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Abstract

Transformer-based language models usually001
treat texts as linear sequences. However, most002
texts also have an inherent hierarchical struc-003
ture, i. e., parts of a text can be identified using004
their position in this hierarchy. In addition, sec-005
tion titles usually indicate the common topic006
of their respective sentences. We propose a007
novel approach to extract, encode and inject hi-008
erarchical structure (HiStruct) information into009
an extractive summarization model (HiStruct+010
model) based on a pre-trained, encoder-only011
language model. Our HiStruct+ model achieves012
SOTA extractive ROUGE scores on three pub-013
lic summarization datasets (CNN/DailyMail,014
PubMed, arXiv), the improvement is espe-015
cially substantial on PubMed and arXiv. Using016
various experimental settings, our HiStruct+017
model outperforms a strong baseline, which018
differs from our model only in that the HiStruct019
information is not injected. The ablation020
study demonstrates that the hierarchical posi-021
tion information is the main contributor to our022
model’s SOTA performance.023

1 Introduction024

Texts, especially long documents, contain internal025

hierarchical structure like sections, paragraphs, sen-026

tences, and tokens. When we manually summarize027

a text, the hierarchical text structure usually plays028

a key role. Taking a scientific paper as an exam-029

ple, we might focus more on the sections with the030

titles of “methodology”, “discussion”, and “conclu-031

sion” while paying less attention to the sections032

like “background”. Furthermore, the sentences033

within one section could have closer relationship034

with each other, than the ones outside this section.035

Understanding not only the sequential relations036

between the sentences but also the internal hierar-037

chical text structure helps us better determine the038

important sentences within a document. Similarly,039

a neural summarization model could benefit from040

these hierarchical structure information.041

In this paper, we focus on extractive text summa- 042

rization of single documents (ETS), which is the 043

task of binary sentence classification with labels 044

indicating whether a sentence should be included 045

in a summary. Recently, pre-trained language mod- 046

els based on Transformers (Vaswani et al., 2017) 047

(TLM), such as BERT (Devlin et al., 2019), have 048

been widely used to extract contextual representa- 049

tions from texts. The pre-trained TLM can be eas- 050

ily reused for fine-tuning on the downstream tasks, 051

so that the representations already learned from 052

the large pre-training corpora are preserved. Liu 053

and Lapata (2019) has achieved the state-of-the-art 054

(SOTA) performance by fine-tuning BERT for ex- 055

tractive summarization on short document datasets 056

including CNN/DailyMail. However, the TLMs 057

consider merely the sequential-context-dependency 058

by adding a linear positional encoding to each input 059

token embeddings. The hierarchical text structure 060

information is not taken into account explicitly. 061

We propose a novel approach to extract, encode 062

and inject the hierarchical structure (HiStruct) in- 063

formation explicitly into an extractive summariza- 064

tion model (HiStruct+ model), which consists of a 065

Transformer language model (TLM) for sentence 066

encoding and two stacked inter-sentence Trans- 067

former layers for hierarchical learning and extrac- 068

tive summarization. We experiment with BERT 069

(Devlin et al., 2019), RoBERTa (Liu et al., 2019), 070

and Longformer (Beltagy et al., 2020) as underly- 071

ing TLMs. The HiStruct information utilized in 072

our work includes the section titles and the hierar- 073

chical positions of sentences, which are encoded 074

using our proposed novel methods. The resulting 075

embeddings can be injected into the TLM sentence 076

representations to provide the HiStruct information 077

for the summarization task. 078

We evaluate our HiStruct+ models on short doc- 079

uments (i.e., CNN/DailyMail (See et al., 2017)) 080

and long documents (i.e., PubMed and arXiv (Co- 081

han et al., 2018)). Our HiStruct+ models improve 082

1



the SOTA extractive ROUGEs on all three datasets.083

The improvements are especially substantial on084

PubMed and arXiv, which contain longer scientific085

papers with conspicuous hierarchical structures.086

We also compare the HiStruct+ models with the087

corresponding strong baselines, which differ from088

our models only in that the HiStruct information is089

not injected. Using various experimental settings,090

our models collectively out perform the baselines091

on the three datasets, indicating the effectiveness092

of the proposed HiStruct encoding methods. Ab-093

lation studies suggest that the performance gains094

are majorly contributed by the hierarchical position095

information of sentences.096

Our contributions in this work are five-folds: (1)097

We highlight the importance of the hierarchical text098

structure which has been rarely considered in lan-099

guage modeling and text summarization. (2) We100

conceptualize novel measures to compare the hier-101

archical structure of the datasets. (3) We implement102

data preprocessing to extract the HiStruct informa-103

tion from the raw datasets. (4) We propose novel104

methods to encode and inject the HiStruct informa-105

tion into an extractive summarization model explic-106

itly. The effects of different encoding settings and107

injection settings are systematically investigated.108

(5) The data containing the extracted HiStruct in-109

formation, the best HiStruct+ models, as well as110

the implementation of preprocessing, training and111

evaluation is available on GitHub1.112

2 Related Work113

2.1 Text Summarization114

Extractive Text Summarization (ETS) is to iden-115

tify the most informative sentences within a doc-116

ument. Liu and Lapata (2019) fine-tune BERT117

with two stacked inter-sentence Transformer layers118

with a sigmoid classifier for ETS (BERTSUMEXT).119

Zhang et al. (2019) pre-train a hierarchical Trans-120

former encoder consisting of a sentence encoder121

and a document encoder (HIBERT). For long doc-122

uments, Xiao and Carenini (2019) propose a RNN-123

based ETS model incorporating both the global and124

the local context (ExtSum-LG). To addressing the125

problem of redundancy in extractive summaries,126

the authors further improve their work by intro-127

ducing redundancy reduction (Xiao and Carenini,128

2020). They systematically explore and com-129

pare different methods including Trigram Block-130

ing (Paulus et al., 2018), RdLoss, MMR-Select131

1https://bit.ly/3CeCVj7

and MMR-Select+ (Xiao and Carenini, 2020). Tri- 132

gram Blocking is a traditional redundancy reduc- 133

tion method that avoids adding a candidate sen- 134

tence to the summary if it has trigram overlap with 135

the previously selected sentences. Their previous 136

model combined with the redundancy reduction 137

methods produce SOTA performance in ETS on 138

PubMed and arXiv. 139

Previous works on ETS take the HiStruct of doc- 140

