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ABSTRACT

Large Language Models (LLMs) have recently been widely adopted in conver-
sational agents. However, the increasingly long interactions between users and
agents accumulate extensive dialogue records, making it difficult for LLMs with
limited context windows to maintain a coherent long-term dialogue memory and
deliver personalized responses. While retrieval-augmented memory systems have
emerged to address this issue, existing methods often depend on single-granularity
memory segmentation and retrieval. This approach falls short in capturing deep
memory connections, leading to partial retrieval of useful information or substantial
noise, resulting in suboptimal performance. To tackle these limits, we propose
MemGAS, a framework that enhances memory consolidation by constructing multi-
granularity association, adaptive selection, and retrieval. MemGAS is based on
multi-granularity memory units and employs Gaussian Mixture Models to cluster
and associate new memories with historical ones. An entropy-based router adap-
tively selects optimal granularity by evaluating query relevance distributions and
balancing information completeness and noise. Retrieved memories are further re-
fined via LLM-based filtering. Experiments on four long-term memory benchmarks
demonstrate that MemGAS outperforms state-of-the-art methods on both question
answer and retrieval tasks, achieving superior performance across different query
types and top-K settings. 1

1 INTRODUCTION

Large Language Models (LLMs) have showcased remarkable conversational abilities, enabling
them to serve as personalized assistants (Li et al., 2025a; Wang et al., 2024; Li et al., 2024b)
and handle a wide range of applications, such as customer service (Pandya & Holia, 2023) and
software development (Qian et al., 2024). However, as user-agent interactions increase, the volume
of conversational history grows significantly. Despite their impressive conversational abilities, LLMs
struggle with maintaining long-term conversational memory due to their limited context length (Liu
et al., 2023b), which makes it challenging to retain a comprehensive record of user interactions and
preferences over time. This limitation undermines their ability to generate coherent and personalized
responses (Wu et al., 2025a; Pan et al., 2025; Xu et al., 2025; Li et al., 2025b; Chhikara et al., 2025).
The development of retrieval-based external (non-parametric) memory systems (Packer et al., 2023;
Park et al., 2023) has emerged as a promising solution. By storing interaction histories and retrieving
relevant information when needed, memory systems enable LLMs to recall user-specific details from
past dialogues and deliver more tailored responses.

Recent studies on external memory systems of LLM agents primarily depend on the Retrieval-
Augmented Generation (RAG) pipeline and have explored diverse aspects of memory segmentation
and construction for effective retrieval (Wu et al., 2025b; Zhang et al., 2024a; Chen et al., 2025a;
Chhikara et al., 2025; Zhong et al., 2024). For memory segmentation, existing approaches mainly
adopt single-granularity to segment conversations. They utilize session-level chunks as retrieval
units (Lu et al., 2023; Liu et al., 2023a; Team, 2023), while others employ finer-grained turn-level
segmentation to capture details (Zhong et al., 2024; Wu et al., 2025a; Yuan et al., 2023). Recent

1https://anonymous.4open.science/r/MemGAS-626C/
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Conversation 1
2023/05/23 (Tue) 14:39

[user]
I'm looking to improve my skills. Can 
you recommend some resources, such 
as books or online courses….

[assistant]
Excellent! You‘re ready to dive deeper 
into Natural Language Processing. 
Here are some recommended …
[user]
I've completed three courses on 
Coursera, and I'm excited to dive 
deeper into CNNs for text classification.

[assistant]
Congratulations on completing three
courses on Coursera! …

You‘re enthusiastic about diving deeper 
into CNNs after completing three 
courses on Coursera…of Python 
programming …

- Completed courses on Coursera 
- Natural Language Processing
- familiar with PyTorch

Multi-session Query
How many online courses 
have I completed in total?

Full Retrieval
Five online courses.

Conversation 2
2023/05/30 (Tue) 10:29

[user]
I'm looking to explore more online 
courses to improve my data science 
skills. I've completed two courses on 
edX so far, 

[assistant]
That's great to hear that you've had a 
positive experience with edX! …
[user]
That sounds like a great course! I‘m 
interested in learning more about…

[assistant]
The programming assignments in the 
Stanford Natural Language 
Processing …

After completing the Stanford Natural 
Language Processing, you‘ll have 
access to various career. You can utilize 
Coursera’s career support …

- Coursera Career Services
- Deep Learning Engineer; 
- AI Researcher

Afterwards

(a) Retrieval performance with 
different granularity

Multi-Gran 
Retrieve

Session

Summary

Keyword

Turn
Partial Retrieval

Three online courses.

Figure 1: An example of the multi-session query. The agent needs to synthesize information from
both Conversation 1 and Conversation 2 to answer the question. The red underlines highlight
information directly relevant to the answer, while the bold text emphasizes the same details between
conversations. By generating multi-granularities (e.g., summary and keyword), the agent can better
establish connections between conversations, enhancing full memory retrieval. Additionally, chart (a)
illustrates the performance across different granularities, where ‘Suited Gran’ means the result using
best-suited granularity for each query.

advances introduce topic-aware segmentation techniques (Pan et al., 2025; Tan et al., 2025) that group
dialogue based on semantic coherence, enhancing topic-consistent retrieval. Additionally, several
works (Wang et al., 2025; Team, 2023; Zhong et al., 2024; Sarthi et al., 2024) generate memory
summary, condensing key information into compact representations to improve retrieval efficiency.
Regarding memory construction, researchers have explored structured organization paradigms to
enhance long-term knowledge retention (Li et al., 2024c; Edge et al., 2024; Guo et al., 2024). Methods
like RAPTOR (Sarthi et al., 2024) and MemTree (Rezazadeh et al., 2024) employ hierarchical tree
structures to encode multi-scale relations between memory units. H-MEM (Sun & Zeng, 2025)
introduces a four-layer hierarchical memory with positional indices, enabling efficient top-down
retrieval. COMEDY Chen et al. (2025a) introduces a unified One-for-All compressive memory
framework without relying on traditional memory databases. Inspired by cognitive mechanisms
(Teyler & DiScenna, 1986), HippoRAG (Gutiérrez et al.; 2025) implements graph-based memory
architectures that simulate neural memory consolidation processes, establishing relations between
entities.

However, despite their progress, current approaches exhibit two critical limits: i) Insufficient Multi-
Granularity Memory Connection. While existing methods endeavor to organize memories into
topological structures (e.g., knowledge graphs (Gutiérrez et al., 2025; Chhikara et al., 2025) or trees
(Sarthi et al., 2024; Rezazadeh et al., 2024)), they predominantly concentrate on singular granularity
levels—either entities or session summaries. This single-scale paradigm fails to model cross-granular
interactions between memory units, resulting in retrieving only partial useful information. As
demonstrated in Figure 1, answering multi-session queries requires establishing semantic links across
granularities (e.g., connecting Conversation 1 and Conversation 2 through shared keyword/summary).
Failure to establish links results in partial retrieval (e.g., retrieving only Conversation 1), which
leads to incorrect answers. ii) Lack of Adaptive Multi-Granular Memory Selection. Current
methods mainly rely on fixed granularity strategies (e.g., session/turn segmentation or LLM-generated
summaries (Wang et al., 2025; Zhong et al., 2024; Wu et al., 2025a)), which often lead to incomplete
context recall or noise due to improper granularity. Although topic-aware segmentation (Pan et al.,
2025; Tan et al., 2025) enhances intra-chunk coherence, they lack adaptive mechanisms to select
granularity for each query. Our empirical analysis in Figure 1(a) reveals that adaptively choosing best-
suited granularity per query (e.g., balancing noise reduction in summaries/keywords with information
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retention in raw sessions) yields substantial performance gains. This highlights the necessity of
granularity selection to resolve the inherent noise-information trade-off.

In this paper, we propose MemGAS, a framework for constructing and retrieving long-term memories
through multi-granularity association and adaptive selection. Our method addresses these issues by
two core strategies: i) Memory Association: We leverage LLMs to generate memory summaries and
keywords, constructing multi-granular memory units. When new memory is updated, a Gaussian
Mixture Model is employed to cluster historical memories into an accept set (relevant) and a reject
set (irrelevant). The memories in the accept set are then associated with new memories, ensuring
consolidated memory structures and real-time updates. ii) Granularity Selection: An entropy-
based router adaptively assigns retrieval weights to different granularities by evaluating the certainty
of the query’s relevance distribution. Finally, critical memories are retrieved using Personalized
PageRank and filtered through LLMs to remove redundancies, ensuring a refined and high-quality
memory that enhances the assistant’s understanding. Experiments on four open-source long-term
memory benchmarks demonstrate that MemGAS significantly outperforms state-of-the-art baselines
and single-granularity approaches on both question answer (QA) and retrieval tasks. Moreover, it
consistently achieves superior results across various query types and retrieval top-k settings.

2 METHODOLOGY

This section defines the task and data format, constructs a dynamical memory association framework,
details an entropy-based router for better-suited granularity, and outlines strategies for retrieving and
filtering high-quality contextual information for response generation.

2.1 PRELIMINARY

Our work focuses on building personalized assistants through long-term conversational memory,
where the system leverages multi-session user-agent interactions (referred to as memory) to construct
an external memory bankM. Without loss of generality, the i-th session Si = {(u(i)j , a

(i)
j )}ni

j=1

contains ni dialogue turns of user utterances u(i)j and assistant responses a(i)j . When the assistant
receives a query q, our aim is to retrieve relevant memories Mrel ⊆ M through multi-granular
associations across session-level S, turn-level T , keyword-level K, and summary-level U , then
generates responses via a = LLM(q,Mrel). The core challenges involve establishing cross-granular
memory association and learning adaptive granularity selection ψ : q → {αs, αt, αk, αs} to balance
information completeness and retrieval noise.

2.2 MULTI-GRANULARITY ASSOCIATION CONSTRUCTION

Existing methods mainly encode memories into vector libraries (e.g., session-level chunks) and
directly retrieve information via similarity search (Izacard et al., 2021; Lee et al., 2023; Lu et al.,
2023). However, such approaches overlook deeper associations between memories. To address this,
we propose an associative memory construction process that captures multi-granular relationships.

Multi-Granular Memory Metadata. For the i-th session Si, multi-granularity metadata is generated
using LLMs, including a session summary Ui and keywords Ki. Additionally, the session is
segmented into multiple turns Ti. Formally,

Ui,Ki = fLLM(Si), Ti = segment(Si) (1)

Here, fLLM denotes LLM processing function, and segment represents segmentation operation. The
resulting memory chunk Mi combines the session-level Si, turn-level dialogues Ti, summary Ui, and
keywords Ki, and is stored in memory bank as:

Mi = {Si, Ti, Ui,Ki} ∈ M (2)

Dynamical Memory Association. When a new memoryMnew is added, the current memory bank
Mcur is updated asMcur ←Mcur ∪Mnew. To establish associations betweenMnew and historical
memories, a Gaussian Mixture Model (GMM)-based clustering strategy (Rasmussen, 1999) is used.
Each granularity of each element in the memory bank is encoded as a dense vector. Specifically, all
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Previous Memory New Memory

(2) Multi-Granularity Router-Retrieval-Filtering

Gaussian Mixture Model

(1) Multi-Granularity Association Construction

Personalized 
PageRank Query-related 

Top k

Accept
Reject

Memory Set

Soft Weight
Initialize 

Multi-Granularity 
Memory Unit

Session-level

Turn-level

Keyword-level

Summary-level

Timeline

Raw Conversations

LLM Agent

Segment 
& Generate

Association 
Construction

Query
.
.
.

Entropy-Driven 
WeightsDistribution

Multi-
Granularity 

Filter

Response

Entropy-Driven Granularity Selection

Retrieve

[user]
Write a sales email for a 
potential customer of a 
company that ... 

[assistant]
Dear valued customer, 
We at [Company Name] 
are excited to introduce 
our innovative ...

