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Abstract 

Conventional plant disease detection approaches are time consuming and 
require high skills. Above all, it cannot be scaled down to smallholder farmers in 
most developing countries. Using low cost IoT sensor technologies that are gas, 
ultrasound and NPK sensors mounted next to maize varieties for profiling these 
parameters on a given period. Here we report an experiment performed under 
controlled environment to learn metabolic and pathologic behavioral patterns on 
healthy and NLB inoculated maize plants by generating time series dataset on 
profiled Volatile Organic Compounds (VOC), Ultrasound and Nitrogen, 
Phosphorus, Potassium (NPK). Dataset has been preprocessed with pandas and 
analyzed using machine learning models which are dickey fuller test and python 
additive statsmodel and visualized using matplotlib library to enable the 
inference of an occurrence of a disease a few days post inoculation without 
subjecting a plant to an invasive procedure. This enabled a deployment and 
implementation of noninvasive plant disease detection prior to visual symptoms 
that can be applied on other plants. With analyzed data, the IoT technology in 
this experiment has enabled the detection of NLB disease on maize disease within 
seven days post inoculation because of monitoring VOC and ultrasound emission. 

1 Introduction 

Plant diseases are caused by chronic or emerging pathogens that result in stagnant growth of about 
10% in the plant system [1]. Meanwhile, [2] has reported maize loss due to plant disease by 40% in 
East Africa, and these diseases keep spreading to other areas.  [3] realized that food security as a 
part of zero hunger sustainable development goal number two (SDG-2) is becoming almost 
unattainable given the increase in global human population and plant diseases causing diverse 
effects on livestock health and human demographic patterns.  

Existing technology-based approaches for early disease detection vary from the wide range of 
biomolecular approaches like Polymerase Chain Reaction (PCR) and Enzyme-Linked 
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Immunosorbent Assay (ELISA) [4]. Despite these approaches being accurate, the access to 
equipment and skills to perform such experiments is not affordable for smallholder farmers in 
developing countries. Furthermore, these experimentation approaches require a destructive 
procedure to a sample (plant) [5]. On the other hand, as an alternative to overcome those 
limitations [4] implemented a noninvasive approach that profiles volatile organic compounds 
(VOCs) to late blight-infected tomato using an imperceptible sensor patch integrated with 
graphene-based sensing materials, which captures the plant’s Deoxyribonucleic Acid (DNA) 
properties for real time detection. However, development of such technology is highly expensive 
to make it viable for the mass market of smallholder farmers.  

Moreover, the detection of crop diseases via VOCs has also been confirmed by [6]– [8]  where 
plants emit VOCs in a peculiar pattern when infected by a disease and this can be profiled as a 
plant’s mode of communication. Additionally, a study done by [9] confirmed the rapid growth 
interest in profiling plants’ VOCs as a factor for identifying metabolic and pathologic processes in 
the plant system. In parallel to VOC, there are different modes of plant’s communication, it has 
also been reported in [9] that when a plant is stressed/unhealthy it emits sounds.  A few research 
works have been done on this area includes [10] who observed that tomato and tobacco when cut 
(stressed) emits a mean value of 65 dB for an airborne sound, compared with the ambiance sound 
level for the quiet urban daytime or suburban area which ranges from 45 – 50 dB [11]. Therefore, 
sound is an additional parameter that may be sensed to spot diseased crops and it has also been 
observed that the fertilizer consumption rate varies when a crop becomes unhealthy as per study 
done by [12], hence a special interest on these parameters. 

In that regard, on leveraging the latest advances on IoT sensing technologies, this paper aims to 
present the data collection experimental approach for noninvasive disease detection by using 
affordable and low powered Internet of Things (IoT) technology. Moreover, given the lack of open 
dataset for characterizing diseased maize during the pre-visual symptom disease cycle, the paper 
describes the procedures for time series dataset generation for both healthy versus laboratory 
inoculated maize crop through data collection of VOCs, ultrasound and NPK consumption over a 
period starting from when the maize plant is cultivated to inoculation, up until when visual 
symptoms appear, in our experimentation this period was about 35 days. This paper is hereby 
categorized as follows; section 2 is focused on the experimentation approach for data collection by 
providing a clear depiction of the methodology used for generating inoculums and introducing the 
spores on maize plants; and it describes the IoT data collection devices used in our experimentation 
campaign. Section 3 provides the highlight of the analysis on the collected dataset and predictive 
machine learning model training. Section 4 concludes on the highlighted analysis of data versus the 
early detection of maize disease. 

