record. Moreover, we show that employing differential privacy
can almost completely offset these privacy risks while maintaining evaluation perplexity at a level
comparable to fine-tuning without privacy.

Reproducibility Statement. To make our work reproducible, we provide description of the dataset,
models, hyper-parameters and fine-tuning methods both in the main text and in Appendix. Specifi-
cally, Sec 4.1 and Appendix A offer detailed discussion on our models, datasets and training hyper-
parameter settings. We believe these detailed implementation descriptions will facilitate the success-
ful replication of our work. We will also release the source code to further ensure the reproducibility.
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A EXPERIMENTAL SETUP IN DETAIL

We use Python v3.9.0 and PyTorch v2.4.0 (Paszke et al., 2019) to conduct our experiments. For
standard training, we use Hugging Face5, and for training with differential privacy, we employ
FastDP (as shown in Table 3). For each experiment, we fine-tune with a learning rate of 0.0001,
and train batch size of 8. We use an eval batch size of 1. For the implementation of lora, prefix and
prompt tuning methods, we use huggingface’s PEFT library. The adapter mechanism we implement
from scratch, according to the design in Houlsby et al. (2019). We run our framework on a machine
equipped with an Intel Xeon Processor with 48 cores, 768 GB of DRAM, and 8× Nvidia A40 GPUs,
each with 48GB VRAM. This setup only allows us to fine-tune models with the scale of GPT2. To
train commercial-scale models like GPT2-XL, we use a server equipped with AMD EPYC™ 64-
Core Processor, 1024 GB of DRAM, and 8× Nvidia A100 GPUs, each with 80 of VRAM.

Python library Base Adapter Prefix-tuning Prompt-tuning Pruning LoRA

Opacus6 △† - O O O O
dp-transformers7 △† - O O O O
private-transformers8 O - X X O X
Jax-Privacy9 △∗ △∗ △∗ △∗ △∗ △∗

FastDP (Our choice)10 O O O O O O

†: This only works with the batch size of 1; the training for 6 epochs in GPT-2 takes 5.5 hours.
∗: This requires additional wrapper code for importing PyTorch models into Jax framework.

Table 3: Comparison of Python libraries that support differentially-private training.

Our choice of Python library for training models with differential privacy. Table 3 summarizes
the range of support provided by existing Python libraries for training models with differential pri-
vacy. We select FastDP as it supports all the parameter-efficient fine-tuning (PEFT) algorithms used
in our evaluation. Other libraries support a subset of PEFT algorithms. Note that we find Jax-Privacy
supports all the algorithms; however, it is compatible only with Jax models, requiring us to write Jax
wrappers for converting our PyTorch models to their framework and vice versa.

PEFT hyper-parameters. For our main result in 4.5, for GPT2, we select PEFT hyper-parameters
according to recommendations from their original studies (Houlsby et al., 2019; Li & Liang, 2021;
Lester et al., 2021). We investigate adapter ranks in {4, 8, 16, 32}, the number of prompt and
prefix tokens in {16, 32, 64}, and the LoRA ranks in {8, 16, 32} in Table 1, we average over all
hyperparameter settings per PEFT method for each model-dataset combination. For GPT-XL and
Pythia, we fix this hyperparameter to 16 across all PEFT methods.

DP hyper-parameters. We use a record-level delta, calculated as the inverse of the dataset size. For
both MIMIC and Enron, this delta is ∼7.4×10−7 (1/13.3k), following standard practices in prior
work and the original study (Abadi et al., 2016).

B FULL EVALUATION RESULTS

B.1 IMPACT OF TUNABLE PARAMETER COUNTS IN ENRON

We observe a less strong relationship between number of tunable parameters and secret exposure
in the Enron dataset compared to MIMIC-III. We attribute this to the overall lower exposure of the
secret in Enron across PEFT mechanisms. Each configuration tested achieves an exposure of less
than 2, x4 lower than standard fine-tuning. From this we observe that if a secret is difficult for a

5https://huggingface.co/
10https://opacus.ai/
10https://github.com/microsoft/dp-transformers
10https://github.com/awslabs/fast-differential-privacy
10https://github.com/lxuechen/private-transformers
10https://github.com/google-deepmind/jax privacy
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Figure 5: Impact of tunable parameter count on memorization. On the left, we compare the
exposure of fine-tuned models with varying number of tunable parameters. We also show the log
evaluation perplexity of these models on the right. We run this evaluation on Enron.

