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ABSTRACT

Spectral graph convolution, an important tool of data filtering on graphs, relies
on two essential decisions: selecting spectral bases for signal transformation and
parameterizing the kernel for frequency analysis. While recent techniques mainly
focus on standard Fourier transform and vector-valued spectral functions, they
fall short in flexibility to model signal distributions over large spatial ranges, and
capacity of spectral function. In this paper, we present a novel wavelet-based graph
convolution network, namely WaveGC, which integrates multi-resolution spectral
bases and a matrix-valued filter kernel. Theoretically, we establish that WaveGC
can effectively capture and decouple short-range and long-range information,
providing superior filtering flexibility, surpassing existing graph convolutional
networks and graph Transformers (GTs). To instantiate WaveGC, we introduce
a novel technique for learning general graph wavelets by separately combining
odd and even terms of Chebyshev polynomials. This approach strictly satisfies
wavelet admissibility criteria. Our numerical experiments showcase the capabilities
of the new network. By replacing the Transformer part in existing architectures
with WaveGC, we consistently observe improvements in both short-range and
long-range tasks. This underscores the effectiveness of the proposed model in
handling different scenarios. Our code is available at https://anonymous.
4open.science/r/WaveGC.

1 INTRODUCTION

Spectral graph theory (SGT) (Chung, 1997), which enables analysis and learning on graph data,
has firmly established itself as a pivotal methodology in graph machine learning. A significant
milestone in SGT is the generalization of the convolution operation to graphs, as convolution for
grid-structured data, i.e. sequences and images, has demonstrated remarkable success (LeCun
et al., 1998; Hinton et al., 2012; Krizhevsky et al., 2012). Significant research interests in graph
convolution revolve around two key factors: (1) designing diverse bases for spectral transform, and
(2) parameterizing powerful graph kernel. For (1), the commonly used graph Fourier basis, consisting
of the eigenvectors of the graph Laplacian (Shuman et al., 2013), stands as a prevalent choice.
However, graph wavelets (Hammond et al., 2011) offer enhanced flexibility by constructing adaptable
bases. For (2), classic approaches involve diagonalizing the kernel with fully free parameters (Bruna
et al., 2013) or employing various polynomial approximations such as Chebyshev (Defferrard et al.,
2016) and Cayley (Levie et al., 2018) polynomials. Additionally, convolution with a matrix-valued
kernel serves as the spectral function of Transformer (Vaswani et al., 2017) under the shift-invariant
condition (Li et al., 2021; Guibas et al., 2021).

Despite the existence of techniques in each aspect, the integration of these two lines into a unified
framework remains challenging, impeding the full potential of graph convolution. In an effort
to unravel this challenge, we introduce a novel operation — Wavelet-based Graph Convolution
(WaveGC), which seamlessly incorporates both spectral basis and kernel considerations. In terms
of spectral basis design, WaveGC is built upon graph wavelets, allowing it to capture information
across the entire graph through a multi-resolution approach from highly adaptive construction of
multiple graph wavelet bases. For filter parameterization, we opt for a matrix-valued spectral kernel
with weight-sharing. Beyond adjusting diagonal frequencies, the matrix-valued kernel offers greater
flexibility to spectral filtering, thanks to its larger parameter space.
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To comprehensively explore WaveGC, we theoretically analyse and assess its information-capturing
capabilities. In contrast to the K-hop basic message-passing framework, WaveGC is demonstrated
to exhibit both significantly larger and smaller receptive fields concurrently, achieved through the
manipulation of scales. Previous graph wavelet theory (Hammond et al., 2011) only verifies the
localization in small scale limit. Instead, our proof is complete as it covers both extremely small
and large scales from the perspective of information mixing (Di Giovanni et al., 2023). Moreover,
our proof also implies that WaveGC is capable of simultaneously capturing both short-range and
long-range information for each node, akin to (graph) Transformers, which facilitate global node
interaction. Remarkably, WaveGC can distinguish information across diverse distances, thereby
extending its flexibility beyond the scope of traditional Transformers.

