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Abstract

Offline-to-online reinforcement learning (O20-RL) has emerged as a promising
paradigm for safe and efficient robotic policy deployment but suffers from two
fundamental challenges: limited coverage of multimodal behaviors and distribu-
tional shifts during online adaptation. We propose UEPQO, a unified generative
framework inspired by large language model pretraining and fine-tuning strategies.
Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy
that efficiently captures diverse modalities without training multiple models; (2) a
dynamic divergence regularization mechanism that enforces physically meaningful
policy diversity; and (3) a diffusion-based data augmentation module that enhances
dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9%
absolute improvement over Uni-O4 on locomotion tasks and +12.4% on dexterous
manipulation, demonstrating strong generalization and scalability.

1 INTRODUCTION

Offline-to-Online Reinforcement Learning (O20-RL) has emerged as a key paradigm for safe and
efficient robot deployment. It leverages static offline datasets to pretrain base policies, so as to more
accurately capture physical dynamics, mitigating real world trial and error risks, and further fine-tunes
policies via environmental interaction to adapt to dynamic scenarios, forming a complete "offline
initialization to online fine-tuning" framework. However, existing methods still face significant
challenges, including inefficient offline initialization and a weak interface between generative models
(Zhang et al. [2024]) and online adaptation (Laria et al. [2024]). Traditional Behavior Cloning (BC)
(Bai et al. [2025]) relies heavily on large amounts of expert data and struggles to cover multi-modal
action distributions. While mainstream generative models such as Diffusion Policy (Chi et al. [2024])
excel at offline modeling, their fixed noise schedules and lack of environmental feedback often lead
to policy degradation and distribution shift during online fine-tuning (Ma et al. [2025]).

Recent frameworks such as Off2on (Hong et al. [2022]), BPPO (Zhuang et al. [2023]), and Uni-O4
(Lei et al. [2024]) have made notable progress in integrating offline and online learning by jointly
optimizing objectives without additional regularization. However, Uni-O4 (Lei et al. [2024]) exhibits
limitations in offline pre-training, generative model adaptation, and scalability, leading to high
computational costs for the integrated strategy, insufficient diversity at the physical execution level,
and poor data efficiency and generalization. These shortcomings render the algorithm unsuitable for
high-dimensional dynamics and scenarios with scarce real-world data.
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To address these issues, we propose a unified generative O20-RL framework. Our approach includes
a data-efficient generative offline module that: (1) employs a dynamics-aware diffusion policy combin-
ing U-Net (Ronneberger et al. [2015]) and Transformer (Vaswani et al. [2017]) to model long-horizon
action sequences , while using different noise seeds to generate diverse sub-policies without training
multiple models, significantly reducing the need for expert demonstrations; (2) integrates divergence
regularization with diffusion sampling diversity to enhance behavioral differences among sub-policies
through dynamic discrepancy measurement, noise perturbation, and sequence-level constraints; (3)
expands training data by synthesizing trajectories through diffusion, and then combines them with
real data to train dynamics models. This effectively bridges offline generative strategies with online
fine-tuning.

2 METHOD

In this section, we present our method, UEPO, as shown in Fig. 1. The three core innovations of this
framework are seamlessly integrated into the learning pipeline spanning the offline and online phases.
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Figure 1: UEPO employs a multi-seed diffusion sampling strategy to initialize components for the
subsequent phase. During the offline optimization stage (middle), the strategy enhances diversity
through a regularization mechanism that amplifies policy divergence, whilst simultaneously training
the dynamics model 7" using a joint approach of real data and synthetic trajectories to improve
its generalization capability. Finally, a qualifying policy is selected as the initialization for online
fine-tuning.

2.1 Conditional Action Sequence Generation via Diffusion Model

To address limitations of BC, we adopt a state-conditional diffusion policy to model the entire action
sequence distribution p(a1.7 | s1.7), capturing long-horizon dependencies and multi-modal behaviors
in offline data. We then construct an ensemble policy via multi-seed sampling to enhance sequence
rationality and behavioral diversity.

Traditional ensemble methods incur high computational costs due to the training of multiple inde-
pendent models. Instead, we construct an ensemble of n sub-policies {7} ; from a single trained
diffusion model by varying initial noise seeds during reverse sampling. For each sub-policy 7)), we
condition on the same state sequence s1.7 but initialize the reverse process with a distinct random
seed €; ~ N(0,I). Each unique seed generates an action sequence a} ;- corresponding to a distinct
behavioral modality, thus reducing training costs while naturally promoting sub-policy diversity.

2.2 Divergence Regularization Enhancement Guided by Diffusion Sampling

The ensemble policy constructed in Section 2.1 provides initial diversity. However, to ensure sub-
policies exhibit divergence during dynamic execution, we introduce dynamic divergence constraints



directly into the diffusion sampling process. This contrasts with Uni-O4’s (Lei et al. [2024]) approach,
which applies a KL divergence penalty to the distribution of single-step actions and may result in
policies that are statically distinct but dynamically similar or mutually conflicting.

2.2.1 Dynamic Divergence Constraint

When generating action sequence a; for the i-th sub-policy, we measure its divergence from other
sub-policies {a; | j < i} that have already been generated within the same sampling round. We
introduce a divergence reward based on dynamics-level discrepancies to adjust the sampling path.

* Dynamic Divergence Metric: We define the divergence between two action sequences a; and a; by
measuring the dynamics difference between first-order (velocity) and second-order (acceleration):
1 I
div(ai,a;) = D létse = @jll2 + (1 = cos(ds, g iije))
t=1
where velocity a; = a; — a;—1 and acceleration a; = a; — a;—1, to ensure that discrepancies are
meaningful at the level of physical execution.

* Adaptive Perturbation: If the divergence div(a;, a;) falls below a threshold 7, we interpret the
paths as being too similar. To encourage exploration, we perturb the current denoised estimate a;}
in the reverse process:

i i T —div(a,, a;
ai <« al+0, §~N(0,0%1I), whereog, =1- %

The scaling factor oy, increases as the divergence decreases, and 7 is a hyperparameter controlling

the perturbation strength. This adaptive noise injection forces the sub-policy to explore distinct

dynamic modes.

2.2.2 Synergy with Sequence-Level KL Regularization

We retain the KL divergence penalty from Uni-O4 (Lei et al. [2024]) to ensure distributional diversity
at a global level. However, we redefine its application from the single-step action distribution to the
entire action-sequence distribution, which aligns naturally with our sequence-based diffusion policy.

The overall objective for each sub-policy 7 is:

i po(a | s)
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Here, pp(a | s) represents the probability of generating the entire action sequence a given state
s, approximated by the product of Markov transition probabilities in the reverse diffusion process.
This combination of a local dynamic constraint and a global sequence-level regularizer effectively
enhances sub-policy diversity.

2.3 Enhancing Dynamics Model Generalization with Diffusion

A common challenge in model-based RL (Jiang and Li [2016]) is the limited generalization of the
learned dynamics model 7'(s" | s,a) when the offline data set D does not adequately cover the
state-action space. To mitigate Uni-O4 (Lei et al. [2024])’s potential overfitting to limited transitions,
we use our diffusion policy to generate physically plausible trajectories for augmenting the training
data of the dynamics model, thereby enhancing its generalization and the sample efficiency of online
learning. This procedure generates virtual trajectories consistent with real dynamics, as shown in
Algorithm 1, thereby providing reliable augmented data for joint model training.

Joint Training of Dynamics Models

The original maximum likelihood objective of the dynamics model is updated to incorporate the
filtered virtual trajectories Dyis, creating a joint training dataset:

L) = ~E(s 0,0)~p0yy [108T(S' | 5,0)

The size of D is controlled to be 2-3 times that of D (| Dyigr| &~ 2| D), striking a balance between
augmenting data volume and maintaining the fidelity of the real data distribution. This process
significantly improves the model’s ability to generalize to unseen regions of the state—action space.
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Algorithm 1: Virtual Trajectory Generation and Filtering

Input: Initial state sy ~ pp; pre-trained diffusion policy mgif; real transition dynamics 7ie,);
initial dynamics model Tmit; threshold ¢ = 0.05
Output: Filtered trajectory dataset Dys
Initialize Dy < 0
Generate multi-step action sequence ag.7—1 using mqi conditioned on sg
Initialize trajectory 7 < ()
fort =0to7T — 1do
L Sample 5441 ~ Trear (- | 5¢,a¢)
Add (St, ag, St—‘,—l) toT

Trajectory 7 = {(s0, ao, $1), (s1,a1,82), ..., (S7-1,07-1,57)}

Compute Dk, (Treal (|3, @) || Tinit (8|5, @))

if Dxp, <€ // Filtering criterion
then

L Add 7 to Dyisr

// Ensures augmented data remains consistent with the underlying physics
return Dy

3 EXPERIMENTS

We evaluate our proposed algorithm across extensive offline RL benchmarks to investigate two
aspects: (i) its performance compared to state-of-the-art baselines and (ii) its capability to model the
multimodal nature of offline datasets by integrating multiple sub-diffusion policies.

Environment CcQL TD3+BC Onestep RL IQL COMBO BPPO ATAC BC UNI-04 Ours
halfcheetah-medium-v2 44.0 48.3 48.4 47.4 542 44.0 54.3 42.1 52.6 57+0.8
hopper-medium-v2 58.5 59.3 59.6 66.3 97.2 93.9 102.8 52.8 104.4 108+0.5
walker2d-medium-v2 725 83.7 81.8 78.3 81.9 83.6 91.0 74.0 90.2 91+1.4
halfcheetah-medium-replay 45.5 44.6 38.1 442 55.1 41.0 49.5 349 443 58.240.7
hopper-medium-replay 95.0 60.9 97.5 97.7 89.5 92.5 102.8 25.7 103.2 112.0£2.3
walker2d-medium-replay 712 81.8 49.5 73.9 96.0 71.6 94.1 54.9 98.4 103.8+£1.7
halfcheetah-medium-expert 91.6 90.7 934 89.7 90.0 92.6 95.5 529 93.8 94.340.6
hopper-medium-expert 105.4 98.0 103.3 91.7 111.1 112.8 112.6 18.6 111.4 118.6+£0.2
walker2d-medium-expert 108.8 110.1 113.0 109.6 103.3 113.1 116.3 107.7 118.1 120.7+0.3
locomotion total 698.5 677.4 684.6 692.4 738.3 751.0 818.9 463.5 816.4 864.61+8.5
pen-human 375 8.4 90.7 71.5 41.3 117.8 79.3 65.8 116.2* 122.8+5.8
hammer-human 4.4 2.0 0.2 1.4 9.6 14.9 6.7 2.6 247.1 30.2+3.3
door-human 9.9 0.5 -0.1 4.3 52 25.8 8.7 4.3 17.3* 29.3+0.7
relocate-human 0.2 -0.3 2.1 0.1 0.4 4.8 0.3 0.2 27.1% 2.9+0.7
pen-cloned 39.2 41.5 60.0 37.3 24.6 110.8 73.9 60.7 101.4* 118.4+12.4
hammer-cloned 2.1 0.8 2.0 2.1 33 8.9 2.3 0.4 7.3% 9.710.8
door-cloned -0.1 -0.4 -0.4 -1.6 0.2 6.2 8.2 0.9 10.2* 9.8+2.4
relocate-cloned 0.4 -0.3 0.1 0.2 0.7 1.9 0.8 0.1 1.4% 1.34+04
Adroit total 93.6 522 155.2 118.1 84.2 291.4 180.2 135.0 288.6 324.4426.5
kitchen-complete 43.8 0.0 2.0 62.5 35 91.5 2.0 68.3 93.6 102.6£3.6
kitchen-partial 49.8 225 355 46.3 1.2 57.0 0.0 325 58.3 57.6+2.8
kitchen-mixed 51.0 25.0 28.0 51.0 1.4 62.5 1.0 47.5 65.0 70.3+5.6
S kitchen total 144.6 47.5 65.5 159.8 6.1 211.0 3.0 148.3 216.9 230.54+12.0
Total 936.7 777.1 905.3 970.3 828.6 1253.4 1002.1 746.8 1322.0 1419.5+47.0

Table 1: Most of the results are extracted from the original papers, and *indicates that the results are
reproduced by running the provided source code.

4 CONCLUSION

In this work, we propose UEPO, a unified generative offline-to-online reinforcement learning frame-
work that effectively addresses key limitations in existing O20-RL approaches. Our approach
integrates a dynamics-aware diffusion policy for efficient offline initialization and a differential-
enhanced regularization mechanism to enhance policy diversity. Our approach mitigates distribution
shifts, reduces reliance on expert data, and demonstrates strong generalization capabilities across
complex, high-dimensional tasks. Experiments on the D4RL benchmark reveal that UEPO achieves
state-of-the-art performance.



References

Shuanghao Bai, Wanqi Zhou, Pengxiang Ding, Wei Zhao, Donglin Wang, and Badong Chen. Re-
thinking latent representations in behavior cloning: An information bottleneck approach for robot
manipulation. arXiv e-prints, pages arXiv—-2502, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, 2024.

Joey Hong, Aviral Kumar, and Sergey Levine. Confidence-conditioned value functions for offline
reinforcement learning. arXiv preprint arXiv:2212.04607, 2022.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International conference on machine learning, pages 652-661. PMLR, 2016.

Héctor Laria, Alex Gomez-Villa, Kai Wang, Bogdan Raducanu, and Joost van de Weijer. Assessing
open-world forgetting in generative image model customization. arXiv preprint arXiv:2410.14159,
2024.

Kun Lei, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang Gao, and Huazhe Xu. Uni-04: Unifying online
and offline deep reinforcement learning with multi-step on-policy optimization. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=tbFBh3LMKi.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234-241. Springer, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Liyu Zhang, Haochi Wu, Xu Wan, Quan Kong, Ruilong Deng, and Mingyang Sun. Samg: Offline-to-
online reinforcement learning via state-action-conditional offline model guidance. arXiv preprint
arXiv:2410.18626, 2024.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization. arXiv preprint arXiv:2302.11312, 2023.


https://openreview.net/forum?id=tbFBh3LMKi
https://openreview.net/forum?id=tbFBh3LMKi

	INTRODUCTION
	METHOD
	Conditional Action Sequence Generation via Diffusion Model
	Divergence Regularization Enhancement Guided by Diffusion Sampling
	Dynamic Divergence Constraint
	Synergy with Sequence-Level KL Regularization

	Enhancing Dynamics Model Generalization with Diffusion

	EXPERIMENTS
	CONCLUSION

