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Abstract

Transformer-based language models usually
treat texts as linear sequences. However, most
texts also have an inherent hierarchical struc-
ture, i. e., parts of a text can be identified using
their position in this hierarchy. In addition, sec-
tion titles usually indicate the common topic
of their respective sentences. We propose a
novel approach to extract, encode and inject hi-
erarchical structure (HiStruct) information into
an extractive summarization model (HiStruct+
model) based on a pre-trained, encoder-only
language model. Our HiStruct+ model achieves
SOTA extractive ROUGE scores on three pub-
lic summarization datasets (CNN/DailyMail,
PubMed, arXiv), the improvement is espe-
cially substantial on PubMed and arXiv. Using
various experimental settings, our HiStruct+
model outperforms a strong baseline, which
differs from our model only in that the HiStruct
information is not injected. The ablation
study demonstrates that the hierarchical posi-
tion information is the main contributor to our
model’s SOTA performance.

1 Introduction

Texts, especially long documents, contain internal
hierarchical structure like sections, paragraphs, sen-
tences, and tokens. When we manually summarize
a text, the hierarchical text structure usually plays
a key role. Taking a scientific paper as an exam-
ple, we might focus more on the sections with the
titles of “methodology”, “discussion”, and “conclu-
sion” while paying less attention to the sections
like “background”. Furthermore, the sentences
within one section could have closer relationship
with each other, than the ones outside this section.
Understanding not only the sequential relations
between the sentences but also the internal hierar-
chical text structure helps us better determine the
important sentences within a document. Similarly,
a neural summarization model could benefit from
these hierarchical structure information.

In this paper, we focus on extractive text summa-
rization of single documents (ETS), which is the
task of binary sentence classification with labels
indicating whether a sentence should be included
in a summary. Recently, pre-trained language mod-
els based on Transformers (Vaswani et al., 2017)
(TLM), such as BERT (Devlin et al., 2019), have
been widely used to extract contextual representa-
tions from texts. The pre-trained TLM can be eas-
ily reused for fine-tuning on the downstream tasks,
so that the representations already learned from
the large pre-training corpora are preserved. Liu
and Lapata (2019) has achieved the state-of-the-art
(SOTA) performance by fine-tuning BERT for ex-
tractive summarization on short document datasets
including CNN/DailyMail. However, the TLMs
consider merely the sequential-context-dependency
by adding a linear positional encoding to each input
token embeddings. The hierarchical text structure
information is not taken into account explicitly.

We propose a novel approach to extract, encode
and inject the hierarchical structure (HiStruct) in-
formation explicitly into an extractive summariza-
tion model (HiStruct+ model), which consists of a
Transformer language model (TLM) for sentence
encoding and two stacked inter-sentence Trans-
former layers for hierarchical learning and extrac-
tive summarization. We experiment with BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and Longformer (Beltagy et al., 2020) as underly-
ing TLMs. The HiStruct information utilized in
our work includes the section titles and the hierar-
chical positions of sentences, which are encoded
using our proposed novel methods. The resulting
embeddings can be injected into the TLM sentence
representations to provide the HiStruct information
for the summarization task.

We evaluate our HiStruct+ models on short doc-
uments (i.e., CNN/DailyMail (See et al., 2017))
and long documents (i.e., PubMed and arXiv (Co-
han et al., 2018)). Our HiStruct+ models improve



the SOTA extractive ROUGE:S on all three datasets.
The improvements are especially substantial on
PubMed and arXiv, which contain longer scientific
papers with conspicuous hierarchical structures.
We also compare the HiStruct+ models with the
corresponding strong baselines, which differ from
our models only in that the HiStruct information is
not injected. Using various experimental settings,
our models collectively out perform the baselines
on the three datasets, indicating the effectiveness
of the proposed HiStruct encoding methods. Ab-
lation studies suggest that the performance gains
are majorly contributed by the hierarchical position
information of sentences.

Our contributions in this work are five-folds: (1)
We highlight the importance of the hierarchical text
structure which has been rarely considered in lan-
guage modeling and text summarization. (2) We
conceptualize novel measures to compare the hier-
archical structure of the datasets. (3) We implement
data preprocessing to extract the HiStruct informa-
tion from the raw datasets. (4) We propose novel
methods to encode and inject the HiStruct informa-
tion into an extractive summarization model explic-
itly. The effects of different encoding settings and
injection settings are systematically investigated.
(5) The data containing the extracted HiStruct in-
formation, the best HiStruct+ models, as well as
the implementation of preprocessing, training and
evaluation is available on GitHub'.

2 Related Work

2.1 Text Summarization

Extractive Text Summarization (ETS) is to iden-
tify the most informative sentences within a doc-
ument. Liu and Lapata (2019) fine-tune BERT
with two stacked inter-sentence Transformer layers
with a sigmoid classifier for ETS (BERTSUMEXT).
Zhang et al. (2019) pre-train a hierarchical Trans-
former encoder consisting of a sentence encoder
and a document encoder (HIBERT). For long doc-
uments, Xiao and Carenini (2019) propose a RNN-
based ETS model incorporating both the global and
the local context (ExtSum-LG). To addressing the
problem of redundancy in extractive summaries,
the authors further improve their work by intro-
ducing redundancy reduction (Xiao and Carenini,
2020). They systematically explore and com-
pare different methods including Trigram Block-
ing (Paulus et al., 2018), RdLoss, MMR-Select
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and MMR-Select+ (Xiao and Carenini, 2020). Tri-
gram Blocking is a traditional redundancy reduc-
tion method that avoids adding a candidate sen-
tence to the summary if it has trigram overlap with
the previously selected sentences. Their previous
model combined with the redundancy reduction
methods produce SOTA performance in ETS on
PubMed and arXiv.

Previous works on ETS take the HiStruct of doc-
uments into consideration by introducing a hierar-
chical attention, where they first learn contextual
token representations based on the linear depen-
dencies between tokens and then add additional
CNN (Cheng and Lapata, 2016) or RNN (Nallapati
et al., 2017) or Transformer (Zhang et al., 2019; Liu
and Lapata, 2019) layer(s) to learn document-level
representations for each sentence based on the lin-
ear dependencies between sentences. However, all
these works learn hierarchical representations im-
plicitly. Hierarchical text structure information is
not encoded and injected into the model explicitly.

Abstractive text summarization (ATS) is to
generate summaries with new sentences which are
not present in the source text. BERTSUMABS (Liu
and Lapata, 2019) uses the pre-trained BERT as
the encoder in its encoder-decoder architecture. In-
stead of simply using the pre-trained BERT, recent
works, including T5 (Raffel et al., 2020), BART
(Lewis et al., 2020) and PEGAUSUS (Zhang et al.,
2020) pre-train encoder-decoder Transformer mod-
els specifically for seq2seq tasks. The first attempt
at addressing neural ATS of long documents is
undertaken by Cohan et al. (2018). Gidiotis and
Tsoumakas (2020) propose a divide-and-conquer
approach to train a model to summarize each part
of the document separately. To address the essen-
tial issue of the quadratic full attention operation of
TLMs, Zaheer et al. (2020) propose BigBird with
a sparse attention mechanism.

