

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM SINGLE TO MULTI-GRANULARITY: TOWARD LONG-TERM MEMORY ASSOCIATION AND SELECTION OF CONVERSATIONAL AGENTS

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.¹

1 INTRODUCTION

034 Large Language Models (LLMs) have showcased remarkable conversational abilities, enabling them to serve as personalized assistants (Li et al., 2025a; Wang et al., 2024; Li et al., 2024b) and handle a wide range of applications, such as customer service (Pandya & Holia, 2023) and software development (Qian et al., 2024). However, as user-agent interactions increase, the volume of conversational history grows significantly. Despite their impressive conversational abilities, LLMs struggle with maintaining long-term conversational memory due to their limited context length (Liu et al., 2023b), which makes it challenging to retain a comprehensive record of user interactions and preferences over time. This limitation undermines their ability to generate coherent and personalized responses (Wu et al., 2025a; Pan et al., 2025; Xu et al., 2025; Li et al., 2025b; Chhikara et al., 2025). The development of retrieval-based external (non-parametric) memory systems (Packer et al., 2023; Park et al., 2023) has emerged as a promising solution. By storing interaction histories and retrieving relevant information when needed, memory systems enable LLMs to recall user-specific details from past dialogues and deliver more tailored responses.

046 Recent studies on external memory systems of LLM agents primarily depend on the Retrieval-Augmented Generation (RAG) pipeline and have explored diverse aspects of memory segmentation and construction for effective retrieval (Wu et al., 2025b; Zhang et al., 2024a; Chen et al., 2025a; Chhikara et al., 2025; Zhong et al., 2024). For memory segmentation, existing approaches mainly adopt single-granularity to segment conversations. They utilize session-level chunks as retrieval units (Lu et al., 2023; Liu et al., 2023a; Team, 2023), while others employ finer-grained turn-level segmentation to capture details (Zhong et al., 2024; Wu et al., 2025a; Yuan et al., 2023). Recent

¹<https://anonymous.4open.science/r/MemGAS-626C/>

Figure 1: An example of the multi-session query. The agent needs to synthesize information from both *Conversation 1* and *Conversation 2* to answer the question. The **red underlines** highlight information directly relevant to the answer, while the **bold text** emphasizes the same details between conversations. By generating multi-granularities (e.g., summary and keyword), the agent can better establish connections between conversations, enhancing full memory retrieval. Additionally, chart (a) illustrates the performance across different granularities, where ‘Suited Gran’ means the result using best-suited granularity for each query.

advances introduce topic-aware segmentation techniques (Pan et al., 2025; Tan et al., 2025) that group dialogue based on semantic coherence, enhancing topic-consistent retrieval. Additionally, several works (Wang et al., 2025; Team, 2023; Zhong et al., 2024; Sarthi et al., 2024) generate memory summary, condensing key information into compact representations to improve retrieval efficiency. Regarding memory construction, researchers have explored structured organization paradigms to enhance long-term knowledge retention (Li et al., 2024c; Edge et al., 2024; Guo et al., 2024). Methods like RAPTOR (Sarthi et al., 2024) and MemTree (Rezazadeh et al., 2024) employ hierarchical tree structures to encode multi-scale relations between memory units. H-MEM (Sun & Zeng, 2025) introduces a four-layer hierarchical memory with positional indices, enabling efficient top-down retrieval. COMEDY Chen et al. (2025a) introduces a unified One-for-All compressive memory framework without relying on traditional memory databases. Inspired by cognitive mechanisms (Teyler & DiScenna, 1986), HippoRAG (Gutiérrez et al.; 2025) implements graph-based memory architectures that simulate neural memory consolidation processes, establishing relations between entities.

However, despite their progress, current approaches exhibit two critical limits: **i) Insufficient Multi-Granularity Memory Connection.** While existing methods endeavor to organize memories into topological structures (e.g., knowledge graphs (Gutiérrez et al., 2025; Chikara et al., 2025) or trees (Sarthi et al., 2024; Rezazadeh et al., 2024)), they predominantly concentrate on singular granularity levels—either entities or session summaries. This single-scale paradigm fails to model cross-granular interactions between memory units, resulting in retrieving only partial useful information. As demonstrated in Figure 1, answering multi-session queries requires establishing semantic links across granularities (e.g., connecting *Conversation 1* and *Conversation 2* through shared keyword/summary). Failure to establish links results in partial retrieval (e.g., retrieving only *Conversation 1*), which leads to incorrect answers. **ii) Lack of Adaptive Multi-Granular Memory Selection.** Current methods mainly rely on fixed granularity strategies (e.g., session/turn segmentation or LLM-generated summaries (Wang et al., 2025; Zhong et al., 2024; Wu et al., 2025a)), which often lead to incomplete context recall or noise due to improper granularity. Although topic-aware segmentation (Pan et al., 2025; Tan et al., 2025) enhances intra-chunk coherence, they lack adaptive mechanisms to select granularity for each query. Our empirical analysis in Figure 1(a) reveals that adaptively choosing best-suited granularity per query (e.g., balancing noise reduction in summaries/keywords with information

108 retention in raw sessions) yields substantial performance gains. This highlights the necessity of
 109 granularity selection to resolve the inherent noise-information trade-off.
 110

111 In this paper, we propose MemGAS, a framework for constructing and retrieving long-term memories
 112 through multi-granularity association and adaptive selection. Our method addresses these issues by
 113 two core strategies: **i) Memory Association:** We leverage LLMs to generate memory summaries and
 114 keywords, constructing multi-granular memory units. When new memory is updated, a Gaussian
 115 Mixture Model is employed to cluster historical memories into an accept set (relevant) and a reject
 116 set (irrelevant). The memories in the accept set are then associated with new memories, ensuring
 117 consolidated memory structures and real-time updates. **ii) Granularity Selection:** An entropy-
 118 based router adaptively assigns retrieval weights to different granularities by evaluating the certainty
 119 of the query’s relevance distribution. Finally, critical memories are retrieved using Personalized
 120 PageRank and filtered through LLMs to remove redundancies, ensuring a refined and high-quality
 121 memory that enhances the assistant’s understanding. Experiments on four open-source long-term
 122 memory benchmarks demonstrate that MemGAS significantly outperforms state-of-the-art baselines
 123 and single-granularity approaches on both question answer (QA) and retrieval tasks. Moreover, it
 124 consistently achieves superior results across various query types and retrieval top-k settings.
 125

2 METHODOLOGY

127 This section defines the task and data format, constructs a dynamical memory association framework,
 128 details an entropy-based router for better-suited granularity, and outlines strategies for retrieving and
 129 filtering high-quality contextual information for response generation.
 130

2.1 PRELIMINARY

131 Our work focuses on building personalized assistants through long-term conversational memory,
 132 where the system leverages multi-session user-agent interactions (referred to as memory) to construct
 133 an external memory bank \mathcal{M} . Without loss of generality, the i -th session $S_i = \{(u_j^{(i)}, a_j^{(i)})\}_{j=1}^{n_i}$
 134 contains n_i dialogue turns of user utterances $u_j^{(i)}$ and assistant responses $a_j^{(i)}$. When the assistant
 135 receives a query q , our aim is to retrieve relevant memories $\mathcal{M}_{\text{rel}} \subseteq \mathcal{M}$ through multi-granular
 136 associations across session-level S , turn-level T , keyword-level K , and summary-level U , then
 137 generates responses via $a = \text{LLM}(q, \mathcal{M}_{\text{rel}})$. The core challenges involve establishing cross-granular
 138 memory association and learning adaptive granularity selection $\psi : q \rightarrow \{\alpha_s, \alpha_t, \alpha_k, \alpha_s\}$ to balance
 139 information completeness and retrieval noise.
 140

2.2 MULTI-GRANULARITY ASSOCIATION CONSTRUCTION

141 Existing methods mainly encode memories into vector libraries (e.g., session-level chunks) and
 142 directly retrieve information via similarity search (Izacard et al., 2021; Lee et al., 2023; Lu et al.,
 143 2023). However, such approaches overlook deeper associations between memories. To address this,
 144 we propose an associative memory construction process that captures multi-granular relationships.
 145

146 **Multi-Granular Memory Metadata.** For the i -th session S_i , multi-granularity metadata is generated
 147 using LLMs, including a session summary U_i and keywords K_i . Additionally, the session is
 148 segmented into multiple turns T_i . Formally,
 149

$$U_i, K_i = f_{\text{LLM}}(S_i), \quad T_i = \text{segment}(S_i) \quad (1)$$

150 Here, f_{LLM} denotes LLM processing function, and segment represents segmentation operation. The
 151 resulting memory chunk M_i combines the session-level S_i , turn-level dialogues T_i , summary U_i , and
 152 keywords K_i , and is stored in memory bank as:
 153

$$M_i = \{S_i, T_i, U_i, K_i\} \in \mathcal{M} \quad (2)$$

154 **Dynamical Memory Association.** When a new memory \mathcal{M}_{new} is added, the current memory bank
 155 \mathcal{M}_{cur} is updated as $\mathcal{M}_{\text{cur}} \leftarrow \mathcal{M}_{\text{cur}} \cup \mathcal{M}_{\text{new}}$. To establish associations between \mathcal{M}_{new} and historical
 156 memories, a Gaussian Mixture Model (GMM)-based clustering strategy (Rasmussen, 1999) is used.
 157 Each granularity of each element in the memory bank is encoded as a dense vector. Specifically, all
 158

Figure 2: Overall Framework. In the first phase, we leverage LLM agent to generate multi-granularity information and construct Memory Association using GMM. In the second phase, given a query, we perform multi-granularity routing based on entropy and utilize PPR algorithm to search for key nodes. Finally, we filter the information to obtain the answer.

memories are encoded into dense vectors $e(S_i)$, $e(T_i)$, $e(U_i)$, and $e(K_i)$ for session-level, turn-level, summary, and keyword metadata, respectively. The entire memory bank \mathcal{M}_{cur} is thus represented as a collection of these multi-granular vectors. Pairwise similarity scores are computed between $e(\mathcal{M}_{\text{new}})$ and $e(\mathcal{M}_{\text{cur}})$, covering all granularities of each memory. The resulting set of similarity vectors \mathbf{s}_{sim} is clustered by GMM into two probabilistic sets:

- **Accept Set:** Memories with high similarity to \mathcal{M}_{new} , forming direct associations with \mathcal{M}_{new} .
- **Reject Set:** Irrelevant memories, excluded from immediate connections with \mathcal{M}_{new} .

Note that the similarity vectors are computed with granularity-specific information, meaning that each granularity of \mathcal{M}_{new} is treated as a node and used to establish connections with nodes in \mathcal{M}_{cur} . We maintain an association graph \mathcal{A}_{cur} to store the connections in \mathcal{M} , which is updated as $\mathcal{A}_{\text{cur}} \leftarrow \mathcal{A}_{\text{cur}} \cup \mathcal{A}_{\text{new}}$, where \mathcal{A}_{new} represents the edges between \mathcal{M}_{new} and its **accept set**. This process mimics human-like memory consolidation by selectively reinforcing contextually related memories.

2.3 MULTI-GRANULARITY ROUTER

Existing methods rely on single predefined granularity for memory retrieval, limiting their ability to adaptively prioritize fine- or coarse-grained information based on query (Lee et al., 2023; Wang et al., 2025; Sarthi et al., 2024). To address this, we propose an entropy-based router that adaptively selects the better-suited granularity for each query.

Entropy-Driven Granularity Selection. For a query q , we first compute its similarity to all memory chunks across each granularity level $g \in \{\text{session, turn, summary, keyword}\}$. Let $\mathbf{s}^g = [\text{sim}(q, M_1^g), \dots, \text{sim}(q, M_n^g)]$ denote the similarity scores between q and n memory chunks at granularity g . We normalize \mathbf{s}^g into a probability distribution $p^g(\mathbf{s}^g)$ and calculate its Shannon entropy:

$$H^g = - \sum_{i=1}^n p_i^g(\mathbf{s}^g) \log p_i^g(\mathbf{s}^g), \text{ where } p_i^g(\mathbf{s}^g) = \frac{\exp(\text{sim}(q, M_i^g)/\lambda)}{\sum_{j=1}^n \exp(\text{sim}(q, M_j^g)/\lambda)}, \forall i \in \{1, \dots, n\}. \quad (3)$$

where H^g quantifies the uncertainty of matching q to memories at granularity g . λ is a hyperparameter to control the degree of entropy, and analyzed in Appendix F.

Soft Router Weights. Our motivation stems from that lower entropy H^g typically reflects higher confidence in precise matches (e.g., higher confidence indicates a clear correspondence between the

query and its associated memory). Conversely, higher entropy suggests more ambiguous matches (e.g., lower confidence implies uncertainty about the query’s corresponding memory). To capture this behavior, we assign weights to granularities by normalizing their inverse entropy:

$$w^g = \frac{1/H^g}{\sum_{g'=1}^G 1/H^{g'}}, \quad (4)$$

where G denotes the total number of granularities. This formulation ensures that granularities with lower entropy (indicating higher certainty) are assigned greater weights. Consequently, memories are reweighted to emphasize those associated with the query’s most confident granularities, eliminating the need for manual intervention. We present a theoretical analysis of granularity association and routers in Appendix H.