To implement WaveGC, a critical step lies in constructing graph wavelet bases that satisfy two
fundamental criteria: (1) meeting the wavelet admissibility criteria (Mallat, 1999) and (2) showing
adaptability to different graphs. Existing designs of graph wavelets face limitations, with some
falling short in ensuring the criteria (Xu et al., 2019a; 2022), while others having fixed wavelet
forms, lacking adaptability (Zheng et al., 2021; Cho et al., 2023). To address these limitations,
we propose an innovative and general implementation of graph wavelets. Our solution involves
approximating scaling function basis and multiple wavelet bases using odd and even terms of
Chebyshev polynomials, respectively. This approach is inspired by our observation that, after a certain
transformation, even terms of Chebyshev polynomials strictly satisfy the admissibilitywe criteria,
while odd terms supplement direct current signals. Through the combination of these terms via
learnable coefficients, we aim to theoretically approximate scaling function and multiple wavelets
with arbitrary complexity and flexibility. Our contributions are:

• We derive a new Wavelet-based graph convolution (WaveGC), which integrates multi-
resolution bases and matrix-valued kernel, enhancing spectral convolution on large spatial
ranges.

• We theoretically prove that WaveGC can capture and distinguish the information from short
and long ranges, surpassing conventional graph convolutions and GTs.

• We pioneer a general implementation of learnable graph wavelets, employing odd terms and
even terms of Chebyshev polynomials individually. This implementation strictly satisfies
the wavelet admissibility criteria.

• Integrating WaveGC into three successful GTs as base models, our approach consistently
outperforms base methods on both short-range and long-range tasks, achieving up to 26.20%
improvement on CoraFull and 9.21% on VOC datasets.

2 PRELIMINARIES

An undirected graph can be presented as G = (V, E), where V is the set of N nodes and E ⊆ V×V is
the set of edges. The adjacency matrix of this graph is A ∈ {0, 1}N×N , where Aij ∈ {0, 1} denotes
the relation between nodes i and j in V . The degree matrix is D = diag(d1, . . . .dN ) ∈ RN×N , where
di =

∑
j∈V Aij is the degree of node i ∈ V . The node feature matrix is X = [x1, x2, . . . , xN ] ∈

RN×d0 , where xi is a d0 dimensional feature vector of node i ∈ V . Let Â = D− 1
2AD− 1

2

be the symmetric normalized adjacency matrix, then L̂ = In − Â = D− 1
2 (D − A)D− 1

2 is
the symmetric normalized graph Laplacian. With eigen-decomposition, L̂ = UΛU⊤, where
Λ = diag(λ1, . . . , λN ) ∈ RN×N and U = [u⊤

1 , . . . ,u⊤
N ] ∈ RN×N are the eigenvalues and

eigenvectors of L̂, respectively. Given a signal f ∈ RN on G, the graph Fourier transform (Shuman
et al., 2013) is defined as f̂ = U⊤f ∈ RN , and its inverse is f = U f̂ ∈ RN .

Spectral graph wavelet transform (SGWT). Hammond et al. (2011) redefine the wavelet basis (Mal-
lat, 1999) on vertices in the spectral graph domain. Specifically, the SGWT is composed of three
components: (1) Unit wavelet basis, denoted as Ψ such that Ψ = g(L̂) = Ug(Λ)U⊤, where g acts
as a band-pass filter g : R+ → R+ meeting the following wavelet admissibility criteria (Mallat,
1999):

CΨ =

∫ ∞

−∞

|g(λ)|2

|λ|
dλ < ∞. (1)

To meet this requirement, g(λ = 0) = 0 and limλ→∞ g(λ) = 0 are two essential prerequisites.
(2) Spatial scales, a series of positive real values {sj} where distinct values of sj with Ψsj =

2
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Ug(sjΛ)U⊤ can control different size of neighbors. (3) Scaling function basis, denoted as Φ such
that Φ = Uh(λ)U⊤. Here, the function of h : R+ → R+ is to supplement direct current (DC)
signals at λ = 0, which is omitted by all wavelets g(sjλ) since g(0) = 0. Next, given a signal
f ∈ RN , the formal SGWT (Hammond et al., 2011) is:

Wf (sj) = Ψsjf = Ug(sjΛ)U⊤f ∈ RN , (2)

where Wf (sj) is the wavelet coefficients of f under scale sj . Similarly, scaling function coefficients
are given by Sf = Φf = Uh(Λ)U⊤f ∈ RN . Let G(λ) = h(λ)2 +

∑
j g(sjλ)

2, then if G(λ) ≡
1, ∀λ ∈ Λ, the constructed graph wavelets are known as tight frames, which guarantee energy
conservation of the given signal between the original and the transformed domains (Shuman et al.,
2015). More spectral graph wavelets are introduced in Appendix E.

3 FROM GRAPH CONVOLUTION TO GRAPH WAVELETS

Spectral graph convolution is a fundamental operation in the field of graph signal processing (Shuman
et al., 2013). Specifically, given a signal matrix (or node features) X ∈ RN×d on graph G, the spectral
filtering of this signal is defined with a kernel κ ∈ RN×N by the convolution theorem (Arfken, 1985):

κ ∗G X = F−1(F(κ) · F(X)) ∈ RN×N , (3)

where · is the matrix multiplication operator, F(·) and F−1(·) are the spectral transform (e.g.,
graph Fourier transform (Bruna et al., 2013)) and corresponding inverse transform, respectively. To
implement a spectral convolution, two critical choices must be considered in Eq. (3): 1) the selection
of the transform F and 2) the parameterization of the kernel κ.

3.1 GENERAL SPECTRAL WAVELET VIA CHEBYSHEV DECOMPOSITION

For the selection of the spectral transform F and its inverse F−1, it can be tailored to the specific
nature of data. For set data, the Dirac Delta function (Oppenheim et al., 1997) is employed, while the
fast Fourier Transform (FFT) proves efficient for both sequences (Li et al., 2021) and grids (Guibas
et al., 2021). In the context of graphs, the Fourier transform (F → U⊤) emerges as one classical
candidate. However, some inherent flaws limit the capacity of Fourier bases. (1) Standard graph
Fourier bases, represented by one fixed matrix U⊤, maintain a constant resolution and fixed frequency
modes. (2) Fourier transform lacks the adaptability to be further optimized according to different
datasets and tasks. Therefore, multiple resolution and adaptability are two prerequisites for the design
of an advanced base.

Notably, wavelet base is able to conform the above two demands, and hence offers enhanced filtering
compared to Fourier base. For the resolution, the use of different scales sj allows wavelet to analyze
detailed components of a signal at different granularity. More importantly, due to its strong spatial
localization (Hammond et al., 2011), each wavelet corresponds to a signal diffused away from a
central node (Xu et al., 2019a). Therefore, these scales also control varying receptive fields in
spatial space, which enables the simultaneous fusion of short- and long-range information. For the
adaptability, graph wavelets offer the flexibility to adjust the shapes of wavelets and scaling function.
These components can be collaboratively optimized for the alignment of basis characteristics with
different datasets, potentially enhancing generalization performance.

Next, we need to determine the form of the scaling function basis Φ = Uh(Λ)U⊤, the unit wavelet
basis Ψ = Ug(Λ)U⊤, and the scales sj . The forms of h and g are expected to be powerful enough
and easily available. Concurrently, g should strictly satisfy the wavelet admissibility criteria, i.e.,
Eq. (1), and h should complementally provide DC signals. To achieve this target, we separately
introduce odd terms and even terms from Chebyshev polynomials (Hammond et al., 2011) into the
approximation of h and g. Please recall that the Chebyshev polynomial Tk(y) of order k may be
computed by the stable recurrence relation Tk(y) = 2yTk−1(y)− Tk−2(y) with T0 = 1 and T1 = y.
After the following transform, we surprisingly observe that these transformed terms match all above
expectations:

Tk(y) → 1/2 · (−Tk(y − 1) + 1). (4)

To give a more intuitive illustration, we present the spectra of first six Chebyshev polynomials
before and after the transform in Fig. 1 (a), where the set of odd and even terms after the transform

3
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Figure 1: (a)An illustration of Chebyshev polynomials before and after the given transform. In this
representation, we distinguish odd and even terms, presenting only the first three terms for each.
(b)An overview of our proposed WaveGC.

are denoted as {T o
i } and {T e

i }, respectively. From the figure, g(λ = 0) ≡ 0 for all {T e
i }, and

h(λ = 0) ≡ 1 for all {T o
i }. Consequentially, {T e

i } and {T o
i } strictly meet the criteria and naturally

serve as the basis of unit wavelet and scaling function. Moreover, not only can we easily get each
Chebyshev term via iteration, but the constructed wavelet owns arbitrarily complex waveform because
of the combination of as many terms as needed. Given {T e

i } and {T o
i }, all we need to do is just to

learn the coefficients to form the corresponding g(λ) and h(λ):

g(Λ) =

ρ∑
i

aiT
e
i (Λ) ∈ RN×N , h(Λ) =

ρ∑
i

biT
o
i (Λ) ∈ RN×N , (5)

where ρ = K/2 (K is the total number of truncated Chebyshev terms), ã = (a1, a2, . . . , aρ) ∈ R1×ρ

and b̃ = (b1, b2, . . . , bρ) ∈ R1×ρ represent two learnable coefficient vectors as follows:

ã = Mean(WaẐ + ba), b̃ = Mean(WbẐ + bb), (6)

where {Wa,Wb} ∈ Rd×ρ and {ba, bb} ∈ R1×ρ are learnable parameters, and Ẑ is the eigenvalue
embedding composed by the module in (Bo et al., 2023). Further details can be found in Appendix C.
Also, we can learn the scales s̃ = (s1, s2, . . . , sJ) in the same way:

s̃ = σ(Mean(WsẐ + bs)) · s ∈ R1×J , (7)

where σ is sigmoid function, Ws ∈ Rd×J and bs ∈ R1×J are learnable parameters, and s =
(s1, s2, . . . , sJ) is a pre-defined vector to control the size of s̃.

Based on our construction, g(λ) is a strict band-pass filter in [0, 2], while s can scale its shape in
g(sλ). Specifically, s < 1 "stretches" the shape of g(λ), and s > 1 "squeezes" its shape. To maintain
the same spectral interval [0, 2], we truncate g(sλ) within 0 ≤ sλ ≤ 2, or 0 ≤ λ ≤ 2/s.

3.2 MATRIX-VALUED KERNEL VIA WEIGHT SHARING

Convolutional kernel F(κ) in Eq. (3) is usually parameterized in two ways: (1) Vector-valued
operator such as diag(θλ) where diagonal elements form a parametrized function of the spectrum of
the graph G (Bruna et al., 2013; Defferrard et al., 2016; Levie et al., 2018), and (2) Matrix-valued
operator inspired by Fourier Neural Operator (FNO) (Li et al., 2021), where a matrix-valued M can
be view as the convolutional kernel of a shift-invariant Transformers (Guibas et al., 2021). Details
are given in Appendix B.

In this paper, we consider the matrix-valued form M, since a powerful kernel with more parameters
provides enough flexibility to adjust itself. Additionally, the experimental evidence in Section 6.3
shows the superiority of matrix-valued kernel against vector-valued one. The typical number of
parameters in M is N × d × d, which can be significant, particularly for large-scale graphs with
a large value of N . To efficiently model M, we adopt parameter sharing among all frequency
modes, employing only one Multi-Layer Perceptron (MLP). This results in a significant reduction of
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Table 1: Comparison between classical graph convolution and WaveGC.

