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ABSTRACT

We present GO-CBED, a goal-oriented Bayesian framework for sequential causal
experimental design. Unlike conventional approaches that select interventions
aimed at inferring the full causal model, GO-CBED directly maximizes the ex-
pected information gain (EIG) on user-specified causal quantities of interest, en-
abling more targeted and efficient experimentation. The framework is both non-
myopic, optimizing over entire intervention sequences, and goal-oriented, targeting
only model aspects relevant to the causal query. To address the intractability of ex-
act EIG computation, we introduce a variational lower bound estimator, optimized
jointly through a transformer-based policy network and normalizing flow-based
variational posteriors. The resulting policy enables real-time decision-making via
an amortized network. We demonstrate that GO-CBED consistently outperforms
existing baselines across various causal reasoning and discovery tasks—including
synthetic structural causal models and semi-synthetic gene regulatory networks—
particularly in settings with limited experimental budgets and complex causal
mechanisms. Our results highlight the benefits of aligning experimental design
objectives with specific research goals and of forward-looking sequential planning.

1 INTRODUCTION

A structural causal model (SCM) provides a mathematical framework for representing causal relation-
ships via a directed acyclic graph (DAG). SCMs are foundational across domains such as genomics
and precision medicine (Tejada-Lapuerta et al.| |2023), economics (Varian, 2016)), and the social
sciences (Sobel, |2000; Imbens, [2024), where understanding the cause-effect relationships is central
to scientific inquiry. Key tasks in causal modeling include: causal discovery, which learns the DAG
structure; causal mechanism identification, which estimates functional dependencies; and causal
reasoning, which answers interventional and counterfactual queries. All such tasks depend on data.
While (passive) observational data can reveal correlational structures, they often fail to identify the
true causal model (Verma & Pearl, [2022). In contrast, (active) interventional data are essential for
uncovering causal relationships and estimating causal effects—but such experiments are inherently
expensive and limited, making careful experimental design essential.

A Bayesian approach to optimal experimental design (BOED) (Lindleyl [1956; |Chaloner & Verdinelli,
1995; Rainforth et al.|[2024; Huan et al., |2024)) addresses this challenge by selecting interventions that
maximize the expected information gain (EIG). BOED provides a principled framework for handling
uncertainty in both causal structure and mechanisms. However, most existing causal BOED methods
focus on learning the full model—for causal discovery or mechanism identification—regardless of
the scientific goal.

In many real-world applications, the objective is more focused on causal reasoning: researchers aim
to estimate the effect of a specific intervention, rather than recover the entire causal system. For
instance, in drug discovery, it is often more important to understand how particular molecular targets
influence disease pathways than to map the full biological network. Shown in Figure[I] optimizing
for full model parameters (middle) leads to experiments that are misaligned with such targeted goals
(left), resulting in inefficient use of resources (compared to right). This motivates a goal-oriented
approach to BOED—one that tailors interventions to the specific causal queries that matter the most.

Recent work by Toth et al.| (2022)) begins to address goal-oriented causal design, but adopts a myopic
strategy—selecting only the next experiment without planning ahead. More broadly, most causal
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Figure 1: Illustration of goal-oriented versus conventional BOED for causal learning. Left: A linear
Gaussian SCM with six nodes; the experimental goal is to estimate the causal effect of the intervention
do(X3 = 10) on node X5 and Xg. Middle: Conventional BOED selects interventions that maximize
EIG over all model parameters, resulting in X; and X5 being selected as the best. Right: Our
GO-CBED approach selects interventions by directly maximizing EIG for the specific causal query,
leading to a different intervention that prioritizes nodes most relevant to the query, i.e., X3 and Xs.

BOED approaches are greedy, optimizing interventions one step at a time without accounting for how
early decisions influence future learning. Overcoming this limitation requires a non-myopic frame-
work, which we formulate as a Markov decision process and solve using tools from reinforcement
learning (RL) (Rainforth et al.| 2024, §4), (Huan et al.| 2024/ §5).

To address these challenges, we propose Goal-Oriented Causal Bayesian Experimental Design
(GO-CBED), a novel framework for sequential, non-myopic causal experimental design that:

* Directly targets user-defined causal queries, using a variational lower-bound estima-
tor (Poole et al., 2019; Barber & Agakov, 2004) to efficiently approximate the EIG on these
specific quantities of interest (Qols);

* Plans non-myopically across full experimental sequences via a learned RL policy;

* Enables real-time intervention selection through an amortized transformer-based policy,
trained offline for fast deployment.

Our key contributions include: a goal-oriented framework that substantially improves experimental
efficiency for specific causal queries; a sequential, non-myopic strategy that captures synergies be-
tween interventions; and empirical results showing that GO-CBED outperforms existing methods.

2 RELATED WORK

GO-CBED builds upon and synthesizes advances from three key areas: causal BOED, goal-oriented
BOED, and non-myopic sequential BOED.

Early work in causal BOED demonstrated the utility of active interventions for efficiently uncovering
causal graph structures, moving beyond passive observational learning (Murphyl, 2001; Tong &
Koller, 2001} |Cho et al. 2016} [Ness et al.l [2018; |von Kiigelgen et al., 2019; [Sussex et al., [2021)).
Subsequent research expanded to learning full SCMs, including the selection of both intervention
targets and values (Tigas et al.| [2022;|2023). More recent work has highlighted the importance of
tailoring experiments to specific causal Qols (Toth et al.,|2022). However, many of these approaches
remain myopic—focusing on single-step gains—or are oriented toward global fidelity rather than
user-specific causal objectives.

In parallel, the broader BOED literature has seen growing interest in goal-orientation design, where
experiments are optimized for their utility to downstream tasks (Attia et al., [2018;|Wu et al., [2021}
Neiswanger et al., 2021; Huang et al.,|2024; Smith et al.||2023;|Zhong et al., [2024)). These methods
have shown substantial benefits in predictive settings, particularly with complex nonlinear models.
However, they generally do not address the unique challenges of causal inference, including the
interventional nature of learning and the structural constraints of SCMs.

Recognizing the limitations of greedy approaches, non-myopic sequential BOED seeks to optimize
entire experimental trajectories rather than one step at a time. Approaches based on amortized policy
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learning and RL (Foster et al., 2021} [Blau et al.,[2022; Shen & Huanl 2023} [Shen et al.,[2025} Blau
et al.| 2023) have shown promise in this area. Yet in the causal setting, non-myopic strategies often
focus solely on structure learning (Annadani et al.| 2024} |Gao et al., [2024)) and do not integrate
flexible, user-defined causal goals into the long-term optimization framework.

GO-CBED bridges these domains by introducing a non-myopic, goal-oriented approach to sequential
experimental design in causal settings. It enables strategic planning of intervention sequences
explicitly optimized to answer user-specified causal queries—such as estimating particular effects
or critical mechanisms—within complex SCMs. Unlike prior methods that are goal-oriented but
myopic (Toth et al.}2022) or non-myopic but focused on structure learning (Annadani et al., 2024;/Gao
et al.,2024), GO-CBED unifies both objectives, maximizing long-term utility for causal reasoning. A
more comprehensive discussion of related work is provided in Appendix

3 PRELIMINARIES

Structural Causal Models SCMs (Pearl, 2009) provide a rigorous mathematical framework for
representing and reasoning about cause-effect relationships. An SCM defines a collection of random
variables X = {Xj,..., Xy}, structured by a DAG G := {V,E}. The SCM is denoted as
M = {G, 0}, where G encodes the causal structure and 6 parameterizes the causal mechanisms.
Each variable X is determined by its parents in the graph and an exogenous noise term via a structural
equation:

Xi = [i(Xpa@), 0i5€1), VieV. (1)
Here, X, (;) denotes the parent variables of X; in G, f; is a causal mechanism parameterized by 6;,
and €; ~ P, is an independent noise variable. The SCM thus defines a joint distribution over X,
enabling causal reasoning and interventional analysis.