uments into consideration by introducing a hierar- 141

chical attention, where they first learn contextual 142

token representations based on the linear depen- 143

dencies between tokens and then add additional 144

CNN (Cheng and Lapata, 2016) or RNN (Nallapati 145

et al., 2017) or Transformer (Zhang et al., 2019; Liu 146

and Lapata, 2019) layer(s) to learn document-level 147

representations for each sentence based on the lin- 148

ear dependencies between sentences. However, all 149

these works learn hierarchical representations im- 150

plicitly. Hierarchical text structure information is 151

not encoded and injected into the model explicitly. 152

Abstractive text summarization (ATS) is to 153

generate summaries with new sentences which are 154

not present in the source text. BERTSUMABS (Liu 155

and Lapata, 2019) uses the pre-trained BERT as 156

the encoder in its encoder-decoder architecture. In- 157

stead of simply using the pre-trained BERT, recent 158

works, including T5 (Raffel et al., 2020), BART 159

(Lewis et al., 2020) and PEGAUSUS (Zhang et al., 160

2020) pre-train encoder-decoder Transformer mod- 161

els specifically for seq2seq tasks. The first attempt 162

at addressing neural ATS of long documents is 163

undertaken by Cohan et al. (2018). Gidiotis and 164

Tsoumakas (2020) propose a divide-and-conquer 165

approach to train a model to summarize each part 166

of the document separately. To address the essen- 167

tial issue of the quadratic full attention operation of 168

TLMs, Zaheer et al. (2020) propose BigBird with 169

a sparse attention mechanism. 170

Hybrid text summarization combines ETS, 171

ATS and other techniques as a hybrid system, such 172

as Zhong et al., 2020 (MatchSum) and Pilault et al., 173

2020. 174

2.2 Injecting Additional Information 175

The central idea of our work is inspired by two 176

former works, LAMBERT (Garncarek et al., 2021) 177

and LayoutLM (Xu et al., 2020), where the vi- 178

sual layout information is injected into BERT by 179

adjusting its input embeddings. They consider a 180

document page as a coordinate system and define 181
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the layout position of each token/image as the co-182

ordinates of its bounding box. The layout position183

is then transformed into the layout embeddings184

which is added to the original BERT input embed-185

dings. These models cannot be applied to plain186

texts since the layout positions have to be obtained187

from scanned document images. We adopt the188

idea of injecting extra features when using the pre-189

trained TLM. Unlike former works, our approach190

makes use of the internal HiStruct information,191

which can be found in most types of textual data.192

3 Methodology193

3.1 Hierarchical Structure Information194

Hierarchical position (HP) of a sentence is repre-195

sented as a vector of its positions at each hierarchy-196

level, adopting the ideas from LAMBERT and Lay-197

outLM.198

SSVs = (as, bs) (1)199

Given the s-th sentence within a document, its HP200

is represented as a 2-dimensional vector (as, bs),201

denoted as the sentence structure vector SSVs,202

where as represents the linear position of the sec-203

tion containing the sentence and bs is the linear204

position of the sentence within the section. All205

sentences within the same section have the same206

value in the first dimension of the SSV, indicating207

the close relationships between them. The sec-208

ond dimension indicates more precisely their linear209

relations within the section. By this very simple nu-210

merical formulation, hierarchical relations between211

sentences are clearly identified.212

Section titles (STs) exist in particular in long213

documents like scientific papers. They usually214

imply the section content and describe the com-215

mon topic for its sub-sentences. In our work, we216

propose to utilize the corresponding ST as an ad-217

ditional HiStruct information when encoding its218

sub-sentences. There exist typical STs in scientific219

papers. Similar STs like “Conclusion”, “Conclu-220

sions” and “Concluding remarks” have the same221

semantic meaning and can be grouped into one typ-222

ical ST class of “Conclusions”. This is also taken223

into consideration when encoding the STs.224

3.2 Hierarchical Structure Encoding225

Hierarchical position embedding is based on the226

existing linear position encoding methods (PE), in-227

cluding the sinusoidal method (sin) used by Trans-228

former and the learnable method (la) used by BERT.229

We use one of the PEs to generate position embed- 230

dings for each dimension of the SSVs, the results 231

are two DPEs. Using the sin PE, the DPEs are cal- 232

culated simply by Equations 2 and 3. Using the la 233

PE, the DPEs are initialized randomly and trained 234

with the entire summarization model. 235

PE(pos,2i) = sin(pos/100002i/dmodel) (2) 236
237

PE(pos,2i+1) = cos(pos/100002i/dmodel) (3) 238

where pos is the absolute linear position of the 239

encoded token within the input sequence and i is 240

the i-th dimension of the position embedding. 241

Given the s-th sentence with the SSV of (as, bs), 242

and the desired size of the output embeddings d, its 243

hierarchical position embedding sHE can be gener- 244

ated by Equations 4, 5, 6, using different combina- 245

tion modes. 246

sHEsum(s, d) = PE(as, d) + PE(bs, d) (4) 247
248

sHEmean(s, d) =
PE(as, d) + PE(bs, d)

2
(5) 249

250

sHEconcat(s, d) = PE(as,
d

2
)|PE(bs,

d

2
) (6) 251

where the symbol | denotes vector concatenation. 252

Using one of the PEs (i.e., sin or la) associated 253

with one of the combination modes (i.e., sum, mean 254

or concat), it totals 6 different settings of the hier- 255

archical position encoding method: sin-sum, sin- 256

mean, sin-concat, la-sum, la-mean and la-concat. 257

(Classified) section title embedding is gener- 258

ated by the pre-trained TLM, which is involved in 259

the summarization model. A STE is generated by 260

feeding the tokenized ST to the TLM and summing 261

up the last hidden states at each token position. 262

Similar STs (i.e., STs that have similar keywords 263

and tokens) lead to embeddings that are already 264

similar to each other in some way. Using the clas- 265

sified STE, all intra-class STEs are replaced with 266

the embedding of its corresponding ST class. In 267

the case that a ST does not belong to any class or 268

it falls into more than one class, the original STE 269

is used. Typical ST classes and the corresponding 270

intra-class STs are manually pre-defined depending 271

on the datasets and the domains. 272

3.3 Model Architecture 273

Figure 1 illustrates the overview architecture of 274

the proposed HiStruct+ model. It consists of a 275

base TLM for sentence encoding and two stacked 276

inter-sentence Transformer layers for hierarchical 277

learning and extractive summarization. The se- 278

quence on top is the input document, tokenized by 279
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Figure 1: Architecture of the HiStruct+ model. The two
blocks shaded in light-green are the HiStruct injection
components.