2.4 MEMORY RETRIEVAL AND FILTER

After constructing the multi-granularity memory associations and determining granularity weights, we retrieve relevant memories for a query q by leveraging the graph-structured memory $\{M_i, A_i\} \in \mathcal{M} \times \mathcal{A}$. To fully utilize inter-memory relationships, we employ the Personalized PageRank (PPR) algorithm (Haveliwala, 2002) for context-aware ranking. **At the granularity level, we treat each M_i^g (i.e., the g -th granularity node of memory M_i) as an individual node in the association graph.** For each granularity g , we compute an initial relevance score for node M_i^g using the router-assigned weight w^g from Equation 4:

$$\text{score}_i^g = w^g \cdot \text{sim}(q, M_i^g), \quad (5)$$

where $\text{sim}(q, M_i^g)$ measures the cosine similarity between the query embedding $e(q)$ and the granularity-specific embedding $e(M_i^g)$. The set of scores $\{\text{score}_i^g\}$ defines the personalized starting probabilities over granularity-level nodes. We then select the top α nodes as seed nodes (analyzed in Appendix F), and run PPR on the multi-granularity association graph, propagating relevance through the graph structure to emphasize nodes that are both directly relevant to the query and densely connected to other high-value nodes. After convergence, we select the top- k nodes as candidate contexts by their final PPR scores. The impact of K is empirically analyzed in Section § 3.4.

LLM-Based Redundancy Filtering. To minimize noise and eliminate redundancy in the retrieved multi-granularity memories, we employ an LLM-based filtering mechanism. This mechanism processes the top- K memories alongside the query q , using a curated designed prompt (see Appendix J) to identify and discard irrelevant or repetitive content. As a result, the final context provided to the response generator is refined to focus exclusively on the most critical information relevant to q , ensuring a more concise and personalized response. We present case study on multi-granularity information in Appendix K.2 and case study on filtering in Appendix K.3.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Dataset and Metrics. Experiments are conducted on four comprehensive long-term memory datasets: LoCoMo (Maharana et al., 2024), Long-MT-Bench+ (Pan et al., 2025), LongMemEval-s (Wu et al., 2025a), and LongMemEval-m (Wu et al., 2025a), all focused on evaluating the capabilities of LLM agents in long-term conversations. Since our task is training-free, the whole QA pairs in datasets are used for evaluation. Detailed dataset statistics are provided in Appendix A. To comprehensively evaluate model performance, we employ multiple metrics: F1 scores (as used by Maharana et al. (2024)), BLEU (with 4-gram by default), BERTScore, and ROUGE scores (following Pan et al. (2025)). Additionally, we introduce GPT4o-as-Judge (GPT4o-J) (Zheng et al., 2023), an evaluation setting where GPT4o assesses the alignment of a model’s response with the reference answer. The evaluation prompts are provided in Appendix J.

Baselines. We compare MemGAS against various methods. (1) **Full History**: which utilizes all the latest conversation records, incorporating up to 128k tokens of context. *Two strong retrieval models*: (2) **MPNet** (Song et al., 2020) and (3) **Contriever** (Izacard et al., 2021). *Four memory-based conversational models*: (4) **RecurSum** (Wang et al., 2025), which uses LLMs to recursively summarize and update memory for contextually relevant responses; (5) **MPC** (Lee et al., 2023), which

270 composes LLM with prompting and external memory; (6) **A-Mem** (Xu et al., 2025), which organizes
 271 memories through generating note and links; (7) **SeCom** (Pan et al., 2025), which segments memory
 272 into coherent topics and applies compression-based denoising to boost retrieval; *Two structured*
 273 *RAG models*: (8) **HippoRAG 2** (Gutiérrez et al.), which integrates knowledge graphs for efficient
 274 retrieval, and (9) **RAPTOR** (Sarthi et al., 2024), which enhances retrieval via recursive summary
 275 and hierarchical clustering into a tree structure. **We also include two recent memory models: H-**
 276 **MEM** (Sun & Zeng, 2025) **introduces a four-layer hierarchical memory with positional indexing,**
 277 **and COMEDY** Chen et al. (2025a) **provides a unified One-for-All compressive memory framework**
 278 **without traditional memory stores. Due to space limitations, the experimental results for H-MEM**
 279 **and COMEDY are provided in Appendix I.2.** More details can be found in Appendix B.

280 **Implementation Details.** We use ‘gpt-4o-mini-2024-07-18’ as the backbone for all tasks, including
 281 multi-granularity information generation and QA. To ensure fairness, all baselines share consistent
 282 generation prompts. The temperature of LLMs is set to 0 for reproducibility, and all models operate in
 283 a zero-shot setting with prompt templates detailed in Appendix J. A consistent top-3 session retrieval
 284 setting is applied across all models for fair comparison, with top-3 segments used for SeCom and
 285 sessions/summaries for RAPTOR. Contriever is used as the encoding model to generate embeddings
 286 for memory texts. **We select hyperparameters through grid search: λ is tuned over {0.1, 0.2, 0.3, 0.5,**
 287 **0.7, 1.0} and α over {5, 10, 15, 20, 25}.** LongMTBench+ is excluded due to the lack of a ground truth
 288 for retrieval. RAPTOR and A-Mem retrieval cannot be evaluated with session-level Recall because
 289 **their stored units are abstracted or rewritten representations, so there is no deterministic mapping**
 290 **back to ground-truth sessions.** Results for RAPTOR, A-Mem, and HippoRAG on LongMemEval-m
 291 are unavailable due to high runtime.

292 We compared various methods across different retrievers, generators, and query types, as detailed in
 293 Appendix E.1 E.2 and E.3. Additionally, we provide a hyperparameter analysis in Appendix F and
 294 an error analysis in Appendix G. The additional cost and efficiency of the methods are discussed in
 295 Appendix D.

296 3.2 OVERALL RESULTS

297 We present the results for Question Answering and Retrieval in Table 1 and Table 2, respectively. We
 298 also compare performance of single-granularity and multi-granularity in Appendix C. Below, we
 299 provide analysis of these results.

300 **Question Answering Results.** As presented in Table 1, MemGAS consistently outperforms other
 301 methods across most datasets and evaluation metrics. Unlike Full History, which introduces noise
 302 by utilizing all historical context, MemGAS excels by effectively consolidating and retrieving only
 303 the most relevant memories. Other baselines, such as RecurSum and SeCom, although operating
 304 at specific granularities, lack the capability to integrate multi-granular associations between mem-
 305 ory, resulting in suboptimal outcomes. Besides, methods like HippoRAG 2 and RAPTOR, while
 306 establishing connections between memory units, fail to construct multi-granular relationships and
 307 selection mechanisms effectively, limiting their performance. MemGAS performs better through its
 308 dynamic construction and adaptive router of multi-granular memory units and redundancy filtering,
 309 emphasizing the critical role of association and selection in memory management. **In terms of**
 310 **efficiency, MemGAS maintains competitive token usage and achieves stronger QA quality while**
 311 **retaining comparable—or even lower—latency than several baselines such as A-Mem and RecurSum,**
 312 **making it both more accurate and more efficient overall.**

313 **Retrieval Results.** As shown in Table 2, our MemGAS demonstrates outstanding performance across
 314 all datasets, consistently achieving the highest Recall and NDCG metrics. These results highlight
 315 the effectiveness and robustness of our approach, addressing key challenges in long-term memory
 316 construction and retrieval, and ensuring that queries are matched with the most relevant context.

317 3.3 ABLATION STUDY

318 The ablation study in Table 3 demonstrates the significance of each component in enhancing both
 319 QA and retrieval performance. Individually removing GMM, PPR, MA, or the Router results in
 320 consistent performance degradation, validating their essential contributions. Notably, the combined
 321 absence of all components leads to the most significant drop, with the F1 score plummeting from
 322 20.38 to 13.78, and Recall@3 decreasing from 78.51 to 71.06. This highlights the importance of all
 323

324
 325 Table 1: QA performance. Contriever is used as the retrieval backbone for all baselines (except for
 326 Full History and MPNet), with GPT4o-mini serving as the generator. The **bold** values indicate the
 327 best performance, while underlined values mark the second-best across each metric. All evaluation
 328 metrics follow a “higher is better” convention. **4o-J**’ denotes GPT4o-as-Judge, **B-4**’ represents
 329 BLEU4, **R-n**’ refers to ROUGE-n, and **BS**’ denotes BERTScore. **Avg. Tokens** and **Avg. Latency** both
 330 report the average computational cost per query; **Avg. Tokens** measures LLM API token consumption,
 331 while **Avg. Latency** reflects the end-to-end response time. Latency is measured in seconds.

Model	4o-J	F1	B-4	R-1	R-2	R-L	BS	Avg. Tokens	Avg. Latency
<i>LongMemEval-s</i>									
Full History	50.60	11.48	1.40	12.10	5.47	10.85	83.07	103,137	9.39
MPNet (Song et al., 2020)	53.20	13.96	2.21	14.49	6.78	12.93	83.72	8,173	1.82
Contriever (Izacard et al., 2021)	55.40	13.78	2.21	14.46	6.93	12.89	83.70	8,286	1.85
MPC (Lee et al., 2023)	53.80	13.60	1.74	14.27	6.49	12.95	83.49	8,457	2.66
RecurSum (Wang et al., 2025)	35.40	12.29	2.09	13.01	5.55	11.52	83.60	8,853	1.94
SeCom (Pan et al., 2025)	56.00	12.95	<u>2.25</u>	13.80	6.09	11.93	83.51	2,741	1.67
HippoRAG 2(Gutiérrez et al., 2025)	<u>57.60</u>	<u>14.73</u>	2.15	<u>15.30</u>	<u>7.36</u>	<u>13.83</u>	83.86	8,530	4.51
RAPTOR (Sarthi et al., 2024)	32.20	12.08	1.90	12.73	5.82	11.25	83.50	6,254	2.25
A-Mem (Xu et al., 2025)	55.60	13.73	2.11	14.82	6.81	12.98	<u>83.88</u>	9,018	2.59
MemGAS (Ours)	60.20	20.38	4.22	21.05	10.47	19.47	85.21	8,829	2.55
<i>LongMemEval-m</i>									
Full History	12.20	5.70	0.78	6.27	2.08	5.28	81.62	128,000	12.88
MPNet (Song et al., 2020)	37.80	10.76	1.70	11.46	4.76	10.03	83.09	8,352	1.83
Contriever (Izacard et al., 2021)	<u>42.80</u>	<u>11.88</u>	1.66	<u>12.56</u>	<u>5.63</u>	<u>11.02</u>	83.28	8,467	1.92
MPC (Lee et al., 2023)	37.80	11.28	1.37	11.93	5.12	10.57	82.98	8,428	2.75
RecurSum (Wang et al., 2025)	23.80	10.04	1.70	10.89	4.26	9.21	83.12	8,927	1.99
SeCom (Pan et al., 2025)	<u>42.80</u>	11.33	<u>1.79</u>	12.03	5.07	10.49	<u>83.36</u>	2,821	1.63
MemGAS (Ours)	45.40	16.85	3.39	17.60	8.25	16.14	84.69	8,852	2.45
<i>LoCoMo</i>									
Full History	33.43	12.23	1.84	12.70	5.66	11.73	84.07	20,078	4.92
MPNet (Song et al., 2020)	38.07	14.44	2.35	14.90	6.83	13.90	84.42	2,472	1.29
Contriever (Izacard et al., 2021)	40.33	15.66	2.67	16.01	7.68	15.00	84.65	2,348	1.24
MPC (Lee et al., 2023)	40.38	14.81	1.99	15.10	6.83	14.13	84.43	2,683	1.95
RecurSum (Wang et al., 2025)	22.56	9.14	0.99	9.82	3.38	8.98	83.45	3,074	1.58
SeCom (Pan et al., 2025)	<u>44.21</u>	13.79	2.30	14.28	6.17	13.30	84.04	1,021	1.02
HippoRAG 2(Gutiérrez et al., 2025)	45.62	<u>16.66</u>	<u>2.91</u>	<u>17.01</u>	<u>8.27</u>	<u>15.93</u>	<u>84.88</u>	2,991	3.56
RAPTOR (Sarthi et al., 2024)	31.72	14.55	2.88	15.09	7.49	14.18	84.48	1,931	1.73
A-Mem (Xu et al., 2025)	40.81	14.72	2.83	16.22	7.71	14.89	84.72	3,042	1.98
MemGAS (Ours)	41.07	17.66	3.61	18.00	8.93	16.99	85.13	2,825	1.88
<i>LongMTBench+</i>									
Full History	<u>67.44</u>	36.07	11.32	37.90	20.51	29.25	87.81	19,194	4.72
MPNet (Song et al., 2020)	63.89	36.09	11.26	38.39	20.58	28.86	87.84	12,143	3.21
Contriever (Izacard et al., 2021)	63.54	36.30	11.59	38.17	21.65	29.67	87.90	11,941	3.27
MPC (Lee et al., 2023)	61.81	31.52	7.97	33.56	17.27	25.20	86.51	12,289	3.98
RecurSum (Wang et al., 2025)	24.65	26.58	6.91	29.23	11.93	20.90	86.11	13,527	3.41
SeCom (Pan et al., 2025)	64.58	36.68	12.01	38.81	21.44	29.65	87.88	4,714	2.68
HippoRAG 2(Gutiérrez et al., 2025)	63.54	35.64	11.05	37.61	20.37	28.76	87.70	13,583	6.14
RAPTOR (Sarthi et al., 2024)	59.72	<u>37.69</u>	<u>13.47</u>	<u>40.08</u>	<u>21.68</u>	<u>30.88</u>	<u>88.38</u>	10,631	3.47
A-Mem (Xu et al., 2025)	65.73	36.82	11.36	38.92	20.88	29.14	87.92	13,735	3.95
MemGAS (Ours)	69.44	41.49	15.62	43.69	24.45	34.66	88.96	12,873	3.85

372
 373 modules in improving overall performance. Moreover, **the latency introduced by these modules is**
 374 **minimal**, with the highest latency increase being only 0.0191 seconds for QA and 0.0079 seconds for
 375 retrieval. **We also found that LLM API calls account for over 98% of the overall end-to-end latency**,
 376 **indicating that they are by far the primary contributor to the system’s response time, and the overhead**

378
379 Table 2: Retrieval Performance. All methods are based on Contriever as the retriever, except for
380 MPNet.
381

