
SHAPE: Scheduling of Fixed-Priority Tasks on Heterogeneous
Architectures with Multiple CPUs and Many PEs
Yuankai Xu*

1
, Tiancheng He*

1
, Ruiqi Sun

1
, Yehan Ma

1
, Yier Jin

2
, An Zou

1

1
Shanghai Jiao Tong University,

2
University of Science and Technology of China

ABSTRACT
Despite being employed in burgeoning efforts to accelerate artifi-

cial intelligence, heterogeneous architectures have yet to be well

managed with strict timing constraints. As a classic task model,

multi-segment self-suspension (MSSS) has been proposed for gen-

eral I/O-intensive systems and computation offloading. However,

directly applying this model to heterogeneous architectures with

multiple CPUs and many processing units (PEs) suffers tremen-

dous pessimism. In this paper, we present a real-time scheduling

approach, SHAPE, for general heterogeneous architectures with

significant schedulability and improved utilization rate. We start

with building the general task execution pattern on a heterogeneous

architecture integrating multiple CPU cores and many PEs such

as GPU streaming multiprocessors and FPGA IP cores. A real-time

scheduling strategy and corresponding schedulability analysis are

presented following the task execution pattern. Compared with

state-of-the-art scheduling algorithms through comprehensive ex-

periments on unified and versatile tasks, SHAPE improves the

schedulability by 11.1% - 100%. Moreover, experiments performed

on the NVIDIA GPU systems further indicate up to 70.9% of pes-

simism reduction can be achieved by the proposed scheduling. Since

we target general heterogeneous architectures, SHAPE can be di-

rectly applied to off-the-shelf heterogeneous computing systems

with guaranteed deadlines and improved schedulability.

CCS CONCEPTS
• Computer systems organization Ñ Real-time systems.

KEYWORDS
Real-time Scheduling, Heterogeneous Computing

1 INTRODUCTION
Computing systems, both for embedded and cloud applications,

are increasingly adopting heterogeneous architectures to handle

the growing demand for high-performance and energy-efficient

computing in emerging artificial intelligence (AI) workloads [1]. In

many real-world applications, such as autonomous driving [2] and
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Figure 1: Real-time scheduling of parallel tasks on the het-
erogeneous architecture.

robotics [3], these AI tasks require real-time execution, which de-

mands efficient task scheduling and allocation to meet strict timing

constraints. To address this, heterogeneous computing platforms,

such as GPU servers [4], Xilinx UltraScale [5], and TI Keystone II [6],

integrate CPU cores and parallel processing elements (PEs), such

as GPU Streaming Multiprocessors or FPGA IP cores, to leverage

the strengths of each type of processor.

Tasks running on heterogeneous computing platforms typically

have a segmented structure, as illustrated in Fig. 1. To optimize

performance and energy efficiency, serial computation segments

are usually allocated to CPU cores, while data-parallel segments

are offloaded to PEs, which are known as GPU or FPGA segments.

However, this interleaved execution pattern can cause dependen-

cies and competition between parallel tasks, leading to complex

scheduling challenges [7]. The resulting task execution pattern

makes it difficult to meet both timing constraints and high resource

utilization rates simultaneously, requiring innovative scheduling

techniques to address the scheduling problem [8, 9]. Additionally,

as the number of CPU and PE cores, and corresponding computa-

tion segments, increases, significant reductions in schedulability

are commonly observed [10] [11]. Therefore, effective scheduling

algorithms and resource management techniques are critical to

enable efficient and reliable execution of AI tasks on heterogeneous

computing platforms.

Targeting general heterogeneous architectures with multiple

CPU and many PEs, this paper presents SHAPE, a real-time sched-

uling strategy, and corresponding response time analysis with im-

proved schedulability. Through the extensive experiments by nu-

merical simulation and real GPU systems, the SHAPE significantly
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improves the schedulability by 11.1%-100% compared with previ-

ous works on the heterogeneous computing platforms. Overall, the

main contributions of this paper are three-fold.

‚ Starting with modeling general heterogeneous computing

architectures which have multi-core CPU and many-core

PEs, a scheduling strategy with federated and fixed-priority

scheduling is presented.

‚ An end-to-end response time analysis is performed, lever-

aging the workload function in self-suspension models. The

essential properties in the analysis enables the scheduling

to be compatible with optimal priority assignment.

‚ Extensive numerical and real CPU-GPU experiments are

conducted to demonstrate that the proposed approach can

improve the schedulability on unified and versatile machine

learning tasks, and effectively reduce the pessimism.

2 BACKGROUND AND RELATEDWORK
2.1 Background
2.1.1 Heterogeneous Architectures. Heterogeneous systems, con-

sisting of CPU and parallel PEs, are becoming more prevalent in

embedded computing areas (e.g., NVIDIA Jetson Series) and high-

performance computing communities (e.g., Oak Ridge’s Titan su-

percomputer). Such systems can offer higher performance at lower

energy costs than homogeneous systems. CPU cores are the central

controller of heterogeneous systems, and the PEs are regarded as

the auxiliary devices to accelerate parallel arithmetic operations.

There are three mainstream parallel processing elements in mod-

ern computing systems: GPU, FPGA, and Accelerators. In general,

for an application running on a heterogeneous system, the CPU

takes charge of the I/O, and serial computation, while the paral-

lel executions are offloaded to the parallel PEs. Many scheduling

strategies for heterogeneous architectures mainly treat the PEs as

an inseparable component. In recent years, researchers and proces-

sor vendors have gradually supported the spatial partitioning of the

PEs for concurrent applications. For example, Multi-Process Service

(MPS) [12] and Multi-Instance GPU (MIG) [4] have been introduced

by NVIDIA to support multiple task concurrency with assigned

numbers of PEs to each task. AMD released open-source software

support for hardware partitioning, which has the potential to ac-

celerate and aid the long-term viability of real-time GPU research

[13, 14]. To reap the benefits of this fine-grained partitioning on

PEs, this paper proposes SHAPE on heterogeneous architectures

with multiple CPU cores and many PEs which can be quantitatively

assigned to different tasks.