the corresponding tokenizer of the involved TLM.280

In order to represent individual sentences, we insert281

a BOS token at the start of every sentence. Only282

the BOS token embeddings are preserved as the283

sentence representation (Ss). The Ss is first en-284

riched with a Sentence Linear Position Embedding285

(sPEs), which encodes its linear position within286

the whole document. An additional Sentence Hier-287

archical Position Embedding can be added (sHEs).288

It is generated by encoding the HP of the sentence289

using the proposed hierarchical position encoding290

method. If STs are available, we can further en-291

rich the sentence representation by adding a STE292

or classified STE (STEs). The sentence represen-293

tations with the injected HiStruct information are294

fed to the two stacked Transformer encoder layers295

to learn inter-sentence document-level hierarchical296

contextual features. The Self-Attention mechanism297

in the Transformer layers takes context sentences298

into consideration when encoding each sentence.299

The result is a set of Hierarchical Contextual Sen-300

tence Embeddings (HSs). The final output layer301

is a sigmoid classifier, which calculates the confi-302

dence score ŷs of including the s-th sentence in the303

extractive summary based on the HSs. The loss of304

the model is the binary classification entropy of the305

prediction ŷs against the gold label ys. 306

The two HiStruct injection components shaded 307

in light-green are optional. Removing these from 308

the HiStruct+ model based on BERT, the architec- 309

ture is identical to BERTSUMEXT (Liu and Lap- 310

ata, 2019), which is a strong baseline against our 311

models. When using RoBERTa and Longformer as 312

the base TLM, we also construct a baseline model 313

without the two components. The effectiveness of 314

injecting HiStruct information using the proposed 315

methods can be systematically investigated by com- 316

paring our models to the corresponding baselines. 317

4 Experimental Setup 318

4.1 Datasets 319

Our models are evaluated on three benchmark 320

datasets for single document summarization, in- 321

cluding CNN/DailyMail (See et al., 2017), PubMed 322

and arXiv (Cohan et al., 2018). Table 4 presents 323

detailed statistics of the datasets. 324

The three datasets represent different document 325

types ranging from short news articles to long sci- 326

entific papers. To emphasize the difference in the 327

hierarchical structure among different datasets, we 328

define the concepts of hierarchical depth (hi-depth) 329

and hierarchical width (hi-width). The hi-depth 330

refers to the number of the hierarchy-levels within 331

the document. Scientific papers have a deeper hier- 332

archy consisting of sections, paragraphs, sentences 333

and tokens (i.e., hi-depth = 4). In news articles, 334

paragraphs are not further grouped into sections 335

(i.e., hi-depth = 3). In this case, we use paragraphs 336

instead of sections as the highest hierarchy level 337

when representing the HP of sentences (i.e., the first 338

dimension of the SSVs). The hierarchical width 339

hi-width =
Ns

Nhsh
is the ratio of total number of 340

sentences Ns and the number of the text-units re- 341

garding the highest hierarchy Nhsh. 342

The concept hi-width indicates how many 343

sentences are there on average in every para- 344

graph/section. The more sentences are there, the 345

second dimension of the SSVs has a more wide 346

range of values, and the first dimension of the 347

SSVs differ a lot from the linear sentence positions. 348

Larger hi-depth and larger hi-width indicate that 349

the hierarchical text structure is more conspicuous. 350

CNN/DailyMail contains more than 310k short 351

news articles. We use the standard splits given by 352

See et al. (2017) for training, validation, and testing. 353

The average hi-width over all documents is 1.33. 354
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The hierarchical structure of the CNN/DailyMail355

documents is not as conspicuous as the documents356

in PubMed and arXiv. Compared to PubMed and357

arXiv, the gold summaries have higher proportions358

of novel 1-grams and 2-grams in CNN/DailyMail,359

which is one of the key difficulties in ETS.360

During data preprocessing, we first split docu-361

ments into sentences and paragraphs respectively362

with the Stanford CoreNLP toolkit (Manning et al.,363

2014) . The sentences and paragraphs are tok-364

enized, resulting in the lists of sentence tokens and365

the lists of paragraph tokens. SSVs corresponding366

to each sentence can be obtained by comparing367

those lists side by side. For all three datasets, we368

use a greedy selection algorithm similar to (Nallap-369

ati et al., 2017) and (Liu and Lapata, 2019) to select370

sentences from documents as the gold extractive371

summaries (ORACLE). Sentences in the ORACLE372

summaries are assigned with the gold label 1.373

PubMed and arXiv contain longer scientific pa-374

pers. PubMed contains papers in the bio-medical375

domain, while arXiv contains papers in various376

domains. The average hi-width over all PubMed377

documents is 15.79, in arXiv it is 37.33. We use378

the original splits given by Cohan et al. (2018) for379

training, validation, and testing. SSVs are obtained380

by tokenizing the sentences and sections of every381

document respectively. The details on the genera-382

tion of STEs and classified STEs can be found in383

Appendix A.2.384

4.2 Implementation Details385

We implement our extractive model based on386

BERTSUMEXT (Liu and Lapata, 2019) using Hug-387

gingFace Transformers (Wolf et al., 2020) to make388

use of the pre-trained instances of BERT, RoBERTa389

and Longformer. More implementation details are390

summarized in Appendix A.3 and A.4.391

5 Results and Discussion392

We evaluate the performance of our summariza-393

tion models automatically using ROUGE metrics394

(Lin, 2004) including F1 ROUGE-1 (R1), ROUGE-395

2 (R2) and ROUGE-L (RL). Tables 1, 2 and 3396

summarize the performance of our models in com-397

parison to the baselines and the SOTA results on398

CNN/DailyMail, PubMed and arXiv respectively.399

The first three blocks in the tables highlight the400

results reported by the corresponding papers of ab-401

stractive, extractive, and hybrid summarization sys-402

tems. Underlined are the best results regarding the403

respective type of the summarization system. Bold 404

are the scores of the HiStruct+ models that are bet- 405

ter than their corresponding comparison baselines. 406

The symbol * indicates that the corresponding ex- 407

tractive SOTA ROUGE is improved by our model. 408

The symbol ’ indicates that the SOTA ROUGEs 409

(incl. all types of summarization approaches) are 410

outperformed. 411

5.1 Results on Short Documents 412

Model ↓ / Metric → R1 R2 RL

Abstractive

BERTSUMABS (2019) 41.72 19.39 38.76
BART (2020) 44.16 21.28 40.90
PEGASUS (2020) 44.17 21.47 41.11
BigBird PEGASUS (2020) 43.84 21.11 40.74

Extractive

HIBERT (2019)
(BERT-base) 42.31 19.87 38.78
(BERT-large) 42.37 19.95 38.83

BERTSUMEXT (2019)
(BERT-base) 43.25 20.24 39.63
(BERT-large) 43.85 20.34 39.90

Hybrid

MatchSum (2020)
(BERT-base) 44.22 20.62 40.38
(RoBERTa-base) 44.41 20.86 40.55

Reproduced baselines

ORACLE (512 tok.) 52.46 30.76 48.66
ORACLE (1,024 tok.) 55.45 32.78 51.59
LEAD-3 40.33 17.39 36.56
TransformerETS

BERT-base (1,024 tok.) 43.32 20.27 39.69
BERT-large (512 tok.) 43.45 20.36 39.83
RoBERTa-base (1,024 tok.) 43.62 20.53 39.99

Our models (Extractive)

HiStruct+
BERT-base (1,024 tok.) 43.38 20.33 39.78
BERT-large (512 tok.) 43.49 20.40* 39.90*
RoBERTa-base (1,024 tok.) 43.65 20.54* 40.03*

Our models (Hybrid)

HiStruct+
RoBERTa-base (1,024 tok.)
& MatchSum (RoBERTa-base) 44.31 20.73 40.47

Table 1: Results on CNN/DailyMail

ROUGE results on CNN/DailyMail are sum- 413

marized in Table 1. In the baselines block, the 414

first two lines highlight the ORACLE results that 415

build the upper bounds for ETS systems taking 416

the same number of input tokens. The LEAD-n 417

baselines simply select the first n sentences in a 418

document as its extractive summary. Despite its 419

simplicity, the LEAD-3 baseline already achieves 420

relatively competitive performance and even out- 421

performs several neural models as listed in the table. 422
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Figure 2: Proportions of the extracted sentences at each
linear position. The x-axis values are linear sentence in-
dices, the y-axis values are percentages of the extracted
sentences.