2 Materials and Methods 

2.1 Experimentation Approach for Data Collection 

Northern Leaf Blight on Maize: in this study, we identified Northern Leaf Blight (NLB) as the most 
prominent and almost neglected disease that affects maize plants in the region. NLB is caused by 
a fungus scientifically known as Exserohilum turcicum  [13] and it can be identified by relatively 
large gray elliptical or cigar-shaped lesions that develop on leaves ranging from 1 to 6 inches long. 
It is favored by high relative humidity and cool to moderate temperature conditions. NLB 
occurrence results in yield loss of up to 30 to 50 percent when it develops early in the season, with 
the diseased plant undergoing a premature death due to inability to photosynthesize caused by 
leaf blighting [14], [15]. Under these circumstances, if the plant is left untreated or unattended, 
sporangia can spread to other plants since plant pathogens take up to 2 weeks [16] to spread from 
infected plants to uninfected plants; thus, causing a huge loss to the farmers. 
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Study Area and Field Management; controlled environment experiments were laid out at Sokoine 
University of Agriculture in Morogoro, Tanzania.  Four maize varieties that are either resistant or 
susceptible to NLB disease were selected for this experiment considering that they are commonly 
used by small holder farmers and highly recommended by seed suppliers in the region. These 
varieties are: DK8033, DK9089, SeedCo 719 (Tembo) and SeedCo 419 (Tumbili). Maize seeds were 
sown in four liters plastic buckets, four seeds per pot, at 7 cm distance from each other (Fig. 1). The 
experiments were made up into two sets where set 1 contained treatment One (T1) as control 
(healthy) and set two with treatment Two (T2) NLB inoculated plants. Each set of treatment had 
eight buckets randomized in such a way each maize variety had equal chance of receiving light, 
temperature, and humidity gradients. The plants were irrigated twice per week and fertilized with 
10 mg of NPK two weeks post sowing and after 6 weeks from first application (Fig. 1). 

Fungal Isolation, Inoculum Preparation & Application; E. turcicum was isolated from diseased maize 
plants. The sterilized tissue pieces were cultured on potato dextrose agar (PDA) medium and 
incubated at 24°C for 14 days under specific light/dark cycles to induce sporulation. Fungal colonies 
were checked for E. turcicum spores and subcultured for pure culture production. After 14 days, 
pure cultures were used to prepare a spore suspension which was quantified using a 
hemocytometer. The spore concentration was adjusted to 106 spores/ml. The suspension was 
sieved, filled into bottles, and used to inoculate eight-week-old maize seedlings. Control plants (T1) 
were treated with sterile water, while experimental plants (T2) received the spore suspension. The 
inoculation was performed during cool hours to support spore survival and maintain humidity. Both 
sets of plants, placed 5m apart, were grown for 90 days under screen house conditions and checked 
bi- weekly for 
disease and pests. This 
ensured T1 plants 

remained 
healthy, while NLB 
affected T2 plants. 

 

 

 

 

 

 

Fig. 1. Maize Plant Experiment set with inoculum, spore on the middle and last is the application 
of inoculum spores on maize plants 

2.2 IoT Based Data Collection Approach 

The study employed low-cost IoT sensors for non-invasive disease detection in plants. Placed 35 
days post-inoculation, these sensors measured parameters including VOCs, soil nutrients (NPK), 
and ultrasound to detect non-visual symptoms of NLB as shown on Figure. 2. A Bosch BME688 
Development Kit, connected to a 5000mAh power bank, was used to identify gas emission patterns. 
Ultrasound data was collected by two sound sensors - OSEPP Electronics Multiple Function Sensor 
and DAOKI Sound Microphone Sensor - programmed on ESP8266. These sensors transmitted data 
to the cloud via ThingSpeak. Taidacent Soil NPK and JXCT soil NPK sensors monitored NPK levels. 
These sensors were powered by a separate 12V adapter and communicated via the ELEGOO Nano 
Board CH 340/ATmega+328P microcontroller. All data was stored for later analysis. Environmental 
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factors like temperature, humidity, and barometric pressure were also monitored to validate 
experimentation conditions. 

 

 

Fig. 2. Data collection using IoT sensors on Volatile Organic Compounds, microphone sensors and 
NPK fertilizer. 

3 Results and Discussion 

In the study, time-series data were collected from both healthy and inoculated maize crops using 
VOC, ultrasound, and NPK sensors. Data cleaning was conducted to omit unrelated parameters, 
providing a univariate dataset. The Dickey-Fuller Test (ADF) checked data stationarity, indicating a 
strong trend and seasonality in VOC emission and ultrasound data, thus providing predictable 
patterns. The VOC emission profile for the control maize plant decreased over time, whereas for 
the NLB-inoculated maize plant, it increased as shown on Figure. 3. The statsmodels library was 
used to decompose the data into trend and seasonality, revealing a daily VOC emission pattern. 
Ultrasound values differed significantly between healthy and inoculated maize, with stress from 
disease inoculation increasing the sound emission above ambient levels in the latter. NPK 
consumption patterns were less clear, showing a lower, more systematic pattern in healthy maize 
and a more randomized, higher pattern in inoculated maize, suggesting less efficient nutrient 
consumption in diseased plants. 