[user]
How many online 
courses have I 
completed in total?

[assistant]
You have completed 
a total of five online 
courses.

• Raw Memory
• Summary
• Keyword

Figure 2: Overall Framework. In the first phase, we leverage LLM agent to generate multi-granularity
information and construct Memory Association using GMM. In the second phase, given a query, we
perform multi-granularity routing based on entropy and utilize PPR algorithm to search for key nodes.
Finally, we filter the information to obtain the answer.

memories are encoded into dense vectors e(Si), e(Ti), e(Ui), and e(Ki) for session-level, turn-level,
summary, and keyword metadata, respectively. The entire memory bankMcur is thus represented as a
collection of these multi-granular vectors. Pairwise similarity scores are computed between e(Mnew)
and e(Mcur), covering all granularities of each memory. The resulting set of similarity vectors ssim
is clustered by GMM into two probabilistic sets:

• Accept Set: Memories with high similarity toMnew, forming direct associations withMnew.

• Reject Set: Irrelevant memories, excluded from immediate connections withMnew.

Note that the similarity vectors are computed with granularity-specific information, meaning that
each granularity of Mnew is treated as a node and used to establish connections with nodes in
Mcur. We maintain an association graph Acur to store the connections inM, which is updated as
Acur ← Acur∪Anew, whereAnew represents the edges betweenMnew and its accept set. This process
mimics human-like memory consolidation by selectively reinforcing contextually related memories.

2.3 MULTI-GRANULARITY ROUTER

Existing methods rely on single predefined granularity for memory retrieval, limiting their ability to
adaptively prioritize fine- or coarse-grained information based on query (Lee et al., 2023; Wang et al.,
2025; Sarthi et al., 2024). To address this, we propose an entropy-based router that adaptively selects
the better-suited granularity for each query.

Entropy-Driven Granularity Selection. For a query q, we first compute its similarity to all
memory chunks across each granularity level g ∈ {session, turn, summary, keyword}. Let sg =
[sim(q,Mg

1 ), . . . , sim(q,Mg
n)] denote the similarity scores between q and n memories chunks at

granularity g. We normalize sg into a probability distribution pg(sg) and calculate its Shannon
entropy:

Hg = −
n∑

i=1

pgi (s
g) log pgi (s

g), where pgi (s
g) =

exp(sim(q,Mg
i )/λ)∑n

j=1 exp(sim(q,Mg
j )/λ)

, ∀i ∈ {1, . . . , n}.

(3)
whereHg quantifies the uncertainty of matching q to memories at granularity g. λ is a hyperparameter
to control the degree of entropy, and analyzed in Appendix F.

Soft Router Weights. Our motivation stems from that lower entropy Hg typically reflects higher
confidence in precise matches (e.g., higher confidence indicates a clear correspondence between the
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query and its associated memory). Conversely, higher entropy suggests more ambiguous matches
(e.g., lower confidence implies uncertainty about the query’s corresponding memory). To capture this
behavior, we assign weights to granularities by normalizing their inverse entropy:

wg =
1/Hg∑G

g′=1 1/H
g′
, (4)

where G denotes the total number of granularities. This formulation ensures that granularities with
lower entropy (indicating higher certainty) are assigned greater weights. Consequently, memories are
reweighted to emphasize those associated with the query’s most confident granularities, eliminating
the need for manual intervention. We present a theoretical analysis of granularity association and
routers in Appendix H.

2.4 MEMORY RETRIEVAL AND FILTER

After constructing the multi-granularity memory associations and determining granularity weights,
we retrieve relevant memories for a query q by leveraging the graph-structured memory {Mi, Ai} ∈
M×A. To fully utilize inter-memory relationships, we employ the Personalized PageRank (PPR)
algorithm (Haveliwala, 2002) for context-aware ranking. At the granularity level, we treat each Mg

i
(i.e., the g-th granularity node of memory Mi) as an individual node in the association graph. For
each granularity g, we compute an initial relevance score for node Mg

i using the router-assigned
weight wg from Equation 4:

scoregi = wg · sim
(
q,Mg

i

)
, (5)

where sim(q,Mg
i ) measures the cosine similarity between the query embedding e(q) and the

granularity-specific embedding e(Mg
i ). The set of scores {scoregi } defines the personalized starting

probabilities over granularity-level nodes. We then select the top α nodes as seed nodes (analyzed
in Appendix F), and run PPR on the multi-granularity association graph, propagating relevance
through the graph structure to emphasize nodes that are both directly relevant to the query and densely
connected to other high-value nodes. After convergence, we select the top-k nodes as candidate
contexts by their final PPR scores. The impact of K is empirically analyzed in Section § 3.4.

LLM-Based Redundancy Filtering. To minimize noise and eliminate redundancy in the retrieved
multi-granularity memories, we employ an LLM-based filtering mechanism. This mechanism
processes the top-K memories alongside the query q, using a curated designed prompt (see Appendix
J) to identify and discard irrelevant or repetitive content. As a result, the final context provided to
the response generator is refined to focus exclusively on the most critical information relevant to
q, ensuring a more concise and personalized response. We present case study on multi-granularity
information in Appendix K.2 and case study on filtering in Appendix K.3.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Dataset and Metrics. Experiments are conducted on four comprehensive long-term memory datasets:
LoCoMo (Maharana et al., 2024), Long-MT-Bench+ (Pan et al., 2025), LongMemEval-s (Wu et al.,
2025a), and LongMemEval-m (Wu et al., 2025a), all focused on evaluating the capabilities of LLM
agents in long-term conversations. Since our task is training-free, the whole QA pairs in datasets
are used for evaluation. Detailed dataset statistics are provided in Appendix A. To comprehensively
evaluate model performance, we employ multiple metrics: F1 scores (as used by Maharana et al.
(2024)), BLEU (with 4-gram by default), BERTScore, and ROUGE scores (following Pan et al.
(2025)). Additionally, we introduce GPT4o-as-Judge (GPT4o-J) (Zheng et al., 2023), an evaluation
setting where GPT4o assesses the alignment of a model’s response with the reference answer. The
evaluation prompts are provided in Appendix J.

Baselines. We compare MemGAS against various methods. (1) Full History: which utilizes all
the latest conversation records, incorporating up to 128k tokens of context. Two strong retrieval
models: (2) MPNet (Song et al., 2020) and (3) Contriever (Izacard et al., 2021). Four memory-
based conversational models: (4) RecurSum (Wang et al., 2025), which uses LLMs to recursively
summarize and update memory for contextually relevant responses; (5) MPC (Lee et al., 2023), which

5
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composes LLM with prompting and external memory; (6) A-Mem (Xu et al., 2025), which organizes
memories through generating note and links; (7) SeCom (Pan et al., 2025), which segments memory
into coherent topics and applies compression-based denoising to boost retrieval; Two structured
RAG models: (8) HippoRAG 2 (Gutiérrez et al.), which integrates knowledge graphs for efficient
retrieval, and (9) RAPTOR (Sarthi et al., 2024), which enhances retrieval via recursive summary
and hierarchical clustering into a tree structure. We also include two recent memory models: H-
MEM (Sun & Zeng, 2025) introduces a four-layer hierarchical memory with positional indexing,
and COMEDY Chen et al. (2025a) provides a unified One-for-All compressive memory framework
without traditional memory stores. Due to space limitations, the experimental results for H-MEM
and COMEDY are provided in Appendix I.2. More details can be found in Appendix B.

Implementation Details. We use ‘gpt-4o-mini-2024-07-18’ as the backbone for all tasks, including
multi-granularity information generation and QA. To ensure fairness, all baselines share consistent
generation prompts. The temperature of LLMs is set to 0 for reproducibility, and all models operate in
a zero-shot setting with prompt templates detailed in Appendix J. A consistent top-3 session retrieval
setting is applied across all models for fair comparison, with top-3 segments used for SeCom and
sessions/summaries for RAPTOR. Contriever is used as the encoding model to generate embeddings
for memory texts. We select hyperparameters through grid search: λ is tuned over {0.1, 0.2, 0.3, 0.5,
0.7, 1.0} and α over {5, 10, 15, 20, 25}. LongMTBench+ is excluded due to the lack of a ground truth
for retrieval. RAPTOR and A-Mem retrieval cannot be evaluated with session-level Recall because
their stored units are abstracted or rewritten representations, so there is no deterministic mapping
back to ground-truth sessions. Results for RAPTOR, A-Mem, and HippoRAG on LongMemEval-m
are unavailable due to high runtime.

We compared various methods across different retrievers, generators, and query types, as detailed in
Appendix E.1 E.2 and E.3. Additionally, we provide a hyperparameter analysis in Appendix F and
an error analysis in Appendix G. The additional cost and efficiency of the methods are discussed in
Appendix D.

3.2 OVERALL RESULTS

We present the results for Question Answering and Retrieval in Table 1 and Table 2, respectively. We
also compare performance of single-granularity and multi-granularity in Appendix C. Below, we
provide analysis of these results.

Question Answering Results. As presented in Table 1, MemGAS consistently outperforms other
methods across most datasets and evaluation metrics. Unlike Full History, which introduces noise
by utilizing all historical context, MemGAS excels by effectively consolidating and retrieving only
the most relevant memories. Other baselines, such as RecurSum and SeCom, although operating
at specific granularities, lack the capability to integrate multi-granular associations between mem-
ory, resulting in suboptimal outcomes. Besides, methods like HippoRAG 2 and RAPTOR, while
establishing connections between memory units, fail to construct multi-granular relationships and
selection mechanisms effectively, limiting their performance. MemGAS performs better through its
dynamic construction and adaptive router of multi-granular memory units and redundancy filtering,
emphasizing the critical role of association and selection in memory management. In terms of
efficiency, MemGAS maintains competitive token usage and achieves stronger QA quality while
retaining comparable—or even lower—latency than several baselines such as A-Mem and RecurSum,
making it both more accurate and more efficient overall.

Retrieval Results. As shown in Table 2, our MemGAS demonstrates outstanding performance across
all datasets, consistently achieving the highest Recall and NDCG metrics. These results highlight
the effectiveness and robustness of our approach, addressing key challenges in long-term memory
construction and retrieval, and ensuring that queries are matched with the most relevant context.

3.3 ABLATION STUDY

The ablation study in Table 3 demonstrates the significance of each component in enhancing both
QA and retrieval performance. Individually removing GMM, PPR, MA, or the Router results in
consistent performance degradation, validating their essential contributions. Notably, the combined
absence of all components leads to the most significant drop, with the F1 score plummeting from
20.38 to 13.78, and Recall@3 decreasing from 78.51 to 71.06. This highlights the importance of all
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Table 1: QA performance. Contriever is used as the retrieval backbone for all baselines (except for
Full History and MPNet), with GPT4o-mini serving as the generator. The bold values indicate the
best performance, while underlined values mark the second-best across each metric. All evaluation
metrics follow a “higher is better” convention. 4o-J’ denotes GPT4o-as-Judge, B-4’ represents
BLEU4, R-n’ refers to ROUGE-n, and BS’ denotes BERTScore. Avg. Tokens and Avg. Latency both
report the average computational cost per query; Avg. Tokens measures LLM API token consumption,
while Avg. Latency reflects the end-to-end response time. Latency is measured in seconds.