Model	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
<i>LongMemEval-s</i>						
MPNet (Song et al., 2020)	66.17	75.47	76.38	78.29	85.11	80.63
Contriever (Izacard et al., 2021)	71.06	79.72	81.28	82.47	90.00	84.29
RecurSum (Wang et al., 2025)	67.23	78.33	79.79	81.76	87.66	83.28
MPC (Lee et al., 2023)	60.00	70.90	68.09	73.27	80.00	76.59
SeCom (Pan et al., 2025)	71.06	80.88	80.43	83.08	89.15	85.11
HippoRAG 2(Gutiérrez et al., 2025)	75.53	85.44	84.68	87.32	91.28	88.73
MemGAS (Ours)	78.51	86.83	88.94	88.77	94.47	89.96
<i>LongMemEval-m</i>						
MPNet (Song et al., 2020)	37.02	48.68	45.74	52.51	61.28	56.55
Contriever (Izacard et al., 2021)	44.26	56.11	53.40	59.44	65.96	62.74
RecurSum (Wang et al., 2025)	23.19	32.10	31.70	36.99	43.62	41.40
MPC (Lee et al., 2023)	35.96	47.51	42.55	50.36	54.26	53.88
SeCom (Pan et al., 2025)	44.26	56.61	55.32	60.76	66.60	63.78
MemGAS (Ours)	51.06	61.36	63.62	66.07	77.02	69.46
<i>LoCoMo</i>						
MPNet (Song et al., 2020)	45.92	47.71	53.98	51.79	68.58	56.88
Contriever (Izacard et al., 2021)	49.90	52.15	58.26	56.29	71.80	60.92
RecurSum (Wang et al., 2025)	47.23	48.99	59.01	54.58	74.97	60.07
MPC (Lee et al., 2023)	49.50	51.47	57.45	55.53	71.85	60.47
SeCom (Pan et al., 2025)	55.24	57.90	64.80	62.36	78.30	66.97
HippoRAG 2(Gutiérrez et al., 2025)	56.60	58.37	65.06	62.50	78.05	66.79
MemGAS (Ours)	57.30	58.76	67.32	63.62	81.82	68.42

405
406 Table 3: Ablation Study on LongMemEval-s for Gaussian Mixture Model (GMM), Personalized
407 PageRank (PPR), Granularity Router and Memory Association (MA). The w/o MA setting is equiva-
408 lent to w/o GMM and PPR. QA performance is evaluated using top 3 retrieved results. R@n means
409 Recall@n. The (Δ) represents the latency introduced by each module.

Method	QA Performance					Retrieval Performance			
	GPT4o-J	F1	RogueL	Avg. Tokens	Total Latency (s)	R@3	R@5	R@10	Retrieval Latency (s)
MemGAS	60.20	20.38	19.47	8,829	2.5534	78.51	88.94	94.47	0.0239
w/o GMM	57.20	19.49	18.68	8,820	2.5506(Δ 0.0028)	76.38	85.53	91.28	0.0232(Δ 0.0007)
w/o PPR	56.60	19.76	18.85	8,772	2.5449(Δ 0.0085)	75.96	85.96	90.64	0.0194(Δ 0.0045)
w/o MA	56.80	17.69	19.00	8,734	2.5418(Δ 0.0116)	74.89	85.74	91.49	0.0182(Δ 0.0057)
w/o Router	56.60	18.88	18.62	8,763	2.5471(Δ 0.0063)	75.53	85.74	92.34	0.0216(Δ 0.0023)
w/o All	55.40	13.78	12.89	8,701	2.5343(Δ 0.0191)	71.06	81.28	90.00	0.0160(Δ 0.0079)

418
419
420 from our modules is acceptable in practice. This demonstrates that the proposed architecture achieves
421 a remarkable balance between enhanced performance and computational efficiency.
422423
3.4 DETAILED COMPARISON ANALYSIS
424425 In this section, we present a comprehensive analysis comparing our approach with baselines across
426 different query types and different Top-K retrieval settings.
427428 **Comparison on different query types.** The results in Figure 5 highlight performance across different
429 query types. Our MemGAS consistently demonstrates superior performance, particularly excelling in
430 *multi-hop retrieval* on LoCoMo and *multi-session* on LongMemEval-s. This suggests that memory
431 association mechanism in MemGAS effectively identifies highly relevant sessions, enabling enhanced
432 multi-hop reasoning and better integration of knowledge. Additionally, our method performs well
433 across single-session, temporal reasoning, and knowledge update, demonstrating its strength in

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 3: Comparison of F1 Across Different Query Types in LongMemEval-s.

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 4: Comparison on Different Top-K Retrieval.

addressing both simple and complex query types. We also provide a case study for different query types in Appendix K.1, and comparison with other datasets and metrics in Appendix E.3.

Comparison on different Top-K retrieval. In downstream QA tasks, Top-K retrieved memories are directly fed as context to LLM generator, where increasing K improves coverage but may introduce noise when K becomes too large. The results shown in Figure 4 demonstrate the performance of various Top-K retrieval settings. On the LoCoMo and LongMemEval-s datasets, our model consistently surpasses baseline methods in F1 scores as Top-K increases from 1 to 10. This trend highlights that retrieving more relevant context significantly enhances accuracy. Note that on the LongMemEval-s dataset, while F1 scores initially improve at lower Top-K values, performance declines at higher Top-K levels, suggesting that the longer context introduces noise, which negatively impacts the model’s effectiveness.

Comparison w/ and w/o Filter Setting. To ensure fairness when comparing MemGAS with baselines that may not employ LLM-based filtering, we provide a detailed breakdown of token usage for *online per-query cost*. Table 4 reports token consumption with and without filtering, as well as the corresponding QA performance on LongMemEval-s using GPT4o-J. Overall, MemGAS exhibits competitive or lower online token usage compared to representative structured baselines such as HippoRAG2, while consistently achieving higher QA accuracy. The filtering module introduces only a small additional overhead (approximately 200–300 tokens per query), yet it improves answer precision and benefits downstream reasoning quality. Moreover, as shown in Appendix D.1, MemGAS requires noticeably less LLM involvement during memory construction compared to multi-stage structured approaches (e.g., HippoRAG2), further enhancing its overall efficiency.

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 4: Comparison of LLM token usage and QA performance between MemGAS and representative baselines, under both filtering and non-filtering settings. The reported numbers include (i) average online per-query token cost and (ii) GPT4o-J QA score on LongMemEval-s. Avg. Tokens per query denotes online QA-stage token consumption: tokens for LLM filtering + tokens for QA generation.

Category	Setting	MemGAS	HippoRAG2	RAPTOR	SeCom	RecurSum
Avg. Tokens per query	With filter	8,829	8,911	6,617	3,015	9,176
Avg. Tokens per query	Without filter	8,481	8,530	6,254	2,741	8,853
QA performance	With filter	60.2	58.4	33.2	56.6	36.2
QA performance	Without filter	59.4	57.6	32.2	56.0	35.4

4 RELATED WORK

Retrieval Methods. Recent advancements in retrieval methods have greatly enhanced information retrieval performance (Robertson et al., 2009; Song et al., 2020; Santhanam et al., 2021). BM25 (Robertson et al., 2009), a classic sparse retrieval method, uses a probabilistic model to improve query

486 relevance. In contrast, dense retrieval methods excel at capturing semantic similarity. For instance,
 487 DPR (Karpukhin et al., 2020) employs dual-encoder models to encode queries and documents into
 488 dense vectors for efficient similarity search. Similarly, Contriever (Izacard et al., 2021) leverages
 489 contrastive learning to enhance semantic understanding. Advanced methods like E5 (Wang et al.,
 490 2022), BGE (Luo et al., 2024), and GTE (Li et al., 2023) further utilize pre-trained or fine-tuned
 491 transformers for robust and efficient semantic retrieval.

492 **Long Term Memory Management.** With the development of LLMs, the user-assistant conversation
 493 becomes longer and contains various topics (Chhikara et al., 2025; Li et al., 2025b; Wang & Chen,
 494 2025; Lu et al., 2023; Du et al., 2024; Qian et al., 2025; Packer et al., 2023; Zhang et al., 2025; 2024a;
 495 Wu et al., 2025b; Du et al., 2024; Kirmayr et al., 2025), which introduces challenges for preserving
 496 the user’s long-term memory. Management in long-term memory often involves segmentation (Pan
 497 et al., 2025), summary (Kim et al., 2024), compression (Chen et al., 2025b), forgetting and updating
 498 (Bae et al., 2022; Wang et al., 2025; Zhong et al., 2024). For example, several approaches (Wang
 499 et al., 2025; Sarthi et al., 2024; Team, 2023; Liu et al., 2023a; Lu et al., 2023) focus on generating
 500 memory summaries as records to enable more accurate retrieval. Besides, some methods (Pan et al.,
 501 2025; Lee et al., 2024; Xu et al., 2023; Chen et al., 2025a) leverage compression techniques to
 502 reduce memory size while preserving essential information. The forgetting mechanisms (Zhong
 503 et al., 2024; Jia et al., 2024) address the need to remove obsolete or irrelevant memories while
 504 maintaining model performance. Some integrated methods (Tan et al., 2025; Ong et al., 2025; Li
 505 et al., 2024a) combine memory retention, update to enable personalized and contextually relevant
 506 long-term dialogue. However, existing approaches typically focus on single-granularity segmentation
 507 strategies, such as session/turn, to organize and manage long-term memory. Whereas our work
 508 leverages multi-granular information for better adaptive memory selection.

509 **Structural Memory Management.** Additionally, existing works employ structured paradigms
 510 for memory or knowledge base organization (Chen et al., 2024; Li et al., 2024c; Zhang et al.,
 511 2025; 2024a; Wu et al., 2025b; He et al., 2024a; Zhang et al., 2024b; Xu et al., 2022; Rasmussen
 512 et al., 2025). HippoRAG (Gutiérrez et al., 2025) builds entity-centric knowledge graphs inspired
 513 by hippocampal indexing theory (Teyler & DiScenna, 1986), while Graph-CoT (Jin et al., 2024)
 514 and G-Retriever (He et al., 2024b) integrate graph reasoning for interactive retrieval or generation,
 515 whereas LightRAG (Guo et al., 2024) and GraphRAG (Edge et al., 2024) optimize retrieval and
 516 summary via graph structures. MemTree and RAPTOR (Rezazadeh et al., 2024; Sarthi et al., 2024)
 517 utilize recursive embedding, clustering, and summarization of text chunks to construct a hierarchical
 518 tree, while StructRAG (Li et al., 2024c) enhances reasoning by leveraging multiple structured formats.
 519 While existing methods focus on single-granularity memory modeling, they lack cross-granularity
 520 interactions. In contrast, our MemGAS utilizes multi-granularity association and adaptive selection
 521 to construct consolidated memory structures and optimize retrieval efficiency.

522 5 CONCLUSION

523 In this paper, we proposed MemGAS, a novel framework for long-term memory construction and
 524 retrieval that integrates multi-granular memory units and enables adaptive selection and retrieval. By
 525 leveraging human-inspired memory mechanisms through Gaussian Mixture Models and an entropy-
 526 based multi-granularity router, MemGAS effectively addresses challenges of memory connection
 527 and selection. Experimental results across four benchmarks demonstrate that MemGAS significantly
 528 outperforms state-of-the-art baselines in both QA and retrieval tasks, highlighting its robustness and
 529 superiority in managing long-term memory for conversational agents.

532 533 ETHICS STATEMENT

534 This work adheres to ethical research practices by ensuring that all experiments and datasets used are
 535 publicly available and utilized in accordance with their licenses. The proposed MemGAS framework
 536 is designed to enhance conversational agents responsibly, with a focus on improving user experience
 537 while minimizing the risk of harm, such as generating misinformation. No sensitive or proprietary data
 538 was used during the research process, and the methodology prioritizes transparency and accountability
 539 in memory retrieval and usage.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring the reproducibility of our work. To this end, we have provided
543 the code in an anonymous repository. The repository includes a well-documented README file
544 with instructions to replicate our experiments. Additionally, we have detailed implementation
545 specifics in this manuscript, and hyperparameter tuning is comprehensively described in Appendix F.
546 Furthermore, we have included the complete set of prompts required for the experiments, ensuring
547 that all components of our methodology can be accurately reproduced. We encourage the community
548 to leverage these resources to build upon our work.

550 REFERENCES
551

552 Sanghwan Bae, Donghyun Kwak, Soyoung Kang, Min Young Lee, Sungdong Kim, Yuin Jeong, Hyeri
553 Kim, Sang-Woo Lee, Woomyoung Park, and Nako Sung. Keep me updated! memory management
554 in long-term conversations. *arXiv preprint arXiv:2210.08750*, 2022.

555 Nuo Chen, Hongguang Li, Jianhui Chang, Juhua Huang, Baoyuan Wang, and Jia Li. Compress to
556 impress: Unleashing the potential of compressive memory in real-world long-term conversations.
557 In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 755–773,
558 2025a.

559 Nuo Chen, Hongguang Li, Jianhui Chang, Juhua Huang, Baoyuan Wang, and Jia Li. Compress to
560 impress: Unleashing the potential of compressive memory in real-world long-term conversations.
561 In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 755–773,
562 2025b.

563 Si-An Chen, Lesly Miculicich, Julian Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen, Ya-
564 suhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and Tomas Pfister. Tablerag: Million-token table
565 understanding with language models. *Advances in Neural Information Processing Systems*, 37:
566 74899–74921, 2024.

567 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
568 production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*,
569 2025.

570 Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zexhong Wang,
571 and Kam-Fai Wong. Perltqa: A personal long-term memory dataset for memory classification,
572 retrieval, and fusion in question answering. In *Proceedings of the 10th SIGHAN Workshop on
573 Chinese Language Processing (SIGHAN-10)*, pp. 152–164, 2024.