 
Fig. 3. Calculated mean sample of VOCs emission for healthy vs inoculated maize 

4 Conclusion 

The study leveraged IoT sensing technologies to detect non-visual symptoms of Northern Leaf 
Blight, a critical maize disease in East Africa, as a first step towards developing an early disease 
detection device. The research generated reusable time-series datasets and found that VOC and 
sound level patterns increase as the plant communicates its distress. Notably, the study proved 
that non-visual symptoms of the disease could be detected within less than seven days, earlier than 
visual symptoms, aiding in early detection and reducing yield loss. 



5 

Acknowledgments 

This work is financially supported by The PASET Regional Scholarship and Innovation Funds as a 
part of PhD work scholarship and as well hosted at the African Centre of Excellence in Internet of 
Things Rwanda. Experimental works have been hosted by Sokoine University of Agriculture, 
Tanzania. 

References 

[1] R. N. Strange and P. R. Scott, “Plant disease: A threat to global food security,” Annual 
Review of Phytopathology, vol. 43. pp. 83–116, 2005. doi: 
10.1146/annurev.phyto.43.113004.133839. 

[2] A. W. Wangai et al., “ First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis 
in Kenya ,” Plant Dis, vol. 96, no. 10, pp. 1582–1582, Oct. 2012, doi: 10.1094/PDIS-06-12-
0576-PDN. 

[3] National Agricultural Research Organization (NARO), “Pests and diseases management in 
maize,” 2011. https://teca.apps.fao.org/teca/fr/technologies/7019 (accessed Jul. 18, 
2022). 

[4] Z. Li et al., “Real-time monitoring of plant stresses via chemiresistive profiling of leaf 
volatiles by a wearable sensor,” Matter, vol. 4, no. 7, pp. 2553–2570, Jul. 2021, doi: 
10.1016/j.matt.2021.06.009. 

[5] S. Hussain, A. K. Lees, J. M. Duncan, and D. E. L. Cooke, “Development of a species-specific 
and sensitive detection assay for Phytophthora infestans and its application for monitoring 
of inoculum in tubers and soil,” Plant Pathol, vol. 54, no. 3, pp. 373–382, Jun. 2005, doi: 
10.1111/j.1365-3059.2005.01175.x. 

[6] R. Balodi, S. Bisht, A. Ghatak, and K. H. Rao, “Plant disease diagnosis: Technological 
advancements and challenges,” Indian Phytopathology, vol. 70, no. 3. Indian 
Phytopathological Society, pp. 275–281, 2017. doi: 10.24838/ip.2017.v70.i3.72487. 

[7] Z. Li et al., “Non-invasive plant disease diagnostics enabled by smartphone-based 
fingerprinting of leaf volatiles,” Nat Plants, vol. 5, no. 8, pp. 856–866, Aug. 2019, doi: 
10.1038/s41477-019-0476-y. 

[8] A. Skoczek, D. Piesik, A. Wenda-Piesik, B. Buszewski, J. Bocianowski, and M. Wawrzyniak, 
“Volatile organic compounds released by maize following herbivory or insect extract 
application and communication between plants,” Journal of Applied Entomology, vol. 141, 
no. 8, pp. 630–643, Sep. 2017, doi: 10.1111/jen.12367. 

[9] M. Gagliano, S. Mancuso, and D. Robert, “Towards understanding plant bioacoustics,” 
Trends in Plant Science, vol. 17, no. 6. pp. 323–325, Jun. 2012. doi: 
10.1016/j.tplants.2012.03.002. 

[10] I. Khait et al., “Plants emit informative airborne sounds under stress”, doi: 10.1101/507590. 

[11] “PSU Noisequest.” https://www.noisequest.psu.edu/noisebasics.html (accessed Nov. 01, 
2022). 

[12] J. Downer, “Effect of fertilizers on plant diseases - Topics in Subtropics - ANR Blogs,” TOPICS 
IN SUBTROPICS, 2013. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=12364 
(accessed Oct. 18, 2022). 

[13] T. L. Bucheyeki, P. Tongoona, J. Derera, and S. N. Msolla, “Combining Ability Analysis for 
Northern Leaf Blight Disease Resistance on Tanzania Adapted Inbred Maize Lines,” 



6 

Advances in Crop Science and Technology, vol. 05, no. 02, 2017, doi: 10.4172/2329-
8863.1000266. 

[14] T. Jackson, “Northern Corn Leaf Blight,” Nebraska Extension, 2015. 

[15] M. R. O. Onwunali and R. B. Mabagala, “Assessment of yield loss due to northern leaf blight 
in five maize varieties grown in Tanzania,” J Yeast Fungal Res, vol. 11, no. 1, pp. 37–44, Jan. 
2020, doi: 10.5897/jyfr2017.0181. 

[16] W. E. Fry et al., “The 2009 late blight pandemic in the eastern United States - Causes and 
results,” Plant Dis, vol. 97, no. 3, pp. 296–306, 2013, doi: 10.1094/PDIS-08-12-0791-FE. 

  

 