The three TransformerETS models are the corre-423

sponding comparison baselines that use the same424

model architecture and experimental settings as our425

models but without injected HiStruct information.426

The following block presents the results of our427

HiStruct+ models based on different TLMs with428

various input lengths. To make the evaluation re-429

sults comparable to the SOTA extractive model430

BERTSUMEXT, we follow their approach and re-431

port the averaged results of three best checkpoints.432

Regardless the base TLM and input length, our433

HiStruct+ models collectively outperform the cor-434

responding baselines by merely injecting the HP435

information of sentences. Comparing to BERT-436

SUMEXT, our best HiStruct+ model, which is437

based on RoBERTa-base with 1,024 input to-438

kens, increases the SOTA extractive ROUGE-2439

and ROUGE-L by 0.2 and 0.13. The perfor-440

mance improvements gained by our models on441

CNN/DailyMail are small. One of the reasons442

might be that we merely inject the sHE, STs443

are not available. Furthermore, as discussed444

in Section 4, the hierarchical structure of the 445

CNN/DailyMail documents is not so obvious as in 446

PubMed and arXiv. Another possible reason may 447

lie in the abstractiveness of the gold summaries in 448

CNN/DailyMail, which makes it difficult to achieve 449

high ROUGE-1 and ROUGE-2 by simply copying 450

sentences from the source document. 451

Our HiStruct+ models are the competitive extrac- 452

tive models which can be reused in many hybrid 453

approaches. When we apply MatchSum based on 454

our best model, the ROUGE results are further in- 455

creased to 44.31/20.73/40.47. 456

Ablation studies on CNN/DailyMail (see the 457

evaluation results and detailed discussions in Ap- 458

pendix A.5) suggest that the setting la-sum works 459

best for HP encoding . Two stacked Transformer 460

layers in the summarization model perform better 461

than one or three Transformer layers. When taking 462

longer inputs than the length limit of the TLM, sig- 463

nificant improvements are achieved by using the 464

copied token position embeddings for initialization 465

instead of random initialization. 466

The extracted summaries are analyzed in more 467

detail by plotting the proportions of the extracted 468

sentences at each linear position within the whole 469

document as shown in Figure 2a. The model in 470

green is our best HiStruct+ model. The model 471

in orange is the corresponding comparison base- 472

line without injected HiStruct information. The 473

model in blue is the ORACLE system, which pro- 474

duces the gold extractive summaries. We can ob- 475

serve that the ORACLE summary sentences are 476

distributed across documents more smoothly, while 477

our HiStruct+ model and the baseline model tend to 478

select the first sentences and fail to select sentences 479

that appear at later positions within the documents. 480

Compared to the baseline, the HiStruct+ model 481

leads to more similar proportions as the ORACLE 482

summaries at the most sentence indices. 483

5.2 Results on Long Documents 484

5.2.1 Results on PubMed 485

ROUGE results on PubMed are summarized in 486

Table 2. As shown in the baselines block, the ORA- 487

CLE extractive upper bounds are increased signifi- 488

cantly by increasing the input length, which makes 489

it possible to exploit potential gains from model- 490

ing longer input. The LEAD-n baselines do not 491

produce competitive results on PubMed. It indi- 492

cates that the first sentences in PubMed are not so 493

informative as in CNN/DailyMail. The last two 494
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Model ↓ / Metric → R1 R2 RL

Abstractive

PEGASUS (2020) 45.49 19.90 42.42
BigBird PEGASUS (2020) 46.32 20.65 42.33
DANCER PEGASUS (2020) 46.34 19.97 42.42

Extractive

Sent-CLF (2020) 45.01 19.91 41.16
Sent-PTR (2020) 43.30 17.92 39.47
ExtSum-LG+ (2020)

RLoss 45.30 20.42 40.95
MMR-Select+ 45.39 20.37 40.99

Hybrid

TLM-I+E(G,M) (2020) 42.13 16.27 39.21

Reproduced baselines

ORACLE (4,096 tok.) 49.73 27.29 45.26
ORACLE (9,600 tok.) 52.80 28.95 48.08
ORACLE (15k tok.) 53.04 29.08 48.31
LEAD-7 38.30 12.54 34.31
LEAD-10 38.59 13.05 34.81
TransformerETS

Longformer-base (15k tok.) 41.69 15.76 37.48
Longformer-large (15k tok.) 41.69 15.79 37.49

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 46.59*’ 20.39 42.11*
sHE+STE 46.49*’ 20.29 42.02*
sHE 45.76* 19.64 41.34*

Longformer-large (15k tok.)
sHE+STE(classified) 46.38*’ 20.17 41.92*
sHE 45.67* 19.60 41.26*