Interventions (Experimental Designs) SCMs support formal reasoning about interventions—i.e.,
external manipulations to the system. A perfect (or hard) intervention on a subset of variables X7,
denoted by do(X = sy) (Pearl, 2009), replaces the corresponding structural equations with fixed
values sy, modifying the data-generation process. This introduces an interventional SCM, which
leads to a new distribution over the variables. Assuming causal sufficiency and independent noise
(Spirtes et al.,2000), the interventional distribution follows the Markov factorization:

p(X‘Mvs) = H p(Xj‘Xpa(j)vaﬁdo(XI = SI))7 (2)
JjEV\I

where the design variable € := {I, s;} encodes both the intervention target I and the intervention
value s;. Interventions form the foundation for both causal discovery (i.e., identifying G) and causal
reasoning (i.e., estimating interventional effects).

Goal-Oriented Sequential Bayesian Framework Conventional causal BOED methods typically
follow a two-step procedure: first, learn the full model, and then use it to answer causal queries.
Such an approach can be inefficient when only a small subset of causal Qols matter, as it may spend
significant resources learning aspects of the model irrelevant to the target queries.

To address this inefficiency, we adopt a goal-oriented perspective: rather than learning the entire
model, we design experiments to directly improve our ability to answer specific causal queries. We
formalize this using a query function H that maps the causal model M to the desired quantity
z = H(M,e,), where €, captures any inherent stochasticity in the query. For example, setting

z = @ corresponds to causal discovery, while z = X f o(X=15) corresponds to estimating the causal
effect of setting X; = 1; on X, from a distribution of possible intervention values ¥; ~ p(1;).

At experiment stage t of a sequence of T' experiments, let the history be h; := {&;.¢, ®1.+}, where

&, and x, denote the design and outcome of the 7-th interventional experiment. The belief over the

causal model M = {G, 6} is updated via Bayes’ rule

p(Glhi—1) p(x4| Gy hi—1, &) p(0|G, hi—1) p(xi|G, 0, hi—1,&)
p(xilhi1,&) ’ (|G, hi—1, &) ’

'When observational data D is available prior to designing interventions, all distributions are implicitly
conditioned on D. See Appendix [C.4]for further details.

p(Glhy) = p(0|G, hy) =
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where the marginal likelihood p(x:|G, h;_1, &;) is computed by integrating over 8. However, our
primary interest lies not in inferring the full model M, but in updating beliefs about the target query
z. This is captured by the posterior-predictive distribution:

p(elhi) = 3 [0(216.6. he) p(Glh) p(OIG 1) . )
G

4 GOAL-ORIENTED SEQUENTIAL CAUSAL BAYESIAN EXPERIMENTAL
DESIGN

Problem Statement GO-CBED seeks an optimal policy 7 : hy_1 — &; that maximizes the EIG on
the target causal Qol z over a sequence of 7" experiments:
p(zlhr
p(zlhr) | | @
p(2)

subject to the constraint that designs following the policy: &; = w(h;_1) for all t. This formulation
is goal-oriented, as it directly targets EIG on specific causal Qols rather than the full model, and
non-myopic, as it optimizes the entire sequence of interventions rather than selecting each greedily.
An equivalent formulation based on incremental (stage-wise) EIG after each experiment is also
possible; see Appendix for details.

The EIG on z defined in equation E} I, is also the mutual information between z and h. When z
is a bijective function of M, maximizing EIG on z is equivalent to maximizing it on M (Bernardo),
1979). However, when z is not invertible with respect to M, directly maximizing EIG on z is more
efficient, avoiding effort on irrelevant parts of M and reducing both computational and experimental
costs—especially beneficial when dealing with large causal graphs or tight intervention budgets.

log

™

7" € arg max {IT(W) = Ep(M)p(hr| M m)p(z|M)

4.1 VARIATIONAL LOWER BOUND

Evaluating and optimizing the EIG in equation {|requires estimating the posterior density p(z|hr),
which is generally intractable for complex causal models. To address this, we adopt a variational
approach that approximates the posterior using gx (2|7, f(hr)), where A is the variational parameter
and f is a learned embedding of the historical interventional data:

h
Ir;L(m; A, @) == Epa)p(hr | Mom)p(zIM) [bg W] , (5)

subject to & = w(h;_1) for all ¢.
Theorem 4.1 (Variational Lower Bound). For any policy m, variational parameter A\, and embedding
parameter @, the EIG satisfies Tr(m) > Ir, 1,(m; A, ¢). The bound is tight if and only if p(z|hr) =
gx (2| fp(h7)) for all z and hr.

A proof is provided in Appendix Since p(z) is independent of 7, A, and ¢, it can be omitted
from the optimization statement without affecting the argmax. Thus, maximizing the EIG lower
bound reduces to maximizing the prior-omitted EIG bound:

AT, ¢" € argiﬂfx {RT;L(W;)\, ®) = Epap(hr | Mom)p(zlm) [ 108 ax (2| fo (RT))] }, (6)

where Rr.(m; X, @) < Rr(7) := Epa)p(hr | M, m)p(zlm) [l0g (2] hT)] is a lower bound to the
prior-omitted EIG Ry (7). See Appendix for additional information on R, (m; A, ¢).

4.2 VARIATIONAL POSTERIORS AND POLICY NETWORK

Having established the theoretical foundation of GO-CBED, we now describe its implementation.
Our approach comprises two key components: (1) variational posteriors for establishing the EIG
lower bound, and (2) a policy network that guides the intervention selection process.
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Variational Posteriors While GO-CBED supports arbitrary causal queries, we focus on two
fundamental tasks that form the basis of our experimental evaluation: causal reasoning (i.e., estimating
interventional effects) and causal discovery (i.e., learning graph structure).

For causal reasoning tasks, where the query takes the form z = X f o(X=1b; ), the posterior distribu-
tion p(z|hr) is often complex and multimodal due to the structural uncertainty—different causal
graphs can imply different causal effects for the same intervention. To capture this complexity, we
parameterize the variational posterior gx (z|fs(h)) using normalizing flows (NFs), which transform
a Gaussian base distribution into a flexible target distribution via a series of invertible mappings,
while enabling efficient density estimation. Specifically, we use the Real NVP architecture (Dinh
et al., |2016) and follow the implementation strategy of [Dong et al.|(2025)). Details are provided in
Appendix [A.4]

For causal discovery tasks, where the query is the graph itself, z = G, we model the posterior over
graph structures using an independent Bernoulli distribution for each potential edge (Lorch et al.,
2022):

ax(G|fe(hT)) H(D\ iilfo(hT)), @)

where each g (G; ;|-) ~ Bernoulli(A; ;). This parameterization allows efficient modeling of the
posterior over DAG structures, while maintaining scalability and differentiability.

Policy Network  We represent the pol- 4y a9 mr "G5 CRED algorithm,
icy 7 using a neural network with param-

eters vv. The policy network selects the  1: Input: H, p(t); prior p(G), p(6|G); likelihood

next intervention by mapping the history p(x:|G, 0, &:); number of experiments T';
hi_y to a design &; at stage t. The ar- 2: Initialize policy network parameters ~y, variational
chitecture is designed to satisfy two sym- parameters A, embedding parameters ¢;

metry properties that have been shown

to improve performance |Annadani et al.

(2024): permutation invariance across for t=0,...,7T,do

history samples and permutation equiv- Compute & = w(hi—1), then sample x; ~

ariance across variables. p(x:|G, 0, &:);

7:  end for

8: Update v, A, and ¢ following gradient ascent,
where gradient obtained from auto-grad on R,r;

sforl=1,...,ngep do
Simulate n.,, samples of G, 6, ¥ and z;

AN A

The network is composed of L trans-
former layers that alternate between at-
tentio.n over V'flriable anq observation di- 9: end for

MEens1ons. This altt.ernat.mg SLructure en- . Output: Optimal 7* parameterized by v*, and A*,
ables rich and efficient information flow and ¢*:

across the entire history of interventions ’
and outcomes. The final embedding is
passed through two output heads: one that produces the intervention targets I;, using the Gumbel-
softmax trick to enable differentiability for discrete variables, and the other predicts the corresponding
intervention values s7,. The architecture is illustrated in Appendix [C.1]

Training Procedure Algorithm [I| outlines our training procedure, which jointly optimizes the
policy parameters and variational parameters by maximizing the variational lower bound. In each
training iteration, we sample causal models M = (G, 0) from the prior, derive the target Qols
z, simulate intervention trajectories, and update all network parameters via gradient ascent. At
deployment time, only forward passes through the policy network are required, eliminating the need
for online Bayesian inference. This enables real-time decision-making with constant computational
complexity, independent of experiment sequence length.