model to memorize, number of parameters is unlikely to make a significant difference in the secret
exposure. As a result of a more difficult secret to memorize being present in the Enron dataset,
PEFT mechanisms are affected differently when comparing the two datasets. Some patterns are
the same, for example the pattern for adapter is very similar to that of MIMIC-III, where adding
parameters while using GPT-2 gradually brings down the exposure. Some mechanisms demonstrate
small but reversed patterns, such as prompt tuning, where the GPT2-XL version led to a slight in-
crease in exposure compared to the GPT-2 versions. LoRA’s pattern changed the most significantly
however, with number of parameters increasing with exposure for different configurations and GPT-
2, and the GPT-2 XL version yielding a lower exposure. Interestingly, we observe the evaluation
perplexity is increased for all GPT-2 XL versions of each PEFT mechanism, a trait that only prefix
tuning and adapter shared from Figure 1, and similar to MIMIC-III, we observe also a trend down-
ward in perplexity as the number of model parameters increase within a given base model + PEFT
combination.

B.2 MEMORIZATION AND PERPLEXITY IN ENRON

In Figure 6, we show the relationship between evaluation perplexity and exposure. Similarly to
MIMIC-III, we observe that the four PEFT mechanisms consistently reduce the privacy leakage even
without DP when compared to standard full fine-tuning. Between standard fine-tuning and all other
methods, we observe a particularly dramatic decrease of 8× in perplexity. We note that at ϵ = 10.0,
model utility is preserved well across fine tuning methods. For prompt and prefix-tuning, lower
than ϵ = 10.0 the perplexity value increases by several orders of magnitude. Consistent with other
observations from this paper, methods that demonstrate low privacy leakage without differential
privacy do not see a large change in secret exposure. LoRA models, similarly to those fine-tuned on
MIMIC-III, demonstrate the best exposure-perplexity trade-off.

B.3 IMPACT OF SECRET POSITION ON MEMORIZATION IN ENRON

In Figure 7, we find that the secret in the Enron dataset is more easily memorized at later positions
in the sequence by the full fine-tuning, LoRA, and adapter. The single insertion of a secret yields
similar exposure regardless of the position, consistent with our findings from the MIMIC-III position
experiment. The results from the GPT-2 XL version of these models support the notion that later-
positioned secrets will be more easily memorized, and this is very clearly the case for high insertion
rates. The combination of LoRA and GPT-2 XL is an example of a model surprisingly sensitive to
token location. When the secret position is at the very beginning of a record, it achieves the lowest
exposure of any PEFT method when combined with GPT-2 XL (with the exception of prompt tuning)
when there are 500 secret insertions.

In Figure 8, we observe that prefix tuning also becomes capable of memorizing the Enron secret
if it is inserted 500 times. As a result, the trend is not perfectly identical to MIMIC-III. However,
when applying ϵ = 10.0 to prefix-tuning, the secret is slightly more exposed around position 10.
Surprisingly, when applied to GPT-2 XL, prefix tuning loses its ability to memorize the secret in
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Figure 6: Memorization and perplexity measured under different privacy guarantees. In each
figure, we illustrate the interaction between exposure and evaluation perplexity, across different fine-
tuning methods. From left to right, the figures show GPT-2 models tained on Enron with ϵ of ∞,
10.0, 1.0, and 0.1

the way it did when applied to GPT-2. Interestingly, under differential privacy the GPT-2 XL model
exhibits a slight trend downward in exposure as secret position increases, in accordance with our
findings about prefix-tuning in Sec 4.4.

Prompt-tuning, surprisingly, fails to achieve a significant secret exposure across all positions and
insertion rates, yielding exposure results similar to its performance after fine-tuning on MIMIC-III.
Varying the level of differential privacy applied during fine-tuning does not have a significant effect
on the exposure. We attribute this to prompt-tuning’s low number of parameters, and its low rate
of memorization overall is consistent with our findings in the baseline experiment, as well as the
differential privacy experiment.

B.4 ADDITIONAL RESULTS ON MEMORIZATION AND PERPLEXITY

We find that under DP epsilons 10.0 and 0.1, the privacy leakage varies heavily across fine tuning
method and size of base model. For a fair comparison, we investigate GPT-2 trained on MIMIC
with PEFT hyperparameters set to 16, the same as the GPT-2 XL models. For example, with
adapter+GPT-2 XL at ϵ = 10.0, the exposure is around ∼2.5, compared to adapter+GPT-2, which
has an exposure of ∼1.7 at that epsilon. However, when the epsilon is much lower, the advantage
flips, and adapter+GPT-2 XL yields an exposure of 1.33 while adapter+GPT-2 has an exposure of
3.33. This is emblematic of a complex relationship between PEFT mechanism, its hyperparameters,
and DP fine tuning, but overall the data spread for a given GPT-2 configuration and GPT-2 XL con-
figuration overlap, indicating similar amounts of privacy preservation between models when holding
PEFT hyperparameter consistent.
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Figure 7: Illustrating the impact of secret position on memorization. The figures show the impact
of a secret’s location in a context on exposure. The top row shows the results from GPT-2 models,
while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to
standard fine-tuning, fine-tuning with adapters, and LoRA. We show the results on Enron.