Classical Graph Convolution WaveGC
Formula σ(Udiag(θλ)U⊤H ·W ) σ ([ΦS ◦ ΦH ||ΨsW ◦ΨsH] ·W )

Kernel diag(θλ) (Vector) S / W (Matrix)
Bases U⊤ (Fourier basis) Φ / Ψs (Scaling / Wavelet basis)

parameters in M from N×d×d to d×d. In this way, Eq. (3) becomes M∗GX = F−1M◦F(X) =
F−1(MLP(F(X))).

For traditional point-wise vector-valued kernel, each frequency is independently scaled by one specific
coefficient. Instead, our approach allows various frequency modes to interact, allowing them to
collaboratively determine the optimal signal filtering strategy. Moreover, this sharing decreases the
number of learnable parameters, and consequentially alleviates the risk of over-fitting caused by
non-sharing, as in Section 6.3. An alternative method is presented in AFNO (Guibas et al., 2021),
introducing a similar technique that offers improved efficiency but with a more intricate design.

3.3 WAVELET-BASED GRAPH CONVOLUTION

Until now, we have elaborated the proposed advancements on kernel and bases, and now discuss how
to integrate these two aspects. Provided that we have J wavelet {Ψsj}Jj=1 and one scaling function
Φ constructed via the above Chebyshev decomposition, F : RN×d → RN(J+1)×d in Eq. (3) is the
stack of transforms from each component:

F(H(l)) = TH(l) = ((ΦH(l))⊤||(Ψs1H
(l))⊤||...||(ΨsJH

(l))⊤)⊤ ∈ RN(J+1)×d, (8)

where T = (Φ⊤||Ψ⊤
s1 ||...||Ψ

⊤
sJ )

⊤ is the overall transform and || means concatenation. Next, we check
if the inverse F−1 exists. Considering T is not a square matrix, F−1 should be its pseudo-inverse as
(T⊤T )−1T⊤, where T⊤T = ΦΦ⊤ +

∑J
j=1 ΨsjΨ

⊤
sj = U [h(λ)2 +

∑J
j=1 g(sjλ)

2]U⊤. Ideally, if

T is imposed as tight frames, then h(λ)2 +
∑J

j=1 g(sjλ)
2 = I (Leonardi & Van De Ville, 2013),

and T⊤T = UIU⊤ = I . In this case, F−1 = (T⊤T )−1T⊤ = T⊤, and Eq. (3) becomes:

H(l+1) = T⊤M ◦ TH(l) = ΦS ◦ ΦH(l) +

J∑
j=1

ΨsjWj ◦ΨsjH
(l) ∈ RN×d, (9)

where we separate M into S and {W}Jj=0 as scaling kernel and different wavelet kernels.

How to guarantee tight frames? From above derivations, tight frames is a key for the simplification
of inverse F−1 in Eq. (9). This can be guaranteed by l2 norm on the above constructed wavelets and
scaling function. For each eigenvalue λ ∈ Λ, we have v2 = h(λ)2+

∑J
j=1 g(sjλ)

2, h̃(λ) = h(λ)/v,
g̃(sjλ) = g(sjλ)/v. Then, G(Λ) = h̃(Λ)2 +

∑
j g̃(sjΛ)2 = I forms tight frames (Section 2).

Thus, while the pseudo-inverse must theoretically exist, we can circumvent the necessity of explicitly
calculating the pseudo-inverse.

Resembling the multi-head attention (Vaswani et al., 2017), we treat each wavelet transform as a
“wavelet head”, and concatenate them rather than sum them to get H(l+1) ∈ RN×d:

H(l+1) = σ
([

ΦS ◦ ΦH(l)||Ψs1W1 ◦Ψs1H
(l)|| . . . ||ΨsJWJ ◦ΨsJH

(l)
]
·W

)
, (10)

where an outermost MLP increases the flexibility. Fig. 1 (b) presents the whole framework of our
wavelet-based graph convolution, or WaveGC. For a better understanding, we compare classical graph
convolution and WaveGC in Table. 1, where WaveGC contains only one wavelet for simplicity. Based
on the differences shown in the table, WaveGC endows spectral graph convolution with the beneficial
inductive bias of long-range dependency. This inductive bias supports the solid performance of the
proposed model in most of the numerical experiments in section 6.

