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Abstract

Offline-to-online reinforcement learning (O2O-RL) has emerged as a promising1

paradigm for safe and efficient robotic policy deployment but suffers from two2

fundamental challenges: limited coverage of multimodal behaviors and distribu-3

tional shifts during online adaptation. We propose UEPO, a unified generative4

framework inspired by large language model pretraining and fine-tuning strategies.5

Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy6

that efficiently captures diverse modalities without training multiple models; (2) a7

dynamic divergence regularization mechanism that enforces physically meaningful8

policy diversity; and (3) a diffusion-based data augmentation module that enhances9

dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9%10

absolute improvement over Uni-O4 on locomotion tasks and +12.4% on dexterous11

manipulation, demonstrating strong generalization and scalability.12

1 INTRODUCTION13

Offline-to-Online Reinforcement Learning (O2O-RL) has emerged as a key paradigm for safe and14

efficient robot deployment. It leverages static offline datasets to pretrain base policies, so as to more15

accurately capture physical dynamics, mitigating real world trial and error risks, and further fine-tunes16

policies via environmental interaction to adapt to dynamic scenarios, forming a complete "offline17

initialization to online fine-tuning" framework. However, existing methods still face significant18

challenges, including inefficient offline initialization and a weak interface between generative models19

(Zhang et al. [2024]) and online adaptation (Laria et al. [2024]). Traditional Behavior Cloning (BC)20

(Bai et al. [2025]) relies heavily on large amounts of expert data and struggles to cover multi-modal21

action distributions. While mainstream generative models such as Diffusion Policy (Chi et al. [2024])22

excel at offline modeling, their fixed noise schedules and lack of environmental feedback often lead23

to policy degradation and distribution shift during online fine-tuning (Ma et al. [2025]).24

Recent frameworks such as Off2on (Hong et al. [2022]), BPPO (Zhuang et al. [2023]), and Uni-O425

(Lei et al. [2024]) have made notable progress in integrating offline and online learning by jointly26

optimizing objectives without additional regularization. However, Uni-O4 (Lei et al. [2024]) exhibits27

limitations in offline pre-training, generative model adaptation, and scalability, leading to high28

computational costs for the integrated strategy, insufficient diversity at the physical execution level,29

and poor data efficiency and generalization. These shortcomings render the algorithm unsuitable for30

high-dimensional dynamics and scenarios with scarce real-world data.31

To address these issues, we propose a unified generative O2O-RL framework. Our approach includes32

a data-efficient generative offline module that: (1) employs a dynamics-aware diffusion policy combin-33

ing U-Net (Ronneberger et al. [2015]) and Transformer (Vaswani et al. [2017]) to model long-horizon34

action sequences , while using different noise seeds to generate diverse sub-policies without training35

multiple models, significantly reducing the need for expert demonstrations; (2) integrates divergence36

regularization with diffusion sampling diversity to enhance behavioral differences among sub-policies37
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through dynamic discrepancy measurement, noise perturbation, and sequence-level constraints; (3)38

expands training data by synthesizing trajectories through diffusion, and then combines them with39

real data to train dynamics models. This effectively bridges offline generative strategies with online40

fine-tuning.41

Our framework enhances policy representation, diversity, and generalization, improving O2O-RL for42

complex robotic tasks. On D4RL benchmark, it surpasses state-of-the-art baselines, especially in43

dexterous manipulation and quadruped locomotion, showing strong stability and adaptability.44

2 METHOD45

In this section, we present our method, UEPO, as shown in Fig. 1. The three core innovations of this46

framework are seamlessly integrated into the learning pipeline spanning the offline and online phases.47
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Figure 1: UEPO employs a multi-seed diffusion sampling strategy to initialize components for the
subsequent phase. During the offline optimization stage (middle), the strategy enhances diversity
through a regularization mechanism that amplifies policy divergence, whilst simultaneously training
the dynamics model T̂ using a joint approach of real data and synthetic trajectories to improve
its generalization capability. Finally, a qualifying policy is selected as the initialization for online
fine-tuning.

2.1 Conditional Action Sequence Generation via Diffusion Model48

To address limitations of BC, we adopt a state-conditional diffusion policy to model the entire action49

sequence distribution p(a1:T | s1:T ), capturing long-horizon dependencies and multi-modal behaviors50

in offline data. We then construct an ensemble policy via multi-seed sampling to enhance sequence51

rationality and behavioral diversity.52

Traditional ensemble methods incur high computational costs due to the training of multiple inde-53

pendent models. Instead, we construct an ensemble of n sub-policies {πi
θ}ni=1 from a single trained54

diffusion model by varying initial noise seeds during reverse sampling. For each sub-policy πi
θ, we55

condition on the same state sequence s1:T but initialize the reverse process with a distinct random56

seed ϵi ∼ N (0, I). Each unique seed generates an action sequence ai1:T corresponding to a distinct57

behavioral modality, thus reducing training costs while naturally promoting sub-policy diversity.58

2.2 Divergence Regularization Enhancement Guided by Diffusion Sampling59

The ensemble policy constructed in Section 2.1 provides initial diversity. However, to ensure sub-60

policies exhibit divergence during dynamic execution, we introduce dynamic divergence constraints61

directly into the diffusion sampling process. This contrasts with Uni-O4’s (Lei et al. [2024]) approach,62
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which applies a KL divergence penalty to the distribution of single-step actions and may result in63

policies that are statically distinct but dynamically similar or mutually conflicting.64

2.2.1 Dynamic Divergence Constraint65

When generating action sequence ai for the i-th sub-policy, we measure its divergence from other66

sub-policies {aj | j < i} that have already been generated within the same sampling round. We67

introduce a divergence reward based on dynamics-level discrepancies to adjust the sampling path.68

• Dynamic Divergence Metric: We define the divergence between two action sequences ai and aj by69

measuring the dynamics difference between first-order (velocity) and second-order (acceleration):70

div(ai, aj) =
1

T

T∑
t=1

(∥ȧi,t − ȧj,t∥2 + (1− cos(äi,t, äj,t)))

where velocity ȧt = at − at−1 and acceleration ät = ȧt − ȧt−1, to ensure that discrepancies are71

meaningful at the level of physical execution.72

• Adaptive Perturbation: If the divergence div(ai, aj) falls below a threshold τ , we interpret the73

paths as being too similar. To encourage exploration, we perturb the current denoised estimate ait74

in the reverse process:75

ait ← ait + δ, δ ∼ N (0, σ2
divI), where σdiv = η · τ − div(ai, aj)

τ
The scaling factor σdiv increases as the divergence decreases, and η is a hyperparameter controlling76

the perturbation strength. This adaptive noise injection forces the sub-policy to explore distinct77

dynamic modes.78

2.2.2 Synergy with Sequence-Level KL Regularization79

We retain the KL divergence penalty from Uni-O4 (Lei et al. [2024]) to ensure distributional diversity80

at a global level. However, we redefine its application from the single-step action distribution to the81

entire action-sequence distribution, which aligns naturally with our sequence-based diffusion policy.82

The overall objective for each sub-policy π̂i is:83

J(π̂i) = E(s,a)∼D [log pθ(a | s)] + αE(s,a)∼D

[
log

(
pθ(a | s)

maxj pθ(a | s)

)]
Here, pθ(a | s) represents the probability of generating the entire action sequence a given state84

s, approximated by the product of Markov transition probabilities in the reverse diffusion process.85

This combination of a local dynamic constraint and a global sequence-level regularizer effectively86

enhances sub-policy diversity.87

2.3 Enhancing Dynamics Model Generalization with Diffusion88

A common challenge in model-based RL (Jiang and Li [2016]) is the limited generalization of the89

learned dynamics model T̂ (s′ | s, a) when the offline data set D does not adequately cover the90

state-action space. To mitigate Uni-O4 (Lei et al. [2024])’s potential overfitting to limited transitions,91

we use our diffusion policy to generate physically plausible trajectories for augmenting the training92

data of the dynamics model, thereby enhancing its generalization and the sample efficiency of online93

learning. This procedure generates virtual trajectories consistent with real dynamics, as shown in94

Algorithm 1, thereby providing reliable augmented data for joint model training.95

Joint Training of Dynamics Models96

The original maximum likelihood objective of the dynamics model is updated to incorporate the97

filtered virtual trajectories Ddiff, creating a joint training dataset:98

L(T̂ ) = −E(s,a,s′)∼D∪Ddiff

[
log T̂ (s′ | s, a)

]
The size of Ddiff is controlled to be 2–3 times that of D (|Ddiff| ≈ 2|D|), striking a balance between99

augmenting data volume and maintaining the fidelity of the real data distribution. This process100

significantly improves the model’s ability to generalize to unseen regions of the state–action space.101
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Algorithm 1: Virtual Trajectory Generation and Filtering
Input: Initial state s0 ∼ ρD; pre-trained diffusion policy πdiff; real transition dynamics Treal;

initial dynamics model T̂init; threshold ϵ = 0.05
Output: Filtered trajectory dataset Ddiff

1 Initialize Ddiff ← ∅
2 Generate multi-step action sequence a0:T−1 using πdiff conditioned on s0
3 Initialize trajectory τ ← ∅
4 for t = 0 to T − 1 do
5 Sample st+1 ∼ Treal(· | st, at)
6 Add (st, at, st+1) to τ