Model 4o-J F1 B-4 R-1 R-2 R-L BS Avg.
Tokens

Avg.
Latency

LongMemEval-s

Full History 50.60 11.48 1.40 12.10 5.47 10.85 83.07 103,137 9.39
MPNet (Song et al., 2020) 53.20 13.96 2.21 14.49 6.78 12.93 83.72 8,173 1.82
Contriever (Izacard et al., 2021) 55.40 13.78 2.21 14.46 6.93 12.89 83.70 8,286 1.85
MPC (Lee et al., 2023) 53.80 13.60 1.74 14.27 6.49 12.95 83.49 8,457 2.66
RecurSum (Wang et al., 2025) 35.40 12.29 2.09 13.01 5.55 11.52 83.60 8,853 1.94
SeCom (Pan et al., 2025) 56.00 12.95 2.25 13.80 6.09 11.93 83.51 2,741 1.67
HippoRAG 2(Gutiérrez et al., 2025) 57.60 14.73 2.15 15.30 7.36 13.83 83.86 8,530 4.51
RAPTOR (Sarthi et al., 2024) 32.20 12.08 1.90 12.73 5.82 11.25 83.50 6,254 2.25
A-Mem (Xu et al., 2025) 55.60 13.73 2.11 14.82 6.81 12.98 83.88 9,018 2.59
MemGAS (Ours) 60.20 20.38 4.22 21.05 10.47 19.47 85.21 8,829 2.55

LongMemEval-m

Full History 12.20 5.70 0.78 6.27 2.08 5.28 81.62 128,000 12.88
MPNet (Song et al., 2020) 37.80 10.76 1.70 11.46 4.76 10.03 83.09 8,352 1.83
Contriever (Izacard et al., 2021) 42.80 11.88 1.66 12.56 5.63 11.02 83.28 8,467 1.92
MPC (Lee et al., 2023) 37.80 11.28 1.37 11.93 5.12 10.57 82.98 8,428 2.75
RecurSum (Wang et al., 2025) 23.80 10.04 1.70 10.89 4.26 9.21 83.12 8,927 1.99
SeCom (Pan et al., 2025) 42.80 11.33 1.79 12.03 5.07 10.49 83.36 2,821 1.63
MemGAS (Ours) 45.40 16.85 3.39 17.60 8.25 16.14 84.69 8,852 2.45

LoCoMo

Full History 33.43 12.23 1.84 12.70 5.66 11.73 84.07 20,078 4.92
MPNet (Song et al., 2020) 38.07 14.44 2.35 14.90 6.83 13.90 84.42 2,472 1.29
Contriever (Izacard et al., 2021) 40.33 15.66 2.67 16.01 7.68 15.00 84.65 2,348 1.24
MPC (Lee et al., 2023) 40.38 14.81 1.99 15.10 6.83 14.13 84.43 2,683 1.95
RecurSum (Wang et al., 2025) 22.56 9.14 0.99 9.82 3.38 8.98 83.45 3,074 1.58
SeCom (Pan et al., 2025) 44.21 13.79 2.30 14.28 6.17 13.30 84.04 1,021 1.02
HippoRAG 2(Gutiérrez et al., 2025) 45.62 16.66 2.91 17.01 8.27 15.93 84.88 2,991 3.56
RAPTOR (Sarthi et al., 2024) 31.72 14.55 2.88 15.09 7.49 14.18 84.48 1,931 1.73
A-Mem (Xu et al., 2025) 40.81 14.72 2.83 16.22 7.71 14.89 84.72 3,042 1.98
MemGAS (Ours) 41.07 17.66 3.61 18.00 8.93 16.99 85.13 2,825 1.88

LongMTBench+

Full History 67.44 36.07 11.32 37.90 20.51 29.25 87.81 19,194 4.72
MPNet (Song et al., 2020) 63.89 36.09 11.26 38.39 20.58 28.86 87.84 12,143 3.21
Contriever (Izacard et al., 2021) 63.54 36.30 11.59 38.17 21.65 29.67 87.90 11,941 3.27
MPC (Lee et al., 2023) 61.81 31.52 7.97 33.56 17.27 25.20 86.51 12,289 3.98
RecurSum (Wang et al., 2025) 24.65 26.58 6.91 29.23 11.93 20.90 86.11 13,527 3.41
SeCom (Pan et al., 2025) 64.58 36.68 12.01 38.81 21.44 29.65 87.88 4,714 2.68
HippoRAG 2(Gutiérrez et al., 2025) 63.54 35.64 11.05 37.61 20.37 28.76 87.70 13,583 6.14
RAPTOR (Sarthi et al., 2024) 59.72 37.69 13.47 40.08 21.68 30.88 88.38 10,631 3.47
A-Mem (Xu et al., 2025) 65.73 36.82 11.36 38.92 20.88 29.14 87.92 13,735 3.95
MemGAS (Ours) 69.44 41.49 15.62 43.69 24.45 34.66 88.96 12,873 3.85

modules in improving overall performance. Moreover, the latency introduced by these modules is
minimal, with the highest latency increase being only 0.0191 seconds for QA and 0.0079 seconds for
retrieval. We also found that LLM API calls account for over 98% of the overall end-to-end latency,
indicating that they are by far the primary contributor to the system’s response time, and the overhead
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Table 2: Retrieval Performance. All methods are based on Contriever as the retriever, except for
MPNet.

Model Recall@3 NDCG@3 Recall@5 NDCG@5 Recall@10 NDCG@10

LongMemEval-s

MPNet (Song et al., 2020) 66.17 75.47 76.38 78.29 85.11 80.63
Contriever (Izacard et al., 2021) 71.06 79.72 81.28 82.47 90.00 84.29
RecurSum (Wang et al., 2025) 67.23 78.33 79.79 81.76 87.66 83.28
MPC (Lee et al., 2023) 60.00 70.90 68.09 73.27 80.00 76.59
SeCom (Pan et al., 2025) 71.06 80.88 80.43 83.08 89.15 85.11
HippoRAG 2(Gutiérrez et al., 2025) 75.53 85.44 84.68 87.32 91.28 88.73
MemGAS (Ours) 78.51 86.83 88.94 88.77 94.47 89.96

LongMemEval-m

MPNet (Song et al., 2020) 37.02 48.68 45.74 52.51 61.28 56.55
Contriever (Izacard et al., 2021) 44.26 56.11 53.40 59.44 65.96 62.74
RecurSum (Wang et al., 2025) 23.19 32.10 31.70 36.99 43.62 41.40
MPC (Lee et al., 2023) 35.96 47.51 42.55 50.36 54.26 53.88
SeCom (Pan et al., 2025) 44.26 56.61 55.32 60.76 66.60 63.78
MemGAS (Ours) 51.06 61.36 63.62 66.07 77.02 69.46

LoCoMo

MPNet (Song et al., 2020) 45.92 47.71 53.98 51.79 68.58 56.88
Contriever (Izacard et al., 2021) 49.90 52.15 58.26 56.29 71.80 60.92
RecurSum (Wang et al., 2025) 47.23 48.99 59.01 54.58 74.97 60.07
MPC (Lee et al., 2023) 49.50 51.47 57.45 55.53 71.85 60.47
SeCom (Pan et al., 2025) 55.24 57.90 64.80 62.36 78.30 66.97
HippoRAG 2(Gutiérrez et al., 2025) 56.60 58.37 65.06 62.50 78.05 66.79
MemGAS (Ours) 57.30 58.76 67.32 63.62 81.82 68.42

Table 3: Ablation Study on LongMemeval-s for Gaussian Mixture Model (GMM), Personalized
PageRank (PPR), Granularity Router and Memory Association (MA). The w/o MA setting is equiva-
lent to w/o GMM and PPR. QA performance is evaluated using top 3 retrieved results. R@n means
Recall@n. The (∆) represents the latency introduced by each module.

Method QA Performance Retrieval Performance

GPT4o-J F1 RogueL Avg.
Tokens

Total
Latency (s) R@3 R@5 R@10 Retrieval

Latency (s)

MemGAS 60.20 20.38 19.47 8,829 2.5534 78.51 88.94 94.47 0.0239
w/o GMM 57.20 19.49 18.68 8,820 2.5506(∆0.0028) 76.38 85.53 91.28 0.0232(∆0.0007)
w/o PPR 56.60 19.76 18.85 8,772 2.5449(∆0.0085) 75.96 85.96 90.64 0.0194(∆0.0045)
w/o MA 56.80 17.69 19.00 8,734 2.5418(∆0.0116) 74.89 85.74 91.49 0.0182(∆0.0057)
w/o Router 56.60 18.88 18.62 8,763 2.5471(∆0.0063) 75.53 85.74 92.34 0.0216(∆0.0023)
w/o All 55.40 13.78 12.89 8,701 2.5343(∆0.0191) 71.06 81.28 90.00 0.0160(∆0.0079)

from our modules is acceptable in practice. This demonstrates that the proposed architecture achieves
a remarkable balance between enhanced performance and computational efficiency.

3.4 DETAILED COMPARISON ANALYSIS

In this section, we present a comprehensive analysis comparing our approach with baselines across
different query types and different Top-K retrieval settings.

Comparison on different query types. The results in Figure 5 highlight performance across different
query types. Our MemGAS consistently demonstrates superior performance, particularly excelling in
multi-hop retrieval on LoCoMo and multi-session on LongMemEval-s. This suggests that memory
association mechanism in MemGAS effectively identifies highly relevant sessions, enabling enhanced
multi-hop reasoning and better integration of knowledge. Additionally, our method performs well
across single-session, temporal reasoning, and knowledge update, demonstrating its strength in
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Figure 3: Comparison of F1 Across Dif-
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Figure 4: Comparison on Different Top-K Retrieval.

addressing both simple and complex query types. We also provide a case study for different query
types in Appendix K.1, and comparison with other datasets and metrics in Appendix E.3.

Comparison on different Top-K retrieval. In downstream QA tasks, Top-K retrieved memories are
directly fed as context to LLM generator, where increasing K improves coverage but may introduce
noise when K becomes too large. The results shown in Figure 4 demonstrate the performance
of various Top-K retrieval settings. On the LoCoMo and LongMemEval-s datasets, our model
consistently surpasses baseline methods in F1 scores as Top-K increases from 1 to 10. This trend
highlights that retrieving more relevant context significantly enhances accuracy. Note that on the
LongMemEval-s dataset, while F1 scores initially improve at lower Top-K values, performance
declines at higher Top-K levels, suggesting that the longer context introduces noise, which negatively
impacts the model’s effectiveness.

Comparison w/ and w/o Filter Setting. To ensure fairness when comparing MemGAS with
baselines that may not employ LLM-based filtering, we provide a detailed breakdown of token usage
for online per-query cost. Table 4 reports token consumption with and without filtering, as well as
the corresponding QA performance on LongMemEval-s using GPT4o-J. Overall, MemGAS exhibits
competitive or lower online token usage compared to representative structured baselines such as
HippoRAG2, while consistently achieving higher QA accuracy. The filtering module introduces
only a small additional overhead (approximately 200–300 tokens per query), yet it improves answer
precision and benefits downstream reasoning quality. Moreover, as shown in Appendix D.1, MemGAS
requires noticeably less LLM involvement during memory construction compared to multi-stage
structured approaches (e.g., HippoRAG2), further enhancing its overall efficiency.

Table 4: Comparison of LLM token usage and QA performance between MemGAS and representative
baselines, under both filtering and non-filtering settings. The reported numbers include (i) average
online per-query token cost and (ii) GPT4o-J QA score on LongMemEval-s. Avg. Tokens per query
denotes online QA-stage token consumption: tokens for LLM filtering + tokens for QA generation.

Category Setting MemGAS HippoRAG2 RAPTOR SeCom RecurSum
Avg. Tokens per query With filter 8,829 8,911 6,617 3,015 9,176
Avg. Tokens per query Without filter 8,481 8,530 6,254 2,741 8,853

QA performance With filter 60.2 58.4 33.2 56.6 36.2
QA performance Without filter 59.4 57.6 32.2 56.0 35.4

4 RELATED WORK

Retrieval Methods. Recent advancements in retrieval methods have greatly enhanced information
retrieval performance(Robertson et al., 2009; Song et al., 2020; Santhanam et al., 2021). BM25
(Robertson et al., 2009), a classic sparse retrieval method, uses a probabilistic model to improve query

9
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relevance. In contrast, dense retrieval methods excel at capturing semantic similarity. For instance,
DPR (Karpukhin et al., 2020) employs dual-encoder models to encode queries and documents into
dense vectors for efficient similarity search. Similarly, Contriever (Izacard et al., 2021) leverages
contrastive learning to enhance semantic understanding. Advanced methods like E5 (Wang et al.,
2022), BGE (Luo et al., 2024), and GTE (Li et al., 2023) further utilize pre-trained or fine-tuned
transformers for robust and efficient semantic retrieval.

