
Neural Tangent Kernel Maximum Mean Discrepancy

Xiuyuan Cheng
Department of Mathematics

Duke University
xiuyuan.cheng@duke.edu

Yao Xie
H. Milton Stewart School of Industrial

and Systems Engineering
Georgia Institute of Technology
yao.xie@isye.gatech.edu

Abstract

We present a novel neural network Maximum Mean Discrepancy (MMD) statis-
tic by identifying a new connection between neural tangent kernel (NTK) and
MMD. This connection enables us to develop a computationally efficient and
memory-efficient approach to compute the MMD statistic and perform NTK based
two-sample tests towards addressing the long-standing challenge of memory and
computational complexity of the MMD statistic, which is essential for online im-
plementation to assimilating new samples. Theoretically, such a connection allows
us to understand the NTK test statistic properties, such as the Type-I error and
testing power for performing the two-sample test, by adapting existing theories for
kernel MMD. Numerical experiments on synthetic and real-world datasets validate
the theory and demonstrate the effectiveness of the proposed NTK-MMD statistic.

1 Introduction
Maximum Mean Discrepancy (MMD) statistic is a popular method in machine learning and statistics.
In particular, kernel MMD [2, 23] has been applied to evaluating and training neural network
generative models [34, 44, 31, 3, 30]. Though a widely used non-parametric test [23], kernel MMD
encounters several challenges in practice. The roadblocks for large-scale implementation of kernel
MMD involve heavy memory requirement (due to the computation and storage of the Gram matrix,
which grows quadratically with the data size) and the choice of a good kernel function for high
dimensional data. While Gaussian RBF kernel was shown to provide a metric between pairs of
probability distributions with infinite data samples, applying isotropic Gaussian kernel to data in
applications, such as image data and discrete events data, may invoke issues in terms of kernel
expressiveness [25, 29, 36] and sampling complexity [38].

A potential path forward in developing more computationally and memory-efficient testing statistics
is to leverage deep neural networks’ representation and optimization advantage. For example, the
idea of training a classification neural network for testing problems has been revisited recently in
[37, 10], and the connection between classification and two-sample testing dates back to earlier works
[19, 43, 40]. However, in applying deep models to testing problems, the test consistency analysis is
usually incomplete due to the lack of optimization guarantee of the trained network. For one thing,
assuming perfect training of a deep network to achieve global minimizer is too strong an assumption
to fulfill in practice.

A recent focus of neural network optimization research is the so-called lazy training regime of
over-parametrized neural networks [13], where the neural network training dynamics exhibit certain
linearized property and provable learning guarantee can be obtained [33, 17, 15, 1]. In this regime,
the training time is sufficiently short, and networks are sufficiently parametrized such that network
parameters stay close to the randomized initial values over the training process. In particular, the
Neural Tangent Kernel (NTK) theory, as firstly described by [28], shows that the network optimization
can be well approximated by the Reproducing Kernel Hilbert Space (RKHS) formulation. The NTK
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theory has been developed for general neural network architectures, including deep fully connected
networks [48], convolutional networks [6, 35], graph neural networks [16], and residual networks
[45, 27, 7]. The RKHS approach by NTK has been shown theoretically and empirically to characterize
the wide neural network training dynamic in the early stage.

The current work stems from a simple observation that short-time training of a network is approxi-
mately equivalent to computing the witness function of a kernel MMD with NTK at time zero, when
the training objective equals the difference between sample averages of the network function on two
samples. The proposed test statistic, called NTK-MMD, approximates the classical kernel MMD
with NTK, and the error at training time t can be bounded to be O(t) under the linearization of the
NTK theory. The theoretical benefit of translating the network-based statistic into a kernel MMD is
that the testing power of the latter can be analyzed based on previous works. Algorithm-wise, the
network-based test statistic can be computed on the fly: thanks to the form of linear accumulation of
the training objective, the training allows small-batch, e.g., batch size 1 and 1 epoch of training (1
pass of the samples), under the NTK approximation. (The “NTK approximation” in this paper refers
to approximating the time-t NTK by the time-zero kernel, both at finite width.) To calibrate the testing
threshold needed to prevent false alarm, we introduce an asymmetric MMD using training-testing
split and theoretically prove the testing power, where the threshold is estimated from bootstrapping
on the test split only and thus avoids retraining network.

Our main contributions include the following: (i) We introduce a neural network-based test statistic
called NTK-MMD, which can be computed by a short-time training of a neural network, particularly
online learning using one-pass of the training samples and batch size one. The NTK approximation
error of the MMD statistic is shown to beO(t), that is, linear in training time, and the result extends to
Stochastic Gradient Descent training; (ii) We characterize the statistical properties of the NTK-MMD,
including the Type-I error and the testing power, which establish the conditions under which the test
is powerful; we further introduce a data split scheme such that the test threshold can be estimated
without network retraining with provable testing power guarantee; (iii) The efficiency of the proposed
NTK-MMD test is demonstrated on simulated and real-world datasets.

