
Under review as submission to TMLR

Simplifying Actor-Critic Reinforcement Learning: Mitigating
Overestimation Bias with a Single Distributional Critic

Anonymous authors
Paper under double-blind review

Abstract

Actor-critic methods in reinforcement learning leverage the action value function (critic) by
temporal difference learning to be used as an objective for policy improvement for the sake
of sample efficiency against on-policy methods. The well-known result, critic overestimation,
is usually handled by pessimistic policy evaluation based on critic uncertainty, which may
lead to critic underestimation. This means that pessimism is a sensitive parameter and
requires careful tuning. Current methods use epistemic or predictive uncertainty of the critic
for pessimistic learning, employing dropout and ensemble approaches. In this paper, we
propose a novel actor-critic algorithm, called Stochastic Actor-Critic (STAC), that employs
distributional representation (for aleatoric uncertainty) and Bayesian dropout (for epistemic
uncertainty) for critic and actor to make the agent uncertainty aware. Unlike previous
methods, pessimistic updates are only proportional to aleatoric uncertainty of the critic,
not epistemic uncertainty. This approach alone is enough to mitigate critic overestimation.
Introducing Bayesian dropout further improves performance in some environments, although
the resulting uncertainty is not used for pessimistic objective. With empirically determined
optimal pessimism and dropout rate, only a single distributional critic network is enough
to achieve high sample efficiency. In addition, using a single critic with an update-to-data
(UTD) ratio equal to 1 provides computation-efficient learning compared to other SOTA
methods.

1 Introduction

Reinforcement learning (RL) has witnessed significant progress with the emergence of deep neural networks
(Mnih et al., 2013; 2015) in the last decade. However, sample efficiency is one of the main bottlenecks of
widespread adaptation of RL into applications (Mendonca et al., 2019; Li et al., 2023a). On the other hand,
computation efficiency is as important as sample efficiency (Chen et al., 2021a), especially when RL agents
are deployed in real-life applications such as robots (Zhao et al., 2020; Kormushev et al., 2013) and edge
devices (Dai et al., 2022; Wei et al., 2022).

Actor-critic methods leverage off-policy samples to train critics, promising higher sample-efficient learning
than on-policy algorithms. Despite this advantage, they are usually stuck on poor performance due to a
mismatch between behavioral and online policy. Critic is trained by samples from behavioral policy, while it is
expected to evaluate on-policy actions. Therefore, critic estimates include errors naturally, and these erroneous
estimates are exploited by policy, and the algorithm suffers from critic overestimation that produces divergent
(catastrophic) behavior (Thrun & Schwartz, 2014). This problem is also named as deadly triad ((Sutton
& Barto, 2018; Van Hasselt et al., 2018)) indicating the instability emerges once function approximation,
temporal difference, and off-policy learning are in the same method together. In the literature, main solution
to the critic overestimation problem is to use a pessimistic learning objective. Such models use lower bounds
(conservative estimates) as the objective at the cost of underexploration.

1

Under review as submission to TMLR

1.1 Related Work

Pessimism upon epistemic uncertainty In the literature, the overestimation problem is mainly solved
by pessimistic learning based on epistemic uncertainty of critic (Chen et al., 2021b; Hiraoka et al., 2021).
The same approach is also used in model-based RL methods (Janner et al., 2019; Chua et al., 2018; Depeweg
et al., 2016). Recently, for off-policy model-free actor-critic algorithms, epistemic uncertainty is estimated by
using double network (Fujimoto et al., 2018; Haarnoja et al., 2018) or ensemble network (Chen et al., 2021b;
Moskovitz et al., 2021). Ensemble methods are computationally expensive as there are multiple of parameters
to be optimized. For this, Hiraoka et al. (2021) found out that using Bayesian dropout (Srivastava et al.,
2014; Gal & Ghahramani, 2016) also contributes to epistemic uncertainty assessment but a small ensemble is
still required. On the contrary, He et al. (2021) argued that a single critic network is enough when dropout
is also used to evaluate Bellman backup. The mentioned methods use a constant level of pessimism for
policy evaluation and improvement. Moskovitz et al. (2021) focused on updating pessimism on the fly as a
bandit problem rather than fixing it. They also argued that optimal pessimism (or optimism) depends on the
environment, task, and learning method. Li et al. (2023b) goes beyond this approach by parameterization
of optimism/pessimism with a neural network and obtains significantly good performance on benchmark
environments.

Pessimism upon aleatoric uncertainty Aleatoric uncertainty representation for the value function
carries fundamental importance, especially in the presence of approximation (Bellemare et al., 2017). This
can be conducted by atoms (Bellemare et al., 2017), quantiles (Dabney et al., 2018), and a probability
distribution (Tang et al., 2019; Yang et al., 2021). Kuznetsov et al. (2020) claims aleatoric uncertainty is also
responsible for overestimation since any randomness is exploited when the Bellman optimality operator (T ∗)
is employed. For this purpose, they use ensemble networks for epistemic uncertainty, in which each network
is a distributional network (as quantiles) for aleatoric uncertainty assessment. Their algorithm uses both
types of uncertainties for overestimation correction. For safety-critical RL applications to avoid catastrophic
situations, pessimistic policy updates upon aleatoric uncertainty are modeled as normal distribution by
Tang et al. (2019) and Yang et al. (2021). Stachowicz & Levine (2024) devised a risk-sensitive actor-critic
algorithm in which epistemic uncertainty is modeled by ensemble whereas aleatoric uncertainty is modeled by
distributional representation as an output of critic network similar to the work of Kuznetsov et al. (2020).
Their approach leads to higher performance by significantly reducing unsafe maneuvers.

Dropout uncertainty Using dropout is a kind of Bayesian approximation, so another way to assess
epistemic uncertainty (Gal & Ghahramani, 2016). It has applications on model-based (Gal et al., 2016a; 2017;
Kahn et al., 2017) and model-free (Moerland et al., 2017; Jaques et al., 2019; He et al., 2021) reinforcement
learning. Using the same idea in off-policy maximum entropy actor-critic setting, He et al. (2021) injects
dropout to the critic network and demonstrates that one critic network is enough for an actor-critic method.
Similarly, Hiraoka et al. (2021) uses the dropout mechanism to evaluate epistemic uncertainty in addition
to ensembling and shows that it reduces the number of required networks in the ensemble but they used
critics with deterministic outputs. Dropout allows for significantly reduced ensemble size and still uses a
high UTD ratio. They also experimented with a single critic network (called Sin-DroQ) and obtained similar
performance only in easy environments but failed to converge in difficult ones.

Optimism in the face of uncertainty Epistemic uncertainty is also employed to improve policy in
optimistic manner (Audibert et al., 2007; Kocsis & Szepesvári, 2006). This principle provides a reasonable
exploration scheme in an on-policy setting as this encourages exploration of state-action space. For large-scale
problems, this approach either fails or requires carefully tuned optimism (Pacchiano et al., 2020; Ciosek et al.,
2019). O’Donoghue et al. (2018) used normal distribution to track critic uncertainty in which the upper
bound is used as a policy improvement target. Osband et al. (2016) follows a similar way but uses ensembles,
and improves policy with random critics at each episode inspired by Thompson sampling. In the actor-critic
setting, Tasdighi et al. (2024) and Ciosek et al. (2019) implemented a double critic network and used optimistic
estimates for policy improvement while constructing pessimistic critic targets for policy evaluation to mitigate
the critic overestimation problem. Unlike others, Gal et al. (2016a; 2017); Azizzadenesheli et al. (2018); Wu
et al. (2023) employed Bayesian dropout for optimistic exploration.