Table 2: Results on PubMed

TransformerETS models in the block are the com-495

parison baselines that are not aware of HiStruct.496

The last block presents the results of two groups497

of HiStruct+ models grouped by the base TLM498

used in the summarization model. In PubMed,499

we can choose to inject the sHE with or without500

the STE. STE can be replaced by classified STE.501

This can result in three different injection settings502

for a model group, namely sHE, sHE+STE, and503

sHE+STE(classified). For each model setting, we504

report the results of the best-performed checkpoint.505

Our best HiStruct+ model on PubMed is a506

model based on Longformer-base taking 15,000507

input tokens, which injects the sHE and the clas-508

sified STE into the extractive model. It achieves509

ROUGE results of 46.59/20.39/42.11. Compared510

to the baseline, our model increases ROUGEs by511

4.9/4.63/4.63, which indicates the effectiveness of512

the proposed hierarchical structure encoding and513

injection methods. Our results also beat the SOTA514

extractive model ExtSum-LG+MMR-Select+ col-515

lectively on all three ROUGE metrics with improve-516

ments of 1.2/0.02/1.12. Taking the SOTA abstrac-517

tive and hybrid approaches into account, our results 518

are still very competitive. 519

All HiStruct+ models produce the competitive 520

results that are better than or very close to the for- 521

mer extractive SOTA results. They also collectively 522

outperform the baselines by a large margin on all 523

evaluation metrics. This overperformance is much 524

more substantial than that on CNN/DailyMail. One 525

of the reasons might be that we include the STE in 526

addition to the sHE while training on PubMed. Fur- 527

thermore, the HiStruct of the documents is more 528

obvious than in CNN/DailyMail. The gold sum- 529

maries in PubMed contain less novel 1-grams and 2- 530

grams, which also makes it easier to achieve higher 531

ROUGEs by performing extractive summarization. 532

Ablation studies on PubMed suggest that the 533

largest improvement of our models against the com- 534

parison baseline is contributed by the sHE. This 535

is observed when we compare the three models in 536

the first group of HiStruct+ models with the base- 537

line. Injecting merely sHE, the results are already 538

increased by 4.07/3.88/3.86. When the STE are in- 539

cluded additionally, the results are further increased 540

by 0.73/0.65/0.68. When using classified STE in- 541

stead, the ROUGEs are increased by a small margin 542

of 0.1/0.1/0.09. In the second group of HiStruct+ 543

models, it is also observed that injecting the sHE 544

leads to the largest performance gain. 545

The extracted summaries analysis on PubMed 546

test set is demonstrated in Figure 2b. The model 547

in green is our best HiStruct+ model, the model in 548

orange is the corresponding baseline, the model in 549

blue is the ORACLE system. It is observed that the 550

ORACLE summaries are distributed across docu- 551

ments evenly. The comparison baseline favors the 552

first 5 sentences and ignores the sentences appear- 553

ing at later positions. In contrast, our HiStruct+ 554

model overcomes the problem of focusing merely 555

on the first sentences. The outputs of the HiStruct+ 556

model are close to the ORACLE summaries. It 557

indicates that by injecting HiStruct information 558

explicitly using our proposed method, the model 559

successfully learns the deeper internal hierarchical 560

structure of the PubMed documents and relies less 561

on the linear sentence positions. 562

5.2.2 Results on arXiv 563

ROUGE results on arXiv are summarized in Ta- 564

ble 3. Similar as on PubMed, the LEAD-n base- 565

lines perform badly on arXiv. The results of the 566

HiStruct+ models are presented in two groups. The 567

first group takes 15k input tokens, while the sec- 568

7



Model ↓ / Metric → R1 R2 RL

Abstractive

PEGASUS (2020) 44.70 17.27 25.80
BigBird PEGASUS (2020) 46.63 19.02 41.77
DANCER PEGASUS (2020) 45.01 17.60 40.56
LED-large (2020) 46.63 19.62 41.48

Extractive

Sent-CLF (2020) 34.01 8.71 30.41
Sent-PTR (2020) 42.32 15.63 38.06
ExtSum-LG + (2020)

RLoss 44.01 17.79 39.09
MMR-Select+ 43.87 17.50 38.97

Hybrid

TLM-I+E(G,M) (2020) 41.62 14.69 38.03

Reproduced baselines

ORACLE (15k tok.) 53.58 26.19 47.76
ORACLE (28k tok.) 53.97 26.42 48.12
LEAD-10 37.37 10.85 33.17
TransformerETS

Longformer-base (15k tok.) 38.49 11.59 33.85
Longformer-base (28k tok.) 38.47 11.56 33.82

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 44.94* 17.42 39.90*
sHE+STE 45.02* 17.48 39.94*
sHE 43.04 15.87 38.13

Longformer-base (28k tok.)
sHE+STE(classified) 45.17* 17.61 40.10*
sHE+STE 45.22* 17.67 40.16*

Table 3: Results on arXiv

ond group increases the input length to 28k. In the569

groups, different injection settings are compared.570

Our best HiStruct+ model trained on arXiv is571

based on Longformer-base with 28k input tokens,572

injecting the sHE with the original STE. This model573

beats the results achieved by ExtSum-LG+RLoss574

and sets the new SOTA extractive summarization575

ROUGEs on arXiv to 45.22/17.67/40.16.576

Our HiStruct+ models collectively outperform577

the corresponding baselines (the last two models578

in the baselines block) by a large margin on all579

ROUGEs. This overperformance is much more580

significant than that on both CNN/DailyMail and581

PubMed. The arXiv dataset has the largest hi-width582

among the three datasets and the hierarchical struc-583

ture is most conspicuous, which might be the rea-584

son for the largest performance improvements by585

injecting HiStruct information on arXiv.586

Ablation studies in the first HiStruct+ group587

also suggest that the largest improvement of our588

HiStruct+ model against the comparison baseline is589

contributed by the sHE. The effect of using the clas-590

sified STE on arXiv is opposite to that on PubMed.591

The results are decreased slightly when we replace592

the STE with the classified STE. This phenomenon 593

occurs in the second group of HiStruct+ models as 594

well. We notice the fact that there are 500k unique 595

STs in arXiv, while PubMed contains 164k unique 596

STs. It is no wonder that it becomes much more dif- 597

ficult to group a large number of STs correctly into 598

several section classes. Furthermore, the PubMed 599

dataset contains papers mostly in the bio-medical 600

domain. The structure of those papers tends to fol- 601

low specific writing conventions in the bio-medical 602

sciences. The arXiv dataset, in contrast, contains 603

scientific papers that are not limited to a specific 604

domain. The document structure and the writing 605

styles are more diverse. 606

The extracted summaries analysis on arXiv is 607

demonstrated in Figure 2c. The baseline (in orange) 608

tends to select the first sentence and the sentences 609

indexed between 10 and 20, while it excludes sen- 610

tences at later positions. It is clearly observed that 611

the summary sentences extracted by our model are 612

evenly distributed, the informative sentences ap- 613

pearing at later positions are not ignored. 614

6 Conclusions 615

In this paper, we propose a novel approach to ex- 616

tract, encode and inject the hierarchical structure 617

(HiStruct) information into an extractive summa- 618

rization model based on pre-trained TLM. We eval- 619

uate our models systematically on CNN/DailyMail, 620

PubMed and arXiv. Our models increase the SOTA 621

extractive ROUGEs on all three datasets. The im- 622

provement is especially substantial on PubMed and 623

arXiv, which contain longer scientific papers with 624

conspicuous hierarchical structures. On PubMed, 625

our model increases the former extractive SOTA 626

ROUGE-1 by 1.2 and ROUGE-L by 1.12. On 627

arXiv, our model increases the former extractive 628

SOTA ROUGE-1 by 1.21 and ROUGE-L by 1.07. 629

Using various experimental settings, our HiStruct+ 630

models collectively outperform the corresponding 631

strong baselines, which differ from our models only 632

in that the HiStruct information is not taken into 633

account. Ablation studies on PubMed and arXiv in- 634

dicate that the improvements are mostly gained by 635

providing the hierarchical position information of 636

sentences to the summarization model. The idea of 637

extracting, encoding and injecting the HiStruct in- 638

formation can be easily adopted in abstractive sum- 639

marization. We see great potential in an encoder- 640

decoder architecture with the proposed HiStruct 641

injection components. 642
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A Appendix804

A.1 Statistics of the datasets805

Dataset CNN/DailyMail PubMed arXiv
Raw documents

avg. #words 792.24 2,967.22 5,825.68
avg. #sentences 40.31 86.37 206.3
avg. #sections* 31.2 5.91 5.55
avg. hi-width 1.33 15.79 37.33

Raw gold summaries

avg. #words 53.25 202.42 272
avg. #sentences 3.75 6.85 9.61

Novel n-grams in gold summaries

avg. % novel
1grams 13.97 0.2 0.15
2grams 51.79 2.69 2.73

Nr. of documents

#train 287,227 119,924 203,037
#val 13,368 6,633 6,436
#test 11,490 6,658 6,440

Documents tokenized by the RoBERTa tokenizer

avg. doc length 964 4,252 8,991
75% doc length 1,219 5,382 11,289
85% doc length 1,448 6,709 14,294
99% doc length 2,345 15,277 35,559

Table 4: Statistics of the datasets. * avg. #paragraphs in
CNN/DailyMail.