2.1.2 Workload Function of Multi-segment Self-Suspension Models.
One of the classic task models on heterogeneous architecture is

the multi-segment self-suspension (MSSS) model. In this model, a

task 𝜏𝑖 has𝑚𝑖 execution segments and𝑚𝑖 ´ 1 suspension segments

between the execution segments. So task 𝜏𝑖 with deadline 𝐷𝑖 and

period 𝑇𝑖 is expressed as a 3-tuple

𝜏𝑖 “
`

p𝐿0𝑖 , 𝑆
0

𝑖 , 𝐿
1

𝑖 , ..., 𝑆
𝑚𝑖´2

𝑖
, 𝐿

𝑚𝑖´1

𝑖
q, 𝐷𝑖 ,𝑇𝑖

˘

, (1)

where𝐿
𝑗
𝑖
and 𝑆

𝑗
𝑖
are the lengths of the 𝑗-th execution and suspension

segments, respectively. rqS 𝑗
𝑖
,pS 𝑗

𝑖
s represents the upper and lower

bounds of the suspension length 𝑆
𝑗
𝑖
. pL𝑗

𝑖
is the upper bound on the

length of the execution segment 𝐿
𝑗
𝑖
. From the CPU perspective, the

execution segments 𝐿
𝑗
𝑖
are the CPU segments. While the suspension

segments 𝑆
𝑗
𝑖
are the workload offloaded to the PEs, which behave

like suspension.

Theworkload function𝑊𝑖p𝑡q is widely used in the self-suspension

model, which models the workload of task 𝑖 given a time length

of 𝑡 . Bletsas et al. [15] summarize the workload functions used in

self-suspension model. One [16] of these workload functions is

summarized below and utilized in this work.

Lemma 2.1. The following workload function𝑊 ℎ
𝑖

p𝑡q bounds on the
maximum amount of execution that task 𝜏𝑖 can perform during an
interval with a duration 𝑡 and a starting segment 𝐿ℎ

𝑖
,

𝑊 ℎ
𝑖 p𝑡q “

𝑙
ÿ

𝑗“ℎ

pL𝑗 mod𝑚𝑖

𝑖
`

min

´

pLp𝑙`1q mod𝑚𝑖

𝑖
, 𝑡 ´

𝑙
ÿ

𝑗“ℎ

`

pL𝑗 mod𝑚𝑖

𝑖
` 𝑆𝑖p 𝑗q

˘

¯

,

(2)

where 𝑙 is the maximum integer satisfying the following condition

𝑙
ÿ

𝑗“ℎ

`

pL𝑗 mod𝑚𝑖

𝑖
` 𝑆𝑖p 𝑗q

˘

ď 𝑡,

and 𝑆𝑖p 𝑗q is the minimum inter-arrival time between execution seg-
ments 𝐿 𝑗

𝑖
and 𝐿 𝑗`1

𝑖
, which is defined by

𝑆𝑖p 𝑗q “

$

’

’

’

&

’

’

’

%

qS 𝑗 mod𝑚𝑖

𝑖
if 𝑗 mod𝑚𝑖 ‰ p𝑚𝑖 ´ 1q

𝑇𝑖 ´ 𝐷𝑖 else if 𝑗 “𝑚𝑖 ´ 1

𝑇𝑖 ´

𝑚𝑖´1
ÿ

𝑗“0

pL𝑗
𝑖

´

𝑚𝑖´2
ÿ

𝑗“0

qS 𝑗
𝑖

otherwise.

2.2 Related Work
Based on the utilization of processing elements (PEs), the archi-

tecture for real-time scheduling on heterogeneous computing falls

into three categories: treating the heterogeneous processing ele-

ments as a non-preemptive entirety, using a software approach to

enable preemption of the heterogeneous processing elements, and

spatially partitioning the heterogeneous processing elements to

many individual hardware resources.

The original real-time scheduling on heterogeneous architec-

tures mainly treats the heterogeneous PEs as a non-preemptive

entirety. For example, in CPU-GPU scheduling, Kato et al. [17]

introduced a priority-based scheduler. Elliott proposed shared re-

sources and containers for integrating GPU and CPU scheduling

[18] and GPUSync [19] for managing multi-GPU soft real-time

systems with flexibility, predictability, and parallelism. Golyanik

et al. [20] described a scheduling approach based on time-division

multiplexing. 𝑆3DNN [21] optimized the execution of DNN GPU

workloads in a real-time multi-tasking environment through sched-

uling the GPU kernels. Common and significant advantages of these

approaches are their generality and ease of use. Since they do not

require any hardware modifications, they can be directly applied

to the off-the-shelf heterogeneous computing platforms. However,

these methods based on the non-preemptive entirety suffer a low



SHAPE: Scheduling of Fixed-Priority Tasks on Heterogeneous Architectures with Multiple CPUs and Many PEs Submission to ICCAD, Oct 30–Nov 3, 2022, San Diego, USA

schedulability because a higher priority task may be blocked by the

bulky segments from lower priority tasks.

To overcome the limitation of blocking, many works extend the

PEs with the preemption function [22, 23]. For example, Park et

al. [24], Basaran et al. [25], Tanasic et al. [26], and Zhou et al. [27]

proposed architecture extensions with hardware and software code-

signs to improve the preemption and tested on the GPU simulators.

The Effisha framework in [28] introduced software techniques with-

out any hardware modification to support kernel preemption at the

end of any arbitrary thread block. By mapping the schedulability

problem to the reachability problem in timed automata, Yalcinkaya

et al. [29] proposes an exact schedulability test for self-suspension

tasks with fixed preemption points. However, the software and

hardware design overhead for preemption prevents its wide adop-

tion in many PEs, especially for the consideration of low cost and

high performance.

Partitioning is another direction to support a flexible task execu-

tion on the PEs with low design costs [30]. In the aspect of hard-

ware partitioning, real-time scheduling algorithms are presented

by researchers worldwide. With the MSSS model and the workload

functions, Huang et al. [9] presented a scheduling algorithm and

response time analysis for uni-core CPU based heterogeneous ar-

chitectures and achieved the tightest response time analysis; Saha

et al. [11] introduced a software-hardware solution for efficient

spatial-temporal scheduling for GPU; and Zou et al. [31] developed

a scheduling mechanism for the heterogeneous systems with one

CPU, one memory engine, and many GPU cores. Alongside the

workload function, Patel et al. [10] extended the existing Multipro-

cessor Priority Ceiling Protocol (MPCP) schedulability analysis for

the tasks with the MSSS model. While these techniques guarantee

task deadlines, their pessimism significantly limits the hardware

resource utilization rate. In this paper, we present a real-time sched-

uling strategy and response time analysis with superiorly improved

schedulability and reduced pessimism, validated by numerical sim-

ulation and real CPU-GPU systems.

3 SYSTEMMODEL AND SCHEDULE STRATEGY
3.1 System Model and Notations
In this paper, we consider a general heterogeneous architecture

with 𝑁𝐶𝑃𝑈 CPU cores and 𝑁𝑃𝐸 processing elements (PEs). The

heterogeneous architecture executes a set of 𝑛 independent parallel

real-time tasks 𝜏 “ t𝜏0, 𝜏1, ..., 𝜏𝑛´1u. The 𝑖𝑡ℎ task 𝜏𝑖 is composed of

𝑀𝑖 CPU segments separated by 𝑀𝑖 ´ 1 PE segments. The task 𝜏𝑖
has its deadline 𝐷𝑖 and release period𝑇𝑖 . A CPU segment is eligible

to execute only after the completion of its previous PE segment and

vice versa. Therefore, task 𝜏𝑖 can be characterized by 3 tuples,

𝜏𝑖 “
`

p𝐶𝐿0𝑖 , 𝑃𝐿
0

𝑖 ,𝐶𝐿
1

𝑖 , 𝑃𝐿
1

𝑖 , ..., 𝑃𝐿
𝑀𝑖´2

𝑖
,𝐶𝐿

𝑀𝑖´1

𝑖
q,𝑇𝑖 , 𝐷𝑖

˘

, (3)

where𝐶𝐿
𝑗
𝑖
denotes the length of the 𝑗 ` 1th CPU segment and 𝑃𝐿

𝑗
𝑖

denotes the length of the 𝑗 ` 1th PE segment in task 𝜏𝑖 . Each task

has a priority 𝑝𝑖 and the CPU and PE segments in the task inherit

the task’s priority.

For the off-the-shelf heterogeneous computing system, the CPU

cores are mostly with either x86 or ARM architecture, where a pre-

emptive execution manner is generally supported in the CPU cores.

Since CPU segments take charge of the I/O and control functions

with rare parallel executions, every serial CPU segment only takes

one CPU core to run, even more CPU cores available.

The PEs, such as GPUs [32] and other machine learning ac-

celerators [33] naturally have parallel architectures. Since the PE

segments are parallel operations, they are naturally evenly dis-

tributed on the PEs. As the zero copy [34] and unified memory [35]

are widely deployed in heterogeneous architectures, the time for

copying data from CPU cores to PEs is included in the PE execution

time. Given 𝑁𝑃𝐸 PEs, the execution time 𝑃𝑇 of a PE segment 𝑃𝐿

follows the Amdahl and Gustafson’s law [36],

𝑃𝑇 “
𝑃𝐿

1 ´ 𝑃 ` 𝑁𝑃𝐸𝑃
, (4)

where 𝑃 is the proportion of the PE segment that can be executed

in parallel, and 1 ´ 𝑃 is the proportion that remains serial, such

as copying data from CPU cores to PEs. Although preemption

are gradually supported in advanced PEs such as NVIDIA GPU

streaming multiprocessors, it is rarely available in most PEs such

as FPGA IP cores or digital signal processor (DSP). Therefore, we

assume the segments run on the PEs in a non-preemptive manner.

The task parameters, such as 𝐶𝐿, 𝑃𝐿, and 𝑃 for every segment,

can be profiled ahead of scheduling with the task worst-case ex-

ecution time (WCET) in the above models. The actual execution

time on hardware is equal to or smaller than the WCET. A shorter

actual execution time in a conventional homogeneous computing

system will not invalidate the model and analysis derived with

WCET. However, in the heterogeneous computing system, a faster

execution time will aggravate the workload function (described

by Eq. (2)) as the following segment from the same task will be

ready and begin to execute earlier [16]. Therefore, in this work, we

make the actual execution time consistent with the WCET, similar

to [8]. This can be implemented in the tasks by adding an elastic

spinning waiting until the WCET is reached. Note that there still

exists pessimism with the WCET-based modeling. A tighter WCET

modeling is the eternal goal of researchers [37, 38].

3.2 Spatial and Temporal Scheduling
The key challenge of deriving the end-to-end scheduling algorithm

for heterogeneous tasks is to simultaneously deal with the depen-
dence between segments in one task and the competition on the limited
hardware resource from different tasks. This section introduces the

scheduling algorithm for parallel tasks on heterogeneous architec-

tures, targeting the natural properties of serial execution on CPU

cores and parallel execution on PEs.

We propose a scheduling strategy integrating the temporal access

to the CPU cores and spatial partitioning for the PEs. For spatial

partitioning, the 𝑁𝑃𝐸 PEs are partitioned to 𝑛 groups, group 𝑖 has

𝑁𝑃𝐸𝑖 PEs dedicated to the 𝑖𝑡ℎ task. The partitioning and response

time analysis will follow the federated scheduling. For temporal

access, the access to 𝑁𝐶𝑃𝑈 CPU cores from the CPU segments

will follow a preemptive fixed-priority manner. Therefore, the end-

to-end real-time schedule strategy coordinates a grid search on

PEs spatial partitioning and following CPU core temporal access.

The schedulability test will pass when a schedulable case is found

following schedulability analysis in Section 4. In this paper, we

restrict our attention to constrained-deadline tasks, where 𝐷𝑖 ď

𝑇𝑖 , and tasks with fixed task-level priorities, where each task is

associated with an optimal assigned priority detailed in Section
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4.2. More precisely, when making scheduling decisions on CPU

segments, the system always selects the segment with the highest

priority among all available (ready) segments for that resource to

execute. Of course, a task segment only becomes available if all the

previous segments of that task have been completed.

4 SCHEDULABILITY ANALYSIS
4.1 End-to-end Response Time
Following the scheduling strategy in Section 3, 𝑁𝑃𝐸𝑖 of PEs are

allocated to the task 𝜏𝑖 via the grid search on PE spatial partition.

Lemma 4.1. Given 𝑁𝑃𝐸𝑖 of PEs allocated for task 𝜏𝑖 , the response
time 𝑃𝑇 𝑗

𝑖
for the 𝑗 ` 1𝑡ℎ PE segment in task 𝜏𝑖 is calculated by

𝑃𝑇
𝑗
𝑖

“
𝑃𝐿

𝑗
𝑖

1 ´ 𝑃
𝑗
𝑖

` 𝑁𝑃𝐸𝑖𝑃
𝑗
𝑖

, (5)

where 𝑃 𝑗
𝑖
is the proportion of the PE segment that can be executed in

parallel, and 1 ´ 𝑃
𝑗
𝑖
is the proportion that remains serial.