Hybrid text summarization combines ETS,
ATS and other techniques as a hybrid system, such
as Zhong et al., 2020 (MatchSum) and Pilault et al.,
2020.

2.2 Injecting Additional Information

The central idea of our work is inspired by two
former works, LAMBERT (Garncarek et al., 2021)
and LayoutLM (Xu et al., 2020), where the vi-
sual layout information is injected into BERT by
adjusting its input embeddings. They consider a
document page as a coordinate system and define
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the layout position of each token/image as the co-
ordinates of its bounding box. The layout position
is then transformed into the layout embeddings
which is added to the original BERT input embed-
dings. These models cannot be applied to plain
texts since the layout positions have to be obtained
from scanned document images. We adopt the
idea of injecting extra features when using the pre-
trained TLM. Unlike former works, our approach
makes use of the internal HiStruct information,
which can be found in most types of textual data.

3 Methodology

3.1 Hierarchical Structure Information

Hierarchical position (HP) of a sentence is repre-
sented as a vector of its positions at each hierarchy-
level, adopting the ideas from LAMBERT and Lay-
outLM.

S8V = (as, bs) )

Given the s-th sentence within a document, its HP
is represented as a 2-dimensional vector (as, bs),
denoted as the sentence structure vector SSV5,
where ag represents the linear position of the sec-
tion containing the sentence and b is the linear
position of the sentence within the section. All
sentences within the same section have the same
value in the first dimension of the SSV, indicating
the close relationships between them. The sec-
ond dimension indicates more precisely their linear
relations within the section. By this very simple nu-
merical formulation, hierarchical relations between
sentences are clearly identified.

Section titles (STs) exist in particular in long
documents like scientific papers. They usually
imply the section content and describe the com-
mon topic for its sub-sentences. In our work, we
propose to utilize the corresponding ST as an ad-
ditional HiStruct information when encoding its
sub-sentences. There exist typical STs in scientific
papers. Similar STs like “Conclusion”, “Conclu-
sions” and “Concluding remarks” have the same
semantic meaning and can be grouped into one typ-
ical ST class of “Conclusions”. This is also taken
into consideration when encoding the STs.

3.2 Hierarchical Structure Encoding

Hierarchical position embedding is based on the
existing linear position encoding methods (PE), in-
cluding the sinusoidal method (sin) used by Trans-
former and the learnable method (la) used by BERT.

We use one of the PEs to generate position embed-
dings for each dimension of the SSVs, the results
are two DPEs. Using the sin PE, the DPEs are cal-
culated simply by Equations 2 and 3. Using the la
PE, the DPEs are initialized randomly and trained
with the entire summarization model.

PE(pos,2i) = 5in(p05/100002i/(1m0dcl) @)
PE(pos,2i41) = cos(pos/lo()(]()Qi/dmodel) 3)

where pos is the absolute linear position of the
encoded token within the input sequence and i is
the i-th dimension of the position embedding.

Given the s-th sentence with the SSV of (as, bs),
and the desired size of the output embeddings d, its
hierarchical position embedding sHE can be gener-
ated by Equations 4, 5, 6, using different combina-
tion modes.

SHEsum(S,d) = PE(CLS,CZ) + PE(bS7d) (4)

PE(as,d) + PE(bs, d)
2

SHEmean(S, d) = (5)

d
5) (6)
where the symbol | denotes vector concatenation.
Using one of the PEs (i.e., sin or la) associated
with one of the combination modes (i.e., sum, mean
or concat), it totals 6 different settings of the hier-
archical position encoding method: sin-sum, sin-
mean, sin-concat, la-sum, la-mean and la-concat.
(Classified) section title embedding is gener-
ated by the pre-trained TLM, which is involved in
the summarization model. A STE is generated by
feeding the tokenized ST to the TLM and summing
up the last hidden states at each token position.
Similar STs (i.e., STs that have similar keywords
and tokens) lead to embeddings that are already
similar to each other in some way. Using the clas-
sified STE, all intra-class STEs are replaced with
the embedding of its corresponding ST class. In
the case that a ST does not belong to any class or
it falls into more than one class, the original STE
is used. Typical ST classes and the corresponding
intra-class STs are manually pre-defined depending
on the datasets and the domains.

d
sH Econcat(s, d) = PE(as, §)|PE(bS7

3.3 Model Architecture

Figure 1 illustrates the overview architecture of
the proposed HiStruct+ model. It consists of a
base TLM for sentence encoding and two stacked
inter-sentence Transformer layers for hierarchical
learning and extractive summarization. The se-
quence on top is the input document, tokenized by



Document ((Bos J(ast (‘sent |(E0s | BOS |---[ BOS ]---
Egﬁf:ddmgs [ EBos || E1st || Esent. | EEos |[ EBOS |...[ EBOS |...
s
Efgb";zz‘ings [ ea [ ea [ ea | ea | E8 |---[ EA ]---
TokenLinear [ pgy | tpE2 |[ tpE3 || wE4 | wES | ... [ wEC ...
Posmon_ * *
Embedd
roecdnes Pre-trained TLM (BERT/RoBERTa/Longformer) ‘
Contextual *
Token [ Teos || mast |[Tsent. |[ TEOS || TBOS | ... [ TBOS |
Embeddings ~ ——— —— ————————————— —  —————
Zen?k[)eer:izeings et et
Sentence
Linear Posiion
Sgntence'
Embeddings

v v v

Two Transformer layers for hierarchical context learning ‘

Sigmoid(:lassifier+ : ‘

Hierarchical
Contextual
Sentence
Embeddings

ar
BE

Sentence
Scores

Gold labels

Figure 1: Architecture of the HiStruct+ model. The two
blocks shaded in light-green are the HiStruct injection
components.

the corresponding tokenizer of the involved TLM.
In order to represent individual sentences, we insert
a BOS token at the start of every sentence. Only
the BOS token embeddings are preserved as the
sentence representation (S;). The S is first en-
riched with a Sentence Linear Position Embedding
(sPEj), which encodes its linear position within
the whole document. An additional Sentence Hier-
archical Position Embedding can be added (s H Ej).
It is generated by encoding the HP of the sentence
using the proposed hierarchical position encoding
method. If STs are available, we can further en-
rich the sentence representation by adding a STE
or classified STE (ST E). The sentence represen-
tations with the injected HiStruct information are
fed to the two stacked Transformer encoder layers
to learn inter-sentence document-level hierarchical
contextual features. The Self-Attention mechanism
in the Transformer layers takes context sentences
into consideration when encoding each sentence.
The result is a set of Hierarchical Contextual Sen-
tence Embeddings (HSs). The final output layer
is a sigmoid classifier, which calculates the confi-
dence score ¢ of including the s-th sentence in the
extractive summary based on the H.S;. The loss of
the model is the binary classification entropy of the

prediction g against the gold label ys,.