Long Term Memory Management. With the development of LLMs, the user-assistant conversation
becomes longer and contains various topics (Chhikara et al., 2025; Li et al., 2025b; Wang & Chen,
2025; Lu et al., 2023; Du et al., 2024; Qian et al., 2025; Packer et al., 2023; Zhang et al., 2025; 2024a;
Wu et al., 2025b; Du et al., 2024; Kirmayr et al., 2025), which introduces challenges for preserving
the user’s long-term memory. Management in long-term memory often involves segmentation (Pan
et al., 2025), summary (Kim et al., 2024), compression (Chen et al., 2025b), forgetting and updating
(Bae et al., 2022; Wang et al., 2025; Zhong et al., 2024). For example, several approaches (Wang
et al., 2025; Sarthi et al., 2024; Team, 2023; Liu et al., 2023a; Lu et al., 2023) focus on generating
memory summaries as records to enable more accurate retrieval. Besides, some methods (Pan et al.,
2025; Lee et al., 2024; Xu et al., 2023; Chen et al., 2025a) leverage compression techniques to
reduce memory size while preserving essential information. The forgetting mechanisms (Zhong
et al., 2024; Jia et al., 2024) address the need to remove obsolete or irrelevant memories while
maintaining model performance. Some integrated methods (Tan et al., 2025; Ong et al., 2025; Li
et al., 2024a) combine memory retention, update to enable personalized and contextually relevant
long-term dialogue. However, existing approaches typically focus on single-granularity segmentation
strategies, such as session/turn, to organize and manage long-term memory. Whereas our work
leverages multi-granular information for better adaptive memory selection.

Structural Memory Management. Additionally, existing works employ structured paradigms
for memory or knowledge base organization (Chen et al., 2024; Li et al., 2024c; Zhang et al.,
2025; 2024a; Wu et al., 2025b; He et al., 2024a; Zhang et al., 2024b; Xu et al., 2022; Rasmussen
et al., 2025). HippoRAG (Gutiérrez et al.; 2025) builds entity-centric knowledge graphs inspired
by hippocampal indexing theory (Teyler & DiScenna, 1986), while Graph-CoT (Jin et al., 2024)
and G-Retriever (He et al., 2024b) integrate graph reasoning for interactive retrieval or generation,
whereas LightRAG (Guo et al., 2024) and GraphRAG (Edge et al., 2024) optimize retrieval and
summary via graph structures. MemTree and RAPTOR (Rezazadeh et al., 2024; Sarthi et al., 2024)
utilize recursive embedding, clustering, and summarization of text chunks to construct a hierarchical
tree, while StructRAG (Li et al., 2024c) enhances reasoning by leveraging multiple structured formats.
While existing methods focus on single-granularity memory modeling, they lack cross-granularity
interactions. In contrast, our MemGAS utilizes multi-granularity association and adaptive selection
to construct consolidated memory structures and optimize retrieval efficiency.

5 CONCLUSION

In this paper, we proposed MemGAS, a novel framework for long-term memory construction and
retrieval that integrates multi-granular memory units and enables adaptive selection and retrieval. By
leveraging human-inspired memory mechanisms through Gaussian Mixture Models and an entropy-
based multi-granularity router, MemGAS effectively addresses challenges of memory connection
and selection. Experimental results across four benchmarks demonstrate that MemGAS significantly
outperforms state-of-the-art baselines in both QA and retrieval tasks, highlighting its robustness and
superiority in managing long-term memory for conversational agents.

ETHICS STATEMENT

This work adheres to ethical research practices by ensuring that all experiments and datasets used are
publicly available and utilized in accordance with their licenses. The proposed MemGAS framework
is designed to enhance conversational agents responsibly, with a focus on improving user experience
while minimizing the risk of harm, such as generating misinformation. No sensitive or proprietary data
was used during the research process, and the methodology prioritizes transparency and accountability
in memory retrieval and usage.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we have provided
the code in an anonymous repository. The repository includes a well-documented README file
with instructions to replicate our experiments. Additionally, we have detailed implementation
specifics in this manuscript, and hyperparameter tuning is comprehensively described in Appendix F.
Furthermore, we have included the complete set of prompts required for the experiments, ensuring
that all components of our methodology can be accurately reproduced. We encourage the community
to leverage these resources to build upon our work.
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A DATASETS STATISTICS

Table 5: Dataset statistics. The term ‘Avg.’ (e.g., Avg. Sessions) represents the average number
corresponding to each conversation.

Dataset LoCoMo Long-MT-Bench+ LongMemEval-s LongMemEval-m

Total Conversations 10 11 500 500
Avg. Sessions 27.2 4.9 50.2 501.9
Avg. Query 198.6 26.2 1.0 1.0
Avg. Token 20,078.9 19,194.8 103,137.4 1,019,116.7
Sessions Dates ! # ! !

Retrieval Ground-Truth ! # ! !

QA Ground-Truth ! ! ! !
Conversation Subject User-User User-AI User-AI User-AI

We evaluate the proposed method with the following benchmarks:

• LongMemEval-s (Wu et al., 2025a) and LongMemEval-m (Wu et al., 2025a) datasets are bench-
marks designed to evaluate long-term memory in chat assistants. LongMemEval-s involves 50
sessions per question with an average of 115k tokens, making it a compact yet challenging dataset.
LongMemEval-m, on the other hand, spans 500 sessions per question, resulting in avg. 1.5 million
tokens pre conversations, offering a more extensive evaluation setting. Both datasets require AI
systems to handle user-AI dialogues, dynamic memorization, and historical consistency. The
dataset includes several query types: (1) Knowledge Update, testing whether the model can track
and reason about changes in the user’s personal information over time; (2) Temporal Reasoning,
focusing on explicit dates and inferred time references; (3) Single-Session User, which checks recall
of user details within one session; (4) Single-Session Preference, evaluating whether the model can
use preferences shared in a session; (5) Single-Session Assistant, testing recall of assistant-provided
information; (6) Multi-Session, which assesses reasoning that spans multiple sessions.

• LoCoMo (Maharana et al., 2024) dataset evaluates long-term memory in AI through lengthy
conversations, averaging 300 turns, 9,000 tokens, and up to 35 sessions. LoCoMo, the publicly
available subset of the original paper, includes 10 high-quality, long conversations with 27.2 ses-
sions and 20,000 tokens on average. The goal of LoCoMo is to evaluate long-context LLMs and
RAG systems, which, while improving memory performance, still fall short of human capabili-
ties—particularly in temporal reasoning—underscoring the challenges of understanding long-range
dependencies. The dataset includes several query types: (1) Open Domain Knowledge, requiring
integrating speaker-provided facts with external or commonsense knowledge; (2) Temporal Reason-
ing, involving chronological inference; (3) Single-Hop Retrieval, solvable via a single session; (4)
Adversarial, which intentionally misleads and requires the model to avoid incorrect conclusions;
(5) Multi-Hop Retrieval, requiring synthesis across multiple sessions.

• Long-MT-Bench+ (Pan et al., 2025) dataset is reconstructed from MT-Bench+ (Lu et al., 2023)
by incorporating long-range questions to address the limited QA pairs and short dialogues. It
merges five consecutive sessions into a single long-term conversation, improving its suitability
for evaluating memory mechanisms. The dataset features 11 conversations with an average of 4.9
sessions and 19194.8 tokens. Unlike LoCoMo, it focuses on user-AI interactions, excluding session
dates and retrieval ground truth.

B COMPARISON OF METHODS STRUCTURE WITH BASELINES

We compare the model structures of each baseline (provided in parentheses) and offer concise
summaries to highlight the differences in their memory construction and retrieval mechanisms.

• MPNet (Vector Base): Uses permuted language modeling with auxiliary positional information to
model token dependencies while seeing full-sentence position signals.

• Contriever (Vector Base): Trains dense retrievers via unsupervised contrastive learning for
generalizable text embeddings, including cross-lingual retrieval.
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• MPC (Memory Pool): Composes LLM modules with few-shot prompting, chain-of-thought, and
external memory to maintain long-term conversational consistency without fine-tuning.

• RecurSum (Recursive Summary): Recursively generates and updates dialogue summaries as
memory, using prior memory and new context to maintain coherence.

• SeCom (Semantic Segment): Segments conversations into topically coherent units and applies
compression-based denoising to build and retrieve from segment-level memory.

• RAPTOR (Hierarchical Tree): Recursively embeds, clusters, and summarizes text to form a
hierarchical summary tree, enabling retrieval at multiple abstraction levels.

• HippoRAG2 (Knowledge Graph): Augments RAG with knowledge-graph traversal, integrating
passages and online LLM reasoning for associative retrieval.

• A-Mem (Memory Note): Implements a Zettelkasten-inspired memory: creates structured notes
with attributes, indexes and links them, and updates existing notes as new ones arrive.

• MemGAS (Ours; Multi-Granularity Memory): Builds multi-granularity memory units, asso-
ciates them via Gaussian Mixture Models, and uses an entropy-based router plus LLM filtering for
adaptive retrieval.

C COMPREHENSIVE COMPARISON OF SINGLE-GRANULARITY AND
MULTI-GRANULARITY

C.1 QA PERFORMANCE.

The results in the Table 6 demonstrate the significant advantages of multi-granularity methods over
single-granularity approaches. Across all datasets, multi-granularity methods outperform single-
granularity methods in key evaluation metrics such as F1, BLEU4, ROUGE, and BERTScore. For
example, in the LongMemEval-m dataset, the best-performing single-granularity method (Turn-
level) achieves an F1 score of 12.26, whereas the multi-granularity method achieves significantly
higher F1 scores of 12.51 and 16.85. Similarly, in the LongMTBench+ dataset, the multi-granularity
method achieves F1 scores of 37.16 and 41.49, outperforming the best single-granularity method,
which scores 36.67. These results highlight the effectiveness of multi-granularity approaches in
integrating information from different granularities, providing a more comprehensive understanding
and significantly improving QA task performance.

Moreover, the proposed method, MemGAS reveals its superiority over simple multi-granularity
combination methods. Across all datasets, MemGAS consistently achieves better performance not
only in F1 scores but also across other evaluation metrics. For instance, in the LongMemEval-s
dataset, MemGAS achieves an F1 score of 20.38, surpassing the combination method’s score of 14.59.
Similarly, in the LongMTBench+ dataset, MemGAS achieves an F1 score of 41.49, compared to 37.16
for the combination method. These results demonstrate that MemGAS leverages a more sophisticated
mechanism to capture the relationships and complementarities among different granularities. This
enables MemGAS to achieve greater robustness and generalization, making it particularly effective
for complex QA tasks.

C.2 RETRIEVAL PERFORMANCE

The results in Table 7 clearly demonstrate the advantages of the multi-granularity approach in
retrieval tasks compared to single-granularity methods. Across all datasets, multi-granularity methods
consistently achieve higher scores in key retrieval metrics such as Recall and NDCG. For example, in
the LongMemEval-s dataset, the best single-granularity method (Turn-level) achieves Recall@10
of 91.91 and NDCG@10 of 86.73. However, the simplest multi-granularity combination approach
further improves these scores to 91.91 and 88.03, respectively, demonstrating its superior retrieval
effectiveness. Similarly, in the LongMemEval-m dataset, the Recall@10 and NDCG@10 of the multi-
granularity approach reached at least 73.83 and 68.66, respectively, which significantly exceeded
the best results of the single-granularity approach (Recall@10 = 70.21 and NDCG@10 = 63.43,
Turn-level). These findings underline the strength of multi-granularity approaches in leveraging
diverse levels of information to retrieve more relevant results and improve overall retrieval quality.
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Table 6: QA performance of Single-Granularity and Multi-Granularity.