Proof. In each grid searched partitioning, 𝑁𝑃𝐸𝑖 numbers of PEs

are allocate delicately to each task 𝜏𝑖 , such that the PE segments in

task 𝜏𝑖 can start executing immediately after the completion of the

ahead CPU segment𝐶𝐿
𝑗
𝑖
. Therefore, each the response time 𝑃𝑇

𝑗
𝑖
of

the PE segment with a length of 𝑃𝐿
𝑗
𝑖
follows the the Amdahl and

Gustafson’s law in Section 3. □

In this way, the mapping and execution of PE segments to PE

hardware are explicitly controlled. Furthermore, tasks do not need

to compete for PEs, so there is no blocking time on the non-preemptive

PEs. Therefore, the interference between different PE segments is

minimized, and the response times of PE segments are more pre-

dictable. After knowing the response time of PE segments, the task

model in Eq. (3) will be updated with

𝜏𝑖 “
`

p𝐶𝐿0𝑖 , 𝑃𝑇
0

𝑖 ,𝐶𝐿
1

𝑖 , 𝑃𝑇
1

𝑖 , ..., 𝑃𝑇
𝑀𝑖´2

𝑖
,𝐶𝐿

𝑀𝑖´1

𝑖
q,𝑇𝑖 , 𝐷𝑖

˘

. (6)

In this updated model, the adjacent CPU segments 𝐶𝐿
𝑗
𝑖
and

𝐶𝐿
𝑗`1

𝑖
in task 𝜏𝑖 are separated by a pre-determined time interval

𝑃𝑇
𝑗
𝑖
, which is the response time of PE segments. These CPU seg-

ments from parallel tasks inherit the task priority and execute on

𝑁𝐶𝑃𝑈 CPU cores. The optimal priority assignment for each task

is further discussed in Section 4.2. For a convenient analysis, we

rearrange the task order according to the task priorities. The task

with highest priority is numbered task 𝜏0 and the task with the 𝑖𝑡ℎ

highest priority is numbered task 𝜏𝑖´1.

Definition 4.1 (Workload Function). The workload function𝑊 𝑗
𝑖
for

the task 𝜏𝑖 starting from the CPU segment 𝐶𝐿 𝑗
𝑖
is defined as follows:

𝑊
𝑗
𝑖

p𝑡q “

𝑙
ÿ

𝑗“ℎ

𝐶𝐿
𝑗 mod𝑚𝑖

𝑖
`

min

´

𝐶𝐿
p𝑙`1q mod𝑚𝑖

𝑖
, 𝑡 ´

𝑙
ÿ

𝑗“ℎ

`

𝐶𝐿
𝑗 mod𝑚𝑖

𝑖
` 𝑃𝑇𝑖p 𝑗q

˘

¯

,

(7)

Figure 2: Example of the task 𝜏𝑖 that has been executed for 1
unit after it is released.

where 𝑙 is the maximum integer satisfying the following condition:

𝑙
ÿ

𝑗“ℎ

`

𝐶𝐿
𝑗 mod𝑚𝑖

𝑖
` 𝑃𝑇𝑖p 𝑗q

˘

ď 𝑡,

and 𝑃𝑇𝑖p 𝑗q is the interval-arrival time between execution segments
𝐶𝐿

𝑗
𝑖
and 𝐶𝐿 𝑗`1

𝑖
, which is defined by

𝑃𝑇𝑖p 𝑗q “

$

’

’

’

&

’

’

’

%

𝑃𝑇
𝑗 mod𝑚𝑖

𝑖
if 𝑗 mod𝑚𝑖 ‰ p𝑚𝑖 ´ 1q

𝑇𝑖 ´ 𝐷𝑖 else if 𝑗 “𝑚𝑖 ´ 1

𝑇𝑖 ´

𝑚𝑖´1
ÿ

𝑗“0

𝐶𝐿
𝑗
𝑖

´

𝑚𝑖´2
ÿ

𝑗“0

𝑃𝑇
𝑗
𝑖

otherwise.
(8)

Following the Eq. (2) and Lemma 2.1 in the background section,

the workload function𝑊
𝑗
𝑖
is an upper bound on the amount of

CPU workload that task 𝜏𝑖 can generate during any time interval

of 𝑡 starting from the CPU segment 𝐶𝐿
𝑗
𝑖
.

Lemma 4.2. Given the task 𝜏𝑖 released at time 𝑡0
𝑖

p0q (i.e., the first
CPU segment𝐶𝐿0

𝑖
in task 𝜏𝑖 released at time 𝑡0

𝑖
p0q), the CPU segment

𝐶𝐿0
𝑖
has been executed for at least 1 unit at time 𝑡0

𝑖
p1q, where 𝑡0

𝑖
p1q is

the minimal integer satisfying the following condition
ÿ

ℎPℎ𝑝p𝑖q

𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊
𝑞

ℎ

`

𝑡0𝑖 p1q ´ 𝑡0𝑖 p0q
˘

u

ă 𝑁𝐶𝑃𝑈 ˚
`

𝑡0𝑖 p1q ´ 𝑡0𝑖 p0q
˘

,

(9)

where ℎ𝑝p𝑖q is the group of tasks that have a higher priority than task
𝜏𝑖 and𝑀ℎ is the total number of CPU segments in task 𝜏ℎ .

Proof. In the duration of time interval 𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0q, 𝑁𝐶𝑃𝑈
cores in the heterogeneous computing platform can process𝑁𝐶𝑃𝑈 ˚

p𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0qq units of workload, which is the expression on the

right of the inequality. The CPU segments access the CPU cores

in a fixed-priority and preemptive manner. To calculate the time

upper-bound when the task 𝜏𝑖 has finished 1 unit of workload

after release, we only need to account for the workload from the

tasks with higher priorities than 𝑖 , which is noted by ℎ𝑝p𝑖q. By the

definition 4.1, given the time interval of 𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0q which starts

from CPU segment 𝐶𝐿
𝑗

ℎ
, the CPU workload from the task 𝜏ℎ is

upper-bounded by the workload function𝑊
𝑗

ℎ
. In the run-time, the

time interval of 𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0q may starts from any CPU segment in

task 𝜏ℎ . Therefore, the worst-case (maximum) workload from task ℎ

can only be quantified by picking the maximum workload from the

time interval of 𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0q starting from any CPU segment 𝐶𝐿
𝑗

ℎ

in task 𝜏ℎ i.e.,𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊
𝑞

ℎ
p𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0qqu. Therefore, the
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workload from higher-priority suspending tasks can be thereafter

bounded by the summation of𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊
𝑞

ℎ
p𝑡0
𝑖

p1q ´ 𝑡0
𝑖

p0qqu

for the tasks 𝜏ℎ where ℎ P ℎ𝑝p𝑖q. When the total workload from

higher-priority suspending tasks is less than the workload CPU can

process from time 𝑡0
𝑖

p0qq to time 𝑡0
𝑖

p1q, the task 𝜏𝑖 can be executed

for at least 1 unit. The above proof is built on the fact that the CPU

segment is serial computation, i.e., the CPU segment from one task

can only generate 1 unit of workload at 1 unit of time. □

Case Study I A case study to calculate the time when the task 𝜏𝑖
has been executed for 1 unit after it is released is presented in Fig. 2.

Here, we take task 𝜏2 as an example, which is released at time 𝑡0
2
p0q.