The two HiStruct injection components shaded
in light-green are optional. Removing these from
the HiStruct+ model based on BERT, the architec-
ture is identical to BERTSUMEXT (Liu and Lap-
ata, 2019), which is a strong baseline against our
models. When using RoOBERTa and Longformer as
the base TLM, we also construct a baseline model
without the two components. The effectiveness of
injecting HiStruct information using the proposed
methods can be systematically investigated by com-
paring our models to the corresponding baselines.

4 Experimental Setup

4.1 Datasets

Our models are evaluated on three benchmark
datasets for single document summarization, in-
cluding CNN/DailyMail (See et al., 2017), PubMed
and arXiv (Cohan et al., 2018). Table 4 presents
detailed statistics of the datasets.

The three datasets represent different document
types ranging from short news articles to long sci-
entific papers. To emphasize the difference in the
hierarchical structure among different datasets, we
define the concepts of hierarchical depth (hi-depth)
and hierarchical width (hi-width). The hi-depth
refers to the number of the hierarchy-levels within
the document. Scientific papers have a deeper hier-
archy consisting of sections, paragraphs, sentences
and tokens (i.e., hi-depth = 4). In news articles,
paragraphs are not further grouped into sections
(i.e., hi-depth = 3). In this case, we use paragraphs
instead of sections as the highest hierarchy level
when representing the HP of sentences (i.e., the first
dimension of the SSVs). The hierarchical width

hi-width = N

sentences Ng a]gg the number of the text-units re-
garding the highest hierarchy Npp,.

The concept hi-width indicates how many
sentences are there on average in every para-
graph/section. The more sentences are there, the
second dimension of the SSVs has a more wide
range of values, and the first dimension of the
SSVs differ a lot from the linear sentence positions.
Larger hi-depth and larger hi-width indicate that
the hierarchical text structure is more conspicuous.

CNN/DailyMail contains more than 310k short
news articles. We use the standard splits given by
See et al. (2017) for training, validation, and testing.
The average hi-width over all documents is 1.33.

is the ratio of total number of




The hierarchical structure of the CNN/DailyMail
documents is not as conspicuous as the documents
in PubMed and arXiv. Compared to PubMed and
arXiv, the gold summaries have higher proportions
of novel 1-grams and 2-grams in CNN/DailyMail,
which is one of the key difficulties in ETS.

During data preprocessing, we first split docu-
ments into sentences and paragraphs respectively
with the Stanford CoreNLP toolkit (Manning et al.,
2014) . The sentences and paragraphs are tok-
enized, resulting in the lists of sentence tokens and
the lists of paragraph tokens. SSVs corresponding
to each sentence can be obtained by comparing
those lists side by side. For all three datasets, we
use a greedy selection algorithm similar to (Nallap-
ati et al., 2017) and (Liu and Lapata, 2019) to select
sentences from documents as the gold extractive
summaries (ORACLE). Sentences in the ORACLE
summaries are assigned with the gold label 1.

PubMed and arXiv contain longer scientific pa-
pers. PubMed contains papers in the bio-medical
domain, while arXiv contains papers in various
domains. The average hi-width over all PubMed
documents is 15.79, in arXiv it is 37.33. We use
the original splits given by Cohan et al. (2018) for
training, validation, and testing. SSVs are obtained
by tokenizing the sentences and sections of every
document respectively. The details on the genera-
tion of STEs and classified STEs can be found in
Appendix A.2.

4.2 TImplementation Details

We implement our extractive model based on
BERTSUMEXT (Liu and Lapata, 2019) using Hug-
gingFace Transformers (Wolf et al., 2020) to make
use of the pre-trained instances of BERT, RoBERTa
and Longformer. More implementation details are
summarized in Appendix A.3 and A.4.

5 Results and Discussion

We evaluate the performance of our summariza-
tion models automatically using ROUGE metrics
(Lin, 2004) including F1 ROUGE-1 (R1), ROUGE-
2 (R2) and ROUGE-L (RL). Tables 1, 2 and 3
summarize the performance of our models in com-
parison to the baselines and the SOTA results on
CNN/DailyMail, PubMed and arXiv respectively.
The first three blocks in the tables highlight the
results reported by the corresponding papers of ab-
stractive, extractive, and hybrid summarization sys-
tems. Underlined are the best results regarding the

respective type of the summarization system. Bold
are the scores of the HiStruct+ models that are bet-
ter than their corresponding comparison baselines.
The symbol * indicates that the corresponding ex-
tractive SOTA ROUGE is improved by our model.
The symbol ’ indicates that the SOTA ROUGEs
(incl. all types of summarization approaches) are
outperformed.

5.1 Results on Short Documents

Model | / Metric — R1 R2 RL
Abstractive
BERTSUMARBS (2019) 41.72  19.39 38.76
BART (2020) 44.16  21.28 40.90
PEGASUS (2020) 44.17 2147 41.11
BigBird PEGASUS (2020) 4384 21.11 40.74
Extractive
HIBERT (2019)
(BERT-base) 4231 19.87 38.78
(BERT-large) 4237 1995 38.83
BERTSUMEXT (2019)
(BERT-base) 4325 20.24 39.63
(BERT-large) 43.85 20.34 39.90
Hybrid
MatchSum (2020)
(BERT-base) 4422 20.62 40.38
(RoBERTa-base) 4441 20.86 40.55
Reproduced baselines
ORACLE (512 tok.) 52.46  30.76 48.66
ORACLE (1,024 tok.) 5545 32.78 51.59
LEAD-3 40.33  17.39 36.56
TransformerETS
BERT-base (1,024 tok.) 4332  20.27 39.69
BERT-large (512 tok.) 4345 20.36 39.83
RoBERTa-base (1,024 tok.) 43.62 20.53 39.99
Our models (Extractive)
HiStruct+
BERT-base (1,024 tok.) 43.38 20.33 39.78
BERT-large (512 tok.) 43.49 20.40* 39.90*
RoBERTa-base (1,024 tok.) 43.65 20.54* 40.03*
Our models (Hybrid)
HiStruct+
RoBERTa-base (1,024 tok.)
& MatchSum (RoBERTa-base) 44.31 20.73 40.47

Table 1: Results on CNN/DailyMail

ROUGE results on CNN/DailyMail are sum-
marized in Table 1. In the baselines block, the
first two lines highlight the ORACLE results that
build the upper bounds for ETS systems taking
the same number of input tokens. The LEAD-n
baselines simply select the first n sentences in a
document as its extractive summary. Despite its
simplicity, the LEAD-3 baseline already achieves
relatively competitive performance and even out-
performs several neural models as listed in the table.
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Figure 2: Proportions of the extracted sentences at each
linear position. The x-axis values are linear sentence in-
dices, the y-axis values are percentages of the extracted
sentences.

The three TransformerETS models are the corre-
sponding comparison baselines that use the same
model architecture and experimental settings as our
models but without injected HiStruct information.

The following block presents the results of our
HiStruct+ models based on different TLMs with
various input lengths. To make the evaluation re-
sults comparable to the SOTA extractive model
BERTSUMEXT, we follow their approach and re-
port the averaged results of three best checkpoints.

Regardless the base TLM and input length, our
HiStruct+ models collectively outperform the cor-
responding baselines by merely injecting the HP
information of sentences. Comparing to BERT-
SUMEXT, our best HiStruct+ model, which is
based on RoBERTa-base with 1,024 input to-
kens, increases the SOTA extractive ROUGE-2
and ROUGE-L by 0.2 and 0.13. The perfor-
mance improvements gained by our models on
CNN/DailyMail are small. One of the reasons
might be that we merely inject the sHE, STs
are not available. Furthermore, as discussed

in Section 4, the hierarchical structure of the
CNN/DailyMail documents is not so obvious as in
PubMed and arXiv. Another possible reason may
lie in the abstractiveness of the gold summaries in
CNN/DailyMail, which makes it difficult to achieve
high ROUGE-1 and ROUGE-2 by simply copying
sentences from the source document.

Our HiStruct+ models are the competitive extrac-
tive models which can be reused in many hybrid
approaches. When we apply MatchSum based on
our best model, the ROUGE results are further in-
creased to 44.31/20.73/40.47.

Ablation studies on CNN/DailyMail (see the
evaluation results and detailed discussions in Ap-
pendix A.5) suggest that the setting la-sum works
best for HP encoding . Two stacked Transformer
layers in the summarization model perform better
than one or three Transformer layers. When taking
longer inputs than the length limit of the TLM, sig-
nificant improvements are achieved by using the
copied token position embeddings for initialization
instead of random initialization.

The extracted summaries are analyzed in more
detail by plotting the proportions of the extracted
sentences at each linear position within the whole
document as shown in Figure 2a. The model in
green is our best HiStruct+ model. The model
in orange is the corresponding comparison base-
line without injected HiStruct information. The
model in blue is the ORACLE system, which pro-
duces the gold extractive summaries. We can ob-
serve that the ORACLE summary sentences are
distributed across documents more smoothly, while
our HiStruct+ model and the baseline model tend to
select the first sentences and fail to select sentences
that appear at later positions within the documents.
Compared to the baseline, the HiStruct+ model
leads to more similar proportions as the ORACLE
summaries at the most sentence indices.

5.2 Results on Long Documents

5.2.1 Results on PubMed

ROUGE results on PubMed are summarized in
Table 2. As shown in the baselines block, the ORA-
CLE extractive upper bounds are increased signifi-
cantly by increasing the input length, which makes
it possible to exploit potential gains from model-
ing longer input. The LEAD-n baselines do not
produce competitive results on PubMed. It indi-
cates that the first sentences in PubMed are not so
informative as in CNN/DailyMail. The last two



Model | / Metric — R1 R2 RL
Abstractive

PEGASUS (2020) 45.49 19.90 4242

BigBird PEGASUS (2020) 46.32 20.65 42.33

DANCER PEGASUS (2020)  46.34 19.97 4242
Extractive

Sent-CLF (2020) 45.01 1991 41.16

Sent-PTR (2020) 43.30 17.92 3947

ExtSum-LG+ (2020)

RLoss 45.30 20.42 4095
MMR-Select+ 45.39 20.37  40.99
Hybrid

TLM-I+E(G,M) (2020) 42.13 16.27 39.21
Reproduced baselines
ORACLE (4,096 tok.) 49.73 2729 45.26
ORACLE (9,600 tok.) 52.80 28.95 48.08
ORACLE (15k tok.) 53.04 29.08 48.31
LEAD-7 38.30 12.54 34.31
LEAD-10 38.59 13.05 34.81
TransformerETS
Longformer-base (15k tok.)  41.69 1576  37.48
Longformer-large (15k tok.)  41.69 15.79 37.49
Our models (Extractive)
HiStruct+
Longformer-base (15k tok.)
sHE+STE(classified) 46.59* 20.39 42.11*
sHE+STE 46.49%  20.29 42.02*
sHE 45.76*  19.64 41.34*
Longformer-large (15k tok.)
sHE+STE(classified) 46.38%  20.17 41.92*
sHE 45.67*  19.60 41.26*

Table 2: Results on PubMed

TransformerETS models in the block are the com-
parison baselines that are not aware of HiStruct.

The last block presents the results of two groups
of HiStruct+ models grouped by the base TLM
used in the summarization model. In PubMed,
we can choose to inject the sHE with or without
the STE. STE can be replaced by classified STE.
This can result in three different injection settings
for a model group, namely sHE, sHE+STE, and
sHE+STE(classified). For each model setting, we
report the results of the best-performed checkpoint.

Our best HiStruct+ model on PubMed is a
model based on Longformer-base taking 15,000
input tokens, which injects the sHE and the clas-
sified STE into the extractive model. It achieves
ROUGE results of 46.59/20.39/42.11. Compared
to the baseline, our model increases ROUGEs by
4.9/4.63/4.63, which indicates the effectiveness of
the proposed hierarchical structure encoding and
injection methods. Our results also beat the SOTA
extractive model ExtSum-LG+MMR-Select+ col-
lectively on all three ROUGE metrics with improve-
ments of 1.2/0.02/1.12. Taking the SOTA abstrac-

tive and hybrid approaches into account, our results
are still very competitive.

All HiStruct+ models produce the competitive
results that are better than or very close to the for-
mer extractive SOTA results. They also collectively
outperform the baselines by a large margin on all
evaluation metrics. This overperformance is much
more substantial than that on CNN/DailyMail. One
of the reasons might be that we include the STE in
addition to the sHE while training on PubMed. Fur-
thermore, the HiStruct of the documents is more
obvious than in CNN/DailyMail. The gold sum-
maries in PubMed contain less novel 1-grams and 2-
grams, which also makes it easier to achieve higher
ROUGE:S by performing extractive summarization.

Ablation studies on PubMed suggest that the
largest improvement of our models against the com-
parison baseline is contributed by the sHE. This
is observed when we compare the three models in
the first group of HiStruct+ models with the base-
line. Injecting merely sHE, the results are already
increased by 4.07/3.88/3.86. When the STE are in-
cluded additionally, the results are further increased
by 0.73/0.65/0.68. When using classified STE in-
stead, the ROUGE:S are increased by a small margin
of 0.1/0.1/0.09. In the second group of HiStruct+
models, it is also observed that injecting the sHE
leads to the largest performance gain.

The extracted summaries analysis on PubMed
test set is demonstrated in Figure 2b. The model
in green is our best HiStruct+ model, the model in
orange is the corresponding baseline, the model in
blue is the ORACLE system. It is observed that the
ORACLE summaries are distributed across docu-
ments evenly. The comparison baseline favors the
first 5 sentences and ignores the sentences appear-
ing at later positions. In contrast, our HiStruct+
model overcomes the problem of focusing merely
on the first sentences. The outputs of the HiStruct+
model are close to the ORACLE summaries. It
indicates that by injecting HiStruct information
explicitly using our proposed method, the model
successfully learns the deeper internal hierarchical
structure of the PubMed documents and relies less
on the linear sentence positions.

5.2.2 Results on arXiv

ROUGE results on arXiv are summarized in Ta-
ble 3. Similar as on PubMed, the LEAD-n base-
lines perform badly on arXiv. The results of the
HiStruct+ models are presented in two groups. The
first group takes 15k input tokens, while the sec-



Model | / Metric — R1 R2 RL
Abstractive

PEGASUS (2020) 44.70 17.27  25.80

BigBird PEGASUS (2020) 46.63 19.02 41.77

DANCER PEGASUS (2020) 45.01 17.60  40.56

LED-large (2020) 46.63 19.62 41.48
Extractive

Sent-CLF (2020) 34.01 8.71 30.41

Sent-PTR (2020) 42.32 15.63  38.06

ExtSum-LG + (2020)

RLoss 44.01 17.79  39.09
MMR-Select+ 43.87 17.50 38.97
Hybrid
TLM-I+E(G,M) (2020) 41.62 14.69 38.03
Reproduced baselines
ORACLE (15k tok.) 53.58 26.19 47.76
ORACLE (28k tok.) 53.97 26.42 48.12
LEAD-10 37.37 10.85 33.17

TransformerETS
Longformer-base (15k tok.)  38.49 11.59 33.85
Longformer-base (28k tok.) — 38.47 11.56 33.82
Our models (Extractive)
HiStruct+
Longformer-base (15k tok.)
sHE+STE(classified) 44.94* 1742 39.90*
sHE+STE 45.02* 17.48 39.94*
sHE 43.04 15.87 38.13
Longformer-base (28k tok.)
sHE+STE(classified) 45.17* 17.61 40.10*
sHE+STE 45.22* 17.67 40.16*

Table 3: Results on arXiv

ond group increases the input length to 28k. In the
groups, different injection settings are compared.

Our best HiStruct+ model trained on arXiv is
based on Longformer-base with 28k input tokens,
injecting the sHE with the original STE. This model
beats the results achieved by ExtSum-LG+RLoss
and sets the new SOTA extractive summarization
ROUGE:s on arXiv to 45.22/17.67/40.16.

Our HiStruct+ models collectively outperform
the corresponding baselines (the last two models
in the baselines block) by a large margin on all
ROUGEs. This overperformance is much more
significant than that on both CNN/DailyMail and
PubMed. The arXiv dataset has the largest hi-width
among the three datasets and the hierarchical struc-
ture is most conspicuous, which might be the rea-
son for the largest performance improvements by
injecting HiStruct information on arXiv.

Ablation studies in the first HiStruct+ group
also suggest that the largest improvement of our
HiStruct+ model against the comparison baseline is
contributed by the SHE. The effect of using the clas-
sified STE on arXiv is opposite to that on PubMed.
The results are decreased slightly when we replace

the STE with the classified STE. This phenomenon
occurs in the second group of HiStruct+ models as
well. We notice the fact that there are 500k unique
STs in arXiv, while PubMed contains 164k unique
STs. It is no wonder that it becomes much more dif-
ficult to group a large number of STs correctly into
several section classes. Furthermore, the PubMed
dataset contains papers mostly in the bio-medical
domain. The structure of those papers tends to fol-
low specific writing conventions in the bio-medical
sciences. The arXiv dataset, in contrast, contains
scientific papers that are not limited to a specific
domain. The document structure and the writing
styles are more diverse.

The extracted summaries analysis on arXiv is
demonstrated in Figure 2c. The baseline (in orange)
tends to select the first sentence and the sentences
indexed between 10 and 20, while it excludes sen-
tences at later positions. It is clearly observed that
the summary sentences extracted by our model are
evenly distributed, the informative sentences ap-
pearing at later positions are not ignored.

6 Conclusions

In this paper, we propose a novel approach to ex-
tract, encode and inject the hierarchical structure
(HiStruct) information into an extractive summa-
rization model based on pre-trained TLM. We eval-
uate our models systematically on CNN/DailyMail,
PubMed and arXiv. Our models increase the SOTA
extractive ROUGEs on all three datasets. The im-
provement is especially substantial on PubMed and
arXiv, which contain longer scientific papers with
conspicuous hierarchical structures. On PubMed,
our model increases the former extractive SOTA
ROUGE-1 by 1.2 and ROUGE-L by 1.12. On
arXiv, our model increases the former extractive
SOTA ROUGE-1 by 1.21 and ROUGE-L by 1.07.
Using various experimental settings, our HiStruct+
models collectively outperform the corresponding
strong baselines, which differ from our models only
in that the HiStruct information is not taken into
account. Ablation studies on PubMed and arXiv in-
dicate that the improvements are mostly gained by
providing the hierarchical position information of
sentences to the summarization model. The idea of
extracting, encoding and injecting the HiStruct in-
formation can be easily adopted in abstractive sum-
marization. We see great potential in an encoder-
decoder architecture with the proposed HiStruct
injection components.
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A Appendix
A.1 Statistics of the datasets

Dataset CNN/DailyMail PubMed arXiv
Raw documents
avg. #words 792.24 2,967.22  5,825.68
avg. #sentences  40.31 86.37 206.3
avg. #sections®*  31.2 5.91 5.55
avg. hi-width 1.33 15.79 37.33
Raw gold summaries
avg. #words 53.25 202.42 272
avg. #sentences  3.75 6.85 9.61
Novel n-grams in gold summaries
avg. % novel
1grams 13.97 0.2 0.15
2grams 51.79 2.69 2.73
Nr. of documents
#train 287,227 119,924 203,037
#val 13,368 6,633 6,436
#test 11,490 6,658 6,440
Documents tokenized by the RoOBERTa tokenizer
avg. doc length 964 4,252 8,991
75% doc length 1,219 5,382 11,289
85% doc length 1,448 6,709 14,294
99% doc length 2,345 15,277 35,559

Table 4: Statistics of the datasets. * avg. #paragraphs in
CNN/DailyMail.

We used the CNN/DailyMail? and the PubMed
and arXiv datasets®. We use the original splits used
by See et al. (2017) and Cohan et al. (2018) for
training, validation and testing.

A.2 Pre-defined ST classes

The pre-defined dictionaries of the typical ST
classes and the corresponding in-class STs will
be released in our GitHub project *.

There are 164,195 unique STs in PubMed, and
500,015 in arXiv, which are encoded as STE re-
spectively using the base TLM.

For PubMed, we define 8 ST classes: introduc-
tion, background (i.e., background, review and re-
lated work), case (i.e., case reports), method, result,
discussion, conclusion and additional information
(i.e., additional information such as conflicts of in-
terest, financial support and acknowledgements).
For arXiv, we define 10 classes: introduction, back-
ground, case, theory (i.e., problem formulation and
proof of theorem), method, result, discussion, con-
clusion, reference and additional information. Clas-
sified STEs are prepared accordingly.

Zhttps://cs.nyu.edu/~kcho/DMQA/
*https://github.com/armancohan/long-summarization
“https://bit.ly/3CeCVj7
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A.3 Implementation Details

The learning rate schedule follows (Liu and Lap-
ata, 2019) with warming-up. On CNN/DailyMail,
we train our models 50,000 steps with 10,000
warming-up steps. On PubMed and arXiv, we train
our models 70,000 steps with 10,000 warming-up
steps when taking 15,000 tokens as input. When
we train models on arXiv with 28,000 input tokens,
we train the models 100,000 steps with 10,000
warming-up steps.

The number of the extracted sentences is vari-
ous depending on the dataset. On CNN/DailyMail,
we follow (Liu and Lapata, 2019) to select 3 sen-
tences for each document as its extractive summary
and apply Trigram Blocking (Paulus et al., 2018)
to reduce the redundancy of the selected sentences.
On PubMed and arXiv, 7 sentences are extracted.
Trigram Blocking is not applied on PubMed and
arXiv.

The length limit of the original TLM is over-
come by adding extra token linear position em-
beddings (tPE) to cover the desired length. The
additional tPE are trained with the whole summa-
rization model. Instead of initializing them ran-
domly, we copy the original tPE of the base TLM
multiple times until the desired length is covered.

The HiStruct+ models are trained on 3 GPUs
(NVIDIA® Quadro RTX™ 6000 GPUs with 24GB
memory) with gradient accumulation every two
steps. Checkpoints are saved and evaluated on
the validation set every 1,000 steps. The top-3
checkpoints based on the validation loss are kept.
The batch size varies with the base TLM and the
input length. The base TLM is not fine-tuned when
training the summarization model on PubMed and
arXiv due to resource limitation.

A.4 Model Architectures and Experimental
Settings

The detailed model architectures and experimen-
tal settings for models trained on CNN/DailyMail,
PubMed and arXiv are summarized in Table 5, Ta-
ble 6 and Table 7. The detailed model architectures
and experimental settings include:

Base TLM: the base Transformer language
model used for sentence encoding in the sum-
marization system

Input length: How many tokens are taken as
input


https://cs.nyu.edu/~kcho/DMQA/
https://github.com/armancohan/long-summarization
https://bit.ly/3CeCVj7

Extra tPE: How to initialize the extra input to-
ken position embeddings when taking longer
input. We can choose to randomly initialize
them or copy the original ones.

FT: Whether the base TLM is fine-tuned with
the entire summarization model

TL: The number of the Transformer layers
stacked upon the base TLM for extractive sum-
marization

WS: Warmup steps, how many steps are used
for warming-up of the learning rate

TS: Training steps, the total training steps

BS: Batch size, how many documents are used
as one batch during training

AC: Accumulation count, gradient accumula-
tion every k steps

GPU: The number of GPUs used for training,
we use NVIDIA® Quadro RTX™ 6000 GPUs
with 24GB memory

HiStruct: The injection setting. Hierar-
chical structure information that can be in-
jected into the summarization model are: sHE
(i.e., sentence hierarchical position embed-
dings), STE (i.e., section title embeddings),
or STE(classified) (i.e., classified section title
embeddings)

HPE: The hierarchical position encoding
method used in the model. The method
is based on the sinusoidal (sin) or the
learnable (la) linear position embedding
method associated with a combination mode
(sum/mean/concat)

#PE: The numbers of the learned position em-
beddings for each hierarchy-level and the lin-
ear sentence positions, when using the learn-
able position embedding method. We set them
to a same value during training.

SS: Saving steps, save checkpoints every k
steps

n: Select n sentences as the extractive sum-
mary for each document

TB: Trigram Blocking, whether to apply Tri-
gram Blocking during sentence selection
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A.5 Ablation studies on CNN/DailyMail

The effect of token HP embeddings is investi-
gated in experiments. The HP embeddings of to-
kens are generated as followings:

Given the ¢-th token within the document,its HP
can be represented by Equation 7:

TSW = (at,bt,ct) (7)

where a; represents the linear position of the sec-
tion which contains the token, b; is the sentence’s
position within the section and ¢, is the linear posi-
tion of the token within the sentence.

Given the t-th token whose TSV is a 3-
dimensional vector (a¢, by, ¢¢), and the desired size
of the output embeddings d, we can embed its
token-level hierarchical position embeddings tH E
by Equations 8, 9, 10, using different combination
settings.

tH Esum(t, d) = PE(a;,d) + PE(by,d) + PE(cy,d) (8)

PE(as,d) + PE(by,d) + PE(ct, d)

tHEmean(t, d) — 3
(C)]

tH Econcat(t, d) = PE(as, g)|PE(bt, §)|PE(ct, g)
(10)
Initial experiments are conducted to assess the
summarization performance of the HiStruct+ mod-
els with or without the tHE. For this purpose,
we compare a HiStruct+ model merely inject-
ing sentence HP embeddings (i.e., sHE) with a
HiStruct+ model with both sentence and token
HP embeddings (i.e., sHE& tHE). The former is
denoted as HiStruct(sHE)+ in Table 8, while the
latter is denoted as HiStruct(sHE&tHE)+. The
HiStruct(sHE&tHE)+ models add the correspond-
ing tHEs to the input embeddings at each input
position, and sHEs to the TLM sentence represen-
tations. The HiStruct(sHE)+ models merely add
sHEs. The averaged summarization ROUGEs of
three best checkpoints are reported in the Table
8. The table summarize three groups of HiStruct+
models based on different TLM with various in-
put lengths. The detailed model architectures and
experimental settings of all models in 8 are sum-
marized in Table 9.
The experimental results suggest that the
HiStruct(sHE)+ models with merely sHE consis-
tently outperform the HiStruct(sHE&tHE)+ models



Input

Extra

Models/Settings Base TLM length  tPE BS  HiStruct HPE #PE
Reproduced baselines

TransformerETS
BERT-base (1,024 tok.) BERT-base 1,024  copied 200 none - -
BERT-large (512 tok.) BERT-large 512 - 100 none - -
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024  copied 250 none - -

Our models (Extractive)

HiStruct+
BERT-base (1,024 tok.) BERT-base 1,024  copied 200 sHEonly la-sum 407
BERT-large (512 tok.) BERT-large 512 - 100 sHE only la-sum 407
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024  copied 250 sHEonly la-sum 407

Table 5: Detailed model architectures and experimental settings for models trained on CNN/DailyMail (also see
Table 1). The settings not included in the table are the same for all models. FT: yes, TL:2, WS:10,000, TS:50,000,

AC:2, GPU:3, SS:1,000, n: 3, TB:yes.