PEFT Method
Models Metric Epsilon ϵ Baseline Adapter Prefix-tuning Prompt-tuning LoRA

GPT-2
Exp. 0.1 1.75±0.66 3.33±0.57 2.90±1.41 2.13±0.82 2.07±0.43

10.0 2.20±1.78 1.72±0.10 3.11±2.60 2.06±0.64 3.08±1.34

PPL 0.1 1.15±0.00 6.68±8.79 334.69±237.52 2247.99±11.99 1.28±0.01
10.0 1.12±0.00 1.54±0.10 5.08±3.51 2.14±0.05 1.20±0.00

GPT-2 XL
Exp. 0.1 1.76±1.27 1.33±0.74 2.97±1.43 1.39±0.62 2.31±0.53

10.0 1.76±1.08 2.57±1.47 2.04±1.52 3.69±2.11 1.82±1.15

PPL 0.1 1.15±0.00 50.70±64.74 7398.77±15356.02 38357.84±290.87 1.38±0.03
10.0 1.10±0.00 1.61±0.14 2208.67±4904.05 2.55±1.75 1.19±0.00

Table 4: Comparison of exposure and perplexity at different ϵ values. We compute the exposure
(Exp.) and the evaluation perplexity (PPL.) of each PEFT method over ϵ = 0.1 and ϵ = 10.0. We
fix the hyperparameter value at 16 for all methods and models tested.

We also find that the utility of PEFT models trained with DP is generally better with the backbone
model of GPT-2 than GPT-2 XL for additive PEFT methods, but comparable for standard and Lora
fine-tuning. The latter findings are consistent with (Li et al., 2022) and (Yu et al., 2022), who
experiment with full fine tuning and LoRA with DP on GPT-2 models and report comparable model
performance between the larger and smaller model architectures. However, our findings suggest that
with respect to model utility, this knowledge cannot be generalized to the other three PEFT methods.
Adapter, prompt- and prefix-tuning yield a consistently higher evaluation perplexity when applied to
GPT-2 XL models than when applied to the much smaller GPT-2 model. We believe that in this case,
the larger number of tunable parameters introducing more noise to the model trained with DP-SGD,
combined with these models’ lower performance than LoRA and standard fine-tuning.

B.5 ADDITIONAL RESULTS ON POSITION OF SECRET VS EXPOSURE

Figure 9 and Figure 11 explore the effects of differential privacy on both GPT-2 and GPT-2 XL
in combination with standard fine-tuning, LoRA, and adapter fine-tuning mechanisms. Differential
privacy is most effective at mitigating the data extraction attack in the first few tokens. This supports
our claim that for these mechanisms, secrets are more easily memorized in the latter section of
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Figure 8: Prefix-tuning memorizes more with higher insertions in Enron. In the figures above,
we show the effect of secret position in record vs. secret exposure for both GPT-2 and GPT-2 XL
when using the prefix-tuning, with ϵ = inf (left) and ϵ (right) (with ϵ = 0.1 for GPT-2 XL and 10.0
for GPT-2), as well as 2 different secret duplication rates. We run this evaluations on Enron.

a record during fine-tuning, as even under DP the model is still closer to memorizing them as a
result of fine tuning. A higher secret insertion rate almost always leads to higher exposure, but is
brought very close to the single insertion. This is especially true under ϵ = 0.1, under which we fine
tune GPT-2 XL. In addition, a sufficiently low privacy budget appears to weaken the relationship
between position and secret exposure, as the models which demonstrate the relationship the best
without differential privacy no longer demonstrate it under very low epsilons.

B.6 ADDITIONAL RESULTS ON EPSILON VS EXPOSURE

Across both MIMIC-III and Enron datasets, the GPT-2 XL model + additive PEFT (adapter, prompt
and prefix-tuning) achieve comparable to superior exposure values. Interestingly, out of the GPT-2
XL graphs (Figure 11), we see more of the expected trend with a higher privacy budget leading to
slightly higher exposure values, such as for adapter in both MIMIC-III and Enron, prompt-tuning in
MIMIC-III and LoRA in Enron. This observation is true for GPT-2 models (Figure 12), which show
a similar flat trend-line across 10 different epsilons. Notably, prefix-tuning and adapter demonstrate
considerable volatility under differentially-private training.

B.7 ADDITIONAL RESULTS ON THE IMPACT OF SECRET POSITION FOR PROMPT-TUNING

Figure 13 shows the privacy-preserving nature of prompt-tuning, whose plots of secret position vs
exposure look nearly identical across base model architectures. Our findings here support the notion
that models which already preserve privacy are unlikely to receive a significant benefit to empirical
privacy risk when fine-tuned with differential privacy. Prompt-tuning, even under no differential
privacy proves very difficult to memorize during fine tuning, even when the secret is duplicated 500
times in the dataset.
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Figure 9: The effect of differential privacy on secret positions vs Exposure The figures show
the impact of a secret’s location in a context on exposure when finetuned using differential privacy
ϵ = 10.0 for GPT-2, and ϵ = 0.1 for GPT-2 XL. The top row shows the results from GPT-2 models,
while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to
standard fine-tuning, fine-tuning with adapters, and LoRA. We show the results on Enron.

Figure 10: The effect of differential privacy on secret positions vs Exposure The figures show
the impact of a secret’s location in a context on exposure when finetuned using differential privacy
ϵ = 10.0 for GPT2, and ϵ = 0.1 for GPT2-XL. The top row shows the results from GPT-2 models,
while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to
standard fine-tuning, fine-tuning with adapters, and LoRA. We show the results on MIMIC-III.

B.8 OUR SECRETS ARE NOT PRESENT IN THE PRE-TRAINING CORPUS

Ensuring that the secrets we use are not present in the pre-training corpus is challenging because
the pre-training data for GPT-2 and GPT-2 XL models are not publicly available. We address this
issue by computing the exposure of each secret (“Leo.Moreno@gmail.com” and “mary smith”) on
the pre-trained models (GPT-2 and GPT-2 XL) used in our experiments. In both GPT-2 and GPT-
2 XL, ‘mary smith‘ shows an exposure of 0.17 and 0.08, and “Leo.Moreno@gmail.com” exhibits
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Figure 11: Impact of privacy guarantee ϵ on GPT-2 XL exposure. We illustrate the trade-off
between ϵ and exposure, measured on our fine-tuned GPT-2 XL models. (from the left) We show the
results from fine-tuning with adapter, prompt-tuning, and prefix-tuning with different configurations.
Models trained on the MIMIC-III dataset are on the top row, and models trained on Enron are below.

Figure 12: Impact of privacy guarantee ϵ on GPT-2 exposure. We illustrate the trade-off between
ϵ and exposure, measured on our fine-tuned GPT-2 models. (from the left) We show the results from
fine-tuning with adapter, prompt-tuning, and prefix-tuning with different configurations. Models
trained on the MIMIC-III dataset are on the top row, and models trained on Enron are below.

an exposure of 1.09 and 1.29, respectively. These pre-trained models exhibit substantially lower
exposure values, implying that the secrets are very unlikely to be present in the pre-training corpus.

B.9 IMPACT OF THE FINE-TUNING DATASET SIZE

We examine the interaction between dataset size and data extraction success by creating three
datasets of varying sizes from MIMIC-III. We increase the size by 100% (2×) and decrease it by
randomly selecting 50% and 25% of the original dataset. Table 5 shows our results.
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Figure 13: The effect of differential privacy on secret positions vs Exposure The figures show
the impact of a secret’s location in a context on exposure when fine-tuned using prompt-tuning. The
top row shows the results from GPT-2 models, while the bottom row presents results from GPT-2
XL. The left column corresponds prompt tuning without differential privacy, and the right, with
differential privacy (with differential privacy ϵ = 10.0 for GPT-2, and ϵ = 0.1 for GPT-2 XL). We
show the results on Enron.

Dataset size Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

2× of MIMIC-III Exp. 8.64±0.00 3.11±0.50 3.62±0.15 2.40±1.15 1.56±1.39
PPL. 1.14±0.00 1.28±0.00 1.23±0.00 1.22±0.00 1.15±0.00

0.5× of MIMIC-III Exp. 8.64±0.00 4.30±1.78 2.57±1.39 1.98±0.44 2.47±0.34
PPL. 1.16±0.00 1.30±0.00 1.31±0.00 1.27±0.00 1.19±0.00

0.25× of MIMIC-III Exp. 8.64±0.00 4.34±1.28 2.60±1.14 2.35±0.66 3.50±1.15
PPL. 1.16 ±0.00 1.31 ±0.00 1.37±0.01 1.34±0.00 1.20±0.00

Table 5: Impact of different fine-tuning dataset sizes. We evaluate the impact of varying dataset
size used for fine-tuning by increasing it by 100% and decreasing it by randomly selecting 50% and
25% of the original dataset. We use MIMIC-III and GPT2 for this evaluation.

We did not find any substantial impact of the dataset size on our findings. Overall, the results remain
consistent with those observed when we use the full dataset. Models fine-tuned with the PEFT
mechanisms achieve lower memorization. Prompt-tuning and LoRA are the lowest, while Adapter
and Prefix-tuning show slightly higher levels than the first two.

B.10 IMPACT OF SECRET TYPES

We evaluate the impact of different secrets on memorization. We first test with a secret that is
unlikely to naturally occur in the fine-tuning dataset. We insert the secret “Leo.Moreno@gmail.com”
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into the MIMIC-III dataset, composed of medical records. We also examine the memorization with
the name ‘clary zakharchuk‘ which is rare in real-life. Table 6 summarizes our results.

Secret Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

Leo.Moreno
@gmail.com

Exp. 8.64±0.00 2.92±1.70 1.20±0.59 0.46±0.15 0.68±0.35
PPL. 1.14±0.00 1.29±0.00 1.26±0.00 1.24±0.00 1.17±0.00

clary zakharchuk Exp. 8.64±0.00 0.13±0.05 0.38±0.09 0.77±0.31 0.94±0.50
PPL. 1.14±0.00 1.29±0.00 1.26±0.00 1.24±0.00 1.17±0.00

Table 6: Comparison of data extraction success across different secrets in GPT-2, MIMIC-III.

Our results are consistent with the findings reported in our main body. Models fine-tuned using
PEFT methods are less likely to memorize the secret. Prompt-tuning and LoRA exhibit the lowest
exposure, while the other two methods also reduce exposure to levels comparable to the main results.

B.11 DOES THE REDUCTION IN MEMORIZATION DUE TO THE PERFORMANCE LOSS?

One natural question is that PEFT methods, due to their smaller number of tunable parameters, can
reduce the memorization (and also the risks of data extraction). To evaluate this hypothesis, we run
standard fine-tuning of a GPT2 model on the MIMIC-III dataset to achieve various perplexity values
we observe from the PEFT models.

Model 1 Model 2 Model 3
Perplexity (PPL.) 1.17±0.00 1.25±0.00 1.35±0.00
Exposure (Exp.) 5.59±2.13 5.53±0.56 5.20±1.19

Table 7: Perplexity and exposure of GPT-2
models from standard fine-tuning (in MIMIC-
III). A reduction in utility does not imply the ab-
sence of memorization.

Our results are shown in Table B.11. We ob-
served that these models exhibit significantly
higher exposure despite achieving high per-
plexity. We therefore attribute the lower expo-
sure across PEFT methods to their unique fine-
tuning mechanisms rather than slightly worse
performance they achieve.

B.12 LORA AS AN INFORMATION BOTTLENECK

To investigate the nature of LoRA as an ’information bottleneck’, we first ranked the perplexities of
all candidate names used for MIMIC-III to identify the one that the model already exhibits a bias
toward due to its pre-training procedure. We select the name “joseph thompson” with the highest
exposure without context in the pre-trained GPT-2 model. We insert the name once into the fine-
tuning dataset, and the model was fine-tuned with LoRA.

Our findings show that the exposure is significantly higher when using this alternate name as the
secret—up to 7.13, compared to 1.88 when ”mary smith” is used as the secret. This supports the
hypothesis that the biases of the pre-trained model and its dataset play a critical role in determining
whether LoRA can memorize secrets in the fine-tuning dataset. Prior work Wen et al. (2024) exploits
this phenomenon by poisoning pre-trained models to introduce biases toward a secret that is likely
to appear in the fine-tuning data. These biases are then reinforced through successive fine-tuning
runs, resulting in the secret being leaked at a higher rate from the fine-tuned model.

B.13 EXAMPLES OF SECRETS INSERTION INTO DATASETS

We show two examples where we insert secrets into the training records, with the secrets in bold.

MIMIC-III

various lines and tubes have been removed since the prior mary smith radiograph, and a
very small left apical pneumothorax has developed.
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