At the same time, we are aware of the limitations of NTK in explaining deep network optimization,
expressiveness power, and so on. We discuss limitations and extensions in the last section. In
particular, this paper focuses on demonstrating the power of NTK-MMD statistics for the two-sample
test, while the proposed computationally and memory-efficient NTK-MMD statistics can also be
used for other applications of MMD statistics [24] and hypothesis tests.

2 Method
2.1 Preliminary: Kernel MMD
We start by reviewing a few preliminaries. Consider data in X ⊂ Rd, sampled from two unknown
distributions with densities p and q. Given two data sets

X = {xi ∼ p, i.i.d., i = 1, · · · , nX}, Y = {yj ∼ q, i.i.d., j = 1, · · · , nY }, (1)
we would like to test whether or not they follow the same distribution. This is equivalent to perform
the following hypothesis test H0 : p = q versus H1 : p 6= q. The classical kernel MMD considers
test functions in the RKHS of positive semi-definite kernel K(x, y), which can be, for instance, the
Gaussian RBF kernel. The (squared and biased) empirical kernel MMD statistic is given by [23]:

MMD2
K =

∫
X

∫
X
K(x, y)(p̂− q̂)(x)(p̂− q̂)(y)dxdy, p̂ :=

1

nX

nX∑
i=1

δxi
, q̂ :=

1

nY

nY∑
i=1

δyi . (2)

The null hypothesis is rejected if MMD2
K > tthres, where tthres is the user-specified test threshold

(usually, chosen to control the false alarm up to certain level). The (empirical) witness function
of the MMD statistic, ŵ(x) =

∫
X K(x, y)(p̂ − q̂)(y)dy, indicates where the two densities differ.

The Type-I error of the test is defined as P[MMD2
K > tthres] under H0, and the Type-II error

as P[MMD2
K ≤ tthres] under H1; the power is defined as one minus the Type-II error. For an

alternative distribution q of p, the test errors depend on q, the sample sizes nX and nY , as well as
the kernel function K(x, y). Theoretically, the test power of kernel MMD has been analyzed in [23],
investigated for high dimensional Gaussian data in [38], and for manifold data in [12].

2.2 NTK-MMD statistic
As the proposed NTK-MMD framework can be used on different network architectures, we write
the neural network mapping abstractly as f(x; θ), which maps from input x ∈ X to R, and θ is the
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network parameters. Use X ∪ Y as the training dataset, and let p̂ and q̂ be as in (2), we choose a
particular training objective function as

L̂(θ) = −
∫
X
f(x; θ)(p̂− q̂)(x)dx = − 1

nX

nX∑
i=1

f(xi; θ) +
1

nY

nY∑
i=1

f(yi; θ) (3)

The choice of this objective function is critical in establishing the connection between NTK and
MMD. Optimizing this objective will lead to divergence of the network function if we train for a
long time. However, if the training is only for a short time, the network function remains finite. Here
we mainly focus on short-time training of the network, and particularly the online training setting
where the number of epochs is 1, that is, only 1-pass of the training samples is used. We will also
show that the method allows using minimal batch size for online learning without affecting the NTK
approximation of the MMD statistic, c.f. Remark 2.2.

Following the convention in NTK literature, below we formulate in terms of continuous-time Gradient
Descent (GD) dynamic of the network training. The extension to discrete-time Stochastic Gradient
Descent (SGD) holds with a small learning rate (Remark 2.2). The network parameter θ(t) evolves
according to θ̇(t) = −∂L̂/∂θ, and we define u(x, t) := f(x, θ(t)), which is the network mapping
function at time t. Suppose the network is trained for a short time t > 0, we define

ĝ(x) :=
1

t
(u(x, t)− u(x, 0)), (4)

and the test statistic, which depends on time t, is

T̂net(t) :=

∫
X
ĝ(x)(p̂− q̂)(x)dx=

1

t

(
L̂(θ(t))− L̂(θ(0))

)
. (5)

The function ĝ is the difference of the network mapping after a short-time training from the initial
one, and we call it the witness function of network NTK-MMD statistic. As revealed by (5), (without
calibrating the test threshold) the test statistics T̂net is nothing but the decrease in the training objective,
and comes as a by-product of network training at no additional computational cost. We show in next
subsection that at small t, the statistic T̂net(t) provably approximates the classical MMD statistic with
the NTK, i.e. T̂NTK = MMD2

K(X,Y ) where K is the NTK at time t = 0 as in (8). Algorithmically,
we will perform two-sample test using T̂net(t) by comparing with a threshold tthres.