574 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
575 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
576 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

577 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
578 augmented generation. 2024.

579 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
580 logically inspired long-term memory for large language models. In *The Thirty-eighth Annual
581 Conference on Neural Information Processing Systems*.

582 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
583 Non-parametric continual learning for large language models. *arXiv preprint arXiv:2502.14802*,
584 2025.

585 Taher H Haveliwala. Topic-sensitive pagerank. In *Proceedings of the 11th international conference
586 on World Wide Web*, pp. 517–526, 2002.

587 Junqing He, Liang Zhu, Rui Wang, Xi Wang, Reza Haffari, and Jiaxing Zhang. Madial-bench:
588 Towards real-world evaluation of memory-augmented dialogue generation. *arXiv preprint
589 arXiv:2409.15240*, 2024a.

594 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
 595 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
 596 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,
 597 2024b.

598 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 599 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
 600 *arXiv preprint arXiv:2112.09118*, 2021.

601 Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wagle:
 602 Strategic weight attribution for effective and modular unlearning in large language models. *arXiv*
 603 *preprint arXiv:2410.17509*, 2024.

604 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
 605 Tang, Suhang Wang, Yu Meng, et al. Graph chain-of-thought: Augmenting large language models
 606 by reasoning on graphs. *arXiv preprint arXiv:2404.07103*, 2024.

607 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 608 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 609 (1), pp. 6769–6781, 2020.

610 Seo Hyun Kim, Tzu-iunn Ong, Taeyoon Kwon, Namyoung Kim, Keummin Ka, SeongHyeon Bae,
 611 Yohan Jo, Seung-won Hwang, Dongha Lee, Jinyoung Yeo, et al. Theanine: Revisiting memory
 612 management in long-term conversations with timeline-augmented response generation. *arXiv*
 613 *e-prints*, pp. arXiv–2406, 2024.

614 Johannes Kirmayr, Lukas Stappen, Phillip Schneider, Florian Matthes, and Elisabeth Andre. Carmem:
 615 Enhancing long-term memory in llm voice assistants through category-bounding. In *Proceedings*
 616 *of the 31st International Conference on Computational Linguistics: Industry Track*, pp. 343–357,
 617 2025.

618 Gibbeum Lee, Volker Hartmann, Jongho Park, Dimitris Papailiopoulos, and Kangwook Lee. Prompted
 619 llms as chatbot modules for long open-domain conversation. In *Findings of the Association for*
 620 *Computational Linguistics: ACL 2023*, pp. 4536–4554, 2023.

621 Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
 622 reading agent with gist memory of very long contexts. *arXiv preprint arXiv:2402.09727*, 2024.

623 Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
 624 llm-powered personalized agent for long-term dialogue. *arXiv preprint arXiv:2406.05925*, 2024a.

625 Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi Zhang, Wenlin Zhang, Wanyu Wang, Yichao
 626 Wang, Zhaocheng Du, Xiangyang Li, et al. A survey of personalization: From rag to agent. *arXiv*
 627 *preprint arXiv:2504.10147*, 2025a.

628 Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
 629 Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
 630 capability, efficiency and security. *arXiv preprint arXiv:2401.05459*, 2024b.

631 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 632 general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*,
 633 2023.

634 Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei
 635 Yang, Chunyu Li, Qingchen Yu, et al. Memos: A memory os for ai system. *arXiv preprint*
 636 *arXiv:2507.03724*, 2025b.

637 Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei
 638 Han, Le Sun, and Yongbin Li. Structrag: Boosting knowledge intensive reasoning of llms via
 639 inference-time hybrid information structurization. *arXiv preprint arXiv:2410.08815*, 2024c.

640 Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
 641 Think-in-memory: Recalling and post-thinking enable llms with long-term memory. *arXiv preprint*
 642 *arXiv:2311.08719*, 2023a.

648 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 649 and Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint*
 650 *arXiv:2307.03172*, 2023b.

651

652 Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng Wu.
 653 Memochat: Tuning llms to use memos for consistent long-range open-domain conversation. *arXiv*
 654 *preprint arXiv:2308.08239*, 2023.

655

656 Kun Luo, Zheng Liu, Shitao Xiao, and Kang Liu. Bge landmark embedding: A chunking-free
 657 embedding method for retrieval augmented long-context large language models. *arXiv preprint*
 658 *arXiv:2402.11573*, 2024.

659

660 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
 661 Fang. Evaluating very long-term conversational memory of llm agents. In *Proceedings of the 62nd*
 662 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 663 13851–13870, 2024.

664

665 Kai Tzu-iunn Ong, Namyoung Kim, Minju Gwak, Hyungjoo Chae, Taeyoon Kwon, Yohan Jo, Seung-
 666 won Hwang, Dongha Lee, and Jinyoung Yeo. Towards lifelong dialogue agents via timeline-based
 667 memory management. In *Proceedings of the 2025 Conference of the Nations of the Americas*
 668 *Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume*
 669 *1: Long Papers)*, pp. 8631–8661, 2025.

670

671 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 672 Gonzalez. MemGPT: Towards llms as operating systems. *arXiv preprint arXiv:2310.08560*, 2023.

673

674 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang,
 675 Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Jianfeng Gao. Secom: On memory construction and re-
 676 trieval for personalized conversational agents. In *The Thirteenth International Conference on Learn-
 677 ing Representations*, 2025. URL <https://openreview.net/forum?id=xKDZAW0He3>.

678

679 Keivalya Pandya and Mehfuzা Holia. Automating customer service using langchain: Building custom
 680 open-source gpt chatbot for organizations. *arXiv preprint arXiv:2310.05421*, 2023.

681

682 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
 683 Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th*
 684 *annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

685

686 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
 687 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In
 688 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 689 *1: Long Papers)*, pp. 15174–15186, 2024.

690

691 Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, and Tiejun Huang.
 692 Memorag: Boosting long context processing with global memory-enhanced retrieval augmentation,
 693 2025. URL <https://arxiv.org/abs/2409.05591>.

694

695 Carl Rasmussen. The infinite gaussian mixture model. *Advances in neural information processing*
 696 *systems*, 12, 1999.

697

698 Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a temporal
 699 knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.

700

701 Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao. From isolated conversations to hierarchical
 702 schemas: Dynamic tree memory representation for llms. *arXiv preprint arXiv:2410.14052*, 2024.

703

704 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
 705 *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

706

707 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2:
 708 Effective and efficient retrieval via lightweight late interaction. *arXiv preprint arXiv:2112.01488*,
 709 2021.

702 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
 703 RAPTOR: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth Interna-*
 704 *tional Conference on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=GN921JHCRw)
 705 [forum?id=GN921JHCRw](https://openreview.net/forum?id=GN921JHCRw).

706 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
 707 pre-training for language understanding. *Advances in neural information processing systems*, 33:
 708 16857–16867, 2020.

709 Haoran Sun and Shaoning Zeng. Hierarchical memory for high-efficiency long-term reasoning in llm
 710 agents. *arXiv preprint arXiv:2507.22925*, 2025.

711 Zhen Tan, Jun Yan, I Hsu, Rujun Han, Zifeng Wang, Long T Le, Yiwen Song, Yanfei Chen, Hamid
 712 Palangi, George Lee, et al. In prospect and retrospect: Reflective memory management for
 713 long-term personalized dialogue agents. *arXiv preprint arXiv:2503.08026*, 2025.

714 LangChain Team. Conversation summary memory. <https://python.langchain.com/v0.1/docs/modules/memory/types/summary/>, 2023.

715 Timothy J Teyler and Pascal DiScenna. The hippocampal memory indexing theory. *Behavioral*
 716 *neuroscience*, 100(2):147, 1986.

717 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 718 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 719 *Frontiers of Computer Science*, 18(6):186345, 2024.

720 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 721 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint*
 722 *arXiv:2212.03533*, 2022.

723 Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
 724 summarizing enables long-term dialogue memory in large language models. *Neurocomputing*, pp.
 725 130193, 2025.

726 Yu Wang and Xi Chen. Mirix: Multi-agent memory system for llm-based agents. *arXiv preprint*
 727 *arXiv:2507.07957*, 2025.

728 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 729 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International*
 730 *Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=pZiyCaVuti>.

731 Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
 732 Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in the
 733 era of llms. *arXiv preprint arXiv:2504.15965*, 2025b.

734 Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
 735 compression and selective augmentation. *arXiv preprint arXiv:2310.04408*, 2023.

736 Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
 737 conversation. In *Proceedings of the 60th Annual Meeting of the Association for Computational*
 738 *Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, 2022.

739 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 740 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

741 Ruifeng Yuan, Shichao Sun, Yongqi Li, Zili Wang, Ziqiang Cao, and Wenjie Li. Personalized large
 742 language model assistant with evolving conditional memory. *arXiv preprint arXiv:2312.17257*,
 743 2023.

744 Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan
 745 Dong, Hao Chen, Yi Chang, and Xiao Huang. A survey of graph retrieval-augmented generation
 746 for customized large language models. *arXiv preprint arXiv:2501.13958*, 2025.

756 Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
757 Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. *arXiv*
758 *preprint arXiv:2404.13501*, 2024a.

759 Zeyu Zhang, Quanyu Dai, Luyu Chen, Zeren Jiang, Rui Li, Jieming Zhu, Xu Chen, Yi Xie, Zhenhua
760 Dong, and Ji-Rong Wen. Memsim: A bayesian simulator for evaluating memory of llm-based
761 personal assistants. *arXiv preprint arXiv:2409.20163*, 2024b.

762 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
763 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
764 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
765 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGD1ao>.

766 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
767 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial*
768 *Intelligence*, volume 38, pp. 19724–19731, 2024.

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Technical Appendix

TABLE OF CONTENTS

810	A Datasets Statistics	17
811		
812		
813		
814		
815	B Comparison of Methods Structure with Baselines	17
816		
817	C Comprehensive Comparison of Single-Granularity and Multi-Granularity	18
818		
819	C.1 QA Performance	18
820	C.2 Retrieval Performance	18
821	C.3 How Multi-granularity Router works?	19
822	C.4 How PPR affects the retrieval results?	20
823		
824		
825		
826		
827		
828		
829	D Additional Cost and Efficiency Analysis	21
830		
831	D.1 Token Consumption for Memory Construction	21
832	D.2 Comparison at the Same Token Cost	21
833		
834	E Generalization Analysis	22
835		
836	E.1 Comparison on Different Retriever	22
837	E.2 Comparison on Different Generator	22
838	E.3 Comparison on Different Query Types	22
839		
840		
841	F Hyperparameter Sensitivity Analysis	23
842		
843	G Error Analysis	24
844		
845	H Theoretical Analysis	24
846		
847	H.1 GMM Accept/Reject Association (Clean Links)	25
848	H.2 Entropy Router (Choose Confident Granularities)	27
849		
850	I Additional Experiment	27
851		
852	I.1 Human Evaluation!	27
853	I.2 Comparison with Additional Baselines	28
854	I.3 Scalability with Memory Size	28
855		
856		
857	J LLM Prompts Design	28
858		
859	K Case Study	29
860		
861	K.1 Case Study on QA Comparison	30
862	K.2 Case Study on Multi-granularity Information Generation	31
863	K.3 Case Study on Multi-granularity Filter	31

864 **A DATASETS STATISTICS**
865866 Table 5: Dataset statistics. The term ‘Avg.’ (e.g., Avg. Sessions) represents the average number
867 corresponding to each conversation.
868

869 Dataset	870 LoCoMo	871 Long-MT-Bench+	872 LongMemEval-s	873 LongMemEval-m
874 Total Conversations	875 10	876 11	877 500	878 500
879 Avg. Sessions	880 27.2	881 4.9	882 50.2	883 501.9
884 Avg. Query	885 198.6	886 26.2	887 1.0	888 1.0
889 Avg. Token	890 20,078.9	891 19,194.8	892 103,137.4	893 1,019,116.7
894 Sessions Dates	895 ✓	896 ✗	897 ✓	898 ✓
899 Retrieval Ground-Truth	900 ✓	901 ✗	902 ✓	903 ✓
904 QA Ground-Truth	905 ✓	906 ✓	907 ✓	908 ✓
909 Conversation Subject	910 User-User	911 User-AI	912 User-AI	913 User-AI

890 We evaluate the proposed method with the following benchmarks:

- 891 • **LongMemEval-s** (Wu et al., 2025a) and **LongMemEval-m** (Wu et al., 2025a) datasets are benchmarks designed to evaluate long-term memory in chat assistants. LongMemEval-s involves 50 sessions per question with an average of 115k tokens, making it a compact yet challenging dataset. LongMemEval-m, on the other hand, spans 500 sessions per question, resulting in avg. 1.5 million tokens pre conversations, offering a more extensive evaluation setting. Both datasets require AI systems to handle user-AI dialogues, dynamic memorization, and historical consistency. **The dataset includes several query types:** (1) *Knowledge Update*, testing whether the model can track and reason about changes in the user’s personal information over time; (2) *Temporal Reasoning*, focusing on explicit dates and inferred time references; (3) *Single-Session User*, which checks recall of user details within one session; (4) *Single-Session Preference*, evaluating whether the model can use preferences shared in a session; (5) *Single-Session Assistant*, testing recall of assistant-provided information; (6) *Multi-Session*, which assesses reasoning that spans multiple sessions.
- 892 • **LoCoMo** (Maharana et al., 2024) dataset evaluates long-term memory in AI through lengthy conversations, averaging 300 turns, 9,000 tokens, and up to 35 sessions. LoCoMo, the publicly available subset of the original paper, includes 10 high-quality, long conversations with 27.2 sessions and 20,000 tokens on average. The goal of LoCoMo is to evaluate long-context LLMs and RAG systems, which, while improving memory performance, still fall short of human capabilities—particularly in temporal reasoning—underscoring the challenges of understanding long-range dependencies. **The dataset includes several query types:** (1) *Open Domain Knowledge*, requiring integrating speaker-provided facts with external or commonsense knowledge; (2) *Temporal Reasoning*, involving chronological inference; (3) *Single-Hop Retrieval*, solvable via a single session; (4) *Adversarial*, which intentionally misleads and requires the model to avoid incorrect conclusions; (5) *Multi-Hop Retrieval*, requiring synthesis across multiple sessions.
- 893 • **Long-MT-Bench+** (Pan et al., 2025) dataset is reconstructed from MT-Bench+ (Lu et al., 2023) by incorporating long-range questions to address the limited QA pairs and short dialogues. It merges five consecutive sessions into a single long-term conversation, improving its suitability for evaluating memory mechanisms. The dataset features 11 conversations with an average of 4.9 sessions and 19194.8 tokens. Unlike LoCoMo, it focuses on user-AI interactions, excluding session dates and retrieval ground truth.

910 **B COMPARISON OF METHODS STRUCTURE WITH BASELINES**
911912 We compare the model structures of each baseline (**provided in parentheses**) and offer concise
913 summaries to highlight the differences in their memory construction and retrieval mechanisms.

- 914 • **MPNet (Vector Base)**: Uses permuted language modeling with auxiliary positional information to
915 model token dependencies while seeing full-sentence position signals.
- 916 • **Contriever (Vector Base)**: Trains dense retrievers via unsupervised contrastive learning for
917 generalizable text embeddings, including cross-lingual retrieval.

- 918 • **MPC (Memory Pool)**: Composes LLM modules with few-shot prompting, chain-of-thought, and
919 external memory to maintain long-term conversational consistency without fine-tuning.
920
- 921 • **RecurSum (Recursive Summary)**: Recursively generates and updates dialogue summaries as
922 memory, using prior memory and new context to maintain coherence.
923
- 924 • **SeCom (Semantic Segment)**: Segments conversations into topically coherent units and applies
925 compression-based denoising to build and retrieve from segment-level memory.
926
- 927 • **RAPTOR (Hierarchical Tree)**: Recursively embeds, clusters, and summarizes text to form a
928 hierarchical summary tree, enabling retrieval at multiple abstraction levels.
929
- 930 • **HippoRAG2 (Knowledge Graph)**: Augments RAG with knowledge-graph traversal, integrating
931 passages and online LLM reasoning for associative retrieval.
932
- 933 • **A-Mem (Memory Note)**: Implements a Zettelkasten-inspired memory: creates structured notes
934 with attributes, indexes and links them, and updates existing notes as new ones arrive.
935
- 936 • **MemGAS (Ours; Multi-Granularity Memory)**: Builds multi-granularity memory units, asso-
937 ciates them via Gaussian Mixture Models, and uses an entropy-based router plus LLM filtering for
938 adaptive retrieval.
939

936 C COMPREHENSIVE COMPARISON OF SINGLE-GRANULARITY AND 937 MULTI-GRANULARITY

938 C.1 QA PERFORMANCE.

939 The results in the Table 6 demonstrate the significant advantages of multi-granularity methods over
940 single-granularity approaches. Across all datasets, multi-granularity methods outperform single-
941 granularity methods in key evaluation metrics such as F1, BLEU4, ROUGE, and BERTScore. For
942 example, in the LongMemEval-m dataset, the best-performing single-granularity method (Turn-
943 level) achieves an F1 score of 12.26, whereas the multi-granularity method achieves significantly
944 higher F1 scores of 12.51 and 16.85. Similarly, in the LongMTBench+ dataset, the multi-granularity
945 method achieves F1 scores of 37.16 and 41.49, outperforming the best single-granularity method,
946 which scores 36.67. These results highlight the effectiveness of multi-granularity approaches in
947 integrating information from different granularities, providing a more comprehensive understanding
948 and significantly improving QA task performance.
949

950 Moreover, the proposed method, MemGAS reveals its superiority over simple multi-granularity
951 combination methods. Across all datasets, MemGAS consistently achieves better performance not
952 only in F1 scores but also across other evaluation metrics. For instance, in the LongMemEval-s
953 dataset, MemGAS achieves an F1 score of 20.38, surpassing the combination method’s score of 14.59.
954 Similarly, in the LongMTBench+ dataset, MemGAS achieves an F1 score of 41.49, compared to 37.16
955 for the combination method. These results demonstrate that MemGAS leverages a more sophisticated
956 mechanism to capture the relationships and complementarities among different granularities. This
957 enables MemGAS to achieve greater robustness and generalization, making it particularly effective
958 for complex QA tasks.
959

960 C.2 RETRIEVAL PERFORMANCE

961 The results in Table 7 clearly demonstrate the advantages of the multi-granularity approach in
962 retrieval tasks compared to single-granularity methods. Across all datasets, multi-granularity methods
963 consistently achieve higher scores in key retrieval metrics such as Recall and NDCG. For example, in
964 the LongMemEval-s dataset, the best single-granularity method (Turn-level) achieves Recall@10
965 of 91.91 and NDCG@10 of 86.73. However, the simplest multi-granularity combination approach
966 further improves these scores to 91.91 and 88.03, respectively, demonstrating its superior retrieval
967 effectiveness. Similarly, in the LongMemEval-m dataset, the Recall@10 and NDCG@10 of the multi-
968 granularity approach reached at least 73.83 and 68.66, respectively, which significantly exceeded
969 the best results of the single-granularity approach (Recall@10 = 70.21 and NDCG@10 = 63.43,
970 Turn-level). These findings underline the strength of multi-granularity approaches in leveraging
971 diverse levels of information to retrieve more relevant results and improve overall retrieval quality.
972

Table 6: QA performance of Single-Granularity and Multi-Granularity.

Granularity	GPT4o-J	F1	BLEU4	Rouge1	Rouge2	RougeL	BERTScore
<i>LongMemEval-s</i>							
Single-Granularity							
Session-level	55.40	13.78	2.21	14.46	6.93	12.89	83.70
Turn-level	57.60	14.94	2.50	15.53	7.50	14.12	83.93
Summary-level	28.80	10.66	1.78	11.51	4.61	9.96	83.26
Keyword-level	17.20	9.05	1.61	9.82	3.61	8.20	82.84
Multi-Granularity							
Combination	56.60	14.59	2.40	15.19	7.22	13.70	83.96
MemGAS	60.20	20.38	4.22	21.05	10.47	19.47	85.21
<i>LongMemEval-m</i>							
Single-Granularity							
Session-level	42.80	11.88	1.66	12.56	5.63	11.02	83.28
Turn-level	42.60	12.26	1.79	12.93	5.67	11.45	83.43
Summary-level	24.40	10.11	1.68	11.02	4.16	9.41	83.17
Keyword-level	15.00	8.29	1.54	9.16	3.26	7.43	82.72
Multi-Granularity							
Combination	46.40	12.51	1.96	13.08	6.13	11.70	83.49
MemGAS	45.40	16.85	3.39	17.60	8.25	16.14	84.69
<i>LoCoMo</i>							
Single-Granularity							
Session-level	40.33	15.66	2.67	16.01	7.68	15.00	84.65
Turn-level	42.09	16.10	2.80	16.42	8.13	15.36	84.70
Summary-level	19.08	9.78	0.83	10.38	3.28	9.41	83.69
Keyword-level	14.85	7.74	0.64	8.40	2.20	7.62	83.28
Multi-Granularity							
Combination	42.80	15.93	2.60	16.27	7.76	15.26	84.69
MemGAS	40.08	17.66	3.61	18.00	8.93	16.99	85.13
<i>LongMTBench+</i>							
Single-Granularity							
Session-level	63.54	36.30	11.59	38.17	21.65	29.67	87.90
Turn-level	67.01	36.67	11.91	39.06	20.88	30.13	88.04
Summary-level	21.18	28.30	8.37	31.12	13.11	22.55	86.74
Keyword-level	20.83	28.05	8.90	30.92	12.80	22.39	86.78
Multi-Granularity							
Combination	67.01	37.16	11.58	39.11	21.95	30.24	88.00
MemGAS	69.44	41.49	15.62	43.69	24.45	34.66	88.96

“Combination” denotes that texts from all granularities are directly concatenated into a single string, and encoded to one embedding for retrieval. This naive merging lacks adaptive weighting or structure. The proposed method, MemGAS further demonstrates its superiority over simple multi-granularity combination methods. In all datasets, MemGAS consistently achieves better results. For example, in the LongMemEval-s dataset, MemGAS achieves Recall@10 of 94.47 and NDCG@10 of 89.96, surpassing the combination method’s scores of 91.91 and 88.03. Similarly, in the LoCoMo dataset, MemGAS achieves Recall@10 of 81.07 and NDCG@10 of 68.24, outperforming the combination method’s scores of 78.70 and 65.64. These improvements demonstrate that MemGAS is not merely aggregating information from multiple granularities but instead employs a more advanced mechanism to capture the interdependencies and complementarities among different granularities. This enables MemGAS to deliver robust and versatile performance, making it highly effective for complex retrieval tasks that require the integration of multi-granularity information.

C.3 HOW MULTI-GRANULARITY ROUTER WORKS?

In this section, we analyze how the proposed Multi-granularity Router works. “Optimal Selection” is an oracle-style upper bound: for each query, it picks the single best-performing granularity among

Table 7: Retrieval Performance of Single-Granularity and Multi-Granularity.

Granularity	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
<i>LongMemEval-s</i>						
Single-Granularity						
Session-level	71.06	79.72	81.28	82.47	90.00	84.29
Turn-level	73.62	82.47	84.68	84.94	91.91	86.73
Summary-level	70.43	80.53	80.00	82.38	88.30	84.28
Keyword-level	62.98	74.69	74.68	77.76	82.34	79.50
Multi-Granularity						
Combination	<u>76.17</u>	<u>84.68</u>	<u>87.23</u>	<u>87.00</u>	<u>91.91</u>	<u>88.03</u>
MemGAS	78.51	86.83	88.94	88.77	94.47	89.96
<i>LongMemEval-m</i>						
Single-Granularity						
Session-level	44.26	56.11	53.40	59.44	65.96	62.74
Turn-level	44.68	55.06	57.66	60.03	70.21	63.43
Summary-level	41.06	54.68	52.34	58.64	65.53	62.31
Keyword-level	35.11	48.22	43.62	52.02	57.87	55.75
Multi-Granularity						
Combination	<u>50.85</u>	61.50	<u>60.00</u>	<u>64.82</u>	<u>73.83</u>	<u>68.66</u>
MemGAS	51.06	<u>61.36</u>	63.62	66.07	77.02	69.46
<i>LoCoMo</i>						
Single-Granularity						
Session-level	49.90	52.15	58.26	56.29	71.80	60.92
Turn-level	52.77	54.09	<u>64.30</u>	59.64	<u>80.31</u>	65.07
Summary-level	47.89	48.96	58.21	53.94	74.12	59.61
Keyword-level	29.05	29.72	40.33	35.46	65.11	44.11
Multi-Granularity						
Combination	<u>53.98</u>	<u>55.89</u>	63.80	<u>60.61</u>	78.70	<u>65.64</u>
MemGAS	57.45	58.84	67.12	63.60	81.07	68.24

the four. Conceptually, it reflects the upper performance achievable if one could choose the ideal granularity per query. Our findings reveal that different levels of granularity exhibit distinct preferences on the query type, and our router effectively adapts by selecting the suitable granularity strategy. Table 8 presents the retrieval performance (Recall@3) across various query types and granularities on the LongMemEval-m dataset. The results show that different query types favor different granularities: for instance, temporal-reasoning queries benefit most from session-level granularity, knowledge-update queries achieve better performance with turn-level granularity, and single-session-preference queries perform best with summary-level granularity. Notably, our Granularity Router (MemGAS) adaptively integrates multiple granularities, achieving retrieval performance that closely approaches the upper bound defined by Optimal Selection. This highlights the router’s ability to dynamically identify and apply the most effective granularity for each query type, bridging the gap between fixed granularity approaches and optimal strategies.

C.4 HOW PPR AFFECTS THE RETRIEVAL RESULTS?

To further understand how PPR reshapes the retrieval behavior, we conduct a detailed analysis comparing the top-k results before and after applying PPR. As shown in Table 9, PPR leads to substantial re-ranking, with 97% of samples exhibiting different top-10 results. This indicates that PPR is not a minor adjustment but significantly alters the retrieval ordering. Beyond the quantitative changes, we also observe that PPR tends to surface memories that have lower embedding similarity but are contextually relevant. In particular, for multi-session queries, the retrieved set before and after PPR often differs in whether *all* relevant sessions are included. This demonstrates that PPR enhances

1080
1081 Table 8: Comparison of retrieval performance (Recall@3) across query types and granularities,
1082 showcasing the effectiveness of the Multi-granularity Router.
1083

Query Type	Session	Turn	Summary	Keyword	Granularity Router (Ours)	Optimal Selection
single-session-assistant	96.43	98.21	96.43	92.86	100.0	100.0
single-session-user	51.56	65.62	54.69	51.56	60.94	78.12
multi-session	32.23	28.1	19.01	13.22	33.88	43.80
knowledge-update	37.5	41.67	37.5	34.72	51.39	72.22
temporal-reasoning	33.86	30.71	33.07	22.83	41.73	51.96
single-session-preference	40.0	33.33	43.0	33.33	46.67	63.33

1091
1092 Table 9: Change rate of top- k retrieval results before and after applying PPR.
1093

Method	Top 3	Top 5	Top 10
Changes rate in top-k results	44.0%	72.4%	97.0%

1094
1095 the model’s ability to identify semantically connected memories, resulting in more comprehensive
1096 retrieval outcomes.
1097

D ADDITIONAL COST AND EFFICIENCY ANALYSIS

D.1 TOKEN CONSUMPTION FOR MEMORY CONSTRUCTION

1104
1105 In this section, we present the input and output token consumption during memory construction
1106 using LLMs (e.g., constructing knowledge graph of HippoRAG2, Hierarchical Tree of RAPTOR,
1107 Semantic segment of SeCom and Recursive Summary of RecurSum). The results in Table 10
1108 clearly demonstrate the exceptional efficiency of MemGAS compared to other baselines on the
1109 LongMemEval-s dataset. MemGAS processes only 52.9 M input tokens, which matches the total
1110 corpus size, while all other methods require significantly more tokens. For example, HippoRAG 2
1111 processes over 111.1 M input tokens, RAPTOR uses over 62.6 M, and even the relatively efficient
1112 RecurSum exceeds MemGAS. Similarly, in terms of output token usage, MemGAS generates only
1113 5.2 M tokens, far fewer than the massive outputs of HippoRAG 2 and SeCom, which produce
1114 over 100 M and 70 M tokens, respectively. MemGAS achieves this remarkable efficiency without
1115 compromising performance, making it a highly effective and scalable solution for handling large-scale
1116 datasets. This demonstrates MemGAS’s ability to minimize computational costs while maintaining
1117 state-of-the-art results.
1118

Extra Memory Cost: We also assessed the additional memory (RAM) cost introduced by our method,
1119 as presented in Table 11. On the LongMemeval-s dataset, our multi-granularity approach incorporates
1120 summary and keyword memory, resulting in approximately 27MB of extra memory usage—just 10%
1121 of the 266MB required for raw memory. This demonstrates that our method imposes minimal storage
1122 overhead, further validating its efficiency.
1123

D.2 COMPARISON AT THE SAME TOKEN COST

1124
1125 We conduct experiments by fixing the number of input tokens across different methods on the
1126 LongMemEval-s dataset. Specifically, we performed over-retrieval and then applied truncation at
1127 thresholds of 8,000 and 16,000 input tokens to ensure that all baseline methods have the same
1128 input token length. Table 12 are the results of these experiments. The results demonstrate that
1129 under the same input token constraints, our proposed method, MemGAS, consistently outperforms
1130 baseline approaches in terms of performance (GPT4o-J score) while maintaining competitive latency.
1131 Specifically, at both token thresholds, MemGAS achieves the highest GPT4o-J scores (59.8 and 60.3,
1132 respectively), surpassing other methods. Although MemGAS incurs slightly higher latency compared
1133 to Contriever and Secom, it achieves a significantly better trade-off between efficiency and accuracy.
Additionally, the results highlight that using a fixed token cost is more effective than relying on the

1134 Table 10: Comparing the total input and output token consumption of baselines on the LongMemEval-
 1135 s dataset. The LongMemEval-s dataset contains approximately 51.6M corpus tokens. ‘M’ means
 1136 million.

	MemGAS	HippoRAG 2	RAPTOR	SeCom	RecurSum
Input Tokens	52.9M (100 %)	111.1M (210.0 %)	62.6M (118.3 %)	106.2M (200 %)	58.3M (110 %)
Output Tokens	5.2 M (100 %)	10.9M (209.6 %)	0.73M (14.0 %)	71.1M (1367 %)	16.3M (313 %)

1142 Table 11: Extra Memory (Total Tokens and RAM) Cost on LongMemEval-s datasets.

	Original Memory	Summary Memory (Extra)	Keywords Memory (Extra)
Total Tokens	51.6 milinon	3.14 milinon	2.09 milinon
RAM	266MB	16.2MB	10.8MB

1149 full history approach, which yields a lower GPT4o-J score of 50.6 despite its much higher latency.
 1150 This confirms the efficiency and effectiveness of MemGAS in handling long-term memory tasks.

E GENERALIZATION ANALYSIS

E.1 COMPARISON ON DIFFERENT RETRIEVER

1157 The results in the Table 13 demonstrate that MemGAS consistently outperforms all other methods
 1158 across all metrics when evaluated with different base retrievers (MiniLM, MPNet, and Contriever) on
 1159 the LoCoMo dataset. For the MiniLM base retriever, MemGAS achieves the highest scores in all
 1160 metrics, outperforming MiniLM, MPC, RecurSum, and SeCom. This indicates that MemGAS is
 1161 highly effective in leveraging the MiniLM retriever to improve retrieval performance.

1162 When using the MPNet and Contriever base retrievers, MemGAS maintains its superiority across
 1163 all metrics. For MPNet, MemGAS achieves a Recall@10 of 80.51 and NDCG@10 of 65.48, which
 1164 are significantly higher than the other methods. Similarly, for the Contriever retriever, MemGAS
 1165 obtains the best Recall@10 (81.82) and NDCG@10 (68.42). These results highlight the robustness
 1166 and adaptability of MemGAS demonstrating its ability to outperform alternative methods regardless
 1167 of the underlying retriever model.

E.2 COMPARISON ON DIFFERENT GENERATOR

1170 We conducted additional experiments using Qwen-3 (8B and 1.7B) as generators, combined with
 1171 Contriever as the retriever on the LongMemEval-s dataset. Table 14 shows that our proposed
 1172 MemGASconsistently outperforms the baselines (Contriever and SeCom) across all base generators,
 1173 including GPT4o-Mini, qwen3-8b, and qwen3-1.7b. Notably, MemGASachieves the highest F1,
 1174 BLEU4, and Rouge scores, demonstrating its robust ability to both retrieve relevant information
 1175 and generate high-quality answers. The results also highlight that larger base generators, such as
 1176 GPT4o-Mini and qwen3-8b, lead to better overall performance, but MemGASmaintains its superiority
 1177 regardless of the base generator used.

E.3 COMPARISON ON DIFFERENT QUERY TYPES

1180 The radar charts in Figure 5 demonstrate the performance of different methods across diverse query
 1181 dimensions. Our approach consistently outperforms baseline methods, particularly excelling in
 1182 *multi-hop retrieval* on LoCoMo (Figures 5a, 5b) and *multi-session* on LongMemEval-s (Figures 5c,
 1183 5d). This highlights the effectiveness of our framework in addressing both complex reasoning tasks
 1184 and simpler retrieval-based queries. In *multi-hop retrieval* task, our method achieves notably higher
 1185 F1 and RougeL scores, showcasing its ability to retrieve and integrate information across multiple
 1186 steps. Similarly, in *multi-session* task, the model effectively captures relevant historical sessions,
 1187 enabling context-aware and accurate responses. These strengths are driven by the memory association
 1188 mechanisms that enhance reasoning and knowledge integration.

Table 12: Comparison of Methods at Same Token Cost.

Input Tokens	Method	Latency (s)	GPT4o-J
8,000	Contriever	1.81	55.2
	Secom	2.13	57.8
	HippoRAG2	4.39	57.4
	MemGAS (Ours)	2.42	59.8
16,000	Contriever	2.48	56.6
	Secom	2.86	58.0
	HippoRAG2	4.99	58.2
	MemGAS (Ours)	3.15	60.3
103,137	Full history	9.39	50.6

Table 13: Retrieval Performance based on different retriever on LoCoMo. 'facebook/contriever', 'sentence-transformers/multi-qa-mpnet-base-cos-v1', 'sentence-transformers/multi-qa-MiniLM-L6-cos-v1'

Model	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
<i>Base Retriever: MiniLM</i>						
MiniLM (Song et al., 2020)	42.55	44.19	52.37	49.01	67.98	54.59
MPC (Lee et al., 2023)	42.30	43.59	51.21	48.08	68.03	54.03
RecurSum (Wang et al., 2025)	44.76	46.82	54.73	51.64	<u>72.16</u>	<u>57.52</u>
SeCom (Pan et al., 2025)	<u>45.77</u>	<u>47.25</u>	<u>54.93</u>	<u>51.70</u>	71.15	57.37
MemGAS	47.73	49.11	56.60	53.46	71.30	58.59
<i>Base Retriever: MPNet</i>						
MPNet (Song et al., 2020)	45.92	47.71	53.98	51.79	68.58	56.88
MPC (Lee et al., 2023)	45.47	47.35	54.08	51.68	68.28	56.59
RecurSum (Wang et al., 2025)	<u>49.50</u>	<u>51.15</u>	<u>59.47</u>	<u>56.16</u>	<u>76.64</u>	<u>61.99</u>
SeCom (Pan et al., 2025)	47.53	49.03	57.05	53.57	70.90	58.57
MemGAS	52.77	54.63	62.79	59.56	80.51	65.48
<i>Base Retriever: Contriever</i>						
Contriever (Izacard et al., 2021)	49.90	52.15	58.26	56.29	71.80	60.92
MPC (Lee et al., 2023)	49.50	51.47	57.45	55.53	71.85	60.47
RecurSum (Wang et al., 2025)	47.23	48.99	59.01	54.58	74.97	60.07
SeCom (Pan et al., 2025)	<u>55.24</u>	<u>57.90</u>	<u>64.80</u>	<u>62.36</u>	<u>78.30</u>	<u>66.97</u>
MemGAS	57.30	58.76	67.32	63.62	81.82	68.42

Our framework also demonstrates strong performance in *temporal reasoning, knowledge update, and single-session* tasks, as shown by consistently higher scores across these axes. This indicates its ability to adapt to dynamic information and maintain relevance in evolving contexts. Furthermore, the model performs well in adversarial and open-domain knowledge tasks, reflecting its robustness and versatility. The results emphasize the comprehensive improvements achieved by our method across a wide range of query types, showcasing its capability to handle both simple and complex scenarios effectively. These findings underline the model’s adaptability and suitability for real-world applications requiring diverse and dynamic query handling.

F HYPERPARAMETER SENSITIVITY ANALYSIS

We evaluate the hyperparameter entropy degree λ in Equation 3 and the number of seed nodes α in Equation 5. The results of the hyperparameter α in Figure 6 show that performance metrics, including nDCG and Recall, improve as α increases, reaching their peak when α is set to a moderate value around 15. Beyond this point, performance declines, indicating that a balanced setting of α is crucial for optimal results. When α is too small, the model tends to underfit, struggling to capture sufficient seed nodes in the data. On the other hand, excessively large values of α cause the model to

1242 Table 14: QA performance comparison of different models across various base generators (GPT4o-
 1243 Mini, Qwen-3 8B, and Qwen-3 1.7B) on the LongMemEval-s dataset.

Model	GPT4o-J	F1	BLEU4	Rouge1	Rouge2	RougeL	BertScore
Base Generator: GPT4o-Mini							
Contriever (Izacard et al., 2021)	55.40	13.78	2.21	14.46	6.93	12.89	83.70
SeCom (Pan et al., 2025)	56.00	12.95	2.25	13.80	6.09	11.93	83.51
MemGAS	60.20	20.38	4.22	21.05	10.47	19.47	85.21
Base Generator: qwen3-8b							
Contriever (Izacard et al., 2021)	50.6	14.76	1.85	15.37	7.44	13.81	83.73
SeCom (Pan et al., 2025)	50.6	14.83	1.89	17.66	8.45	14.08	83.15
MemGAS	51.4	20.57	3.5	21.17	10.15	19.09	85.14
Base Generator: qwen3-1.7b							
Contriever (Izacard et al., 2021)	36.4	9.39	1.3	9.92	4.37	8.8	82.62
SeCom (Pan et al., 2025)	36.0	8.5	1.07	9.26	3.66	7.91	82.26
MemGAS	38.0	16.79	3.6	17.58	7.78	16.19	84.84

1260
 1261
 1262 lose the ability to explore the memory graph. When α is set to 15, the model often achieves better
 1263 performance across various metrics.

1264 For the hyperparameter entropy degree λ , a similar trend is observed in Figure 6. Smaller values of λ
 1265 lead to steady improvements in performance, with the metrics reaching their highest levels when λ is
 1266 set to a value slightly above the minimum, around 0.2. However, as λ increases further, performance
 1267 begins to degrade, emphasizing the importance. Extremely small values may fail to leverage the
 1268 trade-offs controlled by λ , while larger values lead to the same entropy for different granularities.
 1269 When λ is kept around 0.2, the model often delivers superior performance.

G ERROR ANALYSIS

1270
 1271
 1272 In this section, we conduct error analysis under the following experimental setup: we evaluate on
 1273 three datasets—LoCoMo, LongMemEval-m, and LongMemEval-s—excluding Long-MT-Bench+
 1274 due to the lack of retrieval ground truth. The retriever is Contriever, and the generator is GPT4o-mini
 1275 with a fixed QA prompt, using the Top-3 retrieved passages for answering. Retrieval correctness
 1276 is defined such that a query is labeled “Correct” if any Ground-Truth passage appears in the Top-
 1277 3; otherwise, it is labeled “Wrong.” Generation correctness follows the GPT4o-as-Judge. The
 1278 error analysis presented in Figure 7 highlights the performance across three datasets: LoCoMo,
 1279 LongMemEval-m, and LongMemEval-s. A key observation is that a significant portion of queries in
 1280 the LongMemEval datasets lack correct retrieval results, as shown by the high percentage of “Wrong
 1281 Retrieval + Wrong Generation” (40.6% in LongMemEval-m and 18.6% in LongMemEval-s). Our
 1282 method effectively identifies cases where the retrieval corpus does not contain information related
 1283 to the query, responding with “you don’t mention the related information.” This approach reduces
 1284 hallucinations caused by large language models being overly confident and generating fabricated
 1285 content. For example, in LongMemEval-s, “Correct Retrieval + Correct Generation” accounts for
 1286 52.6%, demonstrating the method’s reliability in handling scenarios with relevant information.

H THEORETICAL ANALYSIS

1287
 1288 We provide concise guarantees for two building blocks of MemGAS: (i) GMM-based accept/reject
 1289 association, and (ii) multi-granularity scoring with entropy-driven routing. All results are stated under
 1290 standard, verifiable assumptions with compact proof sketches.