As the CPU cores support the preemption, we only need to count

the interference from the 𝜏0 and 𝜏1, which have higher priorities

than task 𝜏2. Therefore, we need to find the maximum workload

for 𝜏0 and 𝜏1 which works as interference to lower priority task

𝜏2. We first calculate the maximum workload of 𝜏0, given a time

interval 𝑡 “ 𝑡0
2
p1q ´ 𝑡0

2
p0q. If 𝜏0 is at its 1st segment 𝐶𝐿0

0
at time

𝑡0
2
p0q, its workload for the time interval 𝑡 is𝑊 0

0
p𝑡q. Similarly, if 𝜏0

is at its jth segment 𝐶𝐿
𝑗´1

0
at time 𝑡0

2
p0q, its workload for the time

interval 𝑡 is𝑊
𝑗´1

0
p𝑡q. As the 𝜏0 can be at its any segments, we have

to use the worst-case workload𝑚𝑎𝑥p𝑊 0

0
p𝑡q,𝑊 1

0
p𝑡q, ...𝑊

𝑀0´1

0
p𝑡qq

as the inference to task 𝜏2 during time interval 𝑡 . By repeating

the above process, we can get the worst-case workload from 𝜏1

𝑚𝑎𝑥p𝑊 0

1
p𝑡q,𝑊 1

1
p𝑡q, ...𝑊

𝑀1´1

1
p𝑡qq as the inference to task 𝜏2 during

time interval 𝑡 . If the worst case workload from 𝜏0 and 𝜏1 is less

than the workload 𝑁𝐶𝑃𝑈 ˚ 𝑡 can be processed by 𝑁𝐶𝑃𝑈 CPU cores,

The minimal time 𝑡0
2
p1q is when the task 𝜏2 has been executed by

one unit. In this example, if 𝑁𝐶𝑃𝑈 “ 1 and 𝑡0
2
p0q “ 0, then 𝑡0

2
p1q is

23; if 𝑁𝐶𝑃𝑈 “ 2 and 𝑡0
2
p0q “ 0, then 𝑡0

2
p1q will be 3.

Lemma 4.3. Given that the task 𝜏𝑖 has finished 𝐾 units of workload
in the 𝑗 ` 1𝑡ℎ CPU segment 𝐶𝐿 𝑗

𝑖
at time 𝑡 𝑗

𝑖
p𝐾q, the 𝐾 ` 1 units of

workload in 𝐶𝐿 𝑗
𝑖
will be executed at least by time 𝑡 𝑗

𝑖
p𝐾 ` 1q, where

𝑡
𝑗
𝑖

p𝐾 ` 1q is the minimal integer satisfying the following condition:
ÿ

ℎPℎ𝑝p𝑖q

𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊
𝑞

ℎ

`

𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾q
˘

u

ă 𝑁𝐶𝑃𝑈 ˚
`

𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾q
˘

,

(10)

where ℎ𝑝p𝑖q is the group of tasks that have a higher priority than task
𝜏𝑖 and𝑀ℎ is the total number of CPU segments in task 𝜏ℎ .

Proof. The computation provided by 𝑁𝐶𝑃𝑈 CPU cores during

𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾q is 𝑁𝐶𝑃𝑈 ˚ p𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾qq, which is the

expression on the right of the inequality. Similar to Lemma 4.2,

the run-time, worst-case (maximum) workload from task ℎ can be

upper bounded by picking the maximum workload starting from

any CPU segment 𝐶𝐿
𝑗

ℎ
in task 𝜏ℎ , i.e.,𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊

𝑞

ℎ
p𝑡

𝑗
𝑖

p𝐾 `

1q´𝑡
𝑗
𝑖

p𝐾qqu. To calculate the time upper-boundwhen the task 𝜏𝑖 can

finished 1 unit of workload after time 𝑡
𝑗
𝑖

p𝐾q, we only need to take

into account the workload from the tasks with a higher priorities

than 𝑖 , which is noted byℎ𝑝p𝑖q because the CPU segments access the

CPU cores in a fixed-priority and preemptivemanner. Therefore, the

workload from higher-priority suspending tasks can be thereafter

bounded above by the summation of𝑚𝑎𝑥𝑞Pr0 𝑀ℎ´1st𝑊
𝑞

ℎ
p𝑡

𝑗
𝑖

p𝐾 `

Figure 3: Example of the task 𝜏𝑖 that has been executed for 1
unit when 𝜏𝑖 is in the middle of a segment.

1q ´ 𝑡
𝑗
𝑖

p𝐾qqu. When the workload from higher-priority suspending

tasks is less than the workload CPU can process from time 𝑡
𝑗
𝑖

p𝐾qq

to time 𝑡
𝑗
𝑖

p𝐾 ` 1q, the task 𝜏𝑖 has been executed for at least 1 unit.

The minimal time 𝑡
𝑗
𝑖

p𝐾 ` 1q that satisfies (10) is the upper bound

time of finishing 𝐾 ` 1 units of workload in segment 𝐶𝐿
𝑗
𝑖
. □

Case Study II A case study to calculate the time when the task

𝜏𝑖 has been executed for 1 unit when it is in the middle of a seg-

ment, is presented in Fig. 3. Here, we use the same taskset (in

Case Study I) as an example. Given the 𝜏2 has finished 𝐾 units

of the 𝑗 ` 1𝑡ℎ segment 𝐶𝐿
𝑗

2
at time 𝑡0

2
p𝐾q. Same to Case Study

I, we need to find the maximum workload for 𝜏0 and 𝜏1 which

works as interference to lower priority 𝜏2. The interference to task

𝜏2 from task 𝜏0 and 𝜏1 during a time interval 𝑡 can be obtained

by the worst-case workload𝑚𝑎𝑥p𝑊 0

0
p𝑡q,𝑊 1

0
p𝑡q, ...𝑊

𝑀0´1

0
p𝑡qq and

𝑚𝑎𝑥p𝑊 0

1
p𝑡q,𝑊 1

1
p𝑡q, ...𝑊

𝑀1´1

1
p𝑡qq. If the worst case workload from

𝜏0 and 𝜏1 is less than the workload 𝑁𝐶𝑃𝑈 ˚ 𝑡 can be processed by

𝑁𝐶𝑃𝑈 CPU cores, The minimal time 𝑡
𝑗

2
p𝐾 ` 1q is when the task 𝜏2

has been executed by one unit after it has finished 𝐾 units of the

𝑗 ` 1𝑡ℎ CPU segment. In this example, if 𝑁𝐶𝑃𝑈 “ 1, then 𝑡
𝑗

2
p𝐾 ` 1q

is 𝑡
𝑗

2
p𝐾q ` 23; if 𝑁𝐶𝑃𝑈 “ 2 then 𝑡

𝑗

2
p𝐾 ` 1q is 𝑡

𝑗

2
p𝐾q ` 3.