5 NUMERICAL RESULTS

Our numerical experiments demonstrate how GO-CBED advances causal experimental design through
goal-oriented optimization. We begin in Section[5.1]to recap the motivating example from Figure|T]
that illustrates the fundamental advantage of targeting specific causal queries over full model learning.
We then focus on two key causal tasks: Section[5.2]examines causal reasoning, where we evaluate



Under review as a conference paper at ICLR 2026

performance in estimating targeted causal effects across both synthetic causal models and semi-
synthetic gene regulatory networks derived from the Dialogue for Reverse Engineering Assessments
and Methods (DREAM) benchmarks (Greenfield et al.l [2010); Section @] then turns to causal
discovery, comparing GO-CBED against existing causal BOED baselines on similar synthetic and
semi-synthetic settings.

5.1 MOTIVATING EXAMPLE WITH FIXED GRAPH STRUCTURE

We first evaluate the benefits of Rrp(ms) (1) . Rz (mo) (1)
goal-oriented policies on the mo- )
tivating example with a fixed
graph structure in Figure[I} This
setup assumes a linear-Gaussian
relationship between variables,
allowing for analytical posterior
computation and accurate EIG
estimation. We compare four -
policies: GO-CBED-z, which is 2
optimized for the specific causal

query; GO-CBED-6, which tar- —$- GO-CBED-z —4— GO-CBED-§ —4— NMC Random

gets model parameters; NMC, . . .
a baseline that uses the nested Figure 2: Performance comparison of policies trained for 7" = 10,

Monte Carlo (NMC) estimator evaluated across different stage lengths. Left: Performance on
for the prior-omitted EIG on causal query z = { X5, X [do(X3 = 10)}. Right: Performance
Qols (Toth et all 2022); and ©n model parameters z = {6 \ 6y,(3)}. While GO-CBED-0
Random, which selects both in- achieves higher EIG on the task centering parameters (right), it
tervention targets and values uni- performs significantly worse than GO-CBED-z on the causal
formly at random. We evaluate reasoning task (left). Shaded regions represent £1 standard error

their performance on the prior- Aacross 4 random seeds.
omitted EIG (or lower bound) for z. Full experiment details can be found in Appendix[C.2]

6 8 10 2 6 8 10

| A
Number of Stages Number of Stages

Figure [2|reveals a key insight: although GO-CBED-6 achieves higher EIG on model parameters,
its performance on the actual causal query is substantially worse than that of GO-CBED-z. This
supports our central argument—when the goal is to answer specific causal queries, policies that
directly target those queries are significantly more efficient than those optimized for general model
learning. Moreover, GO-CBED’s variational formulation consistently outperforms the sampling-
based NMC. This advantage is especially pronounced when the inner-loop sample size in NMC is
small, where the estimator suffers from high bias (see Appendix [D.I)).

5.2 CAUSAL REASONING TASKS

We evaluate GO-CBED’s ability to design interventions that maximize EIG with respect to specific
causal queries, now no longer fixing the graph structure. We compare three policies: GO-CBED-z
optimized directly for causal queries, GO-CBED-G trained for causal discovery, and Random
selection. Additional experiment details are provided in Appendix [C.3]

Metrics We evaluate each method on both the prior-omitted EIG lower bound R7,7, and the
downstream performance, measured by the Wasserstein Distance (WD) between the ground-truth
predictive distribution p(z | G*, 6*) and the policy-specific learned posterior gx(z | f4(-)), obtained
with a trajectory simulated from each policy.

Synthetic SCMs Figure 3| compares performance using Erdés—Rényi (ER) and Scale-free (SF)
graph priors with nonlinear mechanisms and d = 10, detailed in Appendix Across all cases,
GO-CBED-z outperforms the other methods significantly on both policy quality and downstream
prediction. Despite the strong performance of GO-CBED-G on causal discovery tasks (see Ap-
pendix [C.3), these results highlight a key insight: for complex causal mechanisms, directly targeting
causal queries is particularly advantageous compared to targeting the full causal graph. Moreover, for
nonlinear mechanisms parameterized by neural networks, the dimensionality of the weights 0 is large
and graph-dependent, which makes it difficult to generate sufficient samples to effectively tighten the
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EIG lower bound over full graphs and parameters. These challenges underscore the advantages that
goal-oriented design is intended to provide. Additional results with d = 20 is given in Appendix [D.2]

ER-Nonlinear SF-Nonlinear ER-Nonlinear SF-Nonlinear

R (m.)(1)
WD ()
WD (])

10 10 10

10

[ [

1 6 8 ! 6 8 1 5 8 1 6 8
Number of Stages Number of Stages Number of Stages Number of Stages

—4— GO-CBED-z —$— GO-CBED-G Random

Figure 3: Causal Reasoning on Synthetic SCMs. Performance comparison of policies trained for
T = 10 on causal queries, using ER and SF graph priors with nonlinear mechanisms (3 interventions
per stage, d = 10). While GO-CBED-G—which targets structure learning—is a natural baseline, it
underperforms on causal queries, particularly in nonlinear settings. In contrast, GO-CBED-z, which
directly targets causal Qol, consistently achieves better performance. Shaded regions represent 41
standard error over 4 random seeds.

Semi-Synthetic Gene Reg- ] Rep(m.) (1) WD (1)
ulatory Networks Toas-

sess real-world applicabil-

ity, we evaluate GO-CBED

on semi-synthetic gene reg- - //\1’—"

ulatory networks derived

from the DREAM (Green+

field et al., 2010) bench- ..
marks, detailed in Ap-

pendix [C3]  Figure M

presents reSultS on E COli J ‘ Number ‘ﬁf Stages ’ ! ’ ‘ Number hof Stages ’
networks with nonlinear —e— CGO-CBED-z —+— GO-CBED-G Random
causal mechanisms (d =

10, T = 10). GO-

Figure 4: Causal Reasoning on Semi-Synthetic GRNs. Performance
comparison of policies trained for 7' = 10 on E. coli gene regulatory
networks with nonlinear causal mechanisms (d = 10). GO-CBED-z
performs comparably to baselines in early stages but exhibits rapid
improvement after stage 3, ultimately achieving substantially higher
prior-omitted EIG lower bound than baselines. These results highlight
the value of goal-oriented experimental design in realistic biological
settings with complex nonlinear causal mechanisms. Shaded regions
represent 1 standard error across 4 random seeds.

CBED-z, which directly
targets causal query, sig-
nificantly outperforms both
GO-CBED-G and Random
baselines, especially after
the initial stages of interven-
tion. This performance gap
on biologically-inspired net-
works has important practi-
cal implications. In real biological research, experimental resources are often limited, and researchers
typically seek to answer specific causal questions rather than infer the entire network structure.
GO-CBED’s ability to efficiently target such queries highlights its promise for applications such as
gene regulatory network analysis and drug target identification, where maximizing information about
specific causal effects is critical. We further validate GO-CBED’s effectiveness through additional
experiments on Yeast networks and with diverse goal specifications in Appendix [D.3] Additional
evaluations of GO-CBED’s robustness to distributional shifts in observation noise are presented in

Appendix [D.6|
5.3 CAUSAL DISCOVERY TASKS

While GO-CBED is primarily designed for general goal-oriented experimental design, we also apply
it to specific causal discovery tasks, where the target Qol is the causal graph z = G. This enables
comparison with existing causal BOED methods specifically designed for structure learning. We
consider synthetic settings using ER and SF graph priors, and semi-synthetic settings based on real
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Figure 5: Causal Discovery on Synthetic SCMs. Performance comparison on synthetic SCMs, using
ER and SF graph priors with linear mechanisms (d = 30,7 = 10). Metrics include prior-omitted
EIG lower bound Rr.r,, expected structural Hamming distance E-SHD, F'-score, and AUPRC.
GO-CBED performs better in terms of uncertainty reduction (Rx.,), structural recovery (E-SHD),
and structural accuracy (£ -score and AUPRC) compared to all baselines. Shaded regions indicate
+1 standard error across 10 random seeds.

gene regulatory networks from DREAM (Greenfield et al.l|2010). In all cases, we simulate linear and
nonlinear causal mechanisms with additive noise. See Appendix [C.3|for more details.