We used the CNN/DailyMail2 and the PubMed806

and arXiv datasets3. We use the original splits used807

by See et al. (2017) and Cohan et al. (2018) for808

training, validation and testing.809

A.2 Pre-defined ST classes810

The pre-defined dictionaries of the typical ST811

classes and the corresponding in-class STs will812

be released in our GitHub project 4.813

There are 164,195 unique STs in PubMed, and814

500,015 in arXiv, which are encoded as STE re-815

spectively using the base TLM.816

For PubMed, we define 8 ST classes: introduc-817

tion, background (i.e., background, review and re-818

lated work), case (i.e., case reports), method, result,819

discussion, conclusion and additional information820

(i.e., additional information such as conflicts of in-821

terest, financial support and acknowledgements).822

For arXiv, we define 10 classes: introduction, back-823

ground, case, theory (i.e., problem formulation and824

proof of theorem), method, result, discussion, con-825

clusion, reference and additional information. Clas-826

sified STEs are prepared accordingly.827

2https://cs.nyu.edu/~kcho/DMQA/
3https://github.com/armancohan/long-summarization
4https://bit.ly/3CeCVj7

A.3 Implementation Details 828

The learning rate schedule follows (Liu and Lap- 829

ata, 2019) with warming-up. On CNN/DailyMail, 830

we train our models 50,000 steps with 10,000 831

warming-up steps. On PubMed and arXiv, we train 832

our models 70,000 steps with 10,000 warming-up 833

steps when taking 15,000 tokens as input. When 834

we train models on arXiv with 28,000 input tokens, 835

we train the models 100,000 steps with 10,000 836

warming-up steps. 837

The number of the extracted sentences is vari- 838

ous depending on the dataset. On CNN/DailyMail, 839

we follow (Liu and Lapata, 2019) to select 3 sen- 840

tences for each document as its extractive summary 841

and apply Trigram Blocking (Paulus et al., 2018) 842

to reduce the redundancy of the selected sentences. 843

On PubMed and arXiv, 7 sentences are extracted. 844

Trigram Blocking is not applied on PubMed and 845

arXiv. 846

The length limit of the original TLM is over- 847

come by adding extra token linear position em- 848

beddings (tPE) to cover the desired length. The 849

additional tPE are trained with the whole summa- 850

rization model. Instead of initializing them ran- 851

domly, we copy the original tPE of the base TLM 852

multiple times until the desired length is covered. 853

The HiStruct+ models are trained on 3 GPUs 854

(NVIDIA® Quadro RTX™ 6000 GPUs with 24GB 855

memory) with gradient accumulation every two 856

steps. Checkpoints are saved and evaluated on 857

the validation set every 1,000 steps. The top-3 858

checkpoints based on the validation loss are kept. 859

The batch size varies with the base TLM and the 860

input length. The base TLM is not fine-tuned when 861

training the summarization model on PubMed and 862

arXiv due to resource limitation. 863

A.4 Model Architectures and Experimental 864

Settings 865

The detailed model architectures and experimen- 866

tal settings for models trained on CNN/DailyMail, 867

PubMed and arXiv are summarized in Table 5, Ta- 868

ble 6 and Table 7. The detailed model architectures 869

and experimental settings include: 870

Base TLM: the base Transformer language 871

model used for sentence encoding in the sum- 872

marization system 873

Input length: How many tokens are taken as 874

input 875
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Extra tPE: How to initialize the extra input to-876

ken position embeddings when taking longer877

input. We can choose to randomly initialize878

them or copy the original ones.879

FT: Whether the base TLM is fine-tuned with880

the entire summarization model881

TL: The number of the Transformer layers882

stacked upon the base TLM for extractive sum-883

marization884

WS: Warmup steps, how many steps are used885

for warming-up of the learning rate886

TS: Training steps, the total training steps887

BS: Batch size, how many documents are used888

as one batch during training889

AC: Accumulation count, gradient accumula-890

tion every k steps891

GPU: The number of GPUs used for training,892

we use NVIDIA® Quadro RTX™ 6000 GPUs893

with 24GB memory894

HiStruct: The injection setting. Hierar-895

chical structure information that can be in-896

jected into the summarization model are: sHE897

(i.e., sentence hierarchical position embed-898

dings), STE (i.e., section title embeddings),899

or STE(classified) (i.e., classified section title900

embeddings)901

HPE: The hierarchical position encoding902

method used in the model. The method903

is based on the sinusoidal (sin) or the904

learnable (la) linear position embedding905

method associated with a combination mode906

(sum/mean/concat)907

#PE: The numbers of the learned position em-908

beddings for each hierarchy-level and the lin-909

ear sentence positions, when using the learn-910

able position embedding method. We set them911

to a same value during training.912

SS: Saving steps, save checkpoints every k913

steps914

n: Select n sentences as the extractive sum-915

mary for each document916

TB: Trigram Blocking, whether to apply Tri-917

gram Blocking during sentence selection918

A.5 Ablation studies on CNN/DailyMail 919

The effect of token HP embeddings is investi- 920

gated in experiments. The HP embeddings of to- 921

kens are generated as followings: 922

Given the t-th token within the document,its HP 923

can be represented by Equation 7: 924

TSVt = (at, bt, ct) (7) 925

where at represents the linear position of the sec- 926

tion which contains the token, bt is the sentence’s 927

position within the section and ct is the linear posi- 928

tion of the token within the sentence. 929

Given the t-th token whose TSV is a 3- 930

dimensional vector (at, bt, ct), and the desired size 931

of the output embeddings d, we can embed its 932

token-level hierarchical position embeddings tHE 933

by Equations 8, 9, 10, using different combination 934

settings. 935

tHEsum(t, d) = PE(at, d)+PE(bt, d)+PE(ct, d) (8) 936

tHEmean(t, d) =
PE(at, d) + PE(bt, d) + PE(ct, d)

3
(9) 937

tHEconcat(t, d) = PE(at,
d

3
)|PE(bt,

d

3
)|PE(ct,

d

3
)

(10) 938

Initial experiments are conducted to assess the 939

summarization performance of the HiStruct+ mod- 940

els with or without the tHE. For this purpose, 941

we compare a HiStruct+ model merely inject- 942

ing sentence HP embeddings (i.e., sHE) with a 943

HiStruct+ model with both sentence and token 944

HP embeddings (i.e., sHE& tHE). The former is 945

denoted as HiStruct(sHE)+ in Table 8, while the 946

latter is denoted as HiStruct(sHE&tHE)+. The 947

HiStruct(sHE&tHE)+ models add the correspond- 948

ing tHEs to the input embeddings at each input 949

position, and sHEs to the TLM sentence represen- 950

tations. The HiStruct(sHE)+ models merely add 951

sHEs. The averaged summarization ROUGEs of 952

three best checkpoints are reported in the Table 953

8. The table summarize three groups of HiStruct+ 954

models based on different TLM with various in- 955

put lengths. The detailed model architectures and 956

experimental settings of all models in 8 are sum- 957

marized in Table 9. 958

The experimental results suggest that the 959

HiStruct(sHE)+ models with merely sHE consis- 960

tently outperform the HiStruct(sHE&tHE)+ models 961
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
BERT-base (1,024 tok.) BERT-base 1,024 copied 200 none - -
BERT-large (512 tok.) BERT-large 512 - 100 none - -
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024 copied 250 none - -

Our models (Extractive)

HiStruct+
BERT-base (1,024 tok.) BERT-base 1,024 copied 200 sHE only la-sum 407
BERT-large (512 tok.) BERT-large 512 - 100 sHE only la-sum 407
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024 copied 250 sHE only la-sum 407

Table 5: Detailed model architectures and experimental settings for models trained on CNN/DailyMail (also see
Table 1). The settings not included in the table are the same for all models. FT: yes, TL:2, WS:10,000, TS:50,000,
AC:2, GPU:3, SS:1,000, n: 3, TB:yes.