Corollary 4.3.1. Given the 𝑗 ´ 1𝑡ℎ CPU segment 𝐶𝐿 𝑗
𝑖
in task 𝜏𝑖 is

ready at time 𝑡 𝑗
𝑖

p0q, the worst-case response time 𝐶𝑇 𝑗
𝑖
of this CPU

segment can be calculated by

𝐶𝑇
𝑗
𝑖

“ 𝑡
𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q ´ 𝑡

𝑗
𝑖

p0q, (11)

where 𝑡 𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q is the time of finishing 𝐶𝐿 𝑗

𝑖
units of workload and

it can be calculated with 𝑡 𝑗
𝑖

p0q, 𝑡 𝑗
𝑖

p1q, ..., 𝑡 𝑗
𝑖

p𝐶𝐿
𝑗
𝑖

´ 1q following the
Eq. 10 in Lemma 4.2.

Proof. 𝑡
𝑗
𝑖

p0q is the ready time of the the 𝑗 ´ 1𝑡ℎ CPU segment.

This CPU segment has a length of𝐶𝐿
𝑗
𝑖
units of workload. 𝑡

𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q is

the worst-case time of finishing 𝐶𝐿
𝑗
𝑖
units of workload. Therefore,

the worst-case response time is the time interval from the segment

is ready at 𝑡
𝑗
𝑖

p0q until 𝐶𝐿
𝑗
𝑖
units of workload in this task has been

executed by time 𝑡
𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q. □

Corollary 4.3.2. Given the 𝑗 ´ 1𝑡ℎ CPU segment 𝐶𝐿 𝑗
𝑖
in task 𝜏𝑖 is

finished at time 𝑡 𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q, the next CPU segment and its ready time

will be:
If 𝑗 “ 𝑀𝑖 ´ 1, then the next CPU segment will be the first CPU
segment 𝐶𝐿0

𝑖
in the next period and its ready time will be the start of

next period;
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Else 𝑗 ă 𝑀𝑖 ´ 1, then the next CPU segment will be 𝐶𝐿 𝑗`1

𝑖
and its

ready time 𝑡 𝑗`1

𝑖
p0q will be 𝑡 𝑗`1

𝑖
p0q “ 𝑡

𝑗
𝑖

p𝐶𝐿
𝑗
𝑖
q ` 𝑃𝑇

𝑗
𝑖
.

Proof. This comes directly from the property of periodic real-

time tasks and the task execution pattern in heterogeneous com-

puting platforms modeled in Section 3. □

Theorem 4.4. If the worst-case response time of task 𝜏𝑖 is less than
its period 𝑇𝑖 , then the worst-case response time of task 𝜏𝑖 is upper
bounded by 𝑅𝑖 ,

𝑅𝑖 “

𝑀𝑖´1
ÿ

𝑗“0

𝐶𝑇
𝑗
𝑖

`

𝑀𝑖´2
ÿ

𝑗“0

𝑃𝑇
𝑗
𝑖
, (12)

where 𝐶𝑇 𝑗
𝑖
and 𝑃𝑇 𝑗

𝑖
are derived in Eq. (11) and Eq. (5), respectively.

Proof. According to the task model for heterogeneous comput-

ing platforms, in the task, 𝜏𝑖 , the PE segment 𝑃𝐿 𝑗 becomes ready

immediately when its previous CPU segment𝐶𝐿
𝑗
𝑖
finishes. And the

CPU segment 𝐶𝐿
𝑗
𝑖
becomes ready immediately when its previous

PE segment 𝑃𝐿
𝑗´1

𝑖
finishes. There is no delay between the CPU

and PE segments. Therefore, the worst-case response time of task

𝜏𝑖 is upper bounded by the summation of the worst-case response

time of each CPU and PE segment of task 𝜏𝑖 . □

The complete procedure of scheduling fixed-priority tasks on

heterogeneous computing platforms can be described as follows:

1○ Grid search for a partitioning of PEs for each task based on

federated scheduling and calculate the PE segment response time

𝑃𝑇
𝑗
𝑖
; 2○ The CPU segments are scheduled by fixed priority sched-

uling. The priority assignment is the optimal priority assignment

detailed in Section 4.2; 3○ If all the tasks can meet the deadline,

then they are schedulable and otherwise go back to step 1○ to grid

search for the next partitioning of PEs with federated scheduling.

This schedulability test for hard deadline parallel GPU tasks can be

summarized in Algorithm 1. Moreover, no additional assumptions

or limitations are added to the computing platforms. The schedul-

ing and response analysis can be directly applied to mainstream

heterogeneous systems.

Algorithm 1: Scheduling and Response Time Analysis

Input: Number of CPU cores 𝑁𝐶𝑃𝑈 , number of PEs 𝑁𝑃𝐸 ,

Task set 𝜏 with profiled parameters 𝐶𝐿
𝑗
𝑖
, 𝑃𝐿

𝑗
𝑖
, and 𝑃

𝑗
𝑖
.

Output: Scheduability, PE allocation 𝑁𝑃𝐸𝑖 , Task priorities.

//Grid search for PE partitioning:
1 for 𝑁𝑃𝐸1

= 1, ..., 𝑁𝑃𝐸 do
2 for 𝑁𝑃𝐸𝑖 = 1, ..., 𝑁𝑃𝐸 ´

ř𝑖´1

𝑞“1
𝑃𝐸𝑞 do

3 for 𝑁𝑃𝐸𝑛 = 1, ..., 𝑁𝑃𝐸 ´
ř𝑛´1

𝑞“1
𝑃𝐸𝑞 do

4 //Calculate response times of PE segments:

𝑃𝑇
𝑗
𝑖

“
𝑃𝐿

𝑗

𝑖

1´𝑃
𝑗

𝑖
`𝑁𝑃𝐸𝑖

𝑃
𝑗

𝑖

;

5 //Assign the priorities with AOPA in Section 4.2;
6 //Calculate worst-case response time 𝐶𝑇 𝑗

𝑖
= for every

CPU segment 𝐶𝐿 𝑗
𝑖
by: Lemma 4.1, 4.2, and Corollary

4.2.1 with the recursive function:
ř

ℎPℎ𝑝p𝑖q𝑚𝑎𝑥𝑞Pr0 𝑀pℎqst𝑊
𝑞

ℎ

`

𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾q
˘

u

ă 𝑁𝐶𝑃𝑈 ˚
`

𝑡
𝑗
𝑖

p𝐾 ` 1q ´ 𝑡
𝑗
𝑖

p𝐾q
˘

;

7 //Calculate worst-case end-to-end response time 𝑅𝑖 for
each task using Theorem 4.3:
𝑅𝑖 “

ř𝑀𝑖´1

𝑗“0
𝐶𝑇

𝑗
𝑖

`
ř𝑀𝑖´2

𝑗“0
𝑃𝑇

𝑗
𝑖
;

8 if 𝑅𝑖 ď 𝐷𝑖 for all 𝜏𝑖 P 𝜏 then
Scheduability “ 1;

break out of all for loops;

return Schedulability;

4.2 Priority Assignment
In the proposed scheduling, the federated scheduling prevents the

blockings and competition in accessing heterogeneous cores, and

the fixed-priority scheduling supports the task preemption on the

CPU side. Therefore, a key advantage of the proposed algorithm is

that many essential properties of classic fixed-priority scheduling

are kept as original. Meanwhile, in the derivation and analysis, we

do not introduce any new constraints that conflict with classic Aud-

sley’s Optimal Priority Assignment Algorithm (AOPA) assumptions

[39]. Audsley’s AOPA is also effective in the proposed scheduling,

and it will run in time𝑂p𝑛2q for 𝑛 periodic tasks to find the optimal

priority assignment.

4.3 Computational Complexity
The proposed SHAPE scheduling and response time analysis con-

tains the grid search on PEs spatial partitioning and fixed-priority

scheduling on multi-core CPUs with priority assignments. Given

the system and task models in Section 3, the grid search on PEs

spatial partitioning has a complexity of𝑚𝑖𝑛p𝑂p𝑁𝑃𝐸
𝑛q,𝑂p𝑛𝑁𝑃𝐸 qq.

The priority assignment has a complexity of 𝑂p𝑛2q as discussed in

above section. The analysis of fixed-priority tasks on multi-core

CPUs has a complexity of 𝑂p𝑀2

𝑖
q. Therefore, the time complexity

of the entire scheduling strategy with response time analysis is

𝑚𝑖𝑛p𝑂p𝑁𝑃𝐸
𝑛𝑛2𝑀2

𝑖 q,𝑂p𝑛𝑁𝑃𝐸`2𝑀2

𝑖 qq. (13)

5 EVALUATION
5.1 Experimental Setup
In this section, extensive experiments are performed to evaluate

the performance of the proposed scheduling approach with both

numerical simulation and experiments on real CPU-GPU systems.

Scheduling Approaches: We compare the following state-of-the-
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(a) Number of (CPU and PE) segments: 5 (b) Number of (CPU and PE) segments: 10 (c) Number of (CPU and PE) segments: 20

Figure 4: Schedulability in "CPU and PE".

art scheduling algorithms, which can support partitioned PEs for

general heterogeneous architectures.

(1) XDM: the pseudopolynomial-time analysis where we trans-

form every task into a non-suspending task by modeling ev-

ery suspension interval as computation segments and using

the standard response time analysis under rate monotonic

(RM) scheduling.

(2) SCAIR-OPA [16]: scheduling for self-suspension model un-

der fixed priorities. This approach achieves great schedula-

bility on the uni-core CPUs configuration.

(3) Enhanced MPCP [10]: real-time scheduling of hard dead-

line parallel tasks with a hybrid approach of the enhance-

ments and practical insights for MPCP with self-suspension.

(4) STGM [11]: real-time GPU scheduling of hard deadline par-

allel tasks with partitioned PEs supported by the persistent

threads. Busy-waiting scheduling and self-suspension sched-

uling are designed and analyzed.

(5) SHAPE: the proposed scheduling of fixed-priority tasks on

heterogeneous architectures with multi CPU and many PEs.

System Implementation: The proposed scheduling is evaluated

on a CPU-GPU heterogeneous computing platform with Intel i7-

10700 CPU @ 2.90GHz and NVIDIA GTX 1660Ti GPU @ 1.50GHz.

We implement the persistent threads to support the partitioning

of PEs (i.e. Streaming Multiprocessors in GPUs). The persistent

threads approach is a software workload assignment solution pro-

posed to implement finer and more flexible PE-granularity GPU

partitioning [32, 40, 41]. Specifically, each persistent threads block

links multiple thread blocks of one PE segment and is assigned to

one SM to execute for the entire hardware execution lifetime of

the PE segment. We generate five types of tasks that have different

features: 1) a computation task, consisting mainly of arithmetic op-

erations; 2) a branch task containing a large number of conditional

branch operations; 3) a memory task full of memory and register

visits; 4) a special-function task with special mathematical func-

tions, such as sine and cosine operations; and 5) a comprehensive

task including all these arithmetic, branch, memory, and special

mathematical operations. Each task performs floating-point opera-

tions on a vector which is determined by the PE segment length.

5.2 Unified Parallel Tasks
To compare the schedulability for different approaches, we mea-

sured the acceptance ratio with respect to a given goal for taskset

utilization in each of five approaches and the real CPU-GPU system.

Table 1: Parameters for unified task generation
Parameters Value
Number of tasks 𝑁 in taskset 5

Task type periodic tasks

Number of (CPU and PE) segments in each task 5, 10, 20

Number of tasksets in each experiment 1000

CPU segment length (ms) [1 to 10]

Heterogeneous segment length (ms) [1 to 10]

Task period and deadline 𝑇𝑖{𝐷𝑖

Number of CPU cores and PEs 2, 10

Priority assignment AOPA/RMPA

We consider a heterogeneous computing platform with 2 CPU cores

and 10 PEs and five parallel tasks run on this platform. We gen-

erated 1000 tasksets for each utilization level, with the following

task configurations. The acceptance ratio of a level was the number

of schedulable tasksets, divided by the number of tasksets for this

level, i.e., 1000. We first generated a set of utilization rates,𝑈𝑖 , with

a uniform distribution for the tasks in the taskset, and then normal-

ized the tasks to the taskset utilization values for the given goal. For

a complete comparison, we use both the methods in previous work

[11] and [9, 16] to generate the CPU and PE segment lengths. We

note the generation method in [11] as “CPU and PE”. In “CPU and
PE” we randomly generate both the CPU and GPU segment lengths,

uniformly distributed within their ranges [1 10]. The deadline 𝐷𝑖 of

task 𝑖 was set according to the generated segment lengths and its

utilization rate: 𝐷𝑖 “

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗

𝑖
`

ř𝑀𝑖´2

𝑗“0
𝑃𝐿

𝑗

𝑖

𝑈𝑖
. We note the genera-

tion method in [9, 16] as “CPU Then PE”. In “CPU Then PE”, the CPU
segment lengths are uniformly distributed within their ranges [1

10]. The deadline 𝐷𝑖 for task 𝜏𝑖 is determined by 𝐷𝑖 “

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗

𝑖

𝑈𝑖
.

Then PE lengths of the tasks are generated according to a uniform

random distribution, in one of three ranges depending on the PE

length: [0.01(𝐷𝑖 ´
ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
), 0.1(𝐷𝑖 ´

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
)], [0.1(𝐷𝑖 ´

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
), 0.6(𝐷𝑖 ´

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
)], and [0.6(𝐷𝑖 ´

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
),

(𝐷𝑖 ´
ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
)]. As multiple CPU cores and PEs are available

(and used), the total utilization rate will be larger than 1. Task rela-

tive deadlines are implicit, and the period𝑇𝑖 is equal to the deadline

𝐷𝑖 . The task priorities are determined with Audsley’s Optimal Pri-

ority Assignment(AOPA) or rate monotonic priority assignment

(RMPA). A summary of task generations is presented in Table 1.
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Figure 5: Number of (CPU and PE) segments: 5.

Figure 6: Number of (CPU and PE) segments: 10.

Figure 7: Number of (CPU and PE) segments: 20.

5.2.1 Schedulability in CPU and PE Task Generation. Following
the task generation in “CPU and PE”, Fig. 4 presents the accep-

tances under different resource utilization rates. We compare the

response time analysis proposed in SHAPE, XDM, SCAIR-OPA,

Enhanced MPCP, STGM, and also the schedulability presented by

the CPU-GPU heterogeneous computing system with the proposed

scheduling strategy. In Fig. 4(a), Fig. 4(b), and Fig. 4(c), the number

of CPU and PE segments in each task are set to 5, 10, and 20. In

the tests, the SCAIR-OPA and STGM improves the schedulability

(i.e. the utilization rate at a given acceptance ratio) with XDM and

MPCP because in the design of SCAIR-OPA and STGM, the parti-

tioning of PEs is considered. STGM achieves a higher utilization at

high acceptance ratio while SCAIR-OPA achieves a higher utiliza-

tion at low acceptance ratio. The proposed SHAPE further improves

the schedulability (the highest utilization rate at 100% acceptance

ratio) by 73.3%, 18.5%, and 17.2% when there are 5, 10, and 20 CPU

and PE segments.

To demonstrate the pessimism, we measured the area between

the schedulability provided by the NVIDIA GPU systems and the

proposed response time analysis in the related scheduling approaches.

SHAPE reduces the pessimism by 47.8%, 54.4% 58.6%, compared

with previous approaches when there are 5, 10, and 20 CPU and

PE segments. Also it is notable that the pessimism, between the

response time analysis in SHAPE and real GPU system, shrinks

Table 2: Parameters for versatile task generation

Tasks Number of Segments

CPU

Length

PE

Length

Task 1 (AlexNet) 9CPU+8PE segments [1 10] [1 13]

Task 2 (VGG 11) 12CPU+11PE segments [1 10] [1 46]

Task 3 (VGG 19) 20CPU+19PE segments [1 10] [1 46]

Task 4 (GoogleNet) 23CPU+22PE segments [1 10] [1 36]

Task 5 (ResNet) 51CPU+50PE segments [1 10] [2 20]

Figure 8: Schedulability for versatile tasks.

greatly at a lower acceptances. Meanwhile, as the number of seg-

ments increases, the schedulability in the real GPU system, pro-

posed SHAPE, STGM, and SCAIR-OPA improve accordingly. This

phenomenon matches the reported results in previous work [16, 31]

on heterogeneous computing with uni-CPU and many PEs.

5.2.2 Schedulability in CPU then PE Task Generation. Similar to

previous section, Fig. 5 to Fig. 7 present the highest utilization rates

at 100% and 0% acceptance ratios, following the task generation

in “CPU then PE”. In Fig. 5, Fig. 6, and Fig. 7 the number of CPU

and PE segments in each task are set to 5, 10, and 20, respectively.

Across the experiments under different configurations, the naive

approach XDM is hard to be effective for the 100% acceptance ratios.

SCAIR-OPA, MPCP, and STGM improves the schedulability but still

face the low utilization rate give the the 100% acceptance ratios.

The proposed SAHPE achieves tremendous (11%.1 - 100%) and (0% -

18.8%) improvements of utilization rate when the acceptances are

at 100% and reach 0%, compared with these related approaches.

In the experiments with 5 CPU and PE segments, the clusters are

distinguished by the length of PE segments given the task period

(deadline) and CPU segment lengths. For the case with short PE seg-

ments, (i.e. PE segments are generated by [0.01(𝐷𝑖 ´
ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
),

0.1(𝐷𝑖 ´
ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
)]), significant improvements are achieved by

SHAPE over other approaches if the acceptance ratio is 100%. When

the acceptance ratio reaches 0%, the improvements from SHAPE

are not significant but still visible. Later, as the length of PE seg-

ments increases, the utilization rates begin to drop, especially for

the acceptance is 100%. When the PE segments are generated by

[0.6(𝐷𝑖 ´
ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
), 1(𝐷𝑖 ´

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗
𝑖
)], the utilization rates are

close to 0 in previous approaches but the SHAPE can sill have a low

utilization rate. Similar trends are observed in the experiments on

10 and 20 CPU and PE segments. Slight schedulability improvement

is also found as the number of PE segments increase.

5.3 Versatile Parallel Tasks
The above experiments evaluate the scheduling performance on uni-

fied tasksets in which the tasks have the same topology like length
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distribution and the number of subtasks. This section will test the

scheduling algorithm under versatile parallels tasks. We generate

the tasks based on classic convolutional neural network (CNN)

topology: AlexNet, VGG 11, VGG 19, GoogleNet, and ResNet. The

number of PE segments is based on the layers of the network. The

segment length is also randomly generated between the smallest

and largest length of each segment, which are calculated based on

the smallest and largest layer of the network for that task. Similarly,

the deadline 𝐷𝑖 of task 𝑖 was set according to the generated seg-

ment lengths and its utilization rate: 𝐷𝑖 “

ř𝑀𝑖´1

𝑗“0
𝐶𝐿

𝑗

𝑖
`

ř𝑀𝑖´2

𝑗“0
𝑃𝐿

𝑗

𝑖

𝑈𝑖
.

A summary of versatile task generations is presented in Table 2.

Fig. 8 presents the schedulability of different approaches and the

real GPU systems, noted by the utilization rates and corresponding

acceptance ratio. The proposed SHAPE achieves 27.8% utilization

improvements at the same acceptance ratio compared with previ-

ous approaches. Meanwhile, the pessimism between the response

time analysis and real GPU system is further reduced by 70.9%.

6 CONCLUSION
Targeting heterogeneous architectures with multiple preemptive

CPUs and many non-preemptive PEs, we proposed scheduling strat-

egy and response time analysis, SHAPE. It achieves up to 100% and

27.8% schedulability improvement on unified and versatile machine

learning tasks, and the pessimism is further reduced by 70.9%. The

essential properties in SHAPE enable it to collaborate with the

classic optimal priority assignment algorithm. Since our method

is developed from general heterogeneous architectures, it can be

directly applied to the off-the-shelf heterogeneous computing plat-

forms, such as CPU-GPU and CPU-FPGA systems. In this paper,

the proposed scheduling and response time analysis are built on the

platforms where PEs share the same architecture. We will work on

scheduling of the computing platforms integrating multiple types

of heterogeneous PEs is our future work.
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