Granularity GPT4o-J F1 BLEU4 Rouge1 Rouge2 RougeL BERTScore
LongMemEval-s

Single-Granularity
Session-level 55.40 13.78 2.21 14.46 6.93 12.89 83.70
Turn-level 57.60 14.94 2.50 15.53 7.50 14.12 83.93
Summary-level 28.80 10.66 1.78 11.51 4.61 9.96 83.26
Keyword-level 17.20 9.05 1.61 9.82 3.61 8.20 82.84

Multi-Granularity
Combination 56.60 14.59 2.40 15.19 7.22 13.70 83.96
MemGAS 60.20 20.38 4.22 21.05 10.47 19.47 85.21

LongMemEval-m
Single-Granularity

Session-level 42.80 11.88 1.66 12.56 5.63 11.02 83.28
Turn-level 42.60 12.26 1.79 12.93 5.67 11.45 83.43
Summary-level 24.40 10.11 1.68 11.02 4.16 9.41 83.17
Keyword-level 15.00 8.29 1.54 9.16 3.26 7.43 82.72

Multi-Granularity
Combination 46.40 12.51 1.96 13.08 6.13 11.70 83.49
MemGAS 45.40 16.85 3.39 17.60 8.25 16.14 84.69

LoCoMo
Single-Granularity

Session-level 40.33 15.66 2.67 16.01 7.68 15.00 84.65
Turn-level 42.09 16.10 2.80 16.42 8.13 15.36 84.70
Summary-level 19.08 9.78 0.83 10.38 3.28 9.41 83.69
Keyword-level 14.85 7.74 0.64 8.40 2.20 7.62 83.28

Multi-Granularity
Combination 42.80 15.93 2.60 16.27 7.76 15.26 84.69
MemGAS 40.08 17.66 3.61 18.00 8.93 16.99 85.13

LongMTBench+
Single-Granularity

Session-level 63.54 36.30 11.59 38.17 21.65 29.67 87.90
Turn-level 67.01 36.67 11.91 39.06 20.88 30.13 88.04
Summary-level 21.18 28.30 8.37 31.12 13.11 22.55 86.74
Keyword-level 20.83 28.05 8.90 30.92 12.80 22.39 86.78

Multi-Granularity
Combination 67.01 37.16 11.58 39.11 21.95 30.24 88.00
MemGAS 69.44 41.49 15.62 43.69 24.45 34.66 88.96

“Combination” denotes that texts from all granularities are directly concatenated into a single string,
and encoded to one embedding for retrieval. This naive merging lacks adaptive weighting or structure.
The proposed method, MemGAS further demonstrates its superiority over simple multi-granularity
combination methods. In all datasets, MemGAS consistently achieves better results. For example,
in the LongMemEval-s dataset, MemGAS achieves Recall@10 of 94.47 and NDCG@10 of 89.96,
surpassing the combination method’s scores of 91.91 and 88.03. Similarly, in the LoCoMo dataset,
MemGAS achieves Recall@10 of 81.07 and NDCG@10 of 68.24, outperforming the combination
method’s scores of 78.70 and 65.64. These improvements demonstrate that MemGAS is not merely
aggregating information from multiple granularities but instead employs a more advanced mechanism
to capture the interdependencies and complementarities among different granularities. This enables
MemGAS to deliver robust and versatile performance, making it highly effective for complex retrieval
tasks that require the integration of multi-granularity information.

C.3 HOW MULTI-GRANULARITY ROUTER WORKS?

In this section, we analyze how the proposed Multi-granularity Router works. “Optimal Selection” is
an oracle-style upper bound: for each query, it picks the single best-performing granularity among
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Table 7: Retrieval Performance of Single-Granularity and Multi-Granularity.

Granularity Recall@3 NDCG@3 Recall@5 NDCG@5 Recall@10 NDCG@10
LongMemEval-s

Single-Granularity
Session-level 71.06 79.72 81.28 82.47 90.00 84.29
Turn-level 73.62 82.47 84.68 84.94 91.91 86.73
Summary-level 70.43 80.53 80.00 82.38 88.30 84.28
Keyword-level 62.98 74.69 74.68 77.76 82.34 79.50

Multi-Granularity
Combination 76.17 84.68 87.23 87.00 91.91 88.03
MemGAS 78.51 86.83 88.94 88.77 94.47 89.96

LongMemEval-m

Single-Granularity
Session-level 44.26 56.11 53.40 59.44 65.96 62.74
Turn-level 44.68 55.06 57.66 60.03 70.21 63.43
Summary-level 41.06 54.68 52.34 58.64 65.53 62.31
Keyword-level 35.11 48.22 43.62 52.02 57.87 55.75

Multi-Granularity
Combination 50.85 61.50 60.00 64.82 73.83 68.66
MemGAS 51.06 61.36 63.62 66.07 77.02 69.46

LoCoMo

Single-Granularity
Session-level 49.90 52.15 58.26 56.29 71.80 60.92
Turn-level 52.77 54.09 64.30 59.64 80.31 65.07
Summary-level 47.89 48.96 58.21 53.94 74.12 59.61
Keyword-level 29.05 29.72 40.33 35.46 65.11 44.11

Multi-Granularity
Combination 53.98 55.89 63.80 60.61 78.70 65.64
MemGAS 57.45 58.84 67.12 63.60 81.07 68.24

the four. Conceptually, it reflects the upper performance achievable if one could choose the ideal
granularity per query. Our findings reveal that different levels of granularity exhibit distinct
preferences on the query type, and our router effectively adapts by selecting the suitable
granularity strategy. Table 8 presents the retrieval performance (Recall@3) across various query
types and granularities on the LongMemEval-m dataset. The results show that different query types
favor different granularities: for instance, temporal-reasoning queries benefit most from session-
level granularity, knowledge-update queries achieve better performance with turn-level granularity,
and single-session-preference queries perform best with summary-level granularity. Notably, our
Granularity Router (MemGAS) adaptively integrates multiple granularities, achieving retrieval
performance that closely approaches the upper bound defined by Optimal Selection. This highlights
the router’s ability to dynamically identify and apply the most effective granularity for each query
type, bridging the gap between fixed granularity approaches and optimal strategies.

C.4 HOW PPR AFFECTS THE RETRIEVAL RESULTS?

To further understand how PPR reshapes the retrieval behavior, we conduct a detailed analysis
comparing the top-k results before and after applying PPR. As shown in Table 9, PPR leads to
substantial re-ranking, with 97% of samples exhibiting different top-10 results. This indicates that
PPR is not a minor adjustment but significantly alters the retrieval ordering. Beyond the quantitative
changes, we also observe that PPR tends to surface memories that have lower embedding similarity
but are contextually relevant. In particular, for multi-session queries, the retrieved set before and after
PPR often differs in whether all relevant sessions are included. This demonstrates that PPR enhances
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Table 8: Comparison of retrieval performance (Recall@3) across query types and granularities,
showcasing the effectiveness of the Multi-granularity Router.

Query Type Session Turn Summary Keyword Granularity
Router (Ours)

Optimal
Selection

single-session-assistant 96.43 98.21 96.43 92.86 100.0 100.0
single-session-user 51.56 65.62 54.69 51.56 60.94 78.12
multi-session 32.23 28.1 19.01 13.22 33.88 43.80
knowledge-update 37.5 41.67 37.5 34.72 51.39 72.22
temporal-reasoning 33.86 30.71 33.07 22.83 41.73 51.96
single-session-preference 40.0 33.33 43.0 33.33 46.67 63.33

Table 9: Change rate of top-k retrieval results before and after applying PPR.

Method Top 3 Top 5 Top 10
Changes rate in top-k results 44.0% 72.4% 97.0%

the model’s ability to identify semantically connected memories, resulting in more comprehensive
retrieval outcomes.

D ADDITIONAL COST AND EFFICIENCY ANALYSIS

D.1 TOKEN CONSUMPTION FOR MEMORY CONSTRUCTION

In this section, we present the input and output token consumption during memory construction
using LLMs (e.g., constructing knowledge graph of HippoRAG2, Hierarchical Tree of RAPTOR,
Semantic segment of SeCom and Recursive Summary of RecurSum). The results in Table 10
clearly demonstrate the exceptional efficiency of MemGAS compared to other baselines on the
LongMemEval-s dataset. MemGAS processes only 52.9 M input tokens, which matches the total
corpus size, while all other methods require significantly more tokens. For example, HippoRAG 2
processes over 111.1 M input tokens, RAPTOR uses over 62.6 M, and even the relatively efficient
RecurSum exceeds MemGAS . Similarly, in terms of output token usage, MemGAS generates only
5.2 M tokens, far fewer than the massive outputs of HippoRAG 2 and SeCom, which produce
over 100 M and 70 M tokens, respectively. MemGAS achieves this remarkable efficiency without
compromising performance, making it a highly effective and scalable solution for handling large-scale
datasets. This demonstrates MemGAS ’s ability to minimize computational costs while maintaining
state-of-the-art results.

Extra Memory Cost: We also assessed the additional memory (RAM) cost introduced by our method,
as presented in Table 11. On the LongMemeval-s dataset, our multi-granularity approach incorporates
summary and keyword memory, resulting in approximately 27MB of extra memory usage—just 10%
of the 266MB required for raw memory. This demonstrates that our method imposes minimal storage
overhead, further validating its efficiency.

D.2 COMPARISON AT THE SAME TOKEN COST

We conduct experiments by fixing the number of input tokens across different methods on the
LongMemEval-s dataset. Specifically, we performed over-retrieval and then applied truncation at
thresholds of 8,000 and 16,000 input tokens to ensure that all baseline methods have the same
input token length. Table 12 are the results of these experiments. The results demonstrate that
under the same input token constraints, our proposed method, MemGAS, consistently outperforms
baseline approaches in terms of performance (GPT4o-J score) while maintaining competitive latency.
Specifically, at both token thresholds, MemGAS achieves the highest GPT4o-J scores (59.8 and 60.3,
respectively), surpassing other methods. Although MemGAS incurs slightly higher latency compared
to Contriever and Secom, it achieves a significantly better trade-off between efficiency and accuracy.
Additionally, the results highlight that using a fixed token cost is more effective than relying on the
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Table 10: Comparing the total input and output token consumption of baselines on the LongMemEval-
s dataset. The LongMemEval-s dataset contains approximately 51.6M corpus tokens. ‘M’ means
million.

MemGAS HippoRAG 2 RAPTOR SeCom RecurSum

Input Tokens 52.9M (100 %) 111.1M (210.0 %) 62.6M (118.3 %) 106.2M (200 %) 58.3M (110 %)
Output Tokens 5.2 M (100 %) 10.9M (209.6 %) 0.73M (14.0 %) 71.1M (1367 %) 16.3M (313 %)

Table 11: Extra Memory (Total Tokens and RAM) Cost on LongMemEval-s datasets.

Original Memory Summary Memory (Extra) Keywords Memory (Extra)

Total Tokens 51.6 milinon 3.14 milinon 2.09 milinon
RAM 266MB 16.2MB 10.8MB

full history approach, which yields a lower GPT4o-J score of 50.6 despite its much higher latency.
This confirms the efficiency and effectiveness of MemGAS in handling long-term memory tasks.