Models/Settings Base TLM BS  HiStruct HPE #PE
Reproduced baselines
TransformerETS
Longformer-base (15k tok.) ~ Longformer-base 500 none - -
Longformer-large (15k tok.) ~ Longformer-large 256  none - -
Our models (Extractive)
HiStruct+
Longformer-base (15k tok.)
sHE+STE(classified) Longformer-base 500 sHE+STE(classified) la-sum 450
sHE+STE Longformer-base =~ 500 sHE+STE la-sum 450
sHE Longformer-base 500 sHE only la-sum 450
Longformer-large (15k tok.)
sHE+STE(classified) Longformer-large 256 sHE+STE(classified) la-sum 450
sHE Longformer-large 256  sHE only la-sum 450

Table 6: Detailed model architectures and experimental settings for models trained on PubMed (also see Table 2).
The settings not included in the table are the same for all models. Input length: 15,000; Extra tPE: copied; FT: no;
TL:2; WS:10,000; TS:70,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

under various circumstances. The reason might be
that we directly fine-tune the TLM on the extrac-
tive summarization task. When adding extra tHE
to the input embeddings to the TLM, we do not
pre-train the TLM with the adjusted inputs. It is
reasonable that the TLM has difficulties in under-
standing of the new inputs based on the knowledge
learned from the original format of encodings. Pre-
vious works, such as LayoutLM (Xu et al., 2020),
LamBERT (Garncarek et al., 2021) and HIBERT
(Zhang et al., 2019), which adjust the input embed-
dings or the encoder architecture of the pre-trained
TLM, continue to pre-train the released instances
of pre-trained TLM on their own data. Continu-
ing pre-training of the language models is a core
part of these works and leads to significant im-
provements on downstream tasks. Due to lack of
computing resources, we are not able to pre-train
the language models. Furthermore, the key goal of
our work is to experiment with various methods to
make use of the internal hierarchical text structure
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information for extractive summarization. In this
work, we conduct further experiments without to-
ken HP information and leave for future work the
pre-training of language models with the adjusted
input embeddings.

The effect of different settings for HP encod-
ing is also investigated. As explained previously,
based on different PE methods (i.e., the sin. or la.
PE) associated with various combination modes
(i.e., sum, mean, concat), we have totally 6 dif-
ferent settings for hierarchical position encoding.
We investigate the effect of those 6 settings sys-
tematically in experiments while keeping the rest
settings and parameters the same. Therefore, their
summarization results are comparable.

Table 10 summarizes the ROUGE results of 6
HiStruct+ models using the 6 hierarchical posi-
tion encoding settings respectively, which are all
trained on CNN/DailyMail based on BERT-base
with 1,024 input tokens, injecting merely sHE. The
detailed model architectures and experimental set-



Input

Models/Settings length TS BS  HiStruct HPE #PE
Reproduced baselines
TransformerETS
Longformer-base (15k tok.) 15,000 70,000 500 none - -
Longformer-base (28k tok.) 28,000 100,000 500 none - -
Our models (Extractive)
HiStruct+
Longformer-base (15k tok.)
sHE+STE(classified) 15,000 70,000 500 sHE+STE(classified) la-sum 720
SHE+STE 15,000 70,000 500 SsHE+STE la-sum 720
sHE 15,000 70,000 500 sHE only la-sum 720
Longformer-base (28k tok.)
sHE+STE(classified) 28,000 100,000 500 SsHE+STE(classified) la-sum 1300
sHE+STE 28,000 100,000 500 sHE+STE la-sum 1300

Table 7: Detailed model architectures and experimental settings for models trained on arXiv (also see Table 3). The
settings not included in the table are the same for all models. Base TLM: Longformer-base; Extra tPE: copied; FT:
no; TL:2; WS:10,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

Experimental Results R1 R2 RL
BERT-base (512 tok.)

HiStruct(sHE)+ 43.23  20.15 39.65
HiStruct(sHE&tHE)+ 40.76  18.03 37.08
BERT-base (1,024 tok.)

HiStruct(sHE)+ 43.38 20.33 39.78
HiStruct(sHE&tHE)+ 41.04 1825 3741
BERT-large (512 tok.)

HiStruct(sHE)+ 4346 204 39.85

HiStruct(sHE&tHE)+ 40.58 1771 36.83

Table 8: Ablation study on CNN/DailyMail (a)

tings are summarized in Table 11.

We observe that when using the la PE, the com-
bination mode sum leads to better results compared
to the mean and concat modes (see the first three
columns in Table 10). When using the sin PE, the
various combination modes do not make a con-
spicuous difference in summarization performance.
The sum and concat modes perform slightly better .
When using sum mode, the la and the sin PE pro-
duce similar results (see the first row of ROUGESs
in Table 10).

The effect of using the sin vs the la PE method
is further investigated in experiments. As discussed
above, the HP encoding methods la-sum and sin-
sum lead to similar results. We conduct experi-
ments to further investigate the effect of using the
la-sum vs sin-sum method. We also compare our
HiStruct+ models with the corresponding strong
baseline model which differs from our models only
in that it does not take into account extra HiStruct
information.

Table 12 includes the ROUGEs of three set of
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comparison models, which use an extended BERT-
base model taking 1,024 input tokens, an original
BERT-large instance and an extended RoBERTa-
base model with 1,024 input tokens respectively
as the base TLM in the extractive summarization
system. In each block, the first row is the base-
line. The second row is a HiStruct+ model which
injects sHE encoded by the method la-sum, de-
noted as HiStruct(la-sum)+. The third row is a
similar HiStruct+ model using the sin-sum method
for HP encoding, denoted as HiStruct(sin-sum)+.
The detailed model architectures and experimen-
tal settings of all models included in Table 12 are
summarized in Table 13.

Regardless of the hierarchical position encod-
ing method used, all HiStruct+ models produces
better ROUGE-1, ROUGE-2 and ROUGE-L on
CNN/DailyMail compared to the strong baseline.
This indicates the potential benefits of the hierarchi-
cal structure information and the effectiveness of
our proposed methods for hierarchical position en-
coding. However, the improvements compared to
the baseline are not significant. It is also observed
in Table 12 that the HiStruct(la-sum)+ models out-
perform slightly the HiStruct(sin-sum)+ models
under all the three different settings. The differ-
ences of using the sin and the la PE method are not
significant on CNN/DailyMail.

The effect of the number of the stacked Trans-
former layers in the HiStruct+ models is investi-
gated in our experiments. We fine-tune an extended
BERT-base model with 1,024 input tokens for ex-
tractive summarization. The method sin-sum is
used to generate sHE. We build the HiStruct+ mod-



Input

Extra

Models/Settings Base TLM .. oth (PE BS  HiStruct HPE #PE
BERT-base (512 tok.)

HiStruct (sHE) + BERT-base 512 - 400 sHE only sin-sum -

HiStruct (sSHE&tHE) + BERT-base 512 - 400 sHE & tHE sin-sum -
BERT-base (1,024 tok.)

HiStruct (sHE) + BERT-base 1024 copied 200 sHE only la-sum 407

HiStruct (SHE&tHE) + BERT-base 1024 copied 200 SsHE &tHE la-sum 407
BERT-large (512 tok.)

HiStruct (sHE) + BERT-large 512 - 100  sHE only sin-sum -

HiStruct (sSHE&tHE) + BERT-large 512 - 100 sHE & tHE sin-sum -

Table 9: Detailed model architectures and experimental settings for ablation study (a) on CNN/DailyMail (also see
Table 8). The settings not included in the table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;

AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

la PE sin PE
R1 R2 RL R1 R2 RL
HiStruct+BERT-base (1,024 tok.)
sum 4338 20.33 39.78 43.37 20.27 39.75
mean 4333  20.31 39.73 4333 20.28 39.72
concat 4322 20.18 39.61 43.37 20.29 39.74

Table 10: Ablation study on CNN/DailyMail (b)

Models/Settings HiStruct HPE #PE
HiStruct+BERT-base (1,024 tok.)
la-sum sHE only la-sum 407
la-mean sHE only la-mean 407
la-concat sHE only la-concat 407
sin-sum sHE only  sin-sum -
sin-mean sHE only sin-mean -
sin-concat sHE only  sin-concat -

Table 11: Detailed model architectures and experimen-
tal settings for ablation study (b) on CNN/DailyMail
(also see Table 10). The settings not included in this
table are the same for all models. Base TLM:BERT-
base; Input length:1,024; Extra tPE:copied; FT: yes;
TL:2; WS:10,000; TS:50,000; BS:200, AC:2; GPU:3;
SS:1,000; n: 3; TB:yes.

els with 1, 2, 3 stacked transformer layers respec-
tively, while keeping all other settings the same.
The ROUGE:S of those three HiStruct+ models are
reported in the first block in Table 14. The detailed
model architectures and experimental settings of
all models in the table can be found in Table 15.
Our experimental results suggest that two stacked
Transformer layers perform best in our HiStruct+
models for extractive summarization.

The effect of random initialization vs copied
initialization for the additional input token po-
sition embeddings is also investigated in exper-
iments. When taking input texts longer than the
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Experimental Results R1 R2 RL
BERT-base (1,024 tok.)

baseline 4332 2027 39.69
HiStruct(la-sum)+ 43.38 20.33 39.78
HiStruct(sin-sum)+ 43.37 20.27 39.75
BERT-large (512 tok.)

baseline 4345 20.36 39.83
HiStruct(la-sum)+ 4349 204 39.9
HiStruct(sin-sum)+ 4346 204 39.85
RoBERTa-base (1,024 tok.)

baseline 43.62 20.53 39.99
HiStruct(la-sum)+ 43.65 20.54 40.03
HiStruct(sin-sum)+ 43.64 20.56 40.02

Table 12: Ablation study on CNN/DailyMail (c).

original input length of the base TLM, we need to
add extra input token position embeddings (tPE) for
each extended position. We can choose to randomly
initialize the extra tPE or copy the original ones to
cover the extended input length. To investigate the
effect of different initialization strategies, we use
the basic settings of the HiStruct+ model with two
summarization layers, namely the second model in
the first block in Table 14. To build the comparison
model, only the initialization strategy is changed
to random. As shown in the second block in Ta-
ble 14, substantial improvements are achieved by
using the copied tPEs for initialization instead of
random initialization. ROUGE-1, ROUGE-2 and
ROUGE-L are increased by 2.84, 2.51 and 2.95
respectively. We assume that the released token
position embeddings of the pre-trained TLM al-
ready capture local structure within the 512 tokens
window. The knowledge about the local structure
is preserved when we copy the released tPEs to
an additional text window containing 512 tokens
for initialization. This might be the reason for the



Models/Settings Base TLM }grrl);tth FP)%ra BS  HiStruct HPE #PE
BERT-base (1,024 tok.)

baseline BERT-base 1024 copied 200 none - -

HiStruct (la-sum) + BERT-base 1024 copied 200 sHEonly la-sum 407

HiStruct (sin-sum) + BERT-base 1024 copied 200 sHEonly sin-sum -
BERT-large (512 tok.)

baseline BERT-large 512 - 100  none - -

HiStruct (la-sum) + BERT-large 512 - 100 sHEonly la-sum 407

HiStruct (sin-sum) + BERT-large 512 - 100 sHEonly sin-sum -
RoBERTa-base (1,024 tok.)

baseline RoBERTa-base 1024 copied 250 none - -

HiStruct (la-sum) + RoBERTa-base 1024 copied 250 sHEonly la-sum 407

HiStruct (sin-sum) + RoBERTa-base 1024 copied 250 sHEonly sin-sum -

Table 13: Detailed model architectures and experimental settings for ablation study (c) on CNN/DailyMail (also see
Table 12). The settings not included in this table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;

AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

Experimental Results R1 R2 RL
HiStruct(sin-sum,sHE)+

BERT-base (1,024 tok.)

-#Transformer layers

for summarization

1 43.29  20.25 39.69
2 43.37 2027 39.75
3 43.16  20.15 39.56
-Extra input token

position embeddings(tPE)

Randomly initialized 40.53 1776 36.8
Copied 4337 20.27 39.75
-With/without sentence

position embeddings(sPE)

With sPE 43.37 2027 39.75
Without sPE 4331 20.25 39.69

Table 14: Ablation study on CNN/DailyMail (d).

significant superiority over random initialization.

The effect of the linear sentence position em-
beddings is also investigated in experiments. As
shown in Figure 1, besides the hierarchical posi-
tions of each sentence, we also take the linear posi-
tion of each sentence within the whole document
into account by adding a linear sentence position
embedding (sPE) to each sentence representation.
We assess the effect of the linear sentence position
embeddings by comparing two HiStruct+BERT-
base models with or without the sPE. The experi-
mental results are summarized in the third block in
Table 14. The HiStruct+ model with sPE outper-
forms the HiStruct+ model without sPE by a small
margin regarding all ROUGE metrics.
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Extra
tPE

HiStruct(sin-sum,sHE)+BERT-base (1,024 tok.)

# transformer layers for summarization

Models/Settings TL

1 copied
2 copied
3 copied

Lo =

Extra input token position embeddings (tPE)

Randomly initialized randomly initialized 2

Copied copied 2
With/without sentence position embeddings (sPE)

With sPE copied 2

Without sPE copied 2

Table 15: Detailed model architectures and experimental
settings for ablation study (d) on CNN/DailyMail (also
see Table 14). The settings not included in this table are
the same for all models. Base TLM: BERT-base; Input
length:1,024; FT: yes; WS:10,000; TS:50,000; BS:200;
AC:2; GPU:3; HiStruct: sHE only; HPE:sin-sum; #PE:-;
SS:1,000; n: 3; TB:yes.