5
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4 THEORETICAL PROPERTIES OF WAVEGC

Traditionally, wavelet is notable for its diverse receptive fields because of varying scales (Mallat,
1999). For graph wavelet, Hammond et al. (2011) were the first to prove the localization when scale
s → 0, but did not discuss the long-range case when s → ∞. We further augment this discussion
and demonstrate the effectiveness of the proposed WaveGC in capturing both short- and long-range
information. Intuitively, a model’s ability to integrate global information enables the reception and
mixing of messages from distant nodes. Conversely, a model with a limited receptive field can only
effectively mix local messages. Hence, assessing the degree of information ‘mixing’ becomes a key
property. For this reason, we focus on the concept of maximal mixing:
Definition 4.1. (Maximal mixing) (Di Giovanni et al., 2023). For a twice differentiable graph-
function yG of node features xi, the maximal mixing induced by yG among the features xa and xb

with nodes a, b is

mixyG
(a, b) = max

xi

max
1≤α,β≤d

∣∣∣∣∣∂2yG(X)

∂xα
a∂x

β
b

∣∣∣∣∣ . (11)

This definition is established in the context of graph-level task, and yG is the final output of an
end-to-end framework, comprising the primary model and a readout function (e.g., mean, max)
applied over the last layer. α and β represent two entries of the d-dimensional features xa and xb.

Next, we employ the concept of ‘maximal mixing’ on the WaveGC. For simplicity, we only take one
wavelet basis Ψs for analysis. The capacity of Ψs on mixing information depends on two factors, i.e.
K-order Chebyshev term and scale s. For a fair discussion on the effect of s on message passing, we
compare σ(ΨsHW ) and K-order message passing with the form of σ(

∑K
j=0 τjA

jHW ), τj ∈ [0, 1]:

Theorem 4.2 (Short-range and long-range receptive fields). Given a large even number K > 0
and two random nodes a and b, if the depths mΨ and mA are necessary for σ(ΨsHW ) and
σ(
∑K

j=0 τjA
jHW ) to induce the same amount of mixing mixyG

(b, a), then the lower bounds of mΨ

and mA, i.e. LmΨ and LmA
, approximately satisfy the following relation when scale s → 0:

LmΨ ≈ P

K
LmA

+
2|E|

K
√
dadb

mixyG
(b, a)

γ
· 1

(α2s2K)mΨ
. (12)

Or, if s → ∞, the relation becomes:

LmΨ ≈ P

K
LmA

− 2|E|
K(K + 1)2mAτP 2mA

√
dadb

mixyG
(b, a)

γ
, (13)

where P < K and (τPA
P )ba = max{(τmAm)ba}Km=0. da and db are degrees of two nodes, and

α = C·2K(K+1)
K! . γ =

√
dmax

dmin
, where dmax/dmin is the maximum / minimum degree in the graph.

The proof is provided in Appendix A.3. In Eq. (12), since the second term on the right-hand side
is large (s → 0), it required Ψs to propagate more layers to mix the nodes. Conversely, if s → ∞
(Eq. (13)), Ψs will achieve the same degree of node mixing as K-hop message passing but with
less propagation. Moreover, the greater the "mixing" mixyG

(b, a) is required between nodes, the
fewer number of layers LmΨ

is needed compared to LmA
. To conclude, Ψs presents the short- and

long-range characteristics of WaveGC on message passing, while these characteristics do not derive
from the order K of Chebyshev polynomials but from the scale s exclusively.

5 WHY DO WE NEED DECOMPOSITION?

As shown in Fig. 1 (a), odd and even terms of Chebyshev polynomials meet the requirements on
constructing wavelet after decomposition and transform. Additionally, each term is apt to be obtained
according to the iteration formula, while infinite number of terms guarantee the expressiveness of the
final composed wavelet. Next, we compare our decomposition solution with other related techniques:

• Constructing wavelet via Chebyshev polynomials. Both SGWT (Hammond et al., 2011) