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Abstract—Sleep plays a crucial role in human well-being, while
insufficient sleep affects cognitive function, decision-making, and
overall health. Sleep assessment via polysomnography (PSG) is
time-consuming, resource-intensive, and limited to in-laboratory
sleep testing. To address the challenges of PSG, wearable sleep
screening devices have been widely used, especially to detect
wakefulness and sleep stages. This study proposes deep models for
the detection of wakefulness versus different stages of sleep using
heart rate and wrist actigraphy extracted from the multi-ethnic
study of atherosclerosis (MESA) sleep dataset. First, two sets of
features were extracted from heart rate and actigraphy, which
were separately fed into two separate branches of convolution
neural network (CNN), then merged and fed to a deep classifier.
The model detected wakefulness versus sleep and different sleep
stages with the accuracies of 88.19% and 79.6% respectively.
This work showed that combining heart rate, actigraphy signals,
and demographic data in a deep framework could improve sleep
stage-staging performance. This study offers a subject-specific
approach for sleep assessment based on convenient wearables.

Index Terms—Sleep, Sleep Stage, Actigraphy, Heart Rate, Deep
Learning.

I. INTRODUCTION

LEEP is essential for maintaining healthy cognitive func-
Stions, emotional regulation, and memory consolidation
[1]. Poor sleep quality has been associated with a wide
range of health problems, including cardiovascular diseases,
metabolic disorders [2], mental health problems [3], and
impaired immune function [4]. The gold standard for assess-
ing sleep is polysomnography (PSG). A PSG recording is
segmented into 30-second epochs, each manually annotated
as wakefulness or different sleep stages including non-rapid
eye movement (non-REM) and rapid eye movement (REM).
However, PSG is limited by its costs, long waitlist, attachment
of dozens of sensors to the head and body, in-laboratory sleep
tests, and inability to monitor sleep in natural environments
[5]. These limitations have led to interest in more scalable,
wearable-based sleep monitoring technologies.

One of the technologies widely used for sleep monitoring
is wrist actigraphy [6]. In actigraphy, wrist motion is col-
lected using accelerometers, and thus motionless intervals are
inferred as sleep, whereas intervals with motion are labeled
as wakefulness. Despite extensive applications in wellness

This work was funded by Queen’s University.

Nasim Montazeri Ghahjaverestan
Dept. of Electrical and Computer Engineering
Queen’s University
Kingston, Canada
nasim.montazeri @queensu.ca

and clinical purposes, its dependence on wrist motion alone
can lead to misclassifications during motionless wakefulness.
Therefore, an additional modality, such as heart rate, can
provide complementary information and enhance the accuracy
of sleep staging [7].

Heart rate is higher during wakefulness compared to sleep.
In REM sleep, the heart rate can be increased by the activity
of the autonomic nervous system that occurs due to sympa-
thetic bursts [8]. To measure heart rate, photoplethysmography
(PPG) technology is used, which can be embedded along with
actigraphy accelerometers in a wrist band. PPG uses an LED
light and a photodetector in contact with the skin to track blood
volume pulses, from which beat-to-beat intervals are derived
[9].

Aside from detecting wakefulness versus sleep, which quan-
tifies sleep duration, accurate breakdown of sleep into REM
and non-REM stages is necessary to quantify sleep depth,
which is clinically important for assessing general health
and detecting specific disorders. For example, REM sleep
plays a crucial role in cognitive and emotional brain function,
supporting memory consolidation and emotional regulation
by processing affective experiences during sleep [10], [11].
Moreover, REM duration was found to be reduced in some
types of dementia [12]. Thus, detecting the depth of sleep can
provide a means for detecting sleep and neurological disorders
and improving sleep quality.

Early studies on wearable-based sleep staging relied on
basic classifiers. Xiao et al. extracted Heart Rate Variability
(HRV) features and used a random forest to classify wake-
fulness, non-REM, and REM sleep [13]. A study by Yuda
et al. used HRV metrics and body movement as features
to be fed to a multivariate logistic regression to classify
sleep stages [14]. These shallow models typically achieve
moderate accuracies (74.5-75.8%). Recent studies used deep
learning approaches with stronger mining ability to improve
sleep staging accuracy. Walch et al. applied several classifiers,
including logistic regression, random forest, and multi-layer
perceptron (MLP), which were fed with motion, heart rate,
and clock proxy features. Their MLP model, trained on Apple
Watch data, outperformed other classifiers [15]. Zhai et al.
trained multiple CNN and LSTM models on the Multi-Ethnic
Study of Atherosclerosis (MESA) dataset using different input



window sizes and then fused their outputs using ensemble
techniques (mean-over-classifiers and max-selection), achiev-
ing their best performance over each individual baseline [16].
Song et al. used MESA, applying CNNs to extract features
from raw actigraphy and heart-rate signals, then fed those
into a Sequence-to-Sequence LSTM with attention to predict
each sleep stage, achieving an enhanced accuracy of 79.11%
[17]. Pini et al. introduced Neurobit-HRYV, a deep architec-
ture trained with RR-interval sequences extracted from ECG
recordings and demonstrated that the model could perfectly
generalize over age, sex, and sleep apnea groups, suggesting
that ECG-derived features may serve as a reliable and lower-
cost alternative to PSG [18]. However, earlier deep learning
approaches were mostly developed on relatively small datasets
[15]. In previous studies with larger sample sizes, such as those
by Zhai et al. [16] and Song et al. [17], a single CNN branch
was used to extract important features from actigraphy and
heart-rate signals, which may limit its ability to learn modality-
specific information.

In this work, we designed an attention-based model with
specific branches for actigraphy and heart rate for two main
objectives: 1) improving sleep stage detection accuracy and
2) designing a model to receive subject-specific demographics
and assessing its contribution to improve the model’s perfor-
mance. With this study, we contributed to:

1) Proposing a novel feature extraction approach using two
parallel CNN branches for heart rate and actigraphy,
combining them through a linear layer to improve the
representation of the extracted features.

2) Designing an encoder comprising two-layer LSTM with
attention to capture temporal context and generate the
sleep-stage.

3) Integrating demographic characteristics into the pro-
posed model to evaluate their influence on the sleep-
staging accuracy.

II. METHOD

A. Dataset

In this study, we used the MESA dataset [19], [20] to train
and evaluate our model. MESA is a multicentre longitudinal
study that includes a single night PSG of 2,237 participants in
a wide age range (45-84 years) and diverse ethnic backgrounds
(Black, White, Hispanic, and Chinese American). All partic-
ipants provided their written informed consent. Participants
wore an actigraphy device continuously for one week and then
underwent in-laboratory single-night PSG while wearing the
device, allowing simultaneous actigraphy and PSG recordings.
The sleep labels were manually scored by trained technicians,
ensuring high reliability and quality for research and analysis.
The high-quality sleep labels and the diverse population in
the MESA dataset provide an ideal foundation for training
and testing our model. Table I summarizes the demographics
of the included subjects.

TABLE I
DEMOGRAPHICS OF THE EXTRACTED SLEEP DATA

Demographics

N (Female%) 568 (56.1%)
Age (years) 69 +£9
Body mass index (BMI, kg/m?) 284 £53
Apnea/hypopnea index (AHI, events/hr) 18.5 £ 17.8
Total sleep time (TST, hours) 62+t 1.2
Sleep efficiency (SE, %) 673 £ 114

Values are in Mean + Standard Deviation, except for the sample size.

B. Preprocessing

From the MESA database, 1012 subjects’ data with high-
quality PSG (rating > 5) and at least 6.6 hours of recordings
were extracted for this study. In MESA, R peaks in ECG
signals were detected using the Compumedics Somte software
(v2.10). From the sequence of RR intervals, the heart rate
(HR) signal was obtained. Any RR interval shorter than 0.33 s
was replaced by the midpoint of that interval and the previous
one. Any RR interval longer than 1.33s was divided into NV
equal sub-intervals (N = T/Tiean), Where T is the current
interval duration and 7)., 1S the mean RR interval in that
epoch. From the available RR intervals, heart rate signals along
with reference sleep stage scores were extracted and their
alignment with actigraphy was verified and fine-tuned using
cross-correlation [17]. The aligned data were then segmented
into 30s epochs, for each of which the mean and standard
deviation of the heart rate were calculated and any epoch with
a mean greater than two standard deviations was excluded as
outliers [17].

C. Feature Extraction

From actigraphy and heart rate signals, features were ex-
tracted over non-overlapping epochs. Actigraphy-based fea-
tures included Euclidean norm minus one (ENMO) and time-
domain statistics such as mean, standard deviation (SD),
maximum, minimum, skewness, kurtosis, total activity time
(TAT), and proportional integral mode (PIM). The features
extracted from the heart rate consisted of the mean, mini-
mum, maximum, SD of the normal-to-normal (NN) intervals
(SDNN), the percentage of successive NN intervals that differ
by more than 50 ms (NN50), and the root mean square
of successive differences (RMSSD). To identify the most
informative features, their importance was assessed using a
random forest-based feature importance analysis [21]. We used
Scikit-learn’s Random Forest classifier to compute feature im-
portance, applying the Gini criterion to quantify each feature’s
contribution. A forest of 100 trees was trained, and features
with importance scores below 0.02 were excluded, as shown
in Fig. 1. Based on importance scores, we excluded low-
contributing features to improve the performance of the model.
For heart rate, the mean, SD, maximum, minimum, SDNN,
and RMSSD were included. For actigraphy, ENMO, the mean,
SD, maximum, PIM, and TAT were included, and the rest were
removed. After feature selection, the feature space was further
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Fig. 1. Feature importance scores for actigraphy and heart rate features

segmented using a 40-epoch window with a stride of one epoch
to prepare the input of the model. The reference label of the
last epoch in the moving window was used as the target label.

D. Classification model

As shown in Fig. 2, the proposed model architecture con-
sisted of two main parts: representation learning and tem-
poral learning. Since the actigraphy and heart rate signals
have distinct temporal and spectral characteristics, they were
fed into separate CNN branches to extract more informative
features. Each branch consisted of 3 CNN layers, each CNN
layer was followed by a rectified linear unit (ReLU) activation
and a dropout. In particular, ConvID(32,5) refers to using
1D convolution layer with 32 filters and a kernel size of 5.
The outputs of the CNN branches were then concatenated
and linear fusion was applied using a fully connected layer
with ReLU activation, followed by a normalization layer
to adaptively weight and integrate the effect of the two
modalities. This fused sequence is then fed into a two-layer
LSTM encoder, followed by attention pooling. The attention-
based layer was included to capture the temporal dependencies
and learn the most informative parts of the sequence. In the
attention pooling layer, each hidden unit was projected to a
scalar attention score, and a softmax was used to normalize
the weights. Finally, the context vector, defined as the weighted
sum of the hidden states, was computed. To include subject-
specific information, subjects’ age and sex were concatenated
with the context vector and fed to a dense layer as the last
layer to generate the assigned classes. This architecture was
trained for two-class (wakefulness versus sleep) and three-
class (wakefulness, non-REM, and REM) sleep stages.

E. Ablation Study

We trained seven variants of our selected architecture for
the 3-class model with demographics, varying the number
of CNN branches (one versus two branches), the fusion
method (concatenation, cross-attention, and linear), the input
type (engineered features versus raw signals), and the use of
attention pooling.
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Fig. 2. Overview of the proposed model for two-class and three-class sleep
stage classification.

F. Evaluation and Statistical Analysis

From the detected sleep intervals of the 2-class model, sleep
measures including total sleep time (TST), sleep latency (SL),
and sleep efficiency (SE) were calculated and compared with
the PSG-based measures. For each comparison, Pearson’s cor-
relation and p-value were reported. Additionally, we performed
subgroup analyses by sex (male vs. female), age (< 65 vs.
> 65), and race (White, Black, Hispanic, and Asian), reporting
accuracy and weighted F;-score for each subgroup, along with
p-value to assess statistical differences across these groups. We
also performed a sensitivity analysis across window lengths
(10-50 epochs) and compared model performance based on
accuracy and weighted F-score.

III. RESULTS

Fig. 3 depicts an example trace of the ENMO, heart rate,
and the detected sleep stages compared with the PSG-based
stages. As can be seen, wakefulness is associated with higher
activity counts, quantified with ENMO, and higher heart rate
compared to sleep. During REM, heart rate increases relatively
compared to non-REM, while activity remains minimal. This
section introduces the evaluation metrics and experimental
setup, followed by the quantitative results.

A. Performance Metrics

We evaluate our model’s performance using per-class re-
call across all stages, the overall weighted F}-score, overall
accuracy, and Cohen’s Kappa coefficient (), which together



TABLE II
HYPERPARAMETER SEARCH GRID AND CHOSEN VALUES

Mean HR (bpm)

NonREM

Detected Stage

Hyperparameter Range Selected Value
Learning rate 104,107 7] 1x 1073
Number of epochs | [50, 250] 200

LSTM hidden size | {128, 256, 512} 128

Batch size {128, 256, 512 1024, 2048} | 512

L2 regularization {0, 10-%, 1075, 10~ %} 0

PSG-Based Stage

REM TABLE IIT
PERFORMANCE OF OUR BEST MODEL ACROSS DIFFERENT WINDOW SIZES
| H ) . Overall metrics 3-class Recall
Wake L] | | Window size -
Accuracy (%) | Weighted F1 (%) | Wake (%) | Non-REM (%) | REM (%)
REm 10 76.50 76.75 74.48 81.72 59.63
20 78.58 78.78 78.74 81.85 64.51
NonREM
f | | 30 79.12 7938 7733 8291 67.46
Wake | 40 79.60 80.00 80.10 81.60 70.00
0 2 4 6 8 50 79.52 79.80 79.39 81.95 69.68
Time (hours)

Fig. 3. Example trace of ENMO, heart rate, and the detected sleep stages
compared with PSG-based stages for the proposed 3-class sleep stage classi-
fication with demographics.

provide a comprehensive assessment of classification perfor-
mance. The per-class metrics are computed using a one-vs.-
rest approach. The accuracy and weighted F; -score are defined

as follows:
1 &
A = — E TP,, 1
ccuracy N 2 (1)
1 & |
Weighted Fy = — ;:1 ne - F9, )

where TP, is the number of true positives for class ¢, N is
the total number of epochs, n. is the number of true epochs
belonging to class ¢, and Fl(c) is the F;-score of class c.

B. Experimental Setup

Our model was implemented in PyTorch and trained on an
NVIDIA Tesla P100-PCIE 12 GB GPU. The extracted data
set was randomly divided into training set (75%), validation
(15%), and test set (10%). We used the stochastic gradient
descent (SGD) optimizer with a learning rate of 0.001 and a
batch size of 512, training the model for 200 epochs. The best
model parameters were selected based on the validation set.
As the classes were highly imbalanced, we used categorical
cross-entropy loss with class weights calculated based on the
smoothed inverse frequency of each class suggested in [17].
The hyperparameter search grid used to find the optimal values
is shown in Table II.

C. Window-Size Sensitivity Analysis

We performed a sensitivity analysis on window sizes of 10,
20, 30, 40 and 50 epochs for the 3-class model. The results
are shown in Table III, confirming that a 40-epoch window
achieves the highest performance.

D. Model Selection via Ablation Study

Table IV shows the overall accuracy, weighted F;, and
per-class recall for each of the seven variants. The selected
two-branch CNN-LSTM-attention model with linear fusion
achieved an overall accuracy of 79.60% using extracted fea-
tures. For the same model applied to raw inputs, accuracy
drops to 78.91%. Using linear fusion increased wake recall by
2.39% and REM recall by 4.07% compared to concatenation
fusion. This model was used for all further analyses.

E. Model Performance and Comparative Analyses

Table V shows the performance of the proposed model for
two-class sleep staging in comparison with previous works.
Our model with demographics achieved the highest accuracy
of 88.19%, weighted Fp-score of 88.16%, and Kappa score
of 0.72. The model also achieved the highest recall for
detecting the wake class (79.77%), while preserving high sleep
recall with or without including demographics. As shown in
Table VI, our model with demographics achieved the highest
overall accuracy (79.60%), Kappa score (0.65), and wake
recall (80.10%) for three-class sleep staging compared with
previous works. Even without including demographics, our
model obtained a higher Kappa score (0.64). These results
were achieved while non-REM and REM recalls remained
higher or comparable to those of other approaches. The
confusion matrices for 2-class and 3-class sleep staging with
demographics are shown in Fig. 4. Fig. 5 shows scatter plots
of the detected versus PSG-based sleep measures. Strong
significant agreements were obtained between the detected
and the reference TST (r=0.80, p<0.001) and SE (r=0.76,
p<0.001). A moderate significant agreement was between
them for SL (r=0.57, p<0.001).

F. Performance Across Demographic Subgroups

Table VII summarizes the model performance in different
demographic subgroups. No significant differences were found
across these subgroups.



TABLE IV
ABLATION OF INPUT TYPE, FUSION METHOD, AND ARCHITECTURE FOR 3-CLASS SLEEP STAGE CLASSIFICATION

Variant Inputs Fusion Overall metrics 3-class Recall
Accuracy (%) | Weighted F1 (%) | Wake (%) | Non-REM (%) | REM (%)
1 CNN-branch + LSTM + Attention | Engineered features Linear 79.53 79.68 77.91 83.85 65.23
1 CNN-branch + LSTM + Attention Raw signals Linear 78.41 78.57 75.34 83.35 64.84
2 CNN-branches + LSTM + Attention Raw signals Linear 78.91 79.01 74.69 84.42 65.72
2 CNN-branches + LSTM Engineered features Linear 79.45 79.72 77.46 83.19 68.43
2 CNN-branches + LSTM + Attention | Engineered features | Concatenation 79.56 79.71 77.71 83.85 65.93
2 CNN-branches + LSTM + Attention | Engineered features | Cross attention 76.73 77.08 75.89 80.67 62.26
2 CNN-branches + LSTM + Attention | Engineered features Linear 79.60 80.00 80.10 81.60 70.00
TABLE V
COMPARISON OF OUR MODEL WITH PREVIOUS STUDIES FOR 2-CLASS (WAKE VS. SLEEP) CLASSIFICATION
Methods Features Overall Metrics 2-class Recall
Accuracy (%) | Weighted F1 (%) | « | Wake (%) | Sleep (%)
Ensemble [16] Actigraphy and Heart Rate 84.40 87.60 0.64 67.00 93.00
MLP?[15] Actigraphy, Heart Rate, and Clock proxy 77.40 — 0.50 72.00 80.00
Our work Actigraphy and Heart Rate 87.85 87.83 0.71 79.63 91.52
Our work Actigraphy, Heart Rate and Demographics 88.19 88.16 0.72 79.77 91.95
2 MLP: Multi Layer Perceptron
TABLE VI
COMPARISON OF OUR MODEL WITH PREVIOUS STUDIES FOR 3-CLASS SLEEP STAGE CLASSIFICATION
Methods Features Overall Metrics 3-class Recall
Accuracy (%) | Weighted F1 (%) | < |Wake (%) | Non-REM (%) | REM (%)
Seq2Seq LSTM?[17] Actigraphy and Heart Rate 79.11 80.00 — 78.00 81.80 70.90
Ensemble [16] Actigraphy and Heart Rate 78.20 69.80 0.62 75.00 84.00 42.00
MLPP[15] Actigraphy, Heart Rate and Clock proxy 72.30 — 0.28 60.00 65.10 65.00
Our work Actigraphy and Heart Rate 78.81 79.19 0.64 79.74 80.35 70.25
Our work Actigraphy, Heart Rate and Demographics 79.60 80.00 0.65 80.10 81.60 70.00
4 Sequence-to-Sequence LSTM
5 MLP: Multi Layer Perceptron
G. Model Interpretability A) B)
Fig. 6 visualizes the 128-dimensional context vectors in
two dimensions using t-distributed stochastic neighbor em- o S, 6503 $ S
bedding (t-SNE). By projecting each vector into a 2D space, g1 @98%) (20.2%)
we observe distinct clusters for Wake, non-REM, and REM  § 8= 505 ss04
. . . . o © -
stages, indicating that the model effectively learned to capture 3 FANCRED! (9.7%)
. . 4
meaningful differences between sleep stages. £ . . g
g | 77
7 (8.1%) 861 3512 10214

IV. DISCUSSION

In this study, we used 1012 concurrent wrist actigraphy
and PSG recordings, from which heart rate and sleep staging
scores were derived, to develop and validate a subject-specific,
attention-based learning model for both 2-class (wakefulness
versus sleep) and 3-class (wakefulness, non-REM and REM)
sleep staging. Key attributes of the model include: 1) improved
overall accuracy, Kappa score and wake recall compared to
many other previously proposed models; 2) integration of
demographics as subject-specific measures; and 3) accurate
representation of sleep measures compared to PSG-based
sleep measures. The sleep data are highly imbalanced, with
more sleep intervals than wakefulness. Between sleep stages,
non-REM intervals outnumber REM intervals. Therefore, a
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Fig. 4. Confusion matrices for sleep staging when including demographic
information in the model: A) 2-class (Wake vs. Sleep) and B) 3-class (Wake,
Non-REM, REM).

challenge in sleep staging is to achieve high recall for wake-
fulness and REM. To address class imbalance in this work,
we used categorical cross-entropy loss with class weights
calculated based on the number of intervals in each class [17].
Experimental results showed that our model achieved the high-
est accuracy among different approaches, with significantly




Sleep Latency

Total Sleep Time

Sleep Efficiency

r=057,p<0.001 r=0.80, p<0.001

Detected Sleep Latency (hours)
N
L]
Detected Total Sleep Time (hours)

s .