1291
 1292 **Notation.** For a query q and memory index $i \in \{1, \dots, n\}$, MemGAS maintains four granularities
 1293 $g \in \{S\text{ (session), } T\text{ (turn), } U\text{ (summary), } K\text{ (keyword)}\}$ with similarity scores $s_i^g = \text{sim}(q, M_i^g)$.

Figure 5: Comparing the F1 and RougeL score of different query types on LoCoMo and LongMemEval-s datasets.

For each g , define the softmax distribution and entropy

$$p_g(i) = \frac{\exp(s_i^g / \lambda)}{\sum_{j=1}^n \exp(s_j^g / \lambda)}, \quad H_g = -\sum_{i=1}^n p_g(i) \log p_g(i).$$

The router weight is $w_g = H_g^{-1} / \sum_{g'} H_{g'}^{-1}$, and the initial aggregate score is $\text{score}_i = \sum_g w_g s_i^g$ with normalized vector $s = (\text{score}_i)_i / \sum_j \text{score}_j$. Let $G = (V, E)$ denote the association graph induced by the accept/reject rule. Let $R(q) \subseteq \{1, \dots, n\}$ be the relevant set, Recall@ K the top- K recall, and nDCG the ranking metric. For each granularity g , let $\text{Top}_K(g)$ denote the indices of its top- K scored items.

Assumptions. (A1) (Sub-Gaussian separability) For each g , $s_i^g | y_i = 1$ and $s_i^g | y_i = 0$ are sub-Gaussian with means $\mu_g^+ > \mu_g^-$ and common scale σ_g ; denote $\Delta_g = \mu_g^+ - \mu_g^- > 0$.

H.1 GMM ACCEPT/REJECT ASSOCIATION (CLEAN LINKS)

Intuition. We want the association graph to connect new memories mostly to truly related ones. If the relevance/non-relevance score distributions are well-separated, a simple threshold already yields exponentially small mistakes; a fitted GMM recovers (approximately) this threshold in practice.

Figure 6: Hyperparameters Analysis on LoCoMo dataset.

Figure 7: Error Analysis.

Proposition 1 (Exponentially small mis-link rate) *Under A1 (drop index g for brevity), the mid-threshold $\tau^* = (\mu^+ + \mu^-)/2$ satisfies*

$$\mathbb{P}(\text{accept an irrelevant or reject a relevant item}) \leq 2 \exp\left(-\frac{\Delta^2}{8\sigma^2}\right).$$

1404 Moreover, for identifiable mixtures, GMM consistently learns (μ^\pm, σ) , attaining the same exponential
 1405 error order. Apply sub-Gaussian tail bounds at $\mu^\pm \mp \Delta/2$ and union bound.
 1406

1407 **Corollary 1 (Few false edges in expectation)** Let $\eta_g \leq 2 \exp(-\Delta_g^2/(8\sigma_g^2))$ be the accept/reject
 1408 error rate at granularity g , and d_g the number of candidate neighbors. Then the expected number of
 1409 false edges per insertion satisfies $\mathbb{E}[|E_{\text{false}}|] = \mathcal{O}(\sum_g d_g \eta_g)$ (exponentially small in Δ_g).
 1410

1411 *Consequence.* With larger separation Δ_g , the graph stays “clean” over time, which is crucial for
 1412 subsequent retrieval and ranking stages.
 1413

1414 H.2 ENTROPY ROUTER (CHOOSE CONFIDENT GRANULARITIES)

1415 *Intuition.* Each granularity produces a relevance distribution p_g over memories. If this distribution is
 1416 sharp (low entropy), that granularity is more decisive for the current query. Weighting granularities
 1417 by inverse entropy therefore favors the most confident signals without hand-tuning.
 1418

1419 **Lemma 1 (Lower entropy \Rightarrow higher confidence)** If the distribution p_g becomes more concentrated
 1420 on its top-1 item (larger top-1 margin), its entropy H_g decreases. Entropy is Schur-concave: more
 1421 concentrated distributions have lower entropy.
 1422

1423 **Proposition 2 (Inverse-entropy weighting is simple and robust)** The rule $w_g \propto 1/H_g$ is (i)
 1424 monotone in confidence (Lemma 1), (ii) symmetric across granularities, and (iii) scale-free un-
 1425 der common rescaling of $\{H_g\}$. These invariances restrict w_g to power laws $H_g^{-\beta}$; $\beta = 1$ is the
 1426 simplest scale-free choice.
 1427

1428 **Theorem 1 (Multi-granularity candidate-pool coverage is never worse)** Let the multi-
 1429 granularity candidate pool be $C_{\text{multi}} = \bigcup_g \text{TopK}_g(q)$. Its coverage of relevant items is
 1430

$$\frac{|C_{\text{multi}} \cap R(q)|}{|R(q)|} \geq \max_g \text{Recall}@K_{(g)},$$

1431 and under weak dependence $\frac{|C_{\text{multi}} \cap R(q)|}{|R(q)|} \gtrsim 1 - \prod_g (1 - \text{Recall}@K_{(g)})$.
 1432

1433 *A union cannot cover fewer relevant items than any constituent set; inclusion-exclusion yields the
 1434 product bound under weak dependence. MemGAS approximates this union via weighted aggregation.*
 1435

1436 *Consequence.* Adaptive combination cannot underperform the best single granularity for recall, and
 1437 typically exceeds it when granularities are complementary (e.g., summaries remove noise; turns
 1438 capture details).
 1439

1440 **Discussion. Why does MemGAS beat single/fixed granularity?** Under A1 and for suitable K :
 1441 (i) the multi-granularity candidate pool, guided by $w_g \propto 1/H_g$, achieves coverage at least as high
 1442 as the best single granularity (Thm. 1) and typically higher when the views are complementary; (ii)
 1443 inverse-entropy routing (Prop. 2) adaptively emphasizes the most informative granularity per query,
 1444 improving the quality of the aggregated scores without hand-tuning; and (iii) the GMM accept/reject
 1445 mechanism yields exponentially few false associations (Prop. 1 and its corollary), reducing noise and
 1446 spurious ties. Together, these effects raise Recall@K of the candidate pool and typically improve
 1447 nDCG once any standard downstream ranker is applied. Any additional retrieval module (e.g., graph
 1448 propagation) is orthogonal and can be plugged in as desired, but it is not a contribution of our method.
 1449

1450

1451 I ADDITIONAL EXPERIMENT

1452 I.1 HUMAN EVALUATION

1453 To address concerns that automatic metrics (e.g., F1, GPT-4o-as-Judge) may be insufficient in dialogue
 1454 settings, we additionally conducted a human evaluation on LONGMEMEVAL-S (50 random samples).
 1455 Human annotators evaluated the same fixed model outputs used for the automatic metrics. For
 1456 GPT-4o-as-Judge, we repeated the evaluation three times with different random seeds while keeping
 1457

1458 model outputs fixed, ensuring that any variance arose solely from the evaluator itself. As shown in
 1459 Table 15, GPT-4o-as-Judge exhibits extremely low variance across runs—with only SeCom showing
 1460 a minor fluctuation (56, 56, 58; standard deviation 0.94). More importantly, human judgments closely
 1461 align with GPT-4o-as-Judge, confirming that GPT-4o-as-Judge is reliable in this evaluation setting.
 1462

1463 Table 15: Comparison of human evaluation and GPT-4o-as-Judge on LONGMEMEVAL-S. The
 1464 GPT-4o-as-Judge results report mean and standard deviation across three runs.

Model	Human-as-Judge	GPT-4o-as-Judge
SeCom	56	56.67 ± 0.94
HippoRAG 2	58	58.00 ± 0.00
A-Mem	56	56.00 ± 0.00
MemGAS	62	62.00 ± 0.00

I.2 COMPARISON WITH ADDITIONAL BASELINES

Experimental Setup. For H-MEM, we reproduce the official four-layer hierarchical memory architecture, where each session is processed by an LLM-based extractor to produce multi-level memory units encoded with Contriever embeddings and positional links to sub-memories. Retrieval settings (vector encoding, top- k , and similarity) strictly follow the configuration outlined in our paper. For COMEDY, we use the released COMEDY-7B checkpoint and apply its Task-2 memory-compression prompt to generate a concise (< 500 words) session-level memory representation. To ensure fairness, all baselines use the same top-3 Contriever retriever and the same GPT-4o-mini generator.

Results and Analysis. Table 16 summarizes the results on LongMemEval-s and LongMTBench+. MemGAS consistently achieves higher scores than both H-MEM and COMEDY across all evaluation metrics, demonstrating its robustness and generality. While COMEDY offers highly efficient compressed-memory representations with low latency and token usage, its episode-level abstraction limits its ability to capture fine-grained cross-session associations. H-MEM, despite its hierarchical structure, suffers from rigid memory abstraction and less adaptive retrieval behavior. In contrast, MemGAS leverages multi-granularity memory units and adaptive association mechanisms, enabling more effective retrieval and generation performance.

I.3 SCALABILITY WITH MEMORY SIZE

To assess the scalability of our memory system, we conduct data-scaling experiments on LongMemEval-m by varying the total memory size from 20K to 1M tokens and measuring four key components. As shown in Figure 8, the GMM update cost grows slowly with memory size and remains within a few milliseconds even at 1M tokens, indicating that incremental clustering updates are practically negligible compared to overall query time. PPR latency also increases with memory size due to the denser association graph, but remains on the order of milliseconds at the largest scale, suggesting that graph-based retrieval does not become a runtime bottleneck within the evaluated regime. In contrast, the token usage for both summaries and keywords grows approximately linearly with the number of memory tokens, since each session requires a single summarization and keyword extraction call. Importantly, these LLM construction costs are incurred offline during memory building or maintenance, and therefore do not affect online query latency. Overall, these results demonstrate that our method scales favorably to at least 1M memory tokens: online components (GMM updates and PPR) remain efficient, while the dominant LLM costs are confined to offline preprocessing.

J LLM PROMPTS DESIGN

Figures 9–12 present the key prompt templates used in our multi-stage processing pipeline. Figure 9 defines prompts for multi-granularity information generation, where the model is asked to produce both high-level summaries and fine-grained keyword lists from user-assistant dialogue histories. Figure 10 introduces a filtering prompt that selects only the content relevant to the input question,

Model	40-J	F1	B-4	R-1	R-2	R-L	BS	Avg. Tokens	Avg. Latency
LongMemEval-s									
H-MEM	54.80	13.65	2.10	14.55	6.85	12.92	83.75	8,420	2.15
COMEDY	56.20	13.32	2.19	14.42	6.73	12.74	83.78	2,383	1.43
MemGAS (Ours)	60.20	20.38	4.22	21.05	10.47	19.47	85.21	8,829	2.55
LongMTBench+									
H-MEM	64.25	36.50	11.45	38.40	21.10	29.30	87.85	12,450	3.40
COMEDY	65.42	36.72	12.52	38.94	21.62	29.85	87.89	2,492	1.47
MemGAS (Ours)	69.44	41.49	15.62	43.69	24.45	34.66	88.96	12,873	3.85

Table 16: Comparison with H-MEM, COMEDY.

Figure 8: Data-scaling behavior of the proposed memory system on LongMemEval-m as the total memory size increases from 20K to 1M tokens

operating over the structured outputs (session, summary, and keywords) while preserving original token fidelity. Figure 11 provides the instruction for generating final responses, guiding the model to produce concise and coherent answers grounded in the filtered history. Finally, Figure 12 shows the evaluation prompt used to assess answer correctness, following the setup of prior work (Wu et al., 2025a; Zheng et al., 2023). This prompt asks GPT-4o to compare model outputs against reference answers and return a binary decision without paraphrasing. Together, these prompts enable modular abstraction, filtering, reasoning, and automatic evaluation across the dialogue memory pipeline.

K CASE STUDY

This section presents a series of case studies comparing QA results with other methods, highlighting the model’s capabilities in handling multi-granularity information generation and filtering. Through these examples, we demonstrate how the model excels in maintaining factual consistency, extracting structured information, and filtering query-relevant responses effectively.

Figure 9: Prompt for Multi-granularity Information Generation.

1579
1580 Prompt for Multi-granularity Information Filter
1581
1582 You are an intelligent dialog bot. You will be shown History
1583 Dialogs and corresponding multi-granular information. Filter
1584 the History Dialogs, summaries, and keywords to extract only the
1585 parts directly relevant to the Question. Preserve original tokens,
1586 do not paraphrase. Remove irrelevant turns, redundant info, and
1587 non-essential details.
1588 History Dialogs: {retrieved_texts}
1589 Question Date: {question_date}
1590 Question: {question}
1591 Answer:

Figure 10: Prompt for Multi-granularity Information Filter.

```
1594 Prompt for QA
1595
1596
1597 You are an intelligent dialog bot. You will be shown History
1598 Dialogs. Please read, memorize, and understand the given Dialogs,
1599 then generate one concise, coherent and helpful response for the
1600 Question.
1601 History Dialogs: { retrieved_texts}
1602 Question Date: {question_date}
1603 Question: {question}
```

Figure 11: Prompt for OA, which follows Lu et al. (2023); Pan et al. (2025)

K.1 CASE STUDY ON QA COMPARISON

Figure 13 presents a comparative case study of three representative questions requiring multi-session aggregation or temporal reasoning. Across all cases, MemGAS consistently provides responses that align with the ground-truth answers, while baseline methods exhibit various limitations. In the first example, related to course completion, only MemGAS correctly integrates dispersed session information to produce the total number of courses. Other methods either rely on partial evidence or explicitly request further clarification. In the second case, which involves counting tomato and cucumber plants, most baselines retrieve incomplete or vague information, whereas MemGAS retrieves and combines both quantities explicitly. In the final temporal reasoning case, MemGAS successfully grounds the referenced date and computes the correct number of days, while others fail to locate the relevant temporal anchor or return fallback prompts. These results indicate that MemGAS is better equipped to support multi-turn factual consistency and basic temporal inference within multi-session contexts.