2.3 NTK approximation of MMD statistic
In the continuous-time training dynamic of the network, we consider the NTK [28] kernel function
defined for t > 0 as

K̂t(x, x
′) := 〈∇θf(x; θ(t)),∇θf(x′; θ(t))〉. (6)

The following lemma follows directly by construction, and the proof is in Appendix A.1.
Lemma 2.1. The network function u(x, t) satisfies that for t > 0,

u(x, t)− u(x, 0) =

∫ t

0

∫
X
K̂s(x, x

′)(p̂− q̂)(x′)dx′ds. (7)

It has been shown (in [6, 5, 13], among others) that for the short-time training (lazy training regime),
the kernel (6) can be well-approximated by the kernel at time t = 0, namely

K0(x, x′) := 〈∇θf(x; θ(0)),∇θf(x′; θ(0))〉, (8)

which is only determined by the network weight initialization θ(0). Assuming K0 ≈ K̂t in Lemma
2.1, the proposed test statistic T̂net(t) as in (5) can be viewed as

T̂net(t) ≈ T̂NTK :=

∫
X

∫
X
K0(x, x′)(p̂− q̂)(x)(p̂− q̂)(x′)dxdx′, (9)

which is the kernel MMD statistic with NTK. (See Remark A.1 for a discussion on biased/unbiased
MMD estimator.) In below, we show in Proposition 2.1 that the approximation T̂net ≈ T̂NTK hasO(t)
error, and we experimentally verify the similarity of the two statistics in Subsection 4.2. Throughout
the paper, we compute T̂net by neural network training, and we call T̂NTK the exact NTK-MMD

3



which is for theoretical analysis. The theoretical benefit of translating T̂net into T̂NTK lies in that
testing power analysis of T̂NTK follows existing methods which is detailed in Section 3.

Suppose neural network parameter θ is in RM and θ ∈ Θ, where Θ is a domain in RM which contains
the Euclidean ball B(θ(0), r0), where we assume r0 is an O(1) constant. For vector valued function
g : (X ,Θ) → Rd and U ⊂ Θ, we denote the infinity norm as ‖g‖X ,U := supx∈X ,θ∈U ‖g(x, θ)‖.
When g maps to a matrix, the notation denotes (the infinity norm over (X × U) of) the operator
norm. The test statistic approximation error in Proposition 2.1 directly follows the following lemma
concerning the uniform approximation of the kernels. All proofs in Appendix A.1.
Lemma 2.2 (NTK kernel approximation). Suppose f is C2 on (X ,Θ) and ‖∇θf‖X ,Θ ≤ Lf for
some positive constant Lf . Then for any 0 < r < r0, when 0 < t < tf,r := r/(2Lf ),
(1) θ(t) stays inside the Euclidean ball Br := B(θ(0), r).
(2) Define Cf,r := 4‖D2

θf‖X ,Br
‖∇θf‖2X ,Br

, we have that

sup
x,x′∈X

|K̂t(x, x
′)−K0(x, x′)| ≤ Cf,rt. (10)

Remark 2.1 (Boundedness of ‖∇θf‖X ,Θ). When p are unbounded density (gaussian), and activation
function f is relu or softplus, the uniform boundednesss of ‖∇θf‖X ,Θ may fail. However, for
sub-exponential densities, apply standard truncation argument, and when we restrict to compactly
supported distributions. In practice, we standardize the data to be on a compact domain in Rd.
Proposition 2.1 (Test statistic approximation). The condition on f(x, θ) is the same as in Lemma
2.2, and for 0 < r < r0, the constants tf,r and Cf,r are as therein. Then, when 0 < t < tf,r, we
have that

|T̂net(t)− T̂NTK| ≤ 2Cf,rt.
Remark 2.2 (SGD and online training). The above error bound analysis based on Taylor expansion can
extend to discrete-time GD dynamic by showing that the time discretization introduces higher-order
error when t is small. In the SGD setting, e.g., the online learning of 1 epoch, batch size one, and
learning rate α, the network parameters are updated after scanning each training sample on the fly.
Let θk be the network after scanning k many samples, we show in Appendix A.2 that the difference
‖θk − θ0‖ can be bounded by O(αk/n), and the trained network witness function after 1 epoch
approximates the witness function with the zero-time NTK kernel up to an O(α) error. The learning
rate α has the role of training time t. The fact that batch size will not affect the NTK approximation
of the network training is a result of that the loss (3) is a linear accumulation over samples, which
may not hold for other loss types. The compatibility with online learning and training with very small
batch size of NTK-MMD statistic makes it convenient for deep network training, especially under
memory constraints.

2.4 Computational and memory efficiency
The update of network parameters in NTK-MMD training can be viewed as an implicit computation
of the inner-product between high dimensional kernel feature maps 〈∇θf(x; θ(t)),∇θf(x′; θ(t))〉
(by chain rule, c.f. (24) (25) in Appendix A.1). The network witness function ĝ defined in (4) is
parametrized and stored in trained network parameters. This allows the (approximate) evaluation of
kernel on a test sample x′ without computing the gradient∇θf(x′; θ) explicitly. It also means that the
NTK network witness function can be evaluated on any new x′ without revisiting the training set. In
contrast, traditional kernel MMD computes kernel witness function (defined as

∫
K(x, y)(p̂−q̂)(y)dy

[23]) on a new point x′ by pairwise computation between x′ and samples in datasets X and Y .