E GENERALIZATION ANALYSIS

E.1 COMPARISON ON DIFFERENT RETRIEVER

The results in the Table 13 demonstrate that MemGAS consistently outperforms all other methods
across all metrics when evaluated with different base retrievers (MiniLM, MPNet, and Contriever) on
the LoCoMo dataset. For the MiniLM base retriever, MemGAS achieves the highest scores in all
metrices, outperforming MiniLM, MPC, RecurSum, and SeCom. This indicates that MemGAS is
highly effective in leveraging the MiniLM retriever to improve retrieval performance.

When using the MPNet and Contriever base retrievers, MemGAS maintains its superiority across
all metrics. For MPNet, MemGAS achieves a Recall@10 of 80.51 and NDCG@10 of 65.48, which
are significantly higher than the other methods. Similarly, for the Contriever retriever, MemGAS
obtains the best Recall@10 (81.82) and NDCG@10 (68.42). These results highlight the robustness
and adaptability of MemGAS demonstrating its ability to outperform alternative methods regardless
of the underlying retriever model.

E.2 COMPARISON ON DIFFERENT GENERATOR

We conducted additional experiments using Qwen-3 (8B and 1.7B) as generators, combined with
Contriever as the retriever on the LongMemEval-s dataset. Table 14 shows that our proposed
MemGASconsistently outperforms the baselines (Contriever and SeCom) across all base generators,
including GPT4o-Mini, qwen3-8b, and qwen3-1.7b. Notably, MemGASachieves the highest F1,
BLEU4, and Rouge scores, demonstrating its robust ability to both retrieve relevant information
and generate high-quality answers. The results also highlight that larger base generators, such as
GPT4o-Mini and qwen3-8b, lead to better overall performance, but MemGASmaintains its superiority
regardless of the base generator used.

E.3 COMPARISON ON DIFFERENT QUERY TYPES

The radar charts in Figure 5 demonstrate the performance of different methods across diverse query
dimensions. Our approach consistently outperforms baseline methods, particularly excelling in
multi-hop retrieval on LoCoMo (Figures 5a, 5b) and multi-session on LongMemEval-s (Figures 5c,
5d). This highlights the effectiveness of our framework in addressing both complex reasoning tasks
and simpler retrieval-based queries. In multi-hop retrieval task, our method achieves notably higher
F1 and RougeL scores, showcasing its ability to retrieve and integrate information across multiple
steps. Similarly, in multi-session task, the model effectively captures relevant historical sessions,
enabling context-aware and accurate responses. These strengths are driven by the memory association
mechanisms that enhance reasoning and knowledge integration.
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Table 12: Comparison of Methods at Same Token Cost.

Input Tokens Method Latency (s) GPT4o-J

8,000

Contriever 1.81 55.2
Secom 2.13 57.8
HippoRAG2 4.39 57.4
MemGAS (Ours) 2.42 59.8

16,000

Contriever 2.48 56.6
Secom 2.86 58.0
HippoRAG2 4.99 58.2
MemGAS (Ours) 3.15 60.3

103,137 Full history 9.39 50.6

Table 13: Retrieval Performance based on different retriever on LoCoMo. ’facebook/contriever’,
’sentence-transformers/multi-qa-mpnet-base-cos-v1’, ’sentence-transformers/multi-qa-MiniLM-L6-
cos-v1’

Model Recall@3 NDCG@3 Recall@5 NDCG@5 Recall@10 NDCG@10

Base Retriever: MiniLM

MiniLM (Song et al., 2020) 42.55 44.19 52.37 49.01 67.98 54.59
MPC (Lee et al., 2023) 42.30 43.59 51.21 48.08 68.03 54.03
RecurSum (Wang et al., 2025) 44.76 46.82 54.73 51.64 72.16 57.52
SeCom (Pan et al., 2025) 45.77 47.25 54.93 51.70 71.15 57.37
MemGAS 47.73 49.11 56.60 53.46 71.30 58.59

Base Retriever: MPNet

MPNet (Song et al., 2020) 45.92 47.71 53.98 51.79 68.58 56.88
MPC (Lee et al., 2023) 45.47 47.35 54.08 51.68 68.28 56.59
RecurSum (Wang et al., 2025) 49.50 51.15 59.47 56.16 76.64 61.99
SeCom (Pan et al., 2025) 47.53 49.03 57.05 53.57 70.90 58.57
MemGAS 52.77 54.63 62.79 59.56 80.51 65.48

Base Retriever: Contriever

Contriever (Izacard et al., 2021) 49.90 52.15 58.26 56.29 71.80 60.92
MPC (Lee et al., 2023) 49.50 51.47 57.45 55.53 71.85 60.47
RecurSum (Wang et al., 2025) 47.23 48.99 59.01 54.58 74.97 60.07
SeCom (Pan et al., 2025) 55.24 57.90 64.80 62.36 78.30 66.97
MemGAS 57.30 58.76 67.32 63.62 81.82 68.42

Our framework also demonstrates strong performance in temporal reasoning, knowledge update,
and single-session tasks, as shown by consistently higher scores across these axes. This indicates its
ability to adapt to dynamic information and maintain relevance in evolving contexts. Furthermore,
the model performs well in adversarial and open-domain knowledge tasks, reflecting its robustness
and versatility. The results emphasize the comprehensive improvements achieved by our method
across a wide range of query types, showcasing its capability to handle both simple and complex
scenarios effectively. These findings underline the model’s adaptability and suitability for real-world
applications requiring diverse and dynamic query handling.

F HYPERPARAMETER SENSITIVITY ANALYSIS

We evaluate the hyperparameter entropy degree λ in Equation 3 and the number of seed nodes α
in Equation 5. The results of the hyperparameter α in Figure 6 show that performance metrics,
including nDCG and Recall, improve as α increases, reaching their peak when α is set to a moderate
value around 15. Beyond this point, performance declines, indicating that a balanced setting of α is
crucial for optimal results. When α is too small, the model tends to underfit, struggling to capture
sufficient seed nodes in the data. On the other hand, excessively large values of α cause the model to

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 14: QA performance comparison of different models across various base generators (GPT4o-
Mini, Qwen-3 8B, and Qwen-3 1.7B) on the LongMemEval-s dataset.

Model GPT4o-J F1 BLEU4 Rouge1 Rouge2 RougeL BertScore
Base Generator: GPT4o-Mini

Contriever (Izacard et al., 2021) 55.40 13.78 2.21 14.46 6.93 12.89 83.70
SeCom (Pan et al., 2025) 56.00 12.95 2.25 13.80 6.09 11.93 83.51
MemGAS 60.20 20.38 4.22 21.05 10.47 19.47 85.21

Base Generator: qwen3-8b

Contriever (Izacard et al., 2021) 50.6 14.76 1.85 15.37 7.44 13.81 83.73
SeCom (Pan et al., 2025) 50.6 14.83 1.89 17.66 8.45 14.08 83.15
MemGAS 51.4 20.57 3.5 21.17 10.15 19.09 85.14

Base Generator: qwen3-1.7b

Contriever (Izacard et al., 2021) 36.4 9.39 1.3 9.92 4.37 8.8 82.62
SeCom (Pan et al., 2025) 36.0 8.5 1.07 9.26 3.66 7.91 82.26
MemGAS 38.0 16.79 3.6 17.58 7.78 16.19 84.84

lose the ability to explore the memory graph. When α is set to 15, the model often achieves better
performance across various metrics.

For the hyperparameter entropy degree λ, a similar trend is observed in Figure 6. Smaller values of λ
lead to steady improvements in performance, with the metrics reaching their highest levels when λ is
set to a value slightly above the minimum, around 0.2. However, as λ increases further, performance
begins to degrade, emphasizing the importance. Extremely small values may fail to leverage the
trade-offs controlled by λ, while larger values lead to the same entropy for different granularities.
When λ is kept around 0.2, the model often delivers superior performance.

G ERROR ANALYSIS

In this section, we conduct error analysis under the following experimental setup: we evaluate on
three datasets—LoCoMo, LongMemEval-m, and LongMemEval-s—excluding Long-MT-Bench+
due to the lack of retrieval ground truth. The retriever is Contriever, and the generator is GPT-4o-mini
with a fixed QA prompt, using the Top-3 retrieved passages for answering. Retrieval correctness
is defined such that a query is labeled “Correct” if any Ground-Truth passage appears in the Top-
3; otherwise, it is labeled “Wrong.” Generation correctness follows the GPT4o-as-Judge. The
error analysis presented in Figure 7 highlights the performance across three datasets: LoCoMo,
LongMemEval-m, and LongMemEval-s. A key observation is that a significant portion of queries in
the LongMemEval datasets lack correct retrieval results, as shown by the high percentage of "Wrong
Retrieval + Wrong Generation" (40.6% in LongMemEval-m and 18.6% in LongMemEval-s). Our
method effectively identifies cases where the retrieval corpus does not contain information related
to the query, responding with "you don’t mention the related information." This approach reduces
hallucinations caused by large language models being overly confident and generating fabricated
content. For example, in LongMemEval-s, "Correct Retrieval + Correct Generation" accounts for
52.6%, demonstrating the method’s reliability in handling scenarios with relevant information.

H THEORETICAL ANALYSIS

We provide concise guarantees for two building blocks of MemGAS: (i) GMM-based accept/reject
association, and (ii) multi-granularity scoring with entropy-driven routing. All results are stated under
standard, verifiable assumptions with compact proof sketches.

Notation. For a query q and memory index i ∈ {1, . . . , n}, MemGAS maintains four granularities
g ∈ {S (session), T (turn), U (summary), K (keyword)} with similarity scores sgi = sim(q,Mg

i ).
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(a) LoCoMo F1 Score. (b) LoCoMo RougeL Score.

(c) LongMemEval-s F1 Score. (d) LongMemEval-s RougeL Score.

Figure 5: Comparing the F1 and RougeL socre of different query types on LoCoMo and
LongMemEval-s datasets.

For each g, define the softmax distribution and entropy

pg(i) =
exp(sgi /λ)∑n
j=1 exp(s

g
j/λ)

, Hg = −
n∑

i=1

pg(i) log pg(i).

The router weight is wg = H−1
g /

∑
g′ H

−1
g′ , and the initial aggregate score is scorei =

∑
g wg s

g
i

with normalized vector s = (scorei)i/
∑

j scorej . Let G = (V,E) denote the association graph
induced by the accept/reject rule. Let R(q) ⊆ {1, . . . , n} be the relevant set, Recall@K the top-K
recall, and nDCG the ranking metric. For each granularity g, let TopKg(q) denote the indices of its
top-K scored items.

Assumptions. (A1) (Sub-Gaussian separability) For each g, sgi |yi = 1 and sgi |yi = 0 are sub-
Gaussian with means µ+

g > µ−
g and common scale σg; denote ∆g = µ+

g − µ−
g > 0.

H.1 GMM ACCEPT/REJECT ASSOCIATION (CLEAN LINKS)

Intuition. We want the association graph to connect new memories mostly to truly related ones. If
the relevance/non-relevance score distributions are well-separated, a simple threshold already yields
exponentially small mistakes; a fitted GMM recovers (approximately) this threshold in practice.
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Figure 6: Hyperparameters Analysis on LoCoMo dataset.
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34.0%
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Correct Retrieval + Correct Generation
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Wrong Retrieval + Correct Generation
Wrong Retrieval + Wrong Generation

Figure 7: Error Analysis.

Proposition 1 (Exponentially small mis-link rate) Under A1 (drop index g for brevity), the mid-
threshold τ⋆ = (µ+ + µ−)/2 satisfies

P(accept an irrelevant or reject a relevant item) ≤ 2 exp
(
− ∆2

8σ2

)
.
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Moreover, for identifiable mixtures, GMM consistently learns (µ±, σ), attaining the same exponential
error order. Apply sub-Gaussian tail bounds at µ± ∓∆/2 and union bound.