2

Under review as submission to TMLR

1.2 Stochastic Actor-Critic Algorithm

In this paper, we introduce a novel off-policy actor-critic algorithm, Stochastic Actor-Critic (STAC), specifically
designed to address both sample and computation inefficiencies. STAC is an off-policy maximum entropy
actor-critic algorithm employing experience buffer to sample off-policy transition tuples, similar to Soft
Actor-Critic (SAC) (Haarnoja et al., 2018).

As the first contribution, we discuss whether using only aleatoric uncertainty is enough to be used for
pessimistic learning, instead of epistemic uncertainty. Although it is defined as the inherent stochasticity of
the process, it also arises due to the agent’s lack of learning capability. Therefore, there should be aleatoric
uncertainty even within deterministic environments. For this purpose, we define critic as a distributional
(heteroscedastic) model, which also allows learning loss attenuation, making the critic loss more robust to
noisy data (Kendall & Gal, 2017).

Our second contribution is a theoretical analysis of critic overestimation under the maximum entropy actor-
critic framework. As a result of this analysis, STAC devises environment-specific pessimism hyper-parameter
to be used upon aleatoric uncertainty of critic. Pessimistic updates are conducted in both policy evaluation
and improvement phases to tackle critic overestimation. The optimal pessimism improves sample efficiency,
yielding similar results to other methods that use a much higher update-to-data (UTD) ratio and ensembles.

Epistemic uncertainty can be used for exploration, which is the main idea of optimism in the face of uncertainty
principle. Most actor-critic methods use epistemic uncertainty for pessimism to mitigate critic overestimation,
revealing the necessity of a high update-to-data (UTD) ratio. This is also the main reason for the difficulty
of devising an optimistic actor-critic algorithm in our opinion. STAC allows not to use epistemic uncertainty
for overestimation mitigation, which would hinder exploration of state-action space of the problem. Instead,
it employs pessimism in the face of aleatoric uncertainty for this problem. STAC employs Bayesian dropout
(Srivastava et al., 2014; Gal & Ghahramani, 2016), which is also used for epistemic uncertainty in the literature.
However, dropout is not used for pessimistic learning but for exploration and regularization. Using dropout
at the policy improvement phase inherently conducts Thompson sampling (Gal & Ghahramani, 2016; Gal
et al., 2016a; 2017) in a heuristic way.

The implementation is very simple and can be obtained by injecting dropout to networks, introducing a
distributional critic network, and defining and pessimistic learning objective upon the well-known Soft Actor-
Critic algorithm (Haarnoja et al., 2018), without a double critic network. We conduct extensive experiments
on standard RL benchmarks to evaluate the performance of STAC compared to existing methods. Our
results demonstrate the effectiveness of STAC in achieving competitive performance to SOTA methods while
requiring fewer computational resources and fewer samples, making it a promising approach for real-world
RL applications.

2 Reinforcement Learning Preliminaries

This section is dedicated to briefly explain the reinforcement learning concept and actor-critic methodology.
Throughout the paper, P(Ω) denotes the set of all possible probability distributions on set Ω.

Agent
a ∼ π(·|s)

Environment
r = R(s, a)
s′ ∼ τ(·|s, a)

action
at

st+1

state
st

reward
rt

Figure 1: Markov Decision Process (MDP) Loop.

3

Under review as submission to TMLR

2.1 Model-free Reinforcement Learning

In reinforcement learning language, the agent lives in a Markov Decision Process (MDP) which is represented
by a tupleM = (S,A, d0, τ, R), where S is state space, A is action space, d0 ∈ P(S) is initial state distribution,
τ : S ×A → P(S) is transition kernel and R : S ×A → R is reward function.

The MDP loop is illustrated in Figure 1. The initial state is sampled first, s0 ∼ d0(·). At each time t being
on st ∈ S; next state is obtained from the environment, st+1 ∼ τ(· | st, at) depending on the taken action
at ∼ π(· | st). Finally, a reward is obtained, rt = R(st, at) from the reward function R. The ultimate goal of
the agent is to derive a policy π : S → P(A) to maximize discounted cumulative return, i.e., value function
for a given state s,

V π(s) = Eπ,τ

[∞∑
t=0

γtR(st, at)
∣∣∣s0 = s

]
. (1)

2.2 Maximum Entropy Actor-Critic

To promote random actions for exploration and algorithm robustness, maximum entropy framework introduces
policy entropy bonus into value functions (Haarnoja et al., 2017; 2018),

V π(s) = Eπ,τ

[∞∑
t=0

γtR(st, at)− α log π(at|st)
∣∣∣s0 = s

]
, (2)

Qπ(s, a) = R(s, a) + Eπ,τ

[∞∑
t=1

γtR(st, at)− α log π(at|st)
∣∣∣s0 = s, a0 = a

]
. (3)

Learning iterates between solving policy evaluation and policy improvement. For the definition of critic,
Bellman backup operator T π is defined,

T πQ(s, a) = R(s, a) + γEs′∼τ(·|s,a)
a′∼π(·|s′)

[
Q(s′, a′)− α log π(a′ | s′)

]
, (4)

and the critic is expected to remain same if this operator applied on itself, i.e., Qπ(s, a) = T πQπ(s, a). Policy
evaluation minimizes the temporal difference, i.e., the difference between Q and T πQ to satisfy this condition.
In practice, the temporal difference (TD) target is used instead of the Bellman backup T πQ(s, a) for learning.
TD target is calculated by a random action drawn from the policy π, instead of expectation.

The optimal policy gives the maximum value, i.e., π∗(·|s) = arg maxπ V π(s). Policy improvement improves
policy by updating estimated critic Qk at kth iteration as follows,

πk+1(· | s) = arg min
π

KL
(

π(· | s)
∣∣∣∣∣∣ exp(α−1Qk(s, ·))∫

A exp(α−1Qk(s, a))da

)
. (5)

After sufficient iteration, both policy and critic converge to optimality in the ideal case. In this iteration,
critic is also updated, Qk+1(s, a) = T ∗Qk(s, a), where T ∗ is the Bellman optimality opertor (Equation 5
from Haarnoja et al. (2017)),

T ∗Q(s, a) = R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1Q(s′, a′))da′
)]

. (6)

and the optimal critic function satisfies the Bellman optimality condition, Q∗(s, a) = T ∗Q∗(s, a).

3 Modeling Aleatoric and Epistemic Uncertainties

In this part, we explain the differences between two main types of uncertainties, aleatoric and epistemic
uncertainty (Der Kiureghian & Ditlevsen, 2009; Kendall & Gal, 2017; Gal et al., 2016b). Most deep learning
methods model either epistemic or aleatoric uncertainty alone (Gal et al., 2016b), whereas modeling both has
fundamental importance for reliable and robust predictions.

4

Under review as submission to TMLR

Figure 2: Aleatoric vs Epistemic uncertainty illustration.