NTK-MMD can be computed via batch-size-one training over one-pass of the training set (c.f. Remark
2.2 and experimentally verified in Table A.2). The gradient field evaluation (back propagation) is only
conducted on the training set but not the testing test, and the bootstrap calibration of the test threshold
can be computed from test set only (c.f. Section 3.2). Thus, by using small learning rate (allowed by
floating point precision, c.f. Remark C.1), one can incorporate large number of training samples via
more training iterations without worsening the approximation error to exact NTK-MMD, which will
improve testing power. This “separation” of training and testing, in memory and computation, of
NTK-MMD allows scalable online learning as well as efficient deployment of the network function
on potentially large test sets.

3 Theoretical properties of NTK-MMD
In this section, we prove the testing power (at a controlled test level) of the NTK-MMD statistic
T̂NTK as in (9) with large enough finite samples. We also introduce an asymmetric version of the
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MMD statistic using training-testing dataset splitting, which enables the bootstrap estimation of the
threshold of the test tthres without retraining of the neural network.

3.1 NTK-MMD without data splitting
We write the NTK kernel K0(x, x′) as K(x, x′) omitting the subscript, and assume that K(x, x′)
is uniformly bounded, that is, supx∈X K(x, x) ≤ B < ∞ for some positive constant B. Without
loss of generality, we assume that B = 1 (because a global constant normalization of the kernel
introduces a global constant multiplied to the test statistic, and does not change the testing). By that
the kernel is PSD, we thus have that

sup
x′, x∈X

|K(x, x′)| ≤ 1. (11)

We omit the NTK subscript and denote the exact NTK-MMD statistic in (9) as T̂ . The corresponding
population statistic is the squared MMD of kernel K(x, y)

δK := MMD2
K(p, q) =

∫
X

∫
X
K(x, y)(p− q)(x)(p− q)(y)dxdy. (12)

By the uniform boundedness (11), the kernel K(x, x′) is in L2(X ×X , (p+ q)(x)(p+ q)(x′)dxdx′).
We define the squared integrals of the kernel

νpp := Ex∼p,y∼pK(x, y)2, νpq := Ex∼p,y∼qK(x, y)2, νqq := Ex∼q,y∼qK(x, y)2. (13)

In addition, we assume that as n := nX + nY increases, nX/n stay bounded and approaches
ρX ∈ (0, 1). Equivalently, there is some constant 0 < c < 1 such that for large enough n,

cn+ 1 ≤ nX , nY ≤ n, i = 1, 2. (14)

Without loss of generality, we assume that (14) always holds for the n considered.

Theorem 3.1 (Test power of T̂NTK). Suppose (11) and (14) hold, and

(i) Under H1, p 6= q, the squared population kernel MMD δK as in (12) is strictly positive,

(ii) The three integrals as in (13), νpp, νpq, νqq, are all bounded by a constant ν ≤ 1.

Define λ1 :=
√

8 log(4/αlevel), and let the threshold for the test be tthres = 4/(cn) + 4λ1

√
ν/cn.

Then, if for some λ2 > 0, n is large enough such that

n >
1

c
max

{
1

9ν
max{λ1, λ2}2,

8

δK
,
ν

δ2
K

(8(λ1 + λ2))
2

}
, (15)

then under H0, P[T̂ > tthres] ≤ αlevel; and under H1, P[T̂ ≤ tthres] ≤ 3e−λ
2
2/8.

The proof uses the U-statistic concentration analysis, and is left to Appendix B. As revealed by the
proof, the diagonal entries in the kernel matrix contribute to the O(1/n) term, and thus switching
from the biased estimator of MMD (9) to the unbiased estimator gives similar theoretical results.
Remark 3.1 (Choice of tthres). The choice of tthres in the above theorem is a theoretical one and
may not be optimal, due to the use of concentration inequality and the relaxation of the bounds by
using constants ν and c. By definition, the optimal value of tthres is the (1−αlevel)-quantile of the
distribution of T̂ under H0. The asymptotic choice may be obtained analytically according to the
limiting distribution of the MMD statistic, c.f. Remark B.1. The threshold tthres is also computed
by a bootstrap strategy in practice [4] (called “full-bootstrap” in next subsection). The bootstrap
approach permutes the labels in data sets X and Y , and since in T̂net the witness function ĝ(x) is
computed by neural network training, this will incur retraining of the network. A solution to avoid
retraining by adopting a test set for bootstrap estimation of tthres is introduced in next subsection.

3.2 Threshold calibration by data splitting
As shown in Theorem 3.1 and Remark 3.1, in the theoretical characterization of test power (at a
required test level) the test threshold plays a critical role. In practice, we need a more precise threshold
to exactly control the false alarm under the null hypothesis. In this section, we discuss how to set
the threshold in two settings: fixed-sample and pilot-data. Nevertheless, we would like to mention
that there exist applications where the threshold is not needed, and the symmetric MMD (without
training/test split) can be used as a measurement of distribution divergence.
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Fixed-sample setting. We first consider the setting where we have a fixed number of samples from
p and q. To obtain a precise threshold to control the false alarm, we need to split data into two
non-overlapping parts: one part for training neural networks (compute the witness function) and one
part data for bootstrapping and calibrating the threshold. We want to highlight that here we develop a
scheme for threshold calibration such that no retraining of the witness function is necessary.