Corollary 1 (Few false edges in expectation) Let ηg ≤ 2 exp(−∆2
g/(8σ

2
g)) be the accept/reject

error rate at granularity g, and dg the number of candidate neighbors. Then the expected number of
false edges per insertion satisfies E[|Efalse|] = O(

∑
g dgηg) (exponentially small in ∆g).

Consequence. With larger separation ∆g, the graph stays “clean” over time, which is crucial for
subsequent retrieval and ranking stages.

H.2 ENTROPY ROUTER (CHOOSE CONFIDENT GRANULARITIES)

Intuition. Each granularity produces a relevance distribution pg over memories. If this distribution is
sharp (low entropy), that granularity is more decisive for the current query. Weighting granularities
by inverse entropy therefore favors the most confident signals without hand-tuning.

Lemma 1 (Lower entropy⇒ higher confidence) If the distribution pg becomes more concentrated
on its top-1 item (larger top-1 margin), its entropy Hg decreases. Entropy is Schur-concave: more
concentrated distributions have lower entropy.

Proposition 2 (Inverse-entropy weighting is simple and robust) The rule wg ∝ 1/Hg is (i)
monotone in confidence (Lemma 1), (ii) symmetric across granularities, and (iii) scale-free un-
der common rescaling of {Hg}. These invariances restrict wg to power laws H−β

g ; β = 1 is the
simplest scale-free choice.

Theorem 1 (Multi-granularity candidate-pool coverage is never worse) Let the multi-
granularity candidate pool be Cmulti =

⋃
g TopKg(q). Its coverage of relevant items is

|Cmulti ∩R(q)|
|R(q)|

≥ max
g

Recall@K(g),

and under weak dependence
|Cmulti ∩R(q)|
|R(q)|

≳ 1−
∏
g

(
1− Recall@K(g)

)
.

A union cannot cover fewer relevant items than any constituent set; inclusion–exclusion yields the
product bound under weak dependence. MemGAS approximates this union via weighted aggregation.

Consequence. Adaptive combination cannot underperform the best single granularity for recall, and
typically exceeds it when granularities are complementary (e.g., summaries remove noise; turns
capture details).

Discussion. Why does MemGAS beat single/fixed granularity? Under A1 and for suitable K:
(i) the multi-granularity candidate pool, guided by wg ∝ 1/Hg, achieves coverage at least as high
as the best single granularity (Thm. 1) and typically higher when the views are complementary; (ii)
inverse-entropy routing (Prop. 2) adaptively emphasizes the most informative granularity per query,
improving the quality of the aggregated scores without hand-tuning; and (iii) the GMM accept/reject
mechanism yields exponentially few false associations (Prop. 1 and its corollary), reducing noise and
spurious ties. Together, these effects raise Recall@K of the candidate pool and typically improve
nDCG once any standard downstream ranker is applied. Any additional retrieval module (e.g., graph
propagation) is orthogonal and can be plugged in as desired, but it is not a contribution of our method.

I ADDITIONAL EXPERIMENT

I.1 HUMAN EVALUATION|

To address concerns that automatic metrics (e.g., F1, GPT-4o-as-Judge) may be insufficient in dialogue
settings, we additionally conducted a human evaluation on LONGMEMEVAL-S (50 random samples).
Human annotators evaluated the same fixed model outputs used for the automatic metrics. For
GPT-4o-as-Judge, we repeated the evaluation three times with different random seeds while keeping
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model outputs fixed, ensuring that any variance arose solely from the evaluator itself. As shown in
Table 15, GPT-4o-as-Judge exhibits extremely low variance across runs—with only SeCom showing
a minor fluctuation (56, 56, 58; standard deviation 0.94). More importantly, human judgments closely
align with GPT-4o-as-Judge, confirming that GPT-4o-as-Judge is reliable in this evaluation setting.

Table 15: Comparison of human evaluation and GPT-4o-as-Judge on LONGMEMEVAL-S. The
GPT-4o-as-Judge results report mean and standard deviation across three runs.

Model Human-as-Judge GPT-4o-as-Judge
SeCom 56 56.67± 0.94
HippoRAG 2 58 58.00± 0.00
A-Mem 56 56.00± 0.00
MemGAS 62 62.00± 0.00

I.2 COMPARISON WITH ADDITIONAL BASELINES

Experimental Setup. For H-MEM, we reproduce the official four-layer hierarchical memory
architecture, where each session is processed by an LLM-based extractor to produce multi-level
memory units encoded with Contriever embeddings and positional links to sub-memories. Retrieval
settings (vector encoding, top-k, and similarity) strictly follow the configuration outlined in our
paper. For COMEDY, we use the released COMEDY-7B checkpoint and apply its Task-2 memory-
compression prompt to generate a concise (< 500 words) session-level memory representation. To
ensure fairness, all baselines use the same top-3 Contriever retriever and the same GPT-4o-mini
generator.

Results and Analysis. Table 16 summarizes the results on LongMemEval-s and LongMTBench+.
MemGAS consistently achieves higher scores than both H-MEM and COMEDY across all evalua-
tion metrics, demonstrating its robustness and generality. While COMEDY offers highly efficient
compressed-memory representations with low latency and token usage, its episode-level abstraction
limits its ability to capture fine-grained cross-session associations. H-MEM, despite its hierarchical
structure, suffers from rigid memory abstraction and less adaptive retrieval behavior. In contrast,
MemGAS leverages multi-granularity memory units and adaptive association mechanisms, enabling
more effective retrieval and generation performance.

I.3 SCALABILITY WITH MEMORY SIZE

To assess the scalability of our memory system, we conduct data-scaling experiments on
LongMemEval-m by varying the total memory size from 20K to 1M tokens and measuring four
key components. As shown in Figure 8, the GMM update cost grows slowly with memory size and
remains within a few milliseconds even at 1M tokens, indicating that incremental clustering updates
are practically negligible compared to overall query time. PPR latency also increases with memory
size due to the denser association graph, but remains on the order of milliseconds at the largest scale,
suggesting that graph-based retrieval does not become a runtime bottleneck within the evaluated
regime. In contrast, the token usage for both summaries and keywords grows approximately linearly
with the number of memory tokens, since each session requires a single summarization and key-
word extraction call. Importantly, these LLM construction costs are incurred offline during memory
building or maintenance, and therefore do not affect online query latency. Overall, these results
demonstrate that our method scales favorably to at least 1M memory tokens: online components
(GMM updates and PPR) remain efficient, while the dominant LLM costs are confined to offline
preprocessing.

J LLM PROMPTS DESIGN

Figures 9–12 present the key prompt templates used in our multi-stage processing pipeline. Figure 9
defines prompts for multi-granularity information generation, where the model is asked to produce
both high-level summaries and fine-grained keyword lists from user-assistant dialogue histories.
Figure 10 introduces a filtering prompt that selects only the content relevant to the input question,
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Model 4o-J F1 B-4 R-1 R-2 R-L BS Avg.
Tokens

Avg.
Latency

LongMemEval-s

H-MEM 54.80 13.65 2.10 14.55 6.85 12.92 83.75 8,420 2.15
COMEDY 56.20 13.32 2.19 14.42 6.73 12.74 83.78 2,383 1.43
MemGAS (Ours) 60.20 20.38 4.22 21.05 10.47 19.47 85.21 8,829 2.55

LongMTBench+

H-MEM 64.25 36.50 11.45 38.40 21.10 29.30 87.85 12,450 3.40
COMEDY 65.42 36.72 12.52 38.94 21.62 29.85 87.89 2,492 1.47
MemGAS (Ours) 69.44 41.49 15.62 43.69 24.45 34.66 88.96 12,873 3.85

Table 16: Comparison with H-MEM, COMEDY.
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(b) PPR latency vs. memory size.
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(c) Summary token usage vs. memory size.
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(d) Keyword token usage vs. memory size.

Figure 8: Data-scaling behavior of the proposed memory system on LongMemEval-m as the total
memory size increases from 20K to 1M tokens

operating over the structured outputs (session, summary, and keywords) while preserving original
token fidelity. Figure 11 provides the instruction for generating final responses, guiding the model to
produce concise and coherent answers grounded in the filtered history. Finally, Figure 12 shows the
evaluation prompt used to assess answer correctness, following the setup of prior work (Wu et al.,
2025a; Zheng et al., 2023). This prompt asks GPT-4o to compare model outputs against reference
answers and return a binary decision without paraphrasing. Together, these prompts enable modular
abstraction, filtering, reasoning, and automatic evaluation across the dialogue memory pipeline.

K CASE STUDY

This section presents a series of case studies comparing QA results with other methods, highlighting
the model’s capabilities in handling multi-granularity information generation and filtering. Through
these examples, we demonstrate how the model excels in maintaining factual consistency, extracting
structured information, and filtering query-relevant responses effectively.
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Prompt for Multi-granularity Information Generation

Summary Generation:
Below is an user-AI assistant dialogue memory. Please summarize
the following dialogue as concisely as possible in a short
paragraph, extracting the main themes and key information.

Keyword Generation:
Below is an user-AI assistant dialogue memory. Please extract the
most relevant keywords, separated by semicolon.

Figure 9: Prompt for Multi-granularity Information Generation.

Prompt for Multi-granularity Information Filter

You are an intelligent dialog bot. You will be shown History
Dialogs and corresponding multi-granular information. Filter
the History Dialogs, summaries, and keywords to extract only the
parts directly relevant to the Question. Preserve original tokens,
do not paraphrase. Remove irrelevant turns, redundant info, and
non-essential details.
History Dialogs: {retrieved_texts}
Question Date: {question_date}
Question: {question}
Answer:

Figure 10: Prompt for Multi-granularity Information Filter.

Prompt for QA

You are an intelligent dialog bot. You will be shown History
Dialogs. Please read, memorize, and understand the given Dialogs,
then generate one concise, coherent and helpful response for the
Question.
History Dialogs: { retrieved_texts}
Question Date: {question_date}
Question: {question}

Figure 11: Prompt for QA, which follows Lu et al. (2023); Pan et al. (2025)

K.1 CASE STUDY ON QA COMPARISON

Figure 13 presents a comparative case study of three representative questions requiring multi-session
aggregation or temporal reasoning. Across all cases, MemGAS consistently provides responses
that align with the ground-truth answers, while baseline methods exhibit various limitations. In the
first example, related to course completion, only MemGAS correctly integrates dispersed session
information to produce the total number of courses. Other methods either rely on partial evidence
or explicitly request further clarification. In the second case, which involves counting tomato and
cucumber plants, most baselines retrieve incomplete or vague information, whereas MemGAS
retrieves and combines both quantities explicitly. In the final temporal reasoning case, MemGAS
successfully grounds the referenced date and computes the correct number of days, while others
fail to locate the relevant temporal anchor or return fallback prompts. These results indicate that
MemGAS is better equipped to support multi-turn factual consistency and basic temporal inference
within multi-session contexts.
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Prompt for GPT4o-as-Judge

I will give you a question, a reference answer, and a response
from a model. Please answer [[yes]] if the response contains the
reference answer. Otherwise, answer [[no]]. If the response is
equivalent to the correct answer or contains all the intermediate
steps to get the reference answer, you should also answer [[yes]].
If the response only contains a subset of the information required
by the answer, answer [[no]].
[User Question]
question
[The Start of Reference Answer]
answer
[The End of Reference Answer]
[The Start of Model’s Response]
response
[The End of Model’s Response]
Is the model response correct? Answer [[yes]] or [[no]] only.