3.1 Aleatoric Uncertainty

This type of uncertainty comes from the inherent randomness within the data. It is sometimes called statistical
or data uncertainty. Even if more data are collected, it is unavoidable and cannot be reduced, because it is
an intrinsic part of the process being modeled, including measurement errors or natural variability in the
data. In addition, uncertainty due to lack of learning capacity may also appear as aleatoric uncertainty as
it cannot be reduced by collecting more data. In other words, the agent cannot decide true deterministic
output just because it is not capable of doing it and assigns a non-deterministic distribution as output.

For regression problems in deep learning setting, we can model this by having a distributional (heteroscedastic)
network (with parameter θ) that outputs a normal distributionN (µθ(x), σ2

θ(x)), where both mean and variance
depends on input x (Lakshminarayanan et al., 2017; Kendall & Gal, 2017). Given a dataset D = {(xi, yi)}N

i=1,
the loss function for training the network can be derived from the negative log-likelihood of the normal
distribution,

Lθ(D) = − log p(D | θ) = 1
N

N∑
i=1

(1
2σ2

θ(xi)
(y − µθ(xi))2 + 1

2 log σ2
θ(xi)

)
+ 1

2 log 2π. (7)

3.2 Epistemic Uncertainty

Epistemic uncertainty reflects the uncertainty in the model parameters due to insufficient training data, or
incomplete understanding of the underlying process. This kind of uncertainty can be reduced by gathering
more data or using a better model with higher generalization capability. The difference between aleatoric and
epistemic uncertainty is illustrated in Figure 2. Aleatoric uncertainty is high in inherently random regions
while epistemic uncertainty is high where there is no (or less) data.

In deep learning context, Bayesian neural networks (BNNs) provide a way to model epistemic uncertainty.
Given the training data D and prior distribution p(θ) over the network parameters θ, we can compute the
posterior distribution over the parameters p(θ | D) using variational inference.

Practical Implementation with Monte Carlo Dropout Monte Carlo dropout is a practical method to
approximate Bayesian inference in neural networks (Gal & Ghahramani, 2016; Gal et al., 2017). Sampled
weights θ are same as network weights w but randomly masked by dropout. During training, dropout is
applied and the model learns to make predictions with dropout active. The loss function in this setting
typically remains the same as the standard loss (e.g., negative log-likelihood).

5

Under review as submission to TMLR

4 Quantifying Overestimation for Sub-Gaussian Critic Distributions

In this part, we analyze how estimation error causes overestimation due to policy improvement. Assuming
the policy improvement step is successful given critic function Q ∈ RS×A, the target used to update the
critic in maximum entropy framework is Bellman backup T πQ, i.e., Bellman backup operator applied on
Q. The definition uses the deterministic function Q (Equation 4) while the critic may only be known with
uncertainty, represented as a predictive distribution Q ∈ P(RS×A). Therefore, we define expected Bellman
backup EQ∼Q[T πQ(s, a)] as follows;

EQ∼Q[T πQ(s, a)] = R(s, a) + γE Q∼Q
s′∼τ(·|s,a)
a′∼π(·|s′)

[
Q(s′, a′)− α log π(a′ | s′)

]
. (8)

Similarly, we define expected Bellman update EQ∼Q[T ∗Q(s, a)], i.e., Bellman optimality operator applied on
Q as follows;

EQ∼Q[T ∗Q(s, a)] = R(s, a) + γE Q∼Q
s′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1Q(s′, a′))da′
)]

. (9)

Now, we analyze overestimation bias, similar to the work of Chen et al. (2021b) and Lan et al. (2020) but
in the soft learning framework instead of discrete actions. Our main purpose is to find the source of critic
overestimation and to devise a pessimistic Bellman operator to prevent overestimation.
Definition 4.1. A random variable X ∈ R with mean µ = E[X] is called sub-Gaussian with variance proxy
σ2 if its moment generating function satisfies

E[exp(λX)] ≤ exp
(
λµ + 1

2λ2σ2)
, ∀λ ∈ R. (10)

Let µ(s, a) = EQ∼Q[Q(s, a)]. We define overestimation error as difference between EQ∼Q[T ∗Q(s, a)] and
average T ∗µ as ϵ,

ϵ(s, a) = EQ∼Q[T ∗Q(s, a)]− T ∗µ(s, a). (11)

In the ideal case, ϵ(s, a) should be zero if there is no overestimation, which is not the case due to critic
uncertainty. To quantify it, we assume that critic distribution Q(s, a) is sub-Gaussian with variance proxy
σ2(s, a), representing uncertainty. If there exist an upper bound for overestimation, this bound can be used
to devise a conservative Bellman backup operator. For this, we present Theorem 4.1. The proof is available
in Appendix A.
Theorem 4.1 (Overestimation quantification for sub-Gaussian critics). Given estimated critic distribution
Q ∈ P(RS×A), let Q(s, a) be sub-Gaussian with mean µ(s, a) and variance proxy σ2(s, a) for all state-action
pairs, with bounded support. Then,

EQ∼Q[T ∗Q(s, a)] ≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1µ(s′, a′) + 1
2α−2σ2(s′, a′))da′

)]
. (12)

In addition, overestimation due to uncertainty of estimated distribution Q, denoted as ϵ, is upper bounded for
Bellman updates,

ϵ(s, a) ≤ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
. (13)

Corollary 4.1.1 (Pessimistic critic target). Given estimated critic distribution Q, using shifted distribution
Q̃ = N (µ̃, σ̃2) for Bellman updates, where mean is shifted µ̃ = µ − βσ with same variance proxy σ̃2 = σ2,
prevents overestimation as long as β ≥ max

(s′,a′)
1
2 α−1σ(s′, a′).

6

Under review as submission to TMLR

The source of overestimation and necessity of pessimistic training is revealed in Theorem 4.1 and Corollary
4.1.1. Although using pessimistic critic targets for critic and policy training is not a new idea (Moskovitz et al.,
2021; Kuznetsov et al., 2020; Chen et al., 2021b), the question of how to determine pessimism (β) remains.
For this, Moskovitz et al. (2021) had shown that optimal pessimism/optimism depends on the environment
and learning method. Another question is about the determination of predictive critic distribution. For
overestimation mitigation, we believe that using a distributional critic network is enough, which mainly
models aleatoric uncertainty.

5 Stochastic Actor-Critic

In this section, we discuss key mechanisms needed for computation and sample efficient actor-critic learning
and propose our algorithm Stochastic Actor-Critic. This algorithm employs single distributional critic network
which captures aleatoric uncertainty and Bayesian dropout for epistemic uncertainty instead of ensembling.
Unlike other methods, STAC uses critic estimates in a pessimistic manner using only aleatoric uncertainty,
for policy evaluation and policy improvement.

The rationale behind this argument is that most of the TD target randomness due to ongoing policy updates
are inherently appears as aleatoric uncertainty. Overestimation is caused by this randomness due to critic
optimization process. Moreover, out-of-distribution samples are detected by high epistemic uncertainty, and
should not be disregarded by pessimism. On the contrary, such samples should be explored using suitable
methods. Therefore, epistemic uncertainty should not be used for overestimation mitigation in our opinion.

5.1 Distributional (Heteroscedastic) Critic

Distributional (heteroscedastic) networks output probability distribution instead of a point estimate and are
designed to model aleatoric uncertainty of underlying phenomena (Kendall & Gal, 2017; Lakshminarayanan
et al., 2017). In addition to this property, modeling output as a distribution allows the network to learn loss
attenuation and makes learning robust to noisy data (Kendall & Gal, 2017). In our setting, the objective
is to fit a distribution of Bellman backup uncertainty which is sourced by non-stationarity of learning
procedure (ongoing policy changes and noise due to optimization process) (Dabney et al., 2021), uncertainty
due to difficulty of assessing a value on some parts of state-action space (limited model capacity), and
stochasticity of state transition if exists. The first two mentioned sources of uncertainty are the main reasons
for overestimation, and this uncertainty modeled by the distributional critic can be used for pessimistic
updates of the critic itself and the policy.

For simplicity, STAC models critic as normal distribution. This contradicts with bounded distribution
assumption of Theorem 4.1, but it yields a simple loss function and is easy to interpret. Still, it is reasonable
to assume critic distribution is bounded for finite horizon or discounted MDPs (γ < 1) with bounded reward
functions.

Another important note is that STAC models aleatoric uncertainty for only one step, i.e., the mean of
next-state value is bootstrapped instead of a random sample, since we are interested in uncertainty raised by
function approximation errors rather than cumulative return distribution, unlike previous distributional RL
methods. However, errors due to critic overestimation and environment/reward stochasticity still blends in a
single normal distribution. Therefore, pessimism should be carefully selected (should not be too far from
zero) in highly stochastic environments, since high pessimism may yiled to focus on less stochastic parts of
the environment.

5.2 Pessimistic Objective

Like most algorithms, the natural way to inhibit overestimation is by employing pessimistic critic updates.
Given that critic value distribution is normal (still sub-Gaussian), we can use modified pessimistic distribution
Q̃ = N (µ − βσ, σ2) from Corollary 4.1.1, but it would be overpessimistic for higher β values which are
required to guarantee overestimation prevention.

7

Under review as submission to TMLR

According to Corollary 4.1.1, pessimistic TD targets should be used to train critic network. However, this
analysis do not account for policy learning since policy is assumed as softmax over action values. In actor-crtic
framework, same pessimistic objective should be used for policy improvement, since policy evaluation objective
and policy improvement objective should be the same. In other words, at learning step k, Bellman backup
must be equal to Bellman policy evaluation with the new policy, T ∗Qk = T πk+1

Qk. It is only possible by
using same pessimistic critic value for policy improvement.

There are many factors affecting the optimal pessimism level. For example, policy improvement is slower
than policy evaluation in actor-critic methods, decreasing the degree of overestimation. In addition, the real
variance might be lower than the estimated variance. Lastly, overestimation may not even occur as much as
the bound. For this purpose, we state that β simply stands as a pessimism parameter to be tuned for each
environment and learning hyper-parameters and it can be small depending on the learning process. At the
end, we define the pessimistic expected Bellman update EQ∼Q̃[T ∗Q(s, a)] as follows;

EQ∼Q̃[T ∗Q(s, a)] = R(s, a) + γE Q∼Q̃
s′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1Q(s′, a′))da′
)]

. (14)

Normal distribution assumption yields the tightest bound for overestimation, converting second inequality
into an equality in the proof of Theorem 4.1. This way, overestimation is closer to the upper bound and
yields the worst case.

There is no analytical way to determine the optimum pessimism level. Moskovitz et al. (2021) focus on
updating pessimism on the fly as a bandit problem instead of fixing it but this requires evaluating on-policy
returns and introduces an online bandit to update pessimism. This approach would work in an off-policy
online setting surely, but it is not usable in a completely offline setting since there would be no feedback for
the bandit. To allow STAC to be also used in offline settings in the future, the pessimism level is defined as a
fixed hyper-parameter.

5.3 Dropout Regularization

Dropout regularization (Srivastava et al., 2014) allows to capture the probabilistic nature of a network,
representing Bayesian neural networks (Gal & Ghahramani, 2016). It is also equivalent to representing the
model as an ensemble since each sampled weight set of the network corresponds to a sub-model (He et al.,
2021). For this purpose, STAC employs dropout regularization for both critic and policy networks. Neural
architectures of critic and policy are illustrated in Appendix D.

Epistemic uncertainty modeled by dropout is not used for pessimistic learning. It has an effect if a given
state-action pair is out-of-distribution and pessimism would hinder the agent from exploring these states and
actions. However, aleatoric uncertainty would be high on in-distribution but stochastic parts of state-action
space, which are not related to exploration.

Dropout regularizes the learning procedure, and promotes exploration in a heuristic way. In STAC, dropout
is active in all phases of learning. Each forward pass randomly draws an action to take, and a value estimate
for policy improvement in an epistemic manner, yielding Thompson sampling for exploration (Gal et al.,
2016a; 2017).

5.4 Layer Normalization

Layer Normalization (Ba et al., 2016) is a normalization method applied to feature dimensions of activations.
It has a regularization effect and prevents possible numerical instabilities in training time. In STAC, we
implement Layer Normalization after all hidden activations of critic and policy networks, similar to Hiraoka
et al. (2021).

8

Under review as submission to TMLR

5.5 Algorithm Summary

Finally, we present the Stochastic Actor-Critic (STAC) algorithm using the results of analyses from previous
sections. Unlike previous methods, we parameterize critic Qθ as a single network by parameter set θ and
policy πϕ as another single network by parameter set ϕ, where both networks have probability distribution as
outputs, that is, networks represent distributions over values and actions. Policy outputs a tanh transformed
normal distribution to bound actions to [−1, 1]. Networks illustrations are available in Appendix D. Note
that the bar notation stands for the lagged network with non-trainable parameters. STAC is summarized in
Algorithm 1 with gradient descent but Adam optimizer (Kingma & Ba, 2014) is used in our experiments.

Critic learning (policy evaluation) Critic network predicts cumulative return with some uncertainty.
Using transition tuples from experience replay as batch, Db = {(si, ai, ri, s′

i, donei)}Nb
i=1, temporal difference

(TD) target QT D
i , representing Bellman backup, is β-pessimistic,

QT D
i = ri + γ(µθ̄(s′

i, ã′
i)− βσθ̄(s′

i, ã′
i)− α log πϕ(s′

i, ã′
i))(¬donei), ã′

i ∼ πϕ(· | s′
i). (15)

Learning objective is cross-entropy loss (log loss),

Lθ(Db) = 1
Nb

Nb∑
i=1
− logQθ(QT D

i | si, ai). (16)

Theoretically, critic distribution is not restricted to any type but sub-Gaussian. For simplicity, we model the
critic to be represented as a normal distribution, i.e. Qθ = N (µθ, σ2

θ) in this work. In this case, the cross
entropy loss becomes as follows;

Lθ(Db) = 1
2 log 2π + 1

Nb

Nb∑
i=1

(1
2 log σ2

θ(si, ai) + (QT D
i − µθ(si, ai))2

2σ2
θ(si, ai)

)
. (17)

Lagged critic for TD target When the trained critic network is also used in calculating the target value,
the critic training is prone to divergence (Li et al., 2023b). For this, a common approach is to use another
critic network to evaluate TD target (Mnih et al., 2013). Similar to Lillicrap et al. (2015), Fujimoto et al.
(2018), and Haarnoja et al. (2018), we use a delayed form of critic network for TD target evaluations as
demonstrated in Equation 15. The parameters of target critic are only updated by Polyak averaging of main
critic network weights through learning steps; θ̄ ← ρθ̄ + (1− ρ)θ. This strategy is important to ensure the
stability of temporal difference learning.

Policy improvement The policy improvement objective has a very similar form to SAC algorithm
(Haarnoja et al., 2018) except using standard deviation to construct β-pessimistic objective. Pessimism is
also here to be consistent with pessimistic Bellman backup definition. Using states only from experience
replay as batches Db = {(si)}Nb

i=1 with batch size Nb, loss function for policy network is as follows;

Lϕ(Db) = 1
Nb

Nb∑
i=1

Ea∼πϕ(·|si)
[
µθ(si, a)− βσθ(si, a)− α log πϕ(a | si)

]
. (18)

Automatic temperature tuning Using constant temperature results in different policies if the reward
magnitude changes. To mitigate this, Haarnoja et al. (2018) proposed a policy entropy constraint, representing
temperature as the Lagrange multiplier of the constraint. Given target entropy H̄ as hyper-parameter, the
loss function related to this constraint is as follows;

Lα(Db) = −αH̄+ α

Nb∑
i=1

Ea∼πϕ(·|si)
[
− log πϕ(a | si)

]
. (19)

9

Under review as submission to TMLR

Algorithm 1 Stochastic Actor-Critic
Require: Environment env
Require: Experience buffer D
Require: Critic Qθ, lagged critic Qθ̄, policy πϕ, all with dropout
Require: Initial temperature α, target entropy H̄
Require: Pessimism β
Require: Learning rates ηQ, ηπ, ηα, Polyak parameter ρ
Require: Total training steps N , batch size Nb

s ∼ env.reset() ▷ Reset the environment
for N timesteps do

a ∼ πϕ(· | s) ▷ Sample action
r, s′, done ∼ env.step(a) ▷ Act on environment
D ← D ∪ (s, a, r, s′, done) ▷ Record transition tuple
if done then s← s′ else s ∼ env.reset() ▷ State transition or reset
for G gradient steps do
Db = {(si, ai, ri, s′

i, donei)}Nb
i=1 ∼ D ▷ Sample minibatch for training

ã′
i ∼ πϕ(· | s′

i), ∀i ∈ {1, 2, ..., Nb} ▷ Sample next actions
QT D

i = ri + γ(µθ̄(s′
i, ã′

i)− βσθ̄(s′
i, ã′

i))(¬donei), ∀i ∈ {1, 2, ..., Nb} ▷ Build TD targets
θ ← θ − ηQ∇θ

(
1

Nb

∑Nb

i=1− logQθ(QT D
i | si, ai)

)
▷ Update critic

ϕ← ϕ− ηπ∇ϕ

(
1

Nb

∑Nb

i=1 Ea∼πϕ(·|si)
[
µθ(si, a)− βσθ(si, a)− α log πϕ(a | si)

])
▷ Update policy

α← α− ηα∇α

(
− αH̄+ α

∑Nb

i=1 Ea∼πϕ(·|si)
[
− log πϕ(a | si)

])
▷ Update temperature

θ̄ ← ρθ̄ + (1− ρ)θ ▷ Update target critic network
end for

end for

6 Experiments

Our experiments aim to investigate whether enhancing off-policy actor-critic methodology with STAC can
improve their sample and computation efficiency on difficult continuous-control benchmarks. For this purpose,
STAC is compared to similar competitive algorithms; TQC (Kuznetsov et al., 2020), DROQ (Hiraoka et al.,
2021), SAC (Haarnoja et al., 2018) and TOPSAC, which is SAC variant of TOP algorithm (Moskovitz et al.,
2021), where only exploration scheme is changed to maximum entropy policy. We also run REDQ Chen
et al. (2021b) with UTD ratio (G) equal to 1, but results were very similar to the SAC, so results are not
demonstrated not to overcrowd figures and tables. All algorithm results are obtained using in-house code
with the same network architectures (including layer normalization) to make a fair comparison. We included
DROQ algorithm with UTD ratio (G) equal to 1 and 5, although it is equal to 20 in the original paper.

Ablation studies are conducted to examine the effectiveness of different levels of pessimism under varying
dropout rates, and the effect of dropout under fixed pessimism. The effect of Layer Normalization is not
surveyed since it is done by Hiraoka et al. (2021) extensively for DROQ algorithm.

Through Gymnasium API (Towers et al., 2023), six MuJoCo are used for comparison as they are tested by
most algorithms in the literature. To assess performance on stochastic environments, BipedalWalker-v3 and
BipedalWalkerHardcore-v3 from Box2D are also tested as the terrain where the walker walks is randomly
generated, shown in Figure 3 and 4. Hyper-parameters per environment can be found in Table 4 of Appendix
C. For all experiments, PyTorch (version 2.2.2) (Paszke et al., 2019) is used. Please refer to Appendix E for
the codebase.

Evaluation protocol After each 1000 time steps, we execute a single test episode using the online policy
and measure its performance by calculating the total reward accumulated during the episode. Total training
steps are 50k for InvertedDoublePendulum-v4 and 300k for the rest.

10

Under review as submission to TMLR

Figure 3: BipedalWalker-v3 Environment. Figure 4: BipedalWalkerHardcore-v3 Environment.

Learning curves Specified environments are trained through a fixed number of environment interactions,
repeated 5 times to assess the stability of the algorithm shown by mean and standard deviation. In Figure
5, the performance of STAC is shown against previously mentioned SOTA algorithms for 8 tasks, where
important hyper-parameters yielding best results are used for STAC and TQC, summarized in Table 5.
Additionally, value estimation errors are presented in Figure 6. The bold lines represent the average, while
the shaded area indicates the standard deviation (to represent randomness through seeds) of the total reward
across evaluation episodes. Further experimental details are presented in Appendix C. Mean and standard
deviation of episodic returns over five training runs are summarized in Table 1. Average returns through all
learning processes averaged over random seeds are summarized in Table 2.

Table 1: Episodic return over five training runs on MuJoCo tasks at the end of training. ± sign denotes one
standard deviation across trials. The best method scores are highlighted bold.

Env # steps DROQ G=1 DROQ G=5 SAC STAC TOPSAC TQC
Ant-v4 300k 1227±1058 2800±1738 3074±1306 4646±1422 1544±1399 4144±2432

BipedalWalker-v3 300k 151.29±187.49 224.29±130.31 199.67±144.71 284.42±65.86 304.90±82.32 323.41±41.17
BipedalWalkerHardcore-v3 300k -60.28±39.19 -41.20±81.15 -93.54±31.51 16.62±99.57 8.04±91.74 -7.18±84.09

HalfCheetah-v4 300k 6655±996 7519±841 7285±714 8084±1501 7615±1143 8739±725
Hopper-v4 300k 1655±975 1568±976 1675±1113 2649±1059 1197±819 2084±1308

Humanoid-v4 300k 1616±1230 1794±1425 1788±1228 4540±1715 1480±1578 2674±2047
InvertedDoublePendulum-v4 50k 9022±1435 8919±1881 8286±2550 9358±1 7735±3248 8658±2169

Walker2d-v4 300k 2655±1574 1119±899 1869±1599 4915±132 2013±1270 4219±845

Table 2: Average episodic return through learning procedure and over five training runs on MuJoCo and
Box2D tasks. The best method scores are highlighted bold.

Env # steps DROQ G=1 DROQ G=5 SAC STAC TOPSAC TQC
Ant-v4 300k 983.09 2046.47 1582.81 2742.97 1140.96 3056.95

BipedalWalker-v3 300k 51.95 146.52 79.35 229.16 218.89 242.11
BipedalWalkerHardcore-v3 300k -78.93 -71.18 -83.24 -23.51 -32.25 -35.59

HalfCheetah-v4 300k 5323.60 6093.85 5751.63 6309.67 5580.58 6524.20
Hopper-v4 300k 1154.54 614.65 1029.88 1956.80 1023.92 1954.46

Humanoid-v4 300k 952.86 994.21 1182.68 2271.19 833.41 1880.35
InvertedDoublePendulum-v4 50k 5967.47 6812.87 5578.02 6592.03 5749.87 5624.03

Walker2d-v4 300k 1490.90 1300.85 1371.76 3166.30 1822.86 2963.88

Sample efficiency As seen from Figure 5 and Table 1, STAC outperforms other algorithms, except TQC
for some of the environments, in terms of sample efficiency. The main explanation is in Figure 6, as other
algorithms except TQC suffer from positive overestimation bias, where STAC handles it by using a pessimism
level specifically selected for each environment. It is also the same for TQC algorithm, as we found the
number of quantiles to drop per network by trial-and-error to represent pessimism. Also as seen in Table 2,
STAC also performs well not only at the end of training but also during whole learning time along with TQC.

11

Under review as submission to TMLR

Figure 5: Main learning curves of STAC and other algorithms. The standard deviation is represented by
the shaded areas, while the average return across evaluation episodes is shown by solid curves. See specific
hyper-parameters from Table 5.

Figure 6: Estimation error of STAC and other algorithms on the beginning of episodes. The standard
deviation is represented by the shaded areas, while the average errors across evaluation episodes are shown
by solid curves. See specific hyper-parameters from Table 5.

12

Under review as submission to TMLR

Computation efficiency As wall-clock time statistics vary depending on computing units and environ-
mental conditions, we present the number of critic networks, number of critic backpropagations, and number
of target critic calls per time step in Table 3. Note that all methods use a single and same policy network
architecture, and only the input and output layers of the critic are different which has an insignificant effect
on the number of training parameters. Although TQC performs slightly better than STAC in terms of sample
efficiency for some environments, STAC uses fewer parameters and consumes fewer computation resources
compared to TQC since it employs only a single critic network with a UTD ratio of 1, outperforming other
algorithms in terms of computation efficiency.

Table 3: Number of critic networks and backprops per time step. Each critic has same hidden activation size.

STAC DROQ G=1 DROQ G=5 SAC TOPSAC TQC
critic network 1 2 2 2 2 5
critic backprop 1 2 10 2 2 5
target critic call 1 2 10 2 2 5

However, the key behind STAC’s performance depends on two main hyper-parameters, pessimism and dropout
rate of critic and policy networks. In order to understand effects and algorithm sensitivity to those parameters,
pessimism sweeps are conducted by varying dropout. In addition, same sweep is conducted by turning off
dropout for target critic network while main critic network still has a dropout rate of 0.01, to see the effect of
not bootstrapping dropout uncertainty. Lastly, using same pessimism level, effect of dropout is summarized
and discussed.

6.1 Pessimism Sweep with varying Dropout Rates

To investigate the sensitivity of STAC to pessimism parameter β, we run STAC on all environments by
varying β, for 3 different dropout rates and turned off target critic dropout. Learning curves are available
in Appendix B.1. Results for 0.01 dropout, as shown in Figure 7, indicate that β is a sensitive parameter.
In Figure 8, the higher β yields a higher negative error, consistent with our assumptions. The effect of
pessimism is also similar for different dropout configurations, as shown in Figure 9, 11 and 13. Therefore,
pessimism should be determined carefully to guarantee better performance. Excess pessimism paves the way
to underestimation, whereas lack of it causes critic overestimation which is inherent to actor-critic methods.

In addition, score curves are worse if value estimations tend to be positive (Figure 8, 10, 12 and 14),
meaning that critic overestimation is not mitigated enough (see BipedalWalker-v3, Hopper-v4, Humanoid-v4,
InvertedDoublePendulum-v4). On the other hand, score curves are again worse when error curves are
negative and far from zero, meaning that the learner is stuck on critic underestimation caused by high pessimism
(see Ant-v4, BipedalWalkerHardcore-v3, HalfCheetah-v4, Walker2d-v4). In the end, pessimism sensitivity
varies for different environments, possibly because of varying task difficulties. For easier tasks, less pessimism
is enough but difficult tasks require significant pessimism. This parameter stands as the major bottleneck of
STAC and can only be determined by this heuristic for now.

Pessimism under Environment Stochasticity Pessimistic learning on aleatoric uncertainty may hinder
exploration, especially in environments with high stochasticity and sparse rewards. We compared results
from BipedalWalker-v3 and BipedalWalkerHardcore-v3. The second one is harder because it has more
obstacles, making rewards sparse and transitions more unpredictable (see Figure 3 and 4). To eliminate the
dropout effect, let us look at Figure 11: in the harder environment, less pessimism works better. In simpler
setting (BipedalWalker-v3), most aleatoric uncertainty comes from model errors, so some pessimism helps
overestimation mitigation. In more stochastic setting (BipedalWalkerHardcore-v3), aleatoric uncertainty
also comes from the environment itself. If overestimation is already less, too much pessimism may make
the agent overly cautious, limiting exploration. Since the goal in reinforcement learning is to maximize the
average return, not the best or worst return, the agent should stay neutral in response to environment-driven
aleatoric uncertainty. In short, pessimism is useful in stable environments to correct overestimation, but in
more stochastic settings, it is better to be near-neutral but not optimistic upon aleatoric uncertainty.

13

Under review as submission to TMLR

6.2 Dropout Effect

Dropout is also an important parameter as it determines epistemic uncertainty and regularizes learning.
Learning curves are available in Appendix B.2. For this ablation, previously run experiments are combined
with the best performing β parameter. As it can be seen from Figure 15, best dropout rate varies for each
environment. This is the reason behind using different dropout for the mentioned environments in the main
comparison study (see Table 5).

The optimal dropout rate varies depending on the task, and it is even zero for some of the environments.
Although using dropout promotes exploration, it also regularizes learning. Therefore, it possibly causes
under-exploitation/over-exploration for some environments (Gal & Ghahramani, 2016). STAC is also tested
with turned off target critic dropout, to understand the effect of learning epistemic uncertainty sourced by
dropout within the distributional representation. For most environments, it also works with slight performance
loss except Humanoid-v4, although learning well at the beginning. Value estimation error increases in the
positive direction and this error is even more than the zero dropout case, as shown in Figure 16. We believe
that this is caused by mismatch between trained and target critic since trained critic still employs dropout.

7 Conclusion & Future Directions

In this paper, we introduced Stochastic Actor-Critic (STAC), a novel off-policy actor-critic algorithm. The
main idea is to mitigate overestimation for the sake of faster and more robust learning by incorporating
the pessimistic learning objective using aleatoric uncertainty. For this, critic is modeled as a distributional
(heteroscedastic) neural network. Although normal distribution is used for this purpose, our analysis is
valid for all sub-Gaussian critic distributions or quantile representations. We derived an upper bound
for overestimation, demonstrating that an adequate level of pessimism mitigates overestimation without
succumbing to underestimation, thus facilitating computation and sample-efficient learning. Lastly, Bayesian
dropout is utilized for representing epistemic uncertainty, enabling robustness and exploration.

Adaptive Pessimism Our ablation studies demonstrate the effects of dropout rate and pessimism, revealing
the sensitivity of the learning procedure to these parameters. For each specific environment and optimization
method, an optimal level of pessimism and dropout exists. A promising direction for future research is to
develop a grounded method to adjust the pessimism level for specific environments and agents to allow better
adaptation for the learner to the environment. In addition, the sensitivity of similar algorithms to pessimism
and dropout rate should be investigated in depth.

Pessimism under Stochastic Environments The effect of pessimism on highly stochastic environments
is also an important topic for research. While mitigating overestimation, higher pessimism may lead to
risk-averse behaviour in the environment. This phoenomenon should be investigated in depth in future works.
A better exploration strategy upon epistemic uncertainty may be a solution for this case.

Exploration Grounded methods using optimism in the face of uncertainty principle upon epistemic
uncertainty is worth investigating, keeping pessimism upon aleatoric uncertainty. For this, different methods
for modeling epistemic uncertainty other than ensembles and Bayesian dropout can be considered. Concrete
dropout (Gal et al., 2017), and evidential deep learning (Sensoy et al., 2018; Amini et al., 2020) frameworks
may offer better alternatives.

Broader Impact STAC tackles critical challenges such as accelerating learning, improving stability, and
ensuring computation efficiency. Our research not only pushes the boundaries of reinforcement learning but
also promises significant implications for enhancing the safety and intelligence of robots, self-driving cars,
and autonomous systems in healthcare and finance.

Acknowledgments

This research has received no external funding.

14

Under review as submission to TMLR

References
Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression. Advances

in Neural Information Processing Systems, 33:14927–14937, 2020.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning bandit algorithms in stochastic environments.
In International conference on algorithmic learning theory, pp. 150–165. Springer, 2007.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through
bayesian deep q-networks. In 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE,
2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning.
In International conference on machine learning, pp. 449–458. PMLR, 2017.

Lili Chen, Kimin Lee, Aravind Srinivas, and Pieter Abbeel. Improving computational efficiency in visual
reinforcement learning via stored embeddings. Advances in Neural Information Processing Systems, 34:
26779–26791, 2021a.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning: Learning
fast without a model. arXiv preprint arXiv:2101.05982, 2021b.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic actor
critic. Advances in Neural Information Processing Systems, 32, 2019.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement learning with
quantile regression. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and David
Silver. The value-improvement path: Towards better representations for reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7160–7168, 2021.

Hao Dai, Jiashu Wu, Yang Wang, and Chengzhong Xu. Towards scalable and efficient deep-rl in edge
computing: A game-based partition approach. Journal of Parallel and Distributed Computing, 168:108–119,
2022.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning and policy
search in stochastic dynamical systems with bayesian neural networks. arXiv preprint arXiv:1605.07127,
2016.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural safety, 31(2):
105–112, 2009.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML-16),
2016.

Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian neural network
dynamics models. In Data-Efficient Machine Learning workshop, ICML, April 2016a.

15

Under review as submission to TMLR

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. Advances in neural information processing
systems, 30, 2017.

Yarin Gal et al. Uncertainty in deep learning. 2016b.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In International conference on machine learning, pp. 1352–1361. PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Qiang He, Huangyuan Su, Chen Gong, and Xinwen Hou. Mepg: A minimalist ensemble policy gradient
framework for deep reinforcement learning. arXiv preprint arXiv:2109.10552, 2021.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka. Dropout
q-functions for doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of implicit human
preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-aware reinforce-
ment learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics: Applications
and real-world challenges. Robotics, 2(3):122–148, 2013.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation
bias with truncated mixture of continuous distributional quantile critics. In International Conference on
Machine Learning, pp. 5556–5566. PMLR, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the estimation
bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning requires
regulating overfitting. arXiv preprint arXiv:2304.10466, 2023a.

Sicen Li, Qinyun Tang, Yiming Pang, Xinmeng Ma, and Gang Wang. Realistic actor-critic: A framework for
balance between value overestimation and underestimation. Frontiers in Neurorobotics, 16:1081242, 2023b.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

16

Under review as submission to TMLR

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Guided
meta-policy search. Advances in Neural Information Processing Systems, 32, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Efficient exploration with double uncertain
value networks. arXiv preprint arXiv:1711.10789, 2017.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical optimism
and pessimism for deep reinforcement learning. Advances in Neural Information Processing Systems, 34:
12849–12863, 2021.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/
paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty bellman equation
and exploration. In International conference on machine learning, pp. 3836–3845, 2018.

Aldo Pacchiano, Philip J Ball, Jack Parker-Holder, Krzysztof Choromanski, and Stephen Roberts. Towards
tractable optimism in model-based reinforcement learning. arXiv preprint arXiv:2006.11911, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
uncertainty. Advances in neural information processing systems, 31, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Kyle Stachowicz and Sergey Levine. Racer: Epistemic risk-sensitive rl enables fast driving with fewer crashes.
arXiv preprint arXiv:2405.04714, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients. arXiv preprint
arXiv:1911.03618, 2019.

Bahareh Tasdighi, Nicklas Werge, Yi-Shan Wu, and Melih Kandemir. Exploring pessimism and optimism
dynamics in deep reinforcement learning. arXiv preprint arXiv:2406.03890, 2024.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement learning. In
Proceedings of the 1993 connectionist models summer school, pp. 255–263. Psychology Press, 2014.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL
https://zenodo.org/record/8127025.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil. Deep
reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

17

https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://zenodo.org/record/8127025

Under review as submission to TMLR

Peng Wei, Kun Guo, Ye Li, Jue Wang, Wei Feng, Shi Jin, Ning Ge, and Ying-Chang Liang. Reinforcement
learning-empowered mobile edge computing for 6g edge intelligence. Ieee Access, 10:65156–65192, 2022.

Xinyang Wu, Mohamed El-Shamouty, Christof Nitsche, and Marco F Huber. Uncertainty-guided active
reinforcement learning with bayesian neural networks. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5751–5757. IEEE, 2023.

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case soft actor
critic for safety-constrained reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 10639–10646, 2021.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI), pp.
737–744. IEEE, 2020.

18

Under review as submission to TMLR

Appendix A Proofs

Proof of Theorem 4.1. Analyzing expected Bellman update EQ∼Q[T ∗Q(s, a)],

EQ∼Q[T ∗Q(s, a)] = R(s, a) + γEs′∼τ(·|s,a)

[
EQ∼Q

[
α log

(∫
A

exp(α−1Q(s′, a′))da′
)]]

≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

(
EQ∼Q

[∫
A

exp(α−1Q(s′, a′))da′
])]

= R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

EQ∼Q

[
exp(α−1Q(s′, a′))

]
da′

)]
≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1µ(s′, a′) + 1
2α−2σ2(s′, a′))da′

)]
≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

((∫
A

exp(α−1µ(s′, a′))da′) · (max
a′

exp(1
2α−2σ2(s′, a′)

))]
= R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1µ(s′, a′))da′
)

+ 1
2α

max
a′

σ2(s′, a′)
]

= R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1µ(s′, a′))da′
)]

+ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
.

First inequality comes from Jensen’s inequality (using concave property of log function) while the following
equality is a result of Tonelli’s theorem. The second inequality results from the property of sub-Gaussian
distribution 4.1, where the first statement of the theorem is proven. The following inequality is a result of the
mean value theorem for integrals. In the last equality, the first two terms are equal to T ∗µ(s, a). Therefore,

ϵ(s, a) = EQ∼Q[T ∗Q(s, a)]− T ∗µ(s, a) ≤ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
.

Proof of Corollary 4.1.1. From the Theorem 4.1, we can show that

EQ∼Q[T ∗Q(s, a)] ≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1(µ(s′, a′)− βσ(s′, a′) + 1
2α−1σ2(s′, a′)))da′

)]
= R(s, a) + γEs′∼τ(·|s,a)

[
α log

(∫
A

exp(α−1µ†(s′, a′))da′
)]

= T ∗µ†(s, a).

where we have defined µ†(s′, a′) = µ(s′, a′) − βσ(s′, a′) + 1
2 α−1σ2(s′, a′)). If β ≥ max

(s′,a′)
1
2 α−1σ(s′, a′), then

µ†(s′, a′) < µ(s′, a′). So we can show that

EQ∼Q[T ∗Q(s, a)] ≤ T ∗µ†(s, a) ≤ T ∗µ(s, a). (20)

19

Under review as submission to TMLR

Appendix B Results of Ablation Studies

B.1 Pessimism Sweep with varying Dropout

B.1.1 Dropout=0.01

Figure 7: Learning curves of STAC with varying pessimism (β) parameter. Dropout is equal to 0.01.

Figure 8: Episodic value estimation error curves of STAC with varying pessimism (β) parameter. Dropout is
equal to 0.01.

20

Under review as submission to TMLR

B.1.2 Dropout=0.005

Figure 9: Learning curves of STAC with varying pessimism (β) parameter. Dropout is equal to 0.005.

Figure 10: Episodic value estimation error curves of STAC with varying pessimism (β) parameter. Dropout
is equal to 0.005.

21

Under review as submission to TMLR

B.1.3 Dropout=0

Figure 11: Learning curves of STAC with varying pessimism (β) parameter. Dropout is zero.

Figure 12: Episodic value estimation error curves of STAC with varying pessimism (β) parameter. Dropout
is zero.

22

Under review as submission to TMLR

B.1.4 Dropout=0.01, No Dropout for Target Critic

Figure 13: Learning curves of STAC with varying pessimism (β) parameter. Dropout is equal to 0.01, but
target critic has no dropout.

Figure 14: Episodic value estimation error curves of STAC with varying pessimism (β) parameter. Dropout
is equal to 0.01, but target critic dropout is turned off.

23

Under review as submission to TMLR

B.2 Dropout Effect

Figure 15: Learning curves of STAC with dropout on and off (for both critic and policy). ntd refers to turned
off target critic dropout. Pessimism parameters are used the same as the main experiment, available in Table
5.

Figure 16: Episodic value estimation error curves of STAC with varying dropout on and off (for both critic
and policy). ntd refers to turned off target critic dropout. Pessimism parameters are used the same as the
main experiment, available in Table 5.

24

Under review as submission to TMLR

Appendix C Hyper-parameters and Experiment Details

Hyper-parameter values used in the experiments per method are listed in Table 4. Dropout parameter is
found by trial-and-error and it matches the selection in DROQ paper (Hiraoka et al., 2021). In addition,
target entropy and pessimism parameters (only for STAC) are summarized in Table 5. Target entropy values
are taken from the DROQ paper, which uses the same values (except Humanoid-v4). For STAC, pessimism
hyper-parameter and for TQC, quantile drop parameters per environment are found by trial-and-error to
obtain the best performance.

Table 4: Experimental Parameters per Algorithm

Algorithm Parameter Value

STAC, DROQ, SAC, TOPSAC, TQC

Optimizer Adam ((Kingma & Ba, 2014))
Critic Learning Rate 1× 10−3

Actor Learning Rate 3× 10−4

Discount Rate (γ) 0.99
Target-Smoothing Coefficient (ρ) 0.995
Replay Buffer Size 1× 106

Mini-Batch Size 256
Random Starting Data 10000
UTD Ratio (G) 1

DROQ Dropout Rate 0.01
TOPSAC, TQC Number of Quantiles 25
TQC Ensemble Size 5

TOPSAC
Bandit Optimism/Pessimism Arms [-1, -0.5, 0]
Bandit Learning Rate 0.1
Bandit Window Size 10

Table 5: Target policy entropy (H̄), pessimism (β for STAC), dropout rate (for STAC) and quantile drop
(ndrop for TQC) per environment, yielding best results

Environment Entropy (H̄) Pessimism (β) Dropout Quantile Drop (ndrop)
Ant-v4 -4 0.5 0.01 5/25
BipedalWalker-v3 -2 0.5 0.005 3/25
BipedalWalkerHardcore-v3 -2 0.0 0.00 1/25
HalfCheetah-v4 -3 0.25 0.00 0/25
Hopper-v4 -1 0.5 0.005 5/25
Humanoid-v4 -8 1.0 0.01 12/25
InvertedDoublePendulum-v4 -1 1.0 0.01 3/25
Walker2d-v4 -3 0.5 0.00 5/25

25

Under review as submission to TMLR

Appendix D Network Architectures of STAC

Input (ds + da): (s, a)

Linear (256)

Dropout

LayerNorm

ReLU

Linear (256)

Dropout

LayerNorm

ReLU

Linear (2)

N (µ(1), σ2(1))

Figure 17: Critic network architecture

Input (ds): s

Linear (256)

Dropout

LayerNorm

ReLU

Linear (256)

Dropout

LayerNorm

ReLU

Linear (2da)

tanh#N (µ(da), σ2(da))

Figure 18: Policy network architecture

Appendix E Source Code

Our results can be accessed publicly at https://github.com/authors-github/
stochastic-actor-critic-results. This code uses our in-house developed RL framework as a
sub-repository, available on https://github.com/authors-github/rl-warehouse.

26

https://github.com/authors-github/stochastic-actor-critic-results
https://github.com/authors-github/stochastic-actor-critic-results
https://github.com/authors-github/rl-warehouse

	Introduction
	Related Work
	Stochastic Actor-Critic Algorithm

	Reinforcement Learning Preliminaries
	Model-free Reinforcement Learning
	Maximum Entropy Actor-Critic

	Modeling Aleatoric and Epistemic Uncertainties
	Aleatoric Uncertainty
	Epistemic Uncertainty

	Quantifying Overestimation for Sub-Gaussian Critic Distributions
	Stochastic Actor-Critic
	Distributional (Heteroscedastic) Critic
	Pessimistic Objective
	Dropout Regularization
	Layer Normalization
	Algorithm Summary

	Experiments
	Pessimism Sweep with varying Dropout Rates
	Dropout Effect

	Conclusion & Future Directions
	Proofs
	Results of Ablation Studies
	Pessimism Sweep with varying Dropout
	Dropout=0.01
	Dropout=0.005
	Dropout=0
	Dropout=0.01, No Dropout for Target Critic

	Dropout Effect

	Hyper-parameters and Experiment Details
	Network Architectures of STAC
	Source Code