7 Trajectory τ = {(s0, a0, s1), (s1, a1, s2), . . . , (sT−1, aT−1, sT )}
8 Compute DKL(Treal(s

′|s, a) ∥ T̂init(s
′|s, a))

9 if DKL < ϵ // Filtering criterion
10 then
11 Add τ to Ddiff

// Ensures augmented data remains consistent with the underlying physics
12 return Ddiff

3 EXPERIMENTS102

We evaluate our proposed algorithm across extensive offline RL benchmarks to investigate two103

aspects: (i) its performance compared to state-of-the-art baselines and (ii) its capability to model the104

multimodal nature of offline datasets by integrating multiple sub-diffusion policies.105

Environment CQL TD3+BC Onestep RL IQL COMBO BPPO ATAC BC UNI-O4 Ours

halfcheetah-medium-v2 44.0 48.3 48.4 47.4 54.2 44.0 54.3 42.1 52.6 57±0.8
hopper-medium-v2 58.5 59.3 59.6 66.3 97.2 93.9 102.8 52.8 104.4 108±0.5
walker2d-medium-v2 72.5 83.7 81.8 78.3 81.9 83.6 91.0 74.0 90.2 91±1.4
halfcheetah-medium-replay 45.5 44.6 38.1 44.2 55.1 41.0 49.5 34.9 44.3 58.2±0.7
hopper-medium-replay 95.0 60.9 97.5 97.7 89.5 92.5 102.8 25.7 103.2 112.0±2.3
walker2d-medium-replay 77.2 81.8 49.5 73.9 96.0 77.6 94.1 54.9 98.4 103.8±1.7
halfcheetah-medium-expert 91.6 90.7 93.4 89.7 90.0 92.6 95.5 52.9 93.8 94.3±0.6
hopper-medium-expert 105.4 98.0 103.3 91.7 111.1 112.8 112.6 18.6 111.4 118.6±0.2
walker2d-medium-expert 108.8 110.1 113.0 109.6 103.3 113.1 116.3 107.7 118.1 120.7±0.3

locomotion total 698.5 677.4 684.6 692.4 738.3 751.0 818.9 463.5 816.4 864.6±8.5

pen-human 37.5 8.4 90.7 71.5 41.3 117.8 79.3 65.8 116.2* 122.8±5.8
hammer-human 4.4 2.0 0.2 1.4 9.6 14.9 6.7 2.6 247.1 30.2±3.3
door-human 9.9 0.5 -0.1 4.3 5.2 25.8 8.7 4.3 17.3* 29.3±0.7
relocate-human 0.2 -0.3 2.1 0.1 0.4 4.8 0.3 0.2 27.1* 2.9±0.7
pen-cloned 39.2 41.5 60.0 37.3 24.6 110.8 73.9 60.7 101.4* 118.4±12.4
hammer-cloned 2.1 0.8 2.0 2.1 3.3 8.9 2.3 0.4 7.3* 9.7±0.8
door-cloned -0.1 -0.4 -0.4 -1.6 0.2 6.2 8.2 0.9 10.2* 9.8±2.4
relocate-cloned 0.4 -0.3 0.1 0.2 0.7 1.9 0.8 0.1 1.4* 1.3±0.4

Adroit total 93.6 52.2 155.2 118.1 84.2 291.4 180.2 135.0 288.6 324.4±26.5

kitchen-complete 43.8 0.0 2.0 62.5 3.5 91.5 2.0 68.3 93.6 102.6±3.6
kitchen-partial 49.8 22.5 35.5 46.3 1.2 57.0 0.0 32.5 58.3 57.6±2.8
kitchen-mixed 51.0 25.0 28.0 51.0 1.4 62.5 1.0 47.5 65.0 70.3±5.6
S kitchen total 144.6 47.5 65.5 159.8 6.1 211.0 3.0 148.3 216.9 230.5±12.0

Total 936.7 777.1 905.3 970.3 828.6 1253.4 1002.1 746.8 1322.0 1419.5±47.0

Table 1: Most of the results are extracted from the original papers, and *indicates that the results are
reproduced by running the provided source code.

4 CONCLUSION106

In this work, we propose UEPO, a unified generative offline-to-online reinforcement learning frame-107

work that effectively addresses key limitations in existing O2O-RL approaches. Our approach108

integrates a dynamics-aware diffusion policy for efficient offline initialization and a differential-109

enhanced regularization mechanism to enhance policy diversity. Our approach mitigates distribution110

shifts, reduces reliance on expert data, and demonstrates strong generalization capabilities across111

complex, high-dimensional tasks. Experiments on the D4RL benchmark reveal that UEPO achieves112

state-of-the-art performance.113
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