Baselines We benchmark GO-CBED against four methods: CAASL (Annadani et al., [2024]),
which uses an offline RL method with a fixed pre-trained posterior network; Random, which
uniformly selects interventions at random; Soft-CBED (Tigas et al.,[2022), which employs Bayesian
optimization for single-step EIG; and DiffCBED (Tigas et al., [ 2023), which learns a non-adaptive
policy through gradient-based optimization.

Metrics We evaluate using four metrics: prior-omitted EIG lower bound R.;,; expected structural
Hamming distance E-SHD (de Jongh & Druzdzell, 2009) between posterior graph samples and the
ground truth; and, for edge prediction, F'-score and area under the precision—recall curve (AUPRC).
To ensure a fair comparison across policies, we train a dedicated posterior network for each policy.
This isolates the contribution of the policy itself and avoids confounding effects from differing
posterior approximation methods. For example, while CAASL relies on a fixed pre-trained posterior
network from (Lorch et al., 2022)), other baselines use DAG-bootstrap (Friedman et al., 2013} [Hauser
& Biihlmann, [2012)) for linear SCMs and DiBS (Lorch et al., [2021) for nonlinear SCMs. In our
evaluation, we adopt posterior networks for inference across all baselines, as they produce higher-
quality posteriors than those used in the original works. For completeness, results using each method’s
original inference setup are included in Appendix[D.5] All results are averaged over 10 random seeds.

Synthetic SCMs  Figure [5| presents GO-CBED’s performance using ER and SF graph priors with
linear mechanisms (d = 30, T' = 15). Across all metrics and graph types, GO-CBED consistently
outperforms baseline methods, with the gap widening as the number of stages increases. On SF graphs,
GO-CBED reaches F; ~ (.75 and attains the highest AUPRC, indicating a stronger precision-recall
trade-off in sparse settings. Although GO-CBED initially performs comparably to some baselines, it
steadily surpasses them as more interventions are collected. This highlights its strength in optimizing
long-term information gain rather than short-term or greedy improvements. While the advantage
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Number of stages Number of stages Number of stages Number of stages

—— GO-CBED Random —e— DiffCBED —e— SoftCBED —e— CAASL

Figure 6: Causal Discovery on Semi-Synthetic GRNs. GO-CBED outperforms all baselines on
semi-synthetic E. coli gene regulatory networks (d = 20, T' = 10) with linear mechanisms. Our
method achieves near-zero Rp.1,(7z; A, @), significant lower E-SHD, superior F score and AUPRC
for edge prediction. This demonstrates GO-CBED’s ability to efficiently identify the true causal
structure in biologically-inspired networks, with the variational posterior tightly concentrated around
the ground truth after 10 stages.

is most prominent in linear settings, GO-CBED still achieves strong performance in the more
challenging nonlinear cases, with results provided in Appendix [D.4]

Semi-Synthetic Gene Regulatory Networks Figure 6| evaluates GO-CBED on 20-node networks
derived from the DREAM E. coli gene regulatory benchmark with linear mechanisms. Our method
consistently outperforms all baselines across all evaluation metrics. By the final intervention stage,
GO-CBED achieves high R, values, low E-SHD scores, high F-scores and AUPRC, indicating
accurate recovery of the true causal structure with minimal posterior uncertainty. This strong
performance on biologically-inspired networks demonstrates GO-CBED’s ability to handle the
complex dependencies and noise typically encountered in gene regulatory systems. Additional
experiments on Yeast networks and with nonlinear mechanisms presented in Appendix [D.4]further
support GO-CBED’s effectiveness in biologically relevant settings.

6 DISCUSSION

We presented GO-CBED, a goal-oriented Bayesian framework for sequential causal experimental
design. Unlike conventional approaches that aim to learn the full causal model, GO-CBED directly
maximizes the EIG on specific causal Qols, enabling more targeted and efficient experimentation.
The framework is both non-myopic, optimizing over entire sequences of interventions, and goal-
oriented, focusing on model aspects relevant to the causal query. To overcome the intractability of
exact EIG computation, we introduced a variational lower bound, optimized jointly over policy and
variational parameters. Our implementation leveraged NFs for flexible posterior approximations and
a transformer-based policy network that captures symmetry and structure in the intervention history.
Numerical experiments demonstrated that GO-CBED outperforms baseline methods in multiple
causal tasks, with gains increasing as causal mechanisms become more complex. Crucially, the joint
training of intervention policies and variational posteriors enabled adaptive, goal-oriented exploration
of the causal model.

Limitations and Future Work While GO-CBED demonstrates strong empirical performance,
several limitations remain. Its scalability is constrained by the complexity of both the underlying
causal models and the neural network architectures. Additionally, its effectiveness depends on the
availability of prior knowledge of causal structures and mechanisms. Future work includes incorporat-
ing foundation models as high-fidelity world simulators for offline policy training. Recent advances
in biological foundation models (Theodoris et al., |2023; |Cui et al.,|2024) offer a promising avenue
simulating complex, realistic causal mechanisms, which could significantly enhance policy learning
without relying on costly real-world experimentation. Other valuable extensions include generalizing
GO-CBED to support multi-target intervention settings and non-differentiable likelihoods, as well as
improving policy robustness to changing experimental horizons and dynamic model updates during
experimentation.
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7 ETHICS STATEMENT

Our work presents a methodological contribution to causal experimental design with applications
in scientific domains such as biological research. While our proposed framework is designed to
improve experimental efficiency for beneficial tasks, we acknowledge that causal inference methods
can have dual-use implications and could potentially be misused to identify harmful causal pathways.
We are committed to promoting reproducible research by making our implementation available and
encourage users to implement appropriate privacy protections when applying our methods to sensitive
domains.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide experimental details in the appendix, including all hyperparam-
eter configurations and data generation procedures (Appendix [C). Theoretical derivations and proofs
are available in Appendix [A] The source code for our proposed framework and experimental setups is
included in the supplementary materials and will be made publicly available upon acceptance.
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A THEORETICAL AND NUMERICAL FORMULATIONS

A.1 INCREMENTAL EIG FORMULATION

The incremental EIG on the target query z resulting from an experiment at stage ¢ with design &;,
given the intervention history h;_1, is defined as:

p(z|ht)
(&t hi1) := EpMihe_ 1 )p(@: M. p(z| M) [logP(ZVlt—ﬂ . (Al)

Proposition A.1. The total EIG of a policy 7 on the target query z over a sequence of T experiments
can be written as:

T
Ir(7) = Ephrim) [Z I(&, hH)} : (A2)
t=1

Proof. Beginning from the right-hand side, we have:

T
Zzt(éta h’t—l)

t=1

Ep(hrim)

T
p(z|hi)
= Ep(hrim) [Z Ep(Mbi—1)p(@ | M £)p(zIM) [log m

t=1

[ p(zlh:) H

E log ————
p(hi—1|m)p(M|hi—1)p(x:| M, E)p(2| M) |:Og p(z‘ht—l)

I
B

~
Il
—

I p(zlh:) H

Il
[M]=

E 2y hy_y.z|m) 108 ——F—~
I >[ ® pzlhi)

~
Il
-

I
[M]=

Ep(M by myp(zim) log p(2|Re) — Epa hy_y jm)p(z|m) log (2| Ri—1)

~
Il
-

=

p<z|hT>1

1
P(M-,hTﬂ)P(le)l 0g »(z)

— T (n), (A3)

where in the third equality, the joint expectation is formed using p(z| M) = p(z|M, h;_1), and the
fifth equality follows from the cancellation of all terms in the summation except the first and last.

O
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A.2 PROOF FOR THEOREM [.T]
Proof for Theorem Following equation ] and equation 3] the difference

Ir(m) = Ir, p(m; A, @)

p(z|hr) ar(zlfg(h1))
= Epryp(hr | M mp(z1m) [bg p(z) | Eriptriammp(ziag | 108 T oA

p(z|hr) 1

_E R log —————=
p(AM)p(hr| M, m)p( M)[ % x(zlfolhr))

- p(z|hr)
= Eprmonr zim) [k’g qx(zfqb(hT))]

p(z|hr)
ax(z|fe(hT))

B p(z|hr)
= Ep(hr|m)p(zlhr) llog q>\(z|f¢(h:r))]

=Ep(hr,2im) llog

= Ep(hrin) [DKL (pz1ha) I QA(Zf¢(hT)))] (A%

is an expectation of a Kullback-Leibler (KL) divergence, which is always non-negative. Hence,
Ir(m) > Iy, (m; A, @) for any 7, A, and ¢. The bound is tight if and only if the KL divergence
equals zero, which occurs when g (z|fy(hr)) = p(z|hr) for all z and hp. O

A.3 PRIOR-OMITTED EIG
We note that

Ir(7) = Epap(hr | M m)p(zlm) Hogp(zlhr)] — ¢
= RT(W) —c, (AS)

where ¢ := Ep,(aq)p(z1 M) [log p(2)] is independent of 7. Similarly,

Zr; L(m; A @) = Epa)p(hr | M o)p(zlm) [10g ax (2] fo(hT))] — ¢
=RrL(m A, @) —c. (A6)
Proposition A.2. For any policy 7, variational parameter A\, and embedding parameter ¢, the

prior-omitted EIG satisfies Ry (m) > Ry, ,(m; X, ¢). The bound is tight if and only if p(z|hr) =
gx(z|f(h7)) for all z and hr.

Proof. Ry(w) = Ip(w) + ¢ > Ip. p(m A, @) + ¢ = Ry, (7 A, @), making use of Zp(m) >
Zr. (m; A, ¢) from Theorem 4.1 O
We adopt standard Monte Carlo to estimate R,z (7; X, @):

Rr.L(m5 A, @) = Epam)p(hr| M mp(zim) 108 aa (2] fo (hr))]

1 Y , ,
~ NZloqu(zﬂf(p(héw)), (A7)

i=1

where M' ~ p(M), hi. ~ p(hr| M’ ), and 2° ~ p(z|M").
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We further propose a NMC estimator to estimate Ry (7):

Rr(1) = Epat)p(hr | M,m)p(z|m) [l0g p(z|hT)]
= Ep(aM)p(hr| M, m)p(zlm) [log p(2, hr|m) — log p(hr|T)]
= Ep(M)p(hr| M m)p(zim) [108 Epoanr) [p(2, hr| M, )] = log Ep(aqrn [p(hr | M, 7))

1 N 1 My 1 Mo ) )
~ NZ log — i > p(z R M ) — 1ogE > p(hip M2 7| (A8)
=1 ji=1 j2=1

where M’ ~ p(M), hi ~ p(hr| M T), 2 ~ p(z|M"), and M7* ~ p(M’) and M?*> ~
p(M””). This NMC estimator is only used in Section as a baseline comparison.

A.4 NORMALIZING FLOWS

An NF is an invertible transformation that maps a target random variable z to a standard normal
random variable 7, such that z = g(n) and n = f(z), where f = g~'. The probability densities of
z and m are related via the change-of-variables formula:

0f(2)|

det
¢ 0z

p(z) = py(f(2))

(A9)

Lt the transformation g be expressed as a composition of n > 1 successive invertible functions:

z=g(n)=g10g20...09,(n) = g1(g2(...(gn(n)) ...)). Then, the corresponding log-density of
z becomes:

fz 10. 'fl(z)

dt
¢ 0z ’

log p(2) = log py(fn © fa—10...0 fi(2)) + Z log (A10)

where n = f(2) = fn 0 fn_10...0 fi(z) and f; = g;l. Through these successive transformations,
NFs can model highly expressive and flexible densities for the target variable z Dinh et al.|(2016).

To approximate the Qol posterior gx (z|fe(hr)), we employ NFs composed of successive coupling
layers. Each coupling layer partitions z into two similarly sized subsets, z = [21, 23] ", with
dimensions n., and n.,, respectively. The coupling transformations are defined as:

fi(z) = (22 =29 exp(;l(zl)) + tl(zl))
Fa2(f1(2)) = (21 =210 engZg(ig)) + tz(ig)) , (Al1)

where s1,t; : R™#1 +— R™=2 and so, to : R™*2 +— R™=: are flexible mappings (e. g neural networks),
and © denotes the element-wise product. The Jacobian of the transformation f; is given by:

EA—
%z(:) diag(exp(s1(z1)))|’

which is lower-triangular with determinant exp(z 22 s1(21);). Similarly, the Jacobian of f is

upper-triangular with determinant exp(z | 52(22); ) Multiple coupling transformations (7ians)
from equation can be composed sequentlally to increase the expressive power of the overall
transformation. To capture the dependencies of the intervention history hp, we additionally condition
the mappings s(-) and ¢(-) on the embedding fe(h7).

B DETAILED RELATED WORK

Our work on GO-CBED builds upon several related lines of research.
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Causal Bayesian Experimental Design Experimental design for causal discovery within a BOED
framework was initially explored by Murphy| (2001) and [Tong & Koller| (2001) for discrete variables
with single-target acquisition. Subsequent research extended this approach to continuous variables
within BOED (Agrawal et al.,[2019; ivon Kiigelgen et al.,|2019; Toth et al.,|2022} |Cho et al., 2016)
and alternative frameworks (Kocaoglu et al., 2017a; (Gamella & Heinze-Deml, 2020; (Ghassami
et al., 2018} |Olko et al.,|2024). Notable non-BOED methods include strategies for cyclic structures
(Mokhtarian et al.l 2022) and latent variables (Kocaoglu et al., 2017b)). Within BOED, |Tigas et al.
(2022) proposed selecting single target-state pairs via stochastic batch acquisition, later extending this
to gradient-based optimization to multiple target-state pairs (Tigas et al., [2023)). |[Sussex et al.|(2021)
introduced a greedy method for selecting multi-target experiments without specifying intervention
states. More recently, Annadani et al.| (2024) proposed adaptive sequential experimental design for
causal structure learning, although their objective—minimizing graph prediction error—is different
from traditional BOED.|Gao et al.|(2024) developed a reinforcement learning method for sequential
experimental design using Prior Contrastive Estimation (Foster et al.,|2021) as a reward function;
however, their approach relies on initial observational data and is computationally intensive. In
contrast, our method uses direct policy optimization with differentiable rewards, enabling more
efficient training without needing initial observational data.

Bayesian Causal Discovery Causal discovery has been extensively studied in machine learning
and statistics (Glymour et al.,2019; Heinze-Deml et al., 2018; [Peters et al., 2017; [Vowels et al., [2022)).
Traditional causal discovery methods typically infer a single causal graph from observational data
(Brouillard et al., 2020; Hauser & Biihlmann, [2012; [Lippe et al.l 2021} |Perry et al., |2022; |Peters
et al.| 2016; [Heinze-Deml et al.,|2018)). In contrast, Bayesian causal discovery (Friedman & Koller,
2003; |[Heckerman et al.,|2006; |Tong & Koller, 2001)) seeks to infer a posterior distribution over SCMs.
Recent work (Cundy et al.,[2021; [Lorch et al.,|2021} |Annadani et al., 2021) has introduced variational
approximations of the DAG posterior, enabling representation of uncertainty by a full distribution
rather than a point estimate. Addressing the discrete nature of DAGs—which prevents straightforward
gradient-based optimization—Lorch et al.|(2021) used Stein variational gradient descent (SVGD)
(Liu & Wang|, 2016) in a continuous latent embedding space, enabling efficient Bayesian inference
over DAG structures.