We randomly split the datasets X and Y into training and testing sets, X = X(1) ∪ X(2) and
Y = Y(1) ∪ Y(2), and compute an asymmetric version of kernel MMD (the subscript a is for
“asymmetric”)

T̂a :=

∫
X

∫
X
K(x, x′)(p̂(1) − q̂(1))(x

′)(p̂(2) − q̂(2))(x)dxdx′, (16)

where p̂(i) and q̂(i) are the empirical measures of datasets X(i) and Y(i) respectively, i = 1, 2. Define
nX,(i) = |X(i)| and nY,(i) = |Y(i)|, i = 1, 2. Similarly as in Section 2, the MMD statistic (16) with
K(x, y) = K0(x, y), the zero-time NTK, can be approximated by

T̂a,net(t) =

∫
X
ĝ(1)(x)(p̂(2) − q̂(2))(x)dx, ĝ(1)(x) =

1

t
(û(x, t)− û(x, 0)), (17)

for a small time t, where û(x, t) is the network function trained by minimizing L̂(θ) :=
−
∫
X f(x; θ)(p̂(1) − q̂(1))(x)dx on the training set Dtr = {X(1), Y (1)} with binary labels {1, 2}.

Same as in Lemma 2.2 Proposition 2.1, the difference |T̂a − T̂a,net(t)| can be bounded to be O(t).
We theoretically analyze the testing power of T̂a where K(x, y) = K0(x, y) in below.

The benefit of splitting the test set lies in that once the witness function ĝ(1)(x) is trained from Dtr,
one can do a test-only bootstrap which is to compute

T̂a,null =

∫
X
ĝ(1)(x)(p̂′(2) − q̂

′
(2))(x)dx, (18)

where p̂′(2) and q̂′(2) are empirical measure of samples in Dte = {X(2), Y (2)} by randomly permuting
the nX,(2) + nY,(2) many binary class labels. Since permuting test labels does not affect ĝ(1)(x),
the test-only bootstrap does not require retraining of the neural network nor revisiting the training
samples. Alternatively, one can permute the binary class labels in both Dtr and Dte, and this will
require to retain the neural network to obtain the new witness function ĝ(1) given the new class
labels of Dtr. We call such a bootstrap the full-bootstrap. The full-bootstrap can be applied to the
symmetric MMD statistic without test set splitting as well, namely the setting of Theorem 3.1, to
obtain an estimate of optimal tthres in practice.

We give two theoretical results on the testing power guarantee of the asymmetric NTK-MMD statistic
(16): For test-only bootstrap, Theorem 3.2 proves testing power by restricting to good events over
the randomness of Dtr; For full bootstrap, the guarantee is provided in Theorem 3.3, which is the
counterpart of Theorem 3.1. All proofs are in Appendix B.

We assume the balance-ness of the two samples as well as the training and testing splitting, that is,
nX,(1)/nX → ρX,(1), nY,(1)/nY → ρY,(1) nX/n → ρX , and the three constants are all in (0, 1).
With n = nX + nY , we assume that for a constant 0 < ca < 1,

can ≤ nX,(i), nY,(i) ≤ n, i = 1, 2. (19)

We denote by P(1) the randomness over Dtr, and P(2) that over Dte.

Theorem 3.2 (Test power of T̂a, test-only bootstrap). Suppose that (11), (19) and the conditions (i)
and (ii) in Theorem 3.1 hold, and 0 < γ < 1 is a small number. Define λ(2),1 :=

√
4 log(4/αlevel),

λ(1) :=
√

4 log(8/γ), and set the threshold as tthres = 4(
√

1.1λ(2),1 +λ(1))
√
ν/(can). If n is large

enough such that n > (
λ(1)

0.1ν )2/(8ca), and for some λ(2),2 > 0,

n >
1

ca
max

{
1

9ν
max{λ(1), λ(2),1, λ(2),2}2,

16ν

δ2
K

(
2λ(1) +

√
1.1(λ(2),1 + λ(2),2)

)2
}
, (20)

then, under both H0 and H1 there is a good event over the randomness of Dtr which happens
w.p.≥ 1− γ, under which, conditioning on Dtr, P(2)[T̂a > tthres] ≤ αlevel under H0, and P(2)[T̂ ≤
tthres] ≤ 4e−λ

2
(2),2/4 under H1.
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Remark 3.2 (Sampling complexity). Compared to the full-bootstrap result Theorem 3.3, the additional
requirement on n is that can needs to be greater than (λ(1)/ν)2 up to absolute constant, and thus
when ν/δ2

K � ν−2, the (ν/δ2
K)-term still dominates the needed lower bound of n, same as in

Theorems 3.1 and 3.3. (Here we treat λ(1), λ(2),1 and λ(2),2 as O(1) constants. Because the constant
γ controls the good event probability over the randomness of Dtr, thus if γ can be chosen to be of
the same order as αlevel, then λ(1) has the same order as λ(2),1.) The result shows that with test split
and test-only bootstrap (avoiding retraining), the test power has the same order of needed sampling
complexity, n & ν/δ2

K , as full bootstrap, with high probability and for large enough n.

Theorem 3.3 (Test power of T̂a, full bootstrap). Suppose that (11), (19) and the conditions (i)
and (ii) in Theorem 3.1 hold. Define λ1 :=

√
8 log(4/αlevel), and let the threshold for the test be

tthres = 4λ1

√
ν
can

. Then, if for some λ2 > 0, n is large enough such that

n >
1

ca
max

{
1

9ν
max{λ1, λ2}2,

ν

δ2
K

(4(λ1 + λ2))
2

}
, (21)

then under H0, P[T̂ > tthres] ≤ αlevel; and under H1, P[T̂ ≤ tthres] ≤ 4e−λ
2
2/8.

Pilot data setting. This section considers the setting where we may have many samples for one
distribution, e.g., the p. For instance, in change-point detection, where we are interested in detecting
a shift in the underlying data distribution, there can be a large pool of pilot data before the change
happens, collected historically and representing the normal status. We may have fewer data samples
for the distribution q. For such a case, we can use data from the reference pool represent distribution
p to train the model and calibrate the threshold, e.g., using bootstrap. Since such “training” is done
offline, we can afford the higher computational cost associated with training the model multiple times.
In short, our strategy is to pre-compute the detector (retrain multiple times) and then use boostrap
to obtain the threshold tthres for detector: (i) compute the symmetric MMD T̂ as in (9) on {p̂, q̂},
where q̂ is the new coming test samples (e.g. in change-point detection), and p̂ is from the pool; (ii)
pre-compute the symmetric MMD T̂null on {p̂2, p̂

′
2} from the pool of samples, with retraining, and

obtain the “true” threshold for T̂ . Retraining of the network is expensive, but this is pre-computation
and not counted in the online computation.

4 Numerical experiments
The section presents several experiments to examine the proposed method and validate the theory. 1

4.1 Gaussian mean and covariance shifts
Set-up. Consider Gaussian mean shift and covariance shift in R100, where nX = nY = 200; p is the
distribution of N (0, Id), d = 100: (i) Mean-shift: q is the distribution of N (µ, Id), where ‖µ‖2 = δ
which varies from 0 to 0.8 and (ii) Covariance-shift: q is the distribution of N (0, Id + ρE), where E
is an d-by-d all-ones matrix, and ρ changes from 0 to 0.16. We split training and test sets into halves,
and compute the asymmetric network approximated NTK-MMD statistic T̂a,net (17), and estimate
the test threshold by the quantile of (18); H0 is rejected if T̂a,net > tthres. We use a 2-layer network
(1 hidden layer) with soft-plus activation. The online training is of 1 epoch (1 pass over the training
set) with batch-size = 1. The bootstrap estimate of test threshold uses nboot = 400 permutations.
The testing power is approximated by nrun = 500 Monte Carlo replicas, and we compare with the
benchmarks by (i) Hotelling’s T-test, and (ii) Gaussian kernel MMD test (median distance bandwidth)
[23]. The median distance bandwidth is a reasonable choice for detecting high dimensional Gaussian
mean shift [38]. Both Gaussian kernel MMD and Hotelling’s Test have access to all the samples
Dtr ∪ Dte. More experimental details are in Appendix C.1.

Results. The results are shown in the left two plots in Figure 1. The NTK-MMD test gives comparable
but slightly worse power than the other two benchmarks on the mean shift. On the covariance shift
test, the network MMD test gives equally good power as the Gaussian MMD. For the Gaussian
covariance shift case, we also compute the testing power when only part of the training samples are
used in the online training, and the results are shown in the right two plots in Figure 1. Testing power
increases as the neural network scans more training samples, and when the covariance shifts are
larger the transition takes place with smaller training sample size.

1Code available at https://github.com/xycheng/NTK-MMD/.
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Figure 1: (Left two plots) Estimated testing power on Gaussian mean shift (change size is δ) and Gaussian
covariance shift (change size is ρ) in R100, where datasets X and Y have 200 samples respectively, and the
training and testing splitting is half-half, i.e. ntr = nte = 200. Test power is estimated from nrun = 500.
(Right two plots) Estimated testing power as a function of the number of samples processed in the 1-pass of the
training set (batch size =1) and over varying values of ρ, also plotted as a color field.
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Figure 2: (Left two plots) Estimated testing power from nrun = 500 of the covariance shift test in Figure 1 in
R100 and R2. nX = nY = 200, using three statistics: T̂net (net), T̂NTK with test set only bootstrap (ntk1) and
with full bootstrap (ntk2) the training and testing splitting is half-half. (Right two plots) Test statistics T̂a (red
cross), the empirical distribution of T̂a,null using the test-only bootstrap and the full bootstrap (blue bars), and
the estimated threshold (green circle). Computed from NTK kernel at t = 0 and nboot = 400.

In addition, we show in Appendix C.2 that NTK-MMD gives similear performance with varying
network architectures, activation functions (like relu), and SGD configurations, and possibly better
testing power with a larger network depth and width (Tables A.1 and A.2). We also compare with
linear-time kernel MMD in Appendix C.7. As shown in Table A.3, NTK-MMD outperforms linear-
time gMMD as in [23, Section 6], and underperforms the full gMMD which however requires O(n2)
computation and storage.

4.2 Comparison of T̂net and T̂NTK

Set-up. Since we use a 2-layer fully-connected network, the finite-width NTK at t = 0 (using
initialized neural network parameters) can be analytically computed, which gives an nte-by-ntr
asymmetric kernel matrix K. The expression of K and more details are provided in Appendix C.3.
This allows computing the exact NTK-MMD (16), as well as the (i) full bootstrap and (i) the test-only
bootstrap of the MMD statistic under H0 by (i) permuting both rows and columns simultaneously
and (ii) only permuting rows of the matrix K.

Results. To verify the O(t) discrepancy as in Proposition 2.1, we first compute the numerical
values of T̂NTK and T̂net(t) for different values of t (which corresponds to different learning rate
α as explained in Remark 2.2 and Appendix A.2) and the relative approximation error defined as
err = |T̂net(t)− T̂NTK|/|T̂NTK|. The results are shown in Figure A.1. The fitted scaling of the error
for softplus activation is about 0.96, which agrees with the theoretical O(t) error. Switching to relu,
the order is not close to 1 (instead 0.62) but T̂net(t) still gives a good approximation of T̂NTK as the
relative error achieves about 10−3. The comparison of the testing power of network approximate
NTK statistic and the exact NTK statistic tests are shown in Figure 2. In the high dimensional
Gaussian covariance shift test (d = 100), the powers of the three tests are similar. When reducing
dimension to d = 2, the full-bootstrap NTK tests show slightly different testing power than the other
two. The network approximate NTK and NTK with test-only bootstrap always show almost the
same testing power, consistent with the theory in Subsection 2.3. In the experiment on R2 data, the
estimated threshold by full-bootstrap is smaller than by test-only bootstrap (right two plots), which
explains the possibly better-testing power.

4.3 Comparison to neural network classification two-sample tests
Set-up. We experimentally compare NTK-MMD and state-of-the-art classification two-sample test
(C2ST) baselines, which are neural network based tests. Following [36], we compare with C2ST-S,
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Figure 3: NTK-MMD statistic to detect distribution abundance change in MNIST digit image data; ntr = 2000
and nte is about 4000. (Top) Most left: Change of the statistic over the number of samples in the online training
(batch size =1) of a 2-layer convolutional network. From 2nd-5th columns: The MMD statistic T̂a compared
with the empirical distribution under H0 via test-only bootstrap, at four times along the online training (red
circles on the left plot). (Bottom) Most left: The change of distribution of MNIST dataset embedded in 2D by
tSNE [46]. From 2nd-5th columns: The witness function ĝ plotted as a color field over the samples, at the four
times corresponding to the upper panel plots.

ntr 2000 4000 6000 8000
ME* ∼ 10.0 ∼ 30.0 ∼ 58.0 ∼ 75.0
SCF* ∼ 5.0 ∼ 6.0 ∼ 10.0 ∼ 15.0
C2ST-S (Adam) 9.9 (61.6) 14.0 (95.8) 39.1 (100.0) 61.2 (100.0)
C2ST-L (Adam) 14.1 (87.8) 38.4 (100.0) 76.4 (100.0) 92.9 (100.0)
C2ST-S (SGD) 6.0 (13.9) 10.6 (50.0) 10.8 (94.4) 14.8 (99.6)
C2ST-L (SGD) 6.7 (22.2) 12.8 (81.6) 22.1 (100.0) 34.6 (100.0)
NTK-MMD 7.1 9.6 13.7 17.9

Table 1: Test power on Gaussian mixture data Example 1, dimension d = 10. (*recovered from Figure 3 in [36],
∼ means about.) For C2ST’s, the number outside brackets is for epoch = 1, and in brackets for epoch = 10.

the classification accuracy test [37], and C2ST-L, the classification logit test [10]. Experimental
details are given in Appendix C.4. The data distributions are:

- Example 1: Gaussian mixture, fixed dimension d = 10 and increasing ntr, which is the same
setting as Figure 3 (left 2 plots) in [36]. Numbers in Table 1 show testing power (in %).

- Example 2: Modified Gaussian mixture (from Example 1), the covariance shift is I + 0.1E in both
mixtures, where E is all-one matrix with zeros on the diagonal. Dimension d = 10, and number of
training samples ntr increases. The test power is shown in Table 2.

Results. On Example 1, NTK-MMD performs similar to SCF test in most cases, better than C2ST-S
(SGD 1-epoch), and is worse than the other baselines. On Example 2, NTK-MMD outperforms
C2ST baselines in several cases, e.g., constantly better than C2ST-S (SGD and Adam, 1-epoch)
and comparable to C2ST-L (SGD 1-epoch). Note that C2ST baselines can be sensitive to training
hyperparameters, such as the choice of optimization algorithm (SGD or Adam) and number of epochs.
As far as the authors are aware of, there is no theoretical training guarantee of C2ST tests. In contrast,
NTK-MMD has theoretical training guarantees due to the provable approximation to a kernel MMD.
The weakness of NTK-MMD, though, is that the NTK kernel may not be discriminative to distinguish
certain distribution departures, like in Example 1. The expressiveness power of NTK-MMD may be
theoretically analyzed, for example, in the infinite-width limit using the analytical formula, as the
infinite-width NTK has been shown to be universal for data on hyperspheres [28]. Overall, the results
suggest that the performances of the three neural network tests depend on the data distributions,
which is anticipated for any hypothesis test. Further theoretical investigations are postponed here.

ntr 500 1000 1500 2000
C2ST-S (Adam) 21.8 (28.1) 62.2 (53.8) 79.4 (74.0) 94.6 (85.2)
C2ST-L (Adam) 48.5 (49.4) 92.8 (82.6) 99.5 (96.3) 100.0 (98.8)
C2ST-S (SGD) 7.4 (28.3) 22.7 (79.7) 35.3 (92.4) 54.9 (96.8)
C2ST-L (SGD) 18.3 (52.2) 56.8 (97.6) 81.4 (99.9) 97.3 (100.0)
NTK-MMD 34.3 68.9 88.8 95.9

Table 2: Test power on Gaussian mixture data Example 2, dimension d = 10.
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Figure 4: (Left) Example data sequence in the human activity dataset: before and after the change-point. (Right)
Detection statistics computed by Hotelling’s T statistic, Gaussian MMD, and NTK-MMD, on human action
trajectory dataset, using window size 100 (blue), 150 (red), and 200 (yellow), respectively. The change point is
at time index 550 (dotted black).

4.4 MNIST distribution abundance change
Dataset. We take the original MNIST dataset, which contains 28×28 gray-scale images, and
construct two densities p and q by subsampling from the 70000 images in 10 classes, following [12]:
p is uniformly subsampled from the MNIST dataset, p = pdata, and q has a change of abundance
q = 0.85pdata + 0.15pcohort, where pcohort is the distribution of a subset of the class of digit “1”
having about 1900 samples. The pcohort is illustrated in the left bottom plot in Figure 3. The two
samples X and Y have nX = 3000, nY = 2981, and we randomly split X and Y make the training
set Dtr = {X(1), Y(1)}, nX,(1) = nY,(1) = 1000, and the rest is the test set Dte.
Results. Using a 2-layer convolutional nerual network, we compute the network MMD statistic
T̂a,net (17) and the test-only bootstrap (18). The online training uses batch size =1 and one epoch, and
more experimental details are in Appendix C.5. The results are shown in Figure 3. The NTK-MMD
statistic already shows testing power after being trained on 50 samples, and in the later stage of
training, the NTK witness function ĝ(1) identifies the region of the abundance change.

4.5 Online human activity change-point detection
Set-up. We present an illustrative example using NTK-MMD test statistic to perform online change-
point detection: detecting human activity transition. We consider a real-world dataset, the Microsoft
Research Cambridge-12 (MSRC-12) Kinect gesture dataset [18]. The data sequence records a human
subject repetitively bending the body/picking up and throwing a ball before/after the change happens.
After preprocessing, the sequential dataset contains 1192 frames (samples) and 54 attributes (data
samples are in R54), with a change of action from “bending” to “throwing” at time index 550. More
description of the dataset and experimental details is provided in Appendix C.6. Example samples
before and after the change point are shown in the left of Figure 4. The algorithm is based on a sliding
window which moves forward with time, and we compute the detection statistic every ten frames;
such a procedure can be viewed as the Shewhart Chart in the literature [47]; scanning MMD statistic
has been used in [32]. The window size is chosen to be 100, 150, and 200, respectively. We take a
block of data (same size as the window) before the time index 300 (to use as the pilot samples) and
compare with the distribution of data from the sliding window to compute the detection statistic. If
there is a change-point, the detection statistic will show a large value.

Results. The other two detection statistics are computed by (i) Gaussian MMD (with bandwidth
chosen to be median distance) and (ii) Hotelling’s T statistics. The results are shown in Figure 4,
where both the Gaussian MMD and the NTK-MMD statistics can detect the change: the detection
statistic value remains low before the change and remains high after the change point, and both are
better than the Hotelling statistic.

5 Discussion
The current work can naturally be extended in several aspects. First, the analysis of NTK approxi-
mation error may be extended, e.g., to other activation functions, and under the infinite-width limit.
Second, considering other training objectives may allow us to compare NTK-MMD to other neural
network classification tests. At the same time, the limitation of lazy-regime training has been studied
in [21, 22, 39], which indicates that NTK theory cannot fully characterize the modeling ability of
deep networks. It has also been shown that the expressiveness of the NTK kernel may be restricted
to certain limited type of kernels [8, 20, 9]. This motivates extensions of NTK for studying deep
network training [26, 41]. Finally, the application may extend to various hypothesis testing tasks as
well as deep generative models. We thus view the current work as a first step towards understanding
the role and potential of trained neural networks in testing problems and applications.
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