1620
 1621
 1622
 1623 I will give you a question, a reference answer, and a response
 1624 from a model. Please answer [[yes]] if the response contains the
 1625 reference answer. Otherwise, answer [[no]]. If the response is
 1626 equivalent to the correct answer or contains all the intermediate
 1627 steps to get the reference answer, you should also answer [[yes]].
 1628 If the response only contains a subset of the information required
 1629 by the answer, answer [[no]].
 1630 [User Question]
 1631 question
 1632 [The Start of Reference Answer]
 1633 answer
 1634 [The End of Reference Answer]
 1635 [The Start of Model's Response]
 1636 response
 1637 [The End of Model's Response]
 1638 Is the model response correct? Answer [[yes]] or [[no]] only.
 1639

Figure 12: Prompt for GPT4o-as-Judge (Single), which follows [Wu et al. \(2025a\)](#); [Zheng et al. \(2023\)](#)

1640 K.2 CASE STUDY ON MULTI-GRANULARITY INFORMATION GENERATION

1641 Figures 14 and 15 illustrate the model’s ability to generate multi-granularity information from multi-
 1642 turn user sessions. In both cases, the model extracts structured summaries and relevant keywords
 1643 that reflect different levels of semantic abstraction. In Figure 14, the model distills a task-oriented
 1644 request regarding energy-efficient industrial equipment into a concise summary, while preserving key
 1645 product attributes and application contexts. The corresponding keywords focus on sales-related and
 1646 functional concepts such as “pressure tanks” and “energy saving.” In contrast, Figure 15 captures a
 1647 more narrative and emotive user intent centered around personal heritage and item preservation. The
 1648 summary highlights the user’s goal of reclaiming and documenting a family-owned antique, while the
 1649 extracted keywords reflect fine-grained care instructions and conservation practices. These examples
 1650 demonstrate the model’s capability to abstract dialogue content at varying semantic resolutions,
 1651 enabling downstream applications such as memory retrieval, personalized assistant planning, and
 1652 contextual reasoning. The structured outputs also suggest potential for use in grounding generation
 1653 or summary-based retrieval settings.

1654 K.3 CASE STUDY ON MULTI-GRANULARITY FILTER

1655 Figures 16 and 17 demonstrate the effectiveness of multi-granularity response filtering in supporting
 1656 user queries grounded in prior conversational context. In both cases, the user’s query refers implicitly
 1657 to entities previously mentioned across earlier sessions. The system retrieves multiple memory
 1658 candidates and decomposes their content into structured representations at three granularity levels:
 1659 session, summary, and keyword. This layered representation facilitates accurate entity matching and
 1660 selective response generation. In Figure 16, although both memory candidates are sustainability-
 1661 related, only one contains a precise mention of “Patagonia,” which is correctly surfaced in the
 1662 final response. Similarly, Figure 17 involves a comparative query referencing companies aligned
 1663 with Triumvirate’s values. The system filters through related prior mentions and correctly extracts
 1664 “Patagonia” and “Southwest Airlines” from the relevant context. Notably, unrelated memories (e.g.,
 1665 on kitchen sustainability) are excluded from influencing the final answer. These examples highlight
 1666 how multi-level content decomposition improves discourse grounding and allows retrieval systems to
 1667 move beyond surface keyword overlap, ensuring the returned response aligns with both the semantic
 1668 focus and factual detail required by the user query.

1669
 1670
 1671
 1672
 1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Case of compare multi-method response

Case 1: Multi-session Question – Online Course Completion**Query:** How many online courses have I completed in total?**Ground-Truth Answer:** 5**Responses of Different Methods:**

- **MemGAS** : You have completed a total of **five** online courses. ✓
- **SeCom**: Based on the dialogues, you have completed two courses on edX. However, there are no mentions of any additional courses completed, so if those are the only ones you've undertaken, your total number of completed online courses is **two**. ✗
- **MPC**: You have completed a total of 2 online courses on edX. After finishing the Stanford NLP with Deep Learning Specialization on Coursera, which consists of 5 courses, you will have completed 7 courses. As of now, you have completed **2** courses. ✗
- **HippoRAG**: You have completed a total of **two** online courses on edX. ✗
- **RAPTOR**: To determine the total number of online courses you have completed, please provide the number of courses completed from each platform. No Answer

Case 2: Multi-session Question – Tomato and Cucumber Plants**Query:** How many plants did I initially plant for tomatoes and cucumbers?**Ground-Truth Answer:** 8**Responses of Different Methods:**

- **MemGAS** : You initially planted **5 tomato plants and 3 cucumber plants**. ✓
- **SeCom**: You initially planted 5 tomato plants. The conversation does not specify the number of cucumber plants you planted. ✗
- **MPC**: Based on previous conversations, you did not specify the number of tomato and cucumber plants. Please clarify how many of each you started with. No Answer
- **HippoRAG**: You didn't specify the exact number of plants you initially planted. Please provide that info for clarity. No Answer
- **RAPTOR**: Your message didn't specify the number. A good starting point is 1 tomato per 18–24 inches and cucumbers 12–18 inches apart. No Answer

Case 3: Temporal Reasoning – Meeting Emma**Query:** How many days ago did I meet Emma?**Ground-Truth Answer:** 9 days ago (10 days incl. the last day is acceptable)**Responses of Different Methods:**

- **MemGAS** : You met Emma **9 days** ago, on April 11, 2023. ✓
- **SeCom**: Please provide the date you met Emma. I can calculate how many days ago it was from April 20, 2023. No Answer
- **MPC**: The exact date of your meeting with Emma isn't available. If you provide it, I can compute the elapsed days. No Answer
- **HippoRAG**: There is no specific mention of meeting Emma or the date in the dialogs. Please provide the date. No Answer
- **RAPTOR**: No relevant information was found about Emma or the timeline. Please add more context. No Answer

Figure 13: Three representative queries with multi-turn or temporal reasoning, comparing the performance of various methods. MemGAS provides precise, context-integrated answers. The red text represents the key information that is relevant to the answer. ✓ means the response is correct while ✗ means it is wrong. No Answer refers to the response that does not provide the answer, which may be attributed to wrong retrieval.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738

1739 Case of generate multi-granularity information
 1740
 1741
 1742 **Origin session information**
 1743 [user]
 1744 Write a sales email for a potential customer of a company that has
 1745 a product that enables energy saving ... (Omitted for brevity)
 1746 [assistant]
 1747 Dear valued customer,
 1748 We at [Company Name] are excited to introduce our innovative ...
 1749 (Omitted for brevity)
 1750 Sincerely,
 1751 [Your Name]
 1752 [Company Name]
 1753 **Granularity Level of Summary**
 1754 The user requested assistance in drafting a sales email aimed at potential customers for a company
 1755 offering a product designed to enhance energy savings in industrial factories. Specifically, the product
 1756 involves larger, more affordable pressure tanks for air compressors, allowing compressors to operate
 1757 less frequently while maintaining necessary air pressure, thereby reducing energy consumption and
 1758 operating costs.
 1759 **Granularity level of keywords**
 1760 – sales email
 1761 – potential customer
 1762 – energy saving
 1763 – industry factories
 1764 – pressure tanks
 1765 – air compressors
 1766 – cost-effective
 1767 – reduce energy consumption
 1768 – lower operating costs
 1769 – request a quote

1770 Figure 14: An example of generating multi-granularity information using gpt-4o-mini. The blue text
 1771 represents the key information summarized or extracted that is relevant to the conversation.

1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782
1783
1784
1785
1786
1787

1788 Case of generate multi-granularity information

1789
1790

1791 **Origin session information**

1792

1793 I'm thinking of taking an antique restoration class to learn how to
1794 fix up some of the old pieces I've inherited, like that beautiful
1795 vase I got from my grandmother last month. Do you know of any good
1796 classes in the city?

1797

1798 I'll definitely look into those options. By the way, do you know
1799 how to appraise the value of antique items? ... (Omitted for
brevity)

1800

1801 I'm thinking of taking an antique restoration class to learn
1802 how to fix up some of the old pieces I've inherited, like that
1803 beautiful vase I got from my grandmother last month.... (Omitted
1804 for brevity)

1805

1806 Appraising the value of antique items can be a fascinating and
1807 complex process. While I'm not a professional appraiser ...
(Omitted for brevity)

1808

1809 [user]:

1810 ...

1811

1812 ...

1813

1814 **Granularity Level of Summary**

1815

1816 The user plans to retrieve their antique tea set, which they lent to their **sister for her wedding**. They
1817 express excitement about seeing the set again and appreciate the care and **storage tips** provided for
1818 antique china to maintain its condition. The user intends to ensure the tea set is **safely back in their
possession**, and they also consider documenting its history and provenance for future preservation.

1819

1820 **Granularity level of keywords**

1821

- 1822 – antique tea set
- 1823 – storage tips
- 1824 – caring for china
- 1825 – keep in good condition
- 1826 – avoid stacking
- 1827 – sturdy box
- 1828 – line with tissue
- 1829 – dry cool place
- 1830 – ...

1831

1832 Figure 15: An example of generating multi-granularity information using gpt-4o-mini. The **blue text**
1833 represents the key information summarized or extracted that is relevant to the conversation.

1834

1835

1836

1837

1838 Case of multi-granularity response filtering

1839

1840

Query

1841

"I was looking back at our previous conversation about environmentally responsible supply chain practices, and I was wondering if you could remind me of the company you mentioned that's doing a great job with sustainability?"

1842

Answer

1843

"Patagonia"

1844

Before Filter

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Memory 1:**Session-level information**

... (Omitted for brevity)

[user]:

Can you give me an example of a company that has successfully implemented these environmentally responsible practices in its supply chain?

[assistant]

Yes, sure. Here's an example:

Patagonia, an outdoor clothing and gear company, is known for its commitment to sustainability and environmental responsibility throughout its supply chain ...

(Omitted for brevity)

Summary-level information

... (Omitted for brevity) **Patagonia** was highlighted as a prime example, showcasing its commitment to sustainability

... (Omitted for brevity)

Keyword-level information

- Patagonia
- environmentally responsible
- supply chain
- ...

Memory 2:**Session-level information**

... (Omitted for brevity)

[user]:

I'm looking for some recommendations on eco-friendly laundry detergent. I've been trying to reduce my carbon ... (Omitted for brevity)

[assistant]

That's a fantastic step towards reducing your environmental impact! Switching to an eco-friendly ... (Omitted for brevity)

Summary-level information

The user is considering trying a new grocery delivery service that partners with local farmers ... (Omitted for brevity)

Keyword-level information

- meal planning
- grocery list
- start small
- ...

After Filter

The two companies mentioned that prioritize employee safety and well-being like Triumvirate are:

1. **Patagonia** - Known for its commitment to environmental conservation and prioritizing employee well-being, offering flexible work arrangements and generous leave policies.
2. **Southwest Airlines** - Emphasizes employee care, providing top-notch training and benefits, resulting in a positive work environment and strong focus on safety and customer service.

Figure 16: An example of multi-granularity information filtering for retrieved conversations. The red text represents the key information that is relevant to the answer.

1890
 1891 Case of multi-granularity response filtering
 1892 **Query**
 1893 "I was going through our previous conversation and I was
 1894 wondering if you could remind me of the two companies you
 1895 mentioned that prioritize employee safety and well-being like
 1896 Triumvirate?"
 1897 **Answer**
 1898 "Patagonia and Southwest Airlines."
 1899 **Before Filter**
 1900
 1901 **Memory 1:**
 1902 **Session-level information**
 1903 ... (Omitted for brevity)
 1904 **[user]:**
 1905 For sure! It's always a win-win when companies take care of their
 1906 employees. It makes me feel better about supporting them as a
 1907 customer. Do you know of any other companies that prioritize ...
 1908 (Omitted for brevity)
 1909 [assistant]
 1910 I can give you an example of two companies that prioritize the
 1911 safety and well-being of their employees like Triumvirate does:
 1912 1. Patagonia ... (Omitted for brevity)
 1913 2. Southwest Airlines ... (Omitted for brevity)
 1914 **Summary-level information**
 1915 ... (Omitted for brevity) to which the AI cited Patagonia and Southwest Airlines as examples of
 1916 organizations that prioritize employee safety and well-being ... (Omitted for brevity)
 1917 **Keyword-level information**
 1918 – Triumvirate
 1919 – employee safety
 1920 – ...
 1921
 1922 **Memory 2:**
 1923 **Session-level information**
 1924 ... (Omitted for brevity)
 1925 **[user]:**
 1926 I'm thinking of trying out that new grocery delivery service that
 1927 partners with local farmers. ... (Omitted for brevity)
 1928 [assistant]
 1929 That sounds like a great idea! I'm happy to help you with that
 1930 ... (Omitted for brevity)
 1931 **Summary-level information**
 1932 The user is focused on making eco-friendly changes in their kitchen, specifically looking for
 1933 sustainable alternatives to kitchen utensils, ... (Omitted for brevity)
 1934 **Keyword-level information**
 1935 – eco-friendly kitchen makeover
 1936 – sustainable kitchen utensils
 1937 – ...
 1938 **After Filter**
 1939
 1940 The company mentioned that is doing a great job with sustainability is Patagonia. They are known for
 1941 their commitment to environmentally responsible practices throughout their supply chain, including
 1942 sustainable sourcing, green transportation, packaging optimization, waste reduction, and compliance
 1943 with environmental regulations.

Figure 17: An example of multi-granularity information filtering for retrieved conversations. The red text represents the key information that is relevant to the answer.