Goal-Oriented and Decision-Theoretic BOED Goal-oriented BOED extends classical optimal
design principles—such as L-, Da-, I-, V-, and G-optimality (Atkinson et al.l 2007)—by shifting the
objective from general parameter estimation to directly maximizing utility for specific, downstream
Qols, a concept first formulated by |[Bernardo| (1979). Modern work has focused on the computational
challenges of this paradigm, developing scalable approximations for high-dimensional Qols (Attia
et al., 2018; Wu et al.| [2021) and leveraging advanced sampling or likelihood-free methods for
complex nonlinear scenarios (Zhong et al.| 2024;|Chakraborty et al.,|2024). Within this landscape, a
prominent direction is decision-theoretic BED, which optimizes experiments for downstream task
performance. For instance, Huang et al.|(2024) use an amortized transformer policy to maximize a
Decision Utility Gain, while [Filstroff et al.|(2021)) introduce an active learning criterion that directly
maximizes the expected information gain over the posterior of the optimal decision, framing utility in
terms of outcome predictions y rather than parameter inference over . Closer to our approach, other
methods use information-theoretic objectives for specific goals. A key example is Bayesian Algorithm
Execution (BAX), which maximizes information gain to estimate properties of black-box functions
(Neiswanger et al., |2021). However, despite their philosophical alignment with our work, these
powerful frameworks are not designed for the unique challenges of causal experimental design. Their
core limitations are twofold: they typically operate on static functions with standard uncertainty, not
on Structural Causal Models (SCMs) with their hybrid uncertainty space that combines discrete graphs
and continuous, graph-dependent mechanisms; and they query a fixed data-generating process, unable
to accommodate an interventional action space where experiments surgically alter the probabilistic
model itself to answer causal questions.

Non-Myopic Sequential BOED Non-myopic sequential BOED addresses the limtiations of greedy,
single-step experimental strategies by planning optimal sequences of interventions. Such methods
have been broadly explored in various general settings (Foster et al.| 2021} [vanova et al.l 2021}
Blau et al.l |2022; Shen & Huan| 2023} Blau et al., [2023)), including goal-oriented extensions such
as vsOED (Shen et al., [2025). Within causal BOED specifically, non-myopic approaches have
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predominantly focused on causal discovery tasks aimed at learning the graph structures (Annadani
et al.| 2024} |Gao et al., [2024). Although active learning methods targeting specific causal reasoning
queries have also been proposed (Toth et al.l [2022)), these typically employ myopic (single-step)
intervention designs, thus limiting their ability to strategically plan for long-term gains.

C EXPERIMENT DETAILS

C.1 HYPERPARAMETER SETTINGS FOR POLICY AND POSTERIOR NETWORKS

The input to the policy network has shape (n = njy x T, d, 2), where the last dimension encodes
the intervention data and binary intervention masks. The policy network architecture (see Figure[7)
proceeds as follows:

1. The input is passed through a fully connected layer, transforming it to the shape (nj, x 7, d,
nembedding)‘
2. The embedded representation is processed through L stacked Transformer layers. Each
layer includes:
* Two multi-head self-attention sublayers, each preceded by layer normalization and
followed by dropout.
* A feedforward fully-connected (FFN) sublayer, also preceded by layer normalization
and followed by dropout.
Residual connections are applied after each sublayer. This output retains the shape (n, x
T,d, nembedding)~
3. A max-pooling operation is applied across the nj, x 71" dimension, yielding a compressed
representation of shape (d, Nempedding)-
4. The pooled representation is passed through:
* A target prediction layer, followed by a Gumbel-softmax transformation with tempera-
ture 7, producing a discrete intervention target vector.

* A separate value layer, with final outputs scaled to fall within a specific range min,q;
and max,;.

The detailed implementation setup is provided in Table[I] The “step” associated with 7 refers to the
current training step, and the values of 1", nep, and neqys per training step are kept to be the same as
those used for training the posterior networks (see below).

Target

d XL

Y
Max-pool over X
axisn /
ht—l _— — /, /

n N

Transformer Block Transformer Block

Attending over axisd  Attending over axis n

Figure 7: Policy network architecture. The model takes as input a three-dimensional tensor of
shape n x d x 2, where n = nj, X T'. It is permutation-invariant along the n-axis and permutation-
equivariant along the d-axis. Each of the L layers first applies self-attention across the d-axis,
followed by attention across the n-axis, with shared parameters across the non-attended axis.

For the posterior networks, the initial input has shape (nenys, nine X 7', d, 2), representing full
trajectories. The processing steps follows the same as those of the policy network up to step 3,
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Table 1: Hyperparameter settings for the policy network.

Hyperparameter Value

Embedding dimension nempedding 32
Number of transformer layers (L) 4

Key size in self-attention 16
Number of attention heads 8
FFN dimensions (nembeddinga 4 x Tembedding » nembedding)
Activation ReLU
Dropout rate 0.05
maxygl 10
mingq; —10
T min(5 x 0.9995%P, 0.1)
Initial learning rate 5x10~%or 1074
Scheduler ExponentialLR with v = 0.8, step every 1000 training steps
T 10 when d = 10, 20
15000 when d = 30
Ngtep 10000 when d = 10
15000 when d = 20, 30
Neny P training step 10

resulting in a max-pooled output of shape (Renys, d, Membedding)- Specific to the causal discovery case,
starting from step 4:
4. The pooled representation is processed as follows:

* Two independent linear transformations are applied to produce vectors w and v, each
of shape (Renvs, d, Nour)-

* Both u and v are normalized using their />-norm along the last dimension.
5. Pairwise edge logits are computed:

* A dot product between every pair of variables u; and v;, resulting in a tensor of shape
(nCHVS’ dv d)'

* The logits are scaled by a learnable temperature parameter “temp” via the operation
logit,; x exp(temp), which is then added element-wise with a learnable term, “bias”.

The detailed implementation setup is provided in Table[2}

Table 2: Hyperparameter settings for the posterior network in the causal discovery case.

Hyperparameter Value

Embedding dimension nembedding 128
Number of transformer layers (L) 8

Key size in self-attention 64

Number of attention heads 8

FFN dimensions (nembeddinga 4 x Tembedding s nembedding)

Activation ReLU

Dropout rate 0.05

Bias -3

Temp 2

Initial learning rate 1074

Scheduler ExponentialLR with v = 0.8, step every 1000 training steps

Specific to the causal reasoning case, starting from step 4:

4. The pooled representation is flattened to shape (nenys, d X Nembedding) and passed into the s(+)
and ¢(-) networks, with ny,,s transformations in total. The final output has shape (nenys, 7).
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The detailed implementation setup is provided in Table[3]

Table 3: Hyperparameter settings for the posterior network in the causal reasoning case.

Hyperparameter Value

Embedding dimension 7embedding 16
Number of transformer layers (L) 8

Key size in self-attention 16

Number of attention heads 8

FFN dimensions (nembeddingu 4 x Tembedding » nembedding)

Activation ReLLU

Dropout rate 0.05

Ttrans 4

s(+) and ¢(-) dimensions (256, 256, 256)

Initial learning rate 5x107%or1073

Scheduler ExponentialLR with v = 0.8, step every 1000 training steps

C.2 EXAMPLE IN SECTION [3.1]

In this example, we consider a fixed causal graph structure with Gaussian priors on parameters:

010 ~ N(Ol, 1), 923 ~ N(170.22), 935 ~ N(02,052), 945 ~ N(—0.5,0.52),
015 ~ N(—0.2,0.52), 024 ~ N(0.3,0.32), 636 ~ N(0,0.52), 655 ~ N(0,0.52),
014 ~ N(—0.5,0.32),

with observation model X; = 0," X,,,(;) + €; where 8; = [0;;]", j € pa(i), and additive Gaussian
noise ¢; ~ N'(0, 02) with standard deviations o = {0.2,0.2,0.2,0.2, 0.3, 0.3}. This linear-Gaussian

setup enables analytical posterior computations and efficient estimation of the variational lower bound
RT;L(TF; )\7 ¢)

Figure provides a qualitative assessment of the posterior approximation gx(z|fs (k7)) achieved
by NFs. The NF-based approximations closely align with the true posterior predictive distributions
p(z|hr) across these two examples, demonstrating a high-quality posterior approximation.