Models/Settings Base TLM BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
Longformer-base (15k tok.) Longformer-base 500 none - -
Longformer-large (15k tok.) Longformer-large 256 none - -

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) Longformer-base 500 sHE+STE(classified) la-sum 450
sHE+STE Longformer-base 500 sHE+STE la-sum 450
sHE Longformer-base 500 sHE only la-sum 450

Longformer-large (15k tok.)
sHE+STE(classified) Longformer-large 256 sHE+STE(classified) la-sum 450
sHE Longformer-large 256 sHE only la-sum 450

Table 6: Detailed model architectures and experimental settings for models trained on PubMed (also see Table 2).
The settings not included in the table are the same for all models. Input length: 15,000; Extra tPE: copied; FT: no;
TL:2; WS:10,000; TS:70,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

under various circumstances. The reason might be962

that we directly fine-tune the TLM on the extrac-963

tive summarization task. When adding extra tHE964

to the input embeddings to the TLM, we do not965

pre-train the TLM with the adjusted inputs. It is966

reasonable that the TLM has difficulties in under-967

standing of the new inputs based on the knowledge968

learned from the original format of encodings. Pre-969

vious works, such as LayoutLM (Xu et al., 2020),970

LamBERT (Garncarek et al., 2021) and HIBERT971

(Zhang et al., 2019), which adjust the input embed-972

dings or the encoder architecture of the pre-trained973

TLM, continue to pre-train the released instances974

of pre-trained TLM on their own data. Continu-975

ing pre-training of the language models is a core976

part of these works and leads to significant im-977

provements on downstream tasks. Due to lack of978

computing resources, we are not able to pre-train979

the language models. Furthermore, the key goal of980

our work is to experiment with various methods to981

make use of the internal hierarchical text structure982

information for extractive summarization. In this 983

work, we conduct further experiments without to- 984

ken HP information and leave for future work the 985

pre-training of language models with the adjusted 986

input embeddings. 987

The effect of different settings for HP encod- 988

ing is also investigated. As explained previously, 989

based on different PE methods (i.e., the sin. or la. 990

PE) associated with various combination modes 991

(i.e., sum, mean, concat), we have totally 6 dif- 992

ferent settings for hierarchical position encoding. 993

We investigate the effect of those 6 settings sys- 994

tematically in experiments while keeping the rest 995

settings and parameters the same. Therefore, their 996

summarization results are comparable. 997

Table 10 summarizes the ROUGE results of 6 998

HiStruct+ models using the 6 hierarchical posi- 999

tion encoding settings respectively, which are all 1000

trained on CNN/DailyMail based on BERT-base 1001

with 1,024 input tokens, injecting merely sHE. The 1002

detailed model architectures and experimental set- 1003
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Models/Settings Input
length TS BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
Longformer-base (15k tok.) 15,000 70,000 500 none - -
Longformer-base (28k tok.) 28,000 100,000 500 none - -

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 15,000 70,000 500 sHE+STE(classified) la-sum 720
sHE+STE 15,000 70,000 500 sHE+STE la-sum 720
sHE 15,000 70,000 500 sHE only la-sum 720

Longformer-base (28k tok.)
sHE+STE(classified) 28,000 100,000 500 sHE+STE(classified) la-sum 1300
sHE+STE 28,000 100,000 500 sHE+STE la-sum 1300

Table 7: Detailed model architectures and experimental settings for models trained on arXiv (also see Table 3). The
settings not included in the table are the same for all models. Base TLM: Longformer-base; Extra tPE: copied; FT:
no; TL:2; WS:10,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

Experimental Results R1 R2 RL

BERT-base (512 tok.)

HiStruct(sHE)+ 43.23 20.15 39.65
HiStruct(sHE&tHE)+ 40.76 18.03 37.08

BERT-base (1,024 tok.)

HiStruct(sHE)+ 43.38 20.33 39.78
HiStruct(sHE&tHE)+ 41.04 18.25 37.41

BERT-large (512 tok.)

HiStruct(sHE)+ 43.46 20.4 39.85
HiStruct(sHE&tHE)+ 40.58 17.71 36.83

Table 8: Ablation study on CNN/DailyMail (a)

tings are summarized in Table 11.1004

We observe that when using the la PE, the com-1005

bination mode sum leads to better results compared1006

to the mean and concat modes (see the first three1007

columns in Table 10). When using the sin PE, the1008

various combination modes do not make a con-1009

spicuous difference in summarization performance.1010

The sum and concat modes perform slightly better .1011

When using sum mode, the la and the sin PE pro-1012

duce similar results (see the first row of ROUGEs1013

in Table 10).1014

The effect of using the sin vs the la PE method1015

is further investigated in experiments. As discussed1016

above, the HP encoding methods la-sum and sin-1017

sum lead to similar results. We conduct experi-1018

ments to further investigate the effect of using the1019

la-sum vs sin-sum method. We also compare our1020

HiStruct+ models with the corresponding strong1021

baseline model which differs from our models only1022

in that it does not take into account extra HiStruct1023

information.1024

Table 12 includes the ROUGEs of three set of1025

comparison models, which use an extended BERT- 1026

base model taking 1,024 input tokens, an original 1027

BERT-large instance and an extended RoBERTa- 1028

base model with 1,024 input tokens respectively 1029

as the base TLM in the extractive summarization 1030

system. In each block, the first row is the base- 1031

line. The second row is a HiStruct+ model which 1032

injects sHE encoded by the method la-sum, de- 1033

noted as HiStruct(la-sum)+. The third row is a 1034

similar HiStruct+ model using the sin-sum method 1035

for HP encoding, denoted as HiStruct(sin-sum)+. 1036

The detailed model architectures and experimen- 1037

tal settings of all models included in Table 12 are 1038

summarized in Table 13. 1039

Regardless of the hierarchical position encod- 1040

ing method used, all HiStruct+ models produces 1041

better ROUGE-1, ROUGE-2 and ROUGE-L on 1042

CNN/DailyMail compared to the strong baseline. 1043

This indicates the potential benefits of the hierarchi- 1044

cal structure information and the effectiveness of 1045

our proposed methods for hierarchical position en- 1046

coding. However, the improvements compared to 1047

the baseline are not significant. It is also observed 1048

in Table 12 that the HiStruct(la-sum)+ models out- 1049

perform slightly the HiStruct(sin-sum)+ models 1050

under all the three different settings. The differ- 1051

ences of using the sin and the la PE method are not 1052

significant on CNN/DailyMail. 1053

The effect of the number of the stacked Trans- 1054

former layers in the HiStruct+ models is investi- 1055

gated in our experiments. We fine-tune an extended 1056

BERT-base model with 1,024 input tokens for ex- 1057

tractive summarization. The method sin-sum is 1058

used to generate sHE. We build the HiStruct+ mod- 1059
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

BERT-base (512 tok.)

HiStruct (sHE) + BERT-base 512 - 400 sHE only sin-sum -
HiStruct (sHE&tHE) + BERT-base 512 - 400 sHE & tHE sin-sum -

BERT-base (1,024 tok.)