_.’:--' ® ., |

041 & e % ."’.' ®ee o . °
T T

.. 90 {7 =076,p <0.001 o

60 -

Detected Sleep Efficiency (%)

T T T T T v
0 1 2 3 4 3 4 5
PSG-based Sleep Latency (hours)

PSG-based Total Sleep Time (hours)

T T T T T T T T T T T
7 8 9 10 30 40 50 60 70 80 90
PSG-based Sleep Efficiency (%)

Fig. 5. Scatter plots of predicted vs. reference values for sleep latency, total sleep time, and sleep efficiency. The dotted line represents the unity line, and

the dashed line represents the regression line.

TABLE VII
PERFORMANCE BY DEMOGRAPHIC SUBGROUPS
Sex Age Ethnicity
Metric Male | Female | p-value | 65 or Below 65 | Above 65 | p-value | White | Black | Hispanic | Asian | p-value
Accuracy (%) 78.40 | 80.94 NS? 80.34 79.05 NS 78.87 | 80.21 82.15 73.60 NS
Weighted F1 (%) | 78.37 | 81.11 NS 80.50 79.04 NS 78.74 | 80.23 82.52 74.13 NS

2NS: not significant.
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Fig. 6. T-distributed Stochastic Neighbor Embedding (t-SNE) visualization
of context vectors.

improved wake sensitivity while non-REM and REM recall
remained comparable to those of other methods.

Previous works, such as [17], fed their models with raw
actigraphy and heart rate signals and let CNN layers extract in-
formative latent representations. In this work, we implemented
several strategies: 1) hand-engineered features were extracted
for both actigraphy and heart rate, and 2) the importance
of the features were assessed by random forest and features
with lower importance scores were excluded; 3) separate CNN
branches were designed to analyze the features of actigraphy
and heart rate; and 4) linear fusion was applied to the latent
space of the two modalities. Our results indicates that these
strategy boosted Kappa score by at least 0.1 in two-class and
0.02 in three-class tasks.

The characteristics of the brain activity during sleep differ
between sexes and age groups [22]. Therefore, the subjects’
age and sex information was extracted from the provided
medical records and included in the model. Such subject-
specific data were directly concatenated with the attention
outputs and were fed into a dense layer to generate the detected
classes. We observed that including age and sex in the model
boosted its performance in terms of all metrics for the 2-class
task and for almost all metrics in the 3-class task (except REM
recall).

The model was trained for both 2-class and 3-class sleep
staging. With the 2-class output, we could provide an esti-
mate of sleep duration, quantified by TST and SE, whereas
the 3-class sleep staging provides detailed insight into sleep
depth. Detecting the intervals of REM sleep is neurologically
informative. For instance, experiencing delayed onset of REM
sleep is associated with Alzheimer’s disease [23]. Detecting
REM sleep behavior disorder, in which individuals move their
bodies in response to dreams, could assist in the diagnosis of
Lewy body dementia [24] or Parkinson’s disease [25].

One limitation of this study is that the model was developed
and evaluated on one database, and its generalizability on other
databases is yet to be evaluated in our future work. Despite the
high Cohen’s kappa that this model achieves (0.72), our model
can still mistakenly predict transitions from wake to REM
in 0.5% of epochs. In the future, we will explore graphical
models to enforce realistic sleep stage transitions, making the
predictions more physiologically plausible.

V. CONCLUSION

This study proposed an attention-based model that achieves
higher overall accuracy and Kappa score to detect intervals



of wakefulness versus sleep stages using actigraphy and heart
rate. The performance of the model was further enhanced by
extracting hand-engineered features and combining subject-
specific demographics with the attention output. This work
leverages wrist-worn wearables, specifically with embedded
accelerometry and PPG, by proposing a subject-specific model
that accurately detects wakefulness and estimates the duration
and depth of sleep. Such robust wearable technology offers a
more accessible home-based sleep monitoring device, which
can be used in populations such as children or older adults
who cannot tolerate in-laboratory sleep tests or those living in
remote areas.
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