Comparison of Posteriors (hy 1) Comparison of Posteriors (hy 2)

-1.2 -0.90

— p(zlhr)
1.0 -0.75 5.5-
: -0.60

Gl olhr)) |
— p(elhn)

(2| fs(hr))

-0.4 -0.30

0.2 0.15

2.0-
0.0 0.00 0.0 0.00

Figure 8: Comparison between the true posterior predictive distribution p(z|hr) and the variational
approximation gx(z|fs(hr)) for two simulated trajectories. The approximate posterior closely
aligns with the true posterior.

C.3 EXAMPLES IN SECTIONS AND[3.3]

In the synthetic experiments, we consider Erdos—Rényi (ER) and Scale-free (SF) random graphs as
priors over graph structures. For semi-synthetic experiments, we utilize gene regulatory networks
derived from the DREAM benchmarks [Greenfield et al.| (2010), which reflect realistic biological
scenarios.
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C.3.1 PRIORS OVER GRAPH STRUCTURES

Erdos-Rényi In the ER model, each potential edge between node pairs is included independently
with a fixed probability p. Given n nodes, the resulting random undirected graph has a number of
edges that follows a binomial distribution, with the expected number of edges equal to p X (72’)
Following |Lorch et al.[(2022), we scale p such that the expected number of edges is O(d), where d is
the desired average degree. To obtain a DAG, we first retain only the lower triangular portion of the
adjacency matrix and then apply a random permutation to the node indices to break symmetry.

Scale-free SF graphs exhibit a power-law degree distribution, where the probability that a node has
degree k is proportional to k£~7, with an exponent v > 1 (Barabasi & Albert,|1999). Consequently,
a small subset of nodes (“hubs”) has a very high number of connections, while most nodes have
relatively few. Such structures are commonly observed in biological and social networks. We generate
SF graphs using the Barab4si—Albert preferential attachment model implemented in NetworkX, which
iteratively adds nodes by connecting them preferentially to existing high-degree nodes.

Realistic Gene Regulatory Networks For semi-synthetic scenarios, we employ networks from the
DREAM benchmarks |Greenfield et al.|(2010), widely used for evaluating computational approaches
to reverse-engineering biological systems. DREAM datasets provide realistic simulations of gene
regulatory and protein signaling networks generated by GeneNetWeaver v3.12. Specifically, our
experiments focus on two DREAM subnetworks—the E. coli and Yeast networks—following the
setup described in Tigas et al.| (2023).

C.3.2 MECHANISMS

Linear Model In the linear setting, each variable X; is modeled as a linear function of its parent

variables X ;) according to

Xi = 0] Xpi) +bi + e, (A12)

where ¢; ~ N (0, 0?) with fixed variance 02 = 0.1. The parameters have priors 8; ~ N(0, 2) and
b ~U(—1,1).

Nonlinear Model For the nonlinear setting, the functional relationship between each child and its
parent is modeled using a feedforward neural network with two hidden layers, each containing 8
ReLU-activated neurons. All weights and biases have standard normal priors.

Queries for Causal Reasoning For the causal reasoning expenments shown in Figure [3] the
query Qols for the four panels are: z = {Xg, Xg|do(Xs ~ N (5,2%))};{Xo, X5 |do(Xe ~
N(3,1))}; { X35, X5|do(X5 ~ N(6,0.5?))}; and {Xg,X4|dO(X9 ~ N(4,1))}. For the E. coli
case in Figure 4] the Qol is z = {X¢, Xg | do(X7 ~ N(4,2%))}.

Comparison to Discovery-Oriented Policy To contextualize the performance of GO-CBED-z, we
also include the performance of the structure-learning-oriented policy 7, evaluated on Ry, 1, (75), as
shown in in Figures[9]and[I0} While GO-CBED-G is effective for causal discovery, it is consistently
outperformed by GO-CBED-z when the objective is to estimate specific causal inquiries, as seen by
comparing to Figures[3]and

C.4 INCORPORATING EXISTING OBSERVATIONAL DATA INTO THE PRIOR

In practical settings, it is common to have access to a set of observational data D prior to designing
interventions. This data can be used to update the prior into a posterior, which then serves as an
informative prior for the subsequent experimental design. We infer both the posterior over the graph
structure p(G|D) and the parameters p(0|D, G) in two stages.

First, since the realized data may not be available during posterior construction, we treat D as a
random variable. We infer the graph structure using the approach of [Lorch et al.|(2022), and train an
amortized variational posterior ¢ (f(D)), which generalizes across potential realizations of D, by
minimizing

Ep) [Dx (P(GID) || ax(f4(D))] (A13)
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Figure 9: Evaluation of policies on ER and SF graphs with nonlinear causal mechanisms. The 7,
demonstrates better performance in identifying the underlying causal graph on both settings.
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Figure 10: Evaluation of policies on E. coli graphs with nonlinear causal mechanisms. The 7,
demonstrates strong performance in accurately identifying the underlying causal graph.
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with respect to variational parameters A and ¢. The approximate posterior gy is modeled as a product
of independent Bernoulli distributions over potential edges. Once a specific realization D* becomes
available, the posterior is instantiated via substitution as gx (fs(D*)). Samples from this distribution
are drawn from the Bernoulli marginals and retaining only acyclic graphs to ensure valid DAGs.

Second, to perform inference over the parameters 8, we exploit the conditional independence structure
of the posterior:

p(8|D,G) = [ [ p(6;Dpais)» Dj» G).- (Al4)
J

This factorization enables efficient sampling of 8 by decomposing the joint posterior into node-wise
conditionals. For linear models, we sample directly from the posterior p(6;|G, D) using Markov
chain Monte Carlo. For nonlinear models, we apply Pyro’s Stochastic Variational Inference (SVI)
Bingham et al.| (2019) to learn a mean-field Gaussian approximation to the posterior.

D ADDITIONAL EXPERIMENTS

D.1 HIGHER BIAS IN THE NMC ESTIMATOR

We provide a qualitative comparison between the NMC estimator and the GO-CBED approach. The
experiment follows the setup in Figure which assumes a fixed graph with 7" = 1 and additive
Gaussian noise ¢; ~ N(0, 0.3?) for all observations. Interventions are uniformly selected in integers
from —5 to 5, and the Ry or R, 1, is evaluated using the NMC and GO-CBED estimators and
presented in Figure[I2] Since there is no policy optimization in this setting, GO-CBED reduces to
training a variational posterior network using NFs.

The NMC estimator uses an outer loop size of 5,000 samples, and the inner loop sample size is
indicated in the parenthesis in the legend of Figure This sample size is also used as the training
sample size for GO-CBED. Despite using significantly fewer samples, GO-CBED consistently
identifies the optimal EIG near the boundary of the design space. This finding reinforces our
observation from Section variational approximations via GO-CBED can offer more efficient
and reliable EIG estimation compared to NMC, especially in causal inference tasks involving large
graphs or high-dimensional parameter spaces, where traditional sampling becomes computationally
and memory intensive.

do(X; =2)

/ ‘ N{O,OEZ) ./' \\.‘.
-j.‘.. Xl :‘;—\:‘ XZ

N

N(21) N(0.5,0.22)

N(1,0.5%)
. X3 ) | X, )
ANy 3 N(02%) N 4)

Figure 11: Evaluation of interventions on node 1 using integers from —5 to 5, with the causal query
defined as z = { X3, X4 | do(X2 = 2)}.

D.2 CAUSAL REASONING ON SYNTHETIC GRAPH WITH 20 NODES

Figure|13[shows the causal reasoning results on graphs with Erdos Rényi (ER) and Scale-free (SF)
prior, with d = 20 and T' = 10. In all cases, GO-CBED-z consistently outperforms the other methods
on both the prior-omitted EIG lower bound and the Wasserstein distance, demonstrating the scalability
of GO-CBED.
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Figure 12: Prior-omitted EIG lower bound estimates, with parenthesis values denoting the inner loop
sample size for NMC and training sample size for GO-CBED. Shaded regions represent 1 standard
error across 4 random seeds.
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Figure 13: Causal Reasoning on Synthetic SCMs (d = 20, 3 interventions per stage). GO-CBED-z
consistently outperforms baselines; shaded regions denote 1 standard error over 4 random seeds.

D.3 CAUSAL REASONING ON DIVERSE REALISTIC GRAPH STRUCTURES

In Section[5.2] we presented causal reasoning results using the E. coli gene regulatory network. Here,
we extend the analysis to include additional tasks based on both E. coli and Yeast gene regulatory
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networks, each incorporating nonlinear mechanisms. These supplementary experiments further
demonstrate the robustness and generality of GO-CBED across a range of causal graph structures
and varying complexities of intervention-target relationships (see Figure[T4).

Causal Models with Targeted Queries Ry, (1) (1) wbD (1)

Number of Stages Number of Stages

©

Number of Stages Number of Stages

Figure 14: Additional causal reasoning experiments on nonlinear gene regulatory networks. (a) E.
coli network in Section intervention on node 7 targeting nodes 6 and 8. (b) Yeast network:
intervention on node 8 targeting nodes 0 and 9. (¢) E. coli network: intervention on node 5 targeting
nodes 7 and 9. GO-CBED consistently outperforms baseline methods, with performance gains
varying based on the structural complexity of the intervention-target relationships. Shaded regions
represent 1 standard error over 4 random seeds.

Specifically, Figure[T4[a) corresponds to the main result in the paper. Figures[[4)(b) and (c) illustrate
additional scenarios, highlighting GO-CBED’s consistent advantages across diverse topologies. In
Figure[I4)(b), GO-CBED achieves higher the EIG compared to baselines. This improvement likely
stems from the complex paths linking intervention nodes to targets, where goal-oriented strategies
more effectively exploit structural dependencies.

In contrast, Figure [T4)(c) shows a reduced performance gap. This is likely due to node X5 being
highly informative for both causal discovery and targeted queries, aligning the objective of structure
learning and query-specific inference. Notably, the random policy also performs competitively in this
setting, likely benefiting from the high-quality variational posterior achievable even under random
interventions. We leave a deeper investigation of this phenomenon as an interesting direction for
future work.

D.4 EXTENDED EVALUATION ON CAUSAL DISCOVERY TASKS

We further evaluate in nonlinear settings: synthetic SCMs with ER and SF graph priors (Figures[I5]
and [I6)), and semi-synthetic E. coli and Yeast gene-regulatory networks (Figures[I7]and [I8). For
nonlinear SCMs, we benchmark against Random and SoftCBED only, as other baselines were not
validated in this regime in their original work. Across all the metrics, GO-CBED performs better or
comparatively compared to these baselines, though the margins are smaller than in the linear case,
reflecting the added difficulty of recovering full structures with nonlinear mechanisms. These findings
reinforce the motivation for goal-oriented BOED: when the objective is to answer specific causal
queries rather than reconstruct the entire model, targeted policies provide greater efficiency.
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Figure 15: Causal discovery performance on nonlinear SCMs with Erd6s-Rényi (ER) prior. GO-
CBED performs better or comparatively in terms of uncertainty reduction (Rr,z,), structural recovery
(E-SHD), and structural accuracy (F}-score and AUPRC) compared to all baselines. Shaded regions
indicate +1 standard error across 10 random seeds.
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Figure 16: Causal discovery performance on nonlinear SCMs with Scale-free (SF) prior. GO-CBED
performs better or comparatively in terms of uncertainty reduction (Rr.r), structural recovery ([E-
SHD), and structural accuracy (Fj-score and AUPRC) compared to all baselines. Shaded regions
indicate 1 standard error across 10 random seeds.
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Figure 17: Causal discovery performance on nonlinear E. coli gene regulatory networks. GO-CBED
performs better or comparatively in terms of uncertainty reduction (R,1,), structural recovery (-
SHD), and structural accuracy (Fj-score and AUPRC) compared to all baselines. Shaded regions
indicate 1 standard error across 10 random seeds.
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Figure 18: Causal discovery performance on nonlinear Yeast gene regulatory networks. GO-CBED
performs better or comparatively in terms of uncertainty reduction (Rr.r,), structural recovery (E-
SHD), and structural accuracy (F}-score and AUPRC) compared to all baselines. Shaded regions
represent 1 standard error across 10 random seeds.

D.5 PERFORMANCE COMPARISON WITH ORIGINAL POSTERIOR INFERENCE METHODS

In the main paper, we establish a fair comparison among policies by evaluating them using their
respectively trained variational posteriors, thereby isolating the impact of policy optimization. How-
ever, a key advantage of GO-CBED is its joint training of both the policy and posterior networks.
Specifically, the posterior networks trained in GO-CBED can themselves serve as a highly efficient
inference tool, even independent of the policy.

Here, we provide additional results in which each baseline method is evaluated using its original
posterior inference procedure, as proposed in its respective paper. Specifically, CAASL (Annadani
et al.| 2024)) uses a fixed pre-trained AVICI posterior (Lorch et al.,[2021); DiffCBED (Tigas et al.,
2023) and SoftCBED (Tigas et al.,|2022) rely on DAG-Bootstrap (Friedman et al., 2013; Hauser &
Biihlmann, |2012)) for linear SCMs and DiBS (Lorch et al.,[2021) for nonlinear SCMs. For brevity,
we report [E-SHD and F3 as representative structure- and edge-level metrics.

Figures[I9]and 20| present results on synthetic and semi-synthetic SCMs with both linear and nonlinear
mechanisms. GO-CBED consistently outperforms baselines across both the E-SHD and F score
metrics. Interestingly, even the random policy—when paired with its associated trained variational
posteriors—achieves competitive performance, highlighting the advantage variational posteriors bring
to causal learning.

D.6 DISTRIBUTIONAL SHIFT IN OBSERVATION NOISE

We evaluate the robustness of GO-CBED’s policy and posterior networks under distributional shifts
in observation noise. At deployment, the noise variance o7 is sampled from an inverse Gamma
distribution, af ~ InverseGamma(10, 1), in contrast to the fixed variance (01'2 = 0.1) assumed during
training. For comparison, we include a random intervention policy baseline, paired with a posterior

network trained specifically on data with the shifted noise distribution.

We first focus on causal reasoning tasks, with ER and SF graph priors over 10-node networks. As
shown in Figure GO-CBED consistently outperforms the random baseline, demonstrating the
robustness of both its policy and posterior networks in the presence of heteroskedastic noise. In the
causal discovery setting (Figure 22), GO-CBED maintains strong performance, demonstrating its
reliability across multiple causal tasks and noise conditions.

E LLM USAGE

We used LLMs only for editing grammar, wording, and clarity of the written text. They were not
used for ideation, methods, analysis, or drafting. All scientific content is by the authors, who take full
responsibility.
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Figure 19: Performance comparison on synthetic SCMs, with each method using its originally
proposed posterior inference approach. GO-CBED consistently outperforms all baselines across both
linear and nonlinear settings, demonstrating the advantage of jointly optimizing policy and posterior
networks. Shaded regions represent 1 standard error across 10 random seeds.
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Figure 20: Performance comparison on semi-synthetic gene regulatory (E. coli and Yeast) networks,
with each method using its originally proposed posterior inference approach. GO-CBED demonstrates
strong performance on causal tasks in biologically inspired settings. Shaded regions represent 1
standard error across 10 random seeds.
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Figure 21: Evaluation of GO-CBED under a distributional shift in observation noise at deployment for
causal reasoning tasks. GO-CBED consistently outperforms the random baseline that uses posterior
networks trained under the shifted noise, demonstrating the robustness of its jointly optimized policy
and posterior networks.
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Figure 22: Evaluation of GO-CBED under a distributional shift in observation noise at deployment
for causal discovery tasks. GO-CBED consistently outperforms the random baseline that is using
posterior networks trained under the shifted noise, demonstrating the robustness of its jointly opti-
mized policy and posterior networks.
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