HiStruct (sHE) + BERT-base 1024 copied 200 sHE only la-sum 407
HiStruct (sHE&tHE) + BERT-base 1024 copied 200 sHE & tHE la-sum 407

BERT-large (512 tok.)

HiStruct (sHE) + BERT-large 512 - 100 sHE only sin-sum -
HiStruct (sHE&tHE) + BERT-large 512 - 100 sHE & tHE sin-sum -

Table 9: Detailed model architectures and experimental settings for ablation study (a) on CNN/DailyMail (also see
Table 8). The settings not included in the table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;
AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

la PE sin PE

R1 R2 RL R1 R2 RL

HiStruct+BERT-base (1,024 tok.)

sum 43.38 20.33 39.78 43.37 20.27 39.75
mean 43.33 20.31 39.73 43.33 20.28 39.72
concat 43.22 20.18 39.61 43.37 20.29 39.74

Table 10: Ablation study on CNN/DailyMail (b)

Models/Settings HiStruct HPE #PE

HiStruct+BERT-base (1,024 tok.)

la-sum sHE only la-sum 407
la-mean sHE only la-mean 407
la-concat sHE only la-concat 407
sin-sum sHE only sin-sum -
sin-mean sHE only sin-mean -
sin-concat sHE only sin-concat -

Table 11: Detailed model architectures and experimen-
tal settings for ablation study (b) on CNN/DailyMail
(also see Table 10). The settings not included in this
table are the same for all models. Base TLM:BERT-
base; Input length:1,024; Extra tPE:copied; FT: yes;
TL:2; WS:10,000; TS:50,000; BS:200, AC:2; GPU:3;
SS:1,000; n: 3; TB:yes.

els with 1, 2, 3 stacked transformer layers respec-1060

tively, while keeping all other settings the same.1061

The ROUGEs of those three HiStruct+ models are1062

reported in the first block in Table 14. The detailed1063

model architectures and experimental settings of1064

all models in the table can be found in Table 15.1065

Our experimental results suggest that two stacked1066

Transformer layers perform best in our HiStruct+1067

models for extractive summarization.1068

The effect of random initialization vs copied1069

initialization for the additional input token po-1070

sition embeddings is also investigated in exper-1071

iments. When taking input texts longer than the1072

Experimental Results R1 R2 RL

BERT-base (1,024 tok.)

baseline 43.32 20.27 39.69
HiStruct(la-sum)+ 43.38 20.33 39.78
HiStruct(sin-sum)+ 43.37 20.27 39.75

BERT-large (512 tok.)

baseline 43.45 20.36 39.83
HiStruct(la-sum)+ 43.49 20.4 39.9
HiStruct(sin-sum)+ 43.46 20.4 39.85

RoBERTa-base (1,024 tok.)

baseline 43.62 20.53 39.99
HiStruct(la-sum)+ 43.65 20.54 40.03
HiStruct(sin-sum)+ 43.64 20.56 40.02

Table 12: Ablation study on CNN/DailyMail (c).

original input length of the base TLM, we need to 1073

add extra input token position embeddings (tPE) for 1074

each extended position. We can choose to randomly 1075

initialize the extra tPE or copy the original ones to 1076

cover the extended input length. To investigate the 1077

effect of different initialization strategies, we use 1078

the basic settings of the HiStruct+ model with two 1079

summarization layers, namely the second model in 1080

the first block in Table 14. To build the comparison 1081

model, only the initialization strategy is changed 1082

to random. As shown in the second block in Ta- 1083

ble 14, substantial improvements are achieved by 1084

using the copied tPEs for initialization instead of 1085

random initialization. ROUGE-1, ROUGE-2 and 1086

ROUGE-L are increased by 2.84, 2.51 and 2.95 1087

respectively. We assume that the released token 1088

position embeddings of the pre-trained TLM al- 1089

ready capture local structure within the 512 tokens 1090

window. The knowledge about the local structure 1091

is preserved when we copy the released tPEs to 1092

an additional text window containing 512 tokens 1093

for initialization. This might be the reason for the 1094
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

BERT-base (1,024 tok.)

baseline BERT-base 1024 copied 200 none - -
HiStruct (la-sum) + BERT-base 1024 copied 200 sHE only la-sum 407
HiStruct (sin-sum) + BERT-base 1024 copied 200 sHE only sin-sum -

BERT-large (512 tok.)

baseline BERT-large 512 - 100 none - -
HiStruct (la-sum) + BERT-large 512 - 100 sHE only la-sum 407
HiStruct (sin-sum) + BERT-large 512 - 100 sHE only sin-sum -

RoBERTa-base (1,024 tok.)

baseline RoBERTa-base 1024 copied 250 none - -
HiStruct (la-sum) + RoBERTa-base 1024 copied 250 sHE only la-sum 407
HiStruct (sin-sum) + RoBERTa-base 1024 copied 250 sHE only sin-sum -

Table 13: Detailed model architectures and experimental settings for ablation study (c) on CNN/DailyMail (also see
Table 12). The settings not included in this table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;
AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

Experimental Results R1 R2 RL

HiStruct(sin-sum,sHE)+
BERT-base (1,024 tok.)

-#Transformer layers
for summarization

1 43.29 20.25 39.69
2 43.37 20.27 39.75
3 43.16 20.15 39.56

-Extra input token
position embeddings(tPE)

Randomly initialized 40.53 17.76 36.8
Copied 43.37 20.27 39.75

-With/without sentence
position embeddings(sPE)

With sPE 43.37 20.27 39.75
Without sPE 43.31 20.25 39.69

Table 14: Ablation study on CNN/DailyMail (d).

significant superiority over random initialization.1095

The effect of the linear sentence position em-1096

beddings is also investigated in experiments. As1097

shown in Figure 1, besides the hierarchical posi-1098

tions of each sentence, we also take the linear posi-1099

tion of each sentence within the whole document1100

into account by adding a linear sentence position1101

embedding (sPE) to each sentence representation.1102

We assess the effect of the linear sentence position1103

embeddings by comparing two HiStruct+BERT-1104

base models with or without the sPE. The experi-1105

mental results are summarized in the third block in1106

Table 14. The HiStruct+ model with sPE outper-1107

forms the HiStruct+ model without sPE by a small1108

margin regarding all ROUGE metrics.1109

Models/Settings Extra
tPE TL

HiStruct(sin-sum,sHE)+BERT-base (1,024 tok.)

# transformer layers for summarization

1 copied 1
2 copied 2
3 copied 3

Extra input token position embeddings (tPE)

Randomly initialized randomly initialized 2
Copied copied 2

With/without sentence position embeddings (sPE)

With sPE copied 2
Without sPE copied 2

Table 15: Detailed model architectures and experimental
settings for ablation study (d) on CNN/DailyMail (also
see Table 14). The settings not included in this table are
the same for all models. Base TLM: BERT-base; Input
length:1,024; FT: yes; WS:10,000; TS:50,000; BS:200;
AC:2; GPU:3; HiStruct: sHE only; HPE:sin-sum; #PE:-;
SS:1,000; n: 3; TB:yes.
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