Figure 12: Prompt for GPT4o-as-Judge (Single), which follows Wu et al. (2025a); Zheng et al. (2023)

K.2 CASE STUDY ON MULTI-GRANULARITY INFORMATION GENERATION

Figures 14 and 15 illustrate the model’s ability to generate multi-granularity information from multi-
turn user sessions. In both cases, the model extracts structured summaries and relevant keywords
that reflect different levels of semantic abstraction. In Figure 14, the model distills a task-oriented
request regarding energy-efficient industrial equipment into a concise summary, while preserving key
product attributes and application contexts. The corresponding keywords focus on sales-related and
functional concepts such as “pressure tanks” and “energy saving.” In contrast, Figure 15 captures a
more narrative and emotive user intent centered around personal heritage and item preservation. The
summary highlights the user’s goal of reclaiming and documenting a family-owned antique, while the
extracted keywords reflect fine-grained care instructions and conservation practices. These examples
demonstrate the model’s capability to abstract dialogue content at varying semantic resolutions,
enabling downstream applications such as memory retrieval, personalized assistant planning, and
contextual reasoning. The structured outputs also suggest potential for use in grounding generation
or summary-based retrieval settings.

K.3 CASE STUDY ON MULTI-GRANULARITY FILTER

Figures 16 and 17 demonstrate the effectiveness of multi-granularity response filtering in supporting
user queries grounded in prior conversational context. In both cases, the user’s query refers implicitly
to entities previously mentioned across earlier sessions. The system retrieves multiple memory
candidates and decomposes their content into structured representations at three granularity levels:
session, summary, and keyword. This layered representation facilitates accurate entity matching and
selective response generation. In Figure 16, although both memory candidates are sustainability-
related, only one contains a precise mention of “Patagonia,” which is correctly surfaced in the
final response. Similarly, Figure 17 involves a comparative query referencing companies aligned
with Triumvirate’s values. The system filters through related prior mentions and correctly extracts
“Patagonia” and “Southwest Airlines” from the relevant context. Notably, unrelated memories (e.g.,
on kitchen sustainability) are excluded from influencing the final answer. These examples highlight
how multi-level content decomposition improves discourse grounding and allows retrieval systems to
move beyond surface keyword overlap, ensuring the returned response aligns with both the semantic
focus and factual detail required by the user query.
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Case of compare multi-method response

Case 1: Multi-session Question – Online Course Completion
Query: How many online courses have I completed in total?
Ground-Truth Answer: 5
Responses of Different Methods:

• MemGAS : You have completed a total of five online courses. ✓

• SeCom: Based on the dialogues, you have completed two courses on edX. However,
there are no mentions of any additional courses completed, so if those are the only
ones you’ve undertaken, your total number of completed online courses is two. ✗

• MPC: You have completed a total of 2 online courses on edX. After finishing the
Stanford NLP with Deep Learning Specialization on Coursera, which consists of
5 courses, you will have completed 7 courses. As of now, you have completed 2
courses. ✗

• HippoRAG: You have completed a total of two online courses on edX. ✗

• RAPTOR: To determine the total number of online courses you have completed,
please provide the number of courses completed from each platform. No Answer

Case 2: Multi-session Question – Tomato and Cucumber Plants
Query: How many plants did I initially plant for tomatoes and cucumbers?
Ground-Truth Answer: 8
Responses of Different Methods:

• MemGAS : You initially planted 5 tomato plants and 3 cucumber plants. ✓

• SeCom: You initially planted 5 tomato plants. The conversation does not specify
the number of cucumber plants you planted. ✗

• MPC: Based on previous conversations, you did not specify the number of tomato
and cucumber plants. Please clarify how many of each you started with. No Answer

• HippoRAG: You didn’t specify the exact number of plants you initially planted.
Please provide that info for clarity. No Answer

• RAPTOR: Your message didn’t specify the number. A good starting point is 1
tomato per 18–24 inches and cucumbers 12–18 inches apart. No Answer

Case 3: Temporal Reasoning – Meeting Emma
Query:How many days ago did I meet Emma?
Ground-Truth Answer: 9 days ago (10 days incl. the last day is acceptable)
Responses of Different Methods:

• MemGAS : You met Emma 9 days ago, on April 11, 2023. ✓

• SeCom: Please provide the date you met Emma. I can calculate how many days ago
it was from April 20, 2023. No Answer

• MPC: The exact date of your meeting with Emma isn’t available. If you provide it,
I can compute the elapsed days. No Answer

• HippoRAG: There is no specific mention of meeting Emma or the date in the
dialogs. Please provide the date. No Answer

• RAPTOR: No relevant information was found about Emma or the timeline. Please
add more context. No Answer

Figure 13: Three representative queries with multi-turn or temporal reasoning, comparing the
performance of various methods. MemGAS provides precise, context-integrated answers. The red
text represents the key information that is relevant to the answer. ✓ means the response is correct
while ✗ means it is wrong. No Answer refers to the response that does not provide the answer, which
may be attributed to wrong retrieval.
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Case of generate multi-granularity information

Origin session information
[user]
Write a sales email for a potential customer of a company that has
a product that enables energy saving ... (Omitted for brevity)

[assistant]

Dear valued customer,
We at [Company Name] are excited to introduce our innovative ...
(Omitted for brevity)
Sincerely,
[Your Name]
[Company Name]

Granularity Level of Summary
The user requested assistance in drafting a sales email aimed at potential customers for a company
offering a product designed to enhance energy savings in industrial factories. Specifically, the product
involves larger, more affordable pressure tanks for air compressors, allowing compressors to operate
less frequently while maintaining necessary air pressure, thereby reducing energy consumption and
operating costs.

Granularity level of keywords
– sales email
– potential customer
– energy saving
– industry factories
– pressure tanks
– air compressors
– cost-effective
– reduce energy consumption
– lower operating costs
– request a quote

Figure 14: An example of generating multi-granularity information using gpt-4o-mini. The blue text
represents the key information summarized or extracted that is relevant to the conversation.
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Case of generate multi-granularity information

Origin session information
[user]
Iḿ thinking of taking an antique restoration class to learn how to
fix up some of the old pieces Iv́e inherited, like that beautiful
vase I got from my grandmother last month. Do you know of any good
classes in the city?

[assistant]

I’ll definitely look into those options. By the way, do you know
how to appraise the value of antique items? ... (Omitted for
brevity)
[user]:
I’m thinking of taking an antique restoration class to learn
how to fix up some of the old pieces I’ve inherited, like that
beautiful vase I got from my grandmother last month.... (Omitted
for brevity)

[assistant]

Appraising the value of antique items can be a fascinating and
complex process. While I’m not a professional appraiser ...
(Omitted for brevity)
[user]:
...

[assistant]

...

Granularity Level of Summary
The user plans to retrieve their antique tea set, which they lent to their sister for her wedding. They
express excitement about seeing the set again and appreciate the care and storage tips provided for
antique china to maintain its condition. The user intends to ensure the tea set is safely back in their
possession, and they also consider documenting its history and provenance for future preservation.

Granularity level of keywords
– antique tea set
– storage tips
– caring for china
– keep in good condition
– avoid stacking
– sturdy box
– line with tissue
– dry cool place
– ...

Figure 15: An example of generating multi-granularity information using gpt-4o-mini. The blue text
represents the key information summarized or extracted that is relevant to the conversation.
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Case of multi-granularity response filtering

Query
“I was looking back at our previous conversation about
environmentally responsible supply chain practices, and I was
wondering if you could remind me of the company you mentioned
that’s doing a great job with sustainability?”
Answer
“Patagonia”

Before Filter

Memory 1:
Session-level information
... (Omitted for brevity)
[user]:
Can you give me an example of a company that has successfully implemented these
environmentally responsible practices in its supply chain?

[assistant]

Yes, sure. Here’s an example:
Patagonia, an outdoor clothing and gear company, is known for its commitment to
sustainability and environmental responsibility throughout its supply chain ...
(Omitted for brevity)

Summary-level information
... (Omitted for brevity) Patagonia was highlighted as a prime example, showcasing its commitment to sustainability
...(Omitted for brevity)
Keyword-level information

– Patagonia
– environmentally responsible
– supply chain
– ...

Memory 2:
Session-level information
... (Omitted for brevity)
[user]:
I’m looking for some recommendations on eco-friendly laundry detergent. I’ve been
trying to reduce my carbon ... (Omitted for brevity)

[assistant]

That’s a fantastic step towards reducing your environmental impact! Switching to an
eco-friendly ... (Omitted for brevity)

Summary-level information
The user is considering trying a new grocery delivery service that partners with local farmers ...(Omitted for brevity)

Keyword-level information
– meal planning
– grocery list
– start small
– ...

After Filter

The two companies mentioned that prioritize employee safety and well-being like Triumvirate are:
1. Patagonia - Known for its commitment to environmental conservation and prioritizing employee well-being, offering flexible
work arrangements and generous leave policies.
2. Southwest Airlines - Emphasizes employee care, providing top-notch training and benefits, resulting in a positive work
environment and strong focus on safety and customer service.

Figure 16: An example of multi-granularity information filtering for retrieved conversations. The red
text represents the key information that is relevant to the answer.
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Case of multi-granularity response filtering

Query
“I was going through our previous conversation and I was
wondering if you could remind me of the two companies you
mentioned that prioritize employee safety and well-being like
Triumvirate?”
Answer
“Patagonia and Southwest Airlines.”

Before Filter

Memory 1:
Session-level information
... (Omitted for brevity)
[user]:
For sure! It’s always a win-win when companies take care of their
employees. It makes me feel better about supporting them as a
customer. Do you know of any other companies that prioritize ...
(Omitted for brevity)

[assistant]

I can give you an example of two companies that prioritize the
safety and well-being of their employees like Triumvirate does:
1. Patagonia ... (Omitted for brevity)
2. Southwest Airlines ... (Omitted for brevity)
Summary-level information
... (Omitted for brevity) to which the AI cited Patagonia and Southwest Airlines as examples of
organizations that prioritize employee safety and well-being ...(Omitted for brevity)
Keyword-level information

– Triumvirate
– employee safety
– ...

Memory 2:
Session-level information
... (Omitted for brevity)
[user]:
I’m thinking of trying out that new grocery delivery service that
partners with local farmers. ... (Omitted for brevity)

[assistant]

That sounds like a great idea! I’m happy to help you with that
... (Omitted for brevity)
Summary-level information
The user is focused on making eco-friendly changes in their kitchen, specifically looking for
sustainable alternatives to kitchen utensils, ...(Omitted for brevity)
Keyword-level information

– eco-friendly kitchen makeover
– sustainable kitchen utensils
– ...

After Filter

The company mentioned that is doing a great job with sustainability is Patagonia. They are known for
their commitment to environmentally responsible practices throughout their supply chain, including
sustainable sourcing, green transportation, packaging optimization, waste reduction, and compliance
with environmental regulations.

Figure 17: An example of multi-granularity information filtering for retrieved conversations. The red
text represents the key information that is relevant to the answer.

36


	Introduction
	Methodology
	Preliminary
	Multi-Granularity Association Construction
	Multi-Granularity Router
	Memory Retrieval and Filter

	Experiments
	Experimental Settings
	Overall Results
	Ablation Study
	Detailed Comparison Analysis

	Related Work
	Conclusion
	Appendix
	Datasets Statistics
	Comparison of Methods Structure with Baselines
	Comprehensive Comparison of Single-Granularity and Multi-Granularity
	QA Performance.
	Retrieval Performance
	How Multi-granularity Router works?
	blueHow PPR affects the retrieval results?

	Additional Cost and Efficiency Analysis
	Token Consumption for Memory Construction
	Comparison at the Same Token Cost

	Generalization Analysis
	Comparison on Different Retriever
	Comparison on Different Generator
	Comparison on Different Query Types

	Hyperparameter Sensitivity Analysis
	Error Analysis
	Theoretical Analysis
	GMM Accept/Reject Association (Clean Links)
	Entropy Router (Choose Confident Granularities)

	blueAdditional Experiment
	blueHuman Evaluation|
	blueComparison with Additional Baselines
	blueScalability with Memory Size

	LLM Prompts Design
	Case Study
	Case Study on QA Comparison
	Case Study on Multi-granularity Information Generation
	Case Study on Multi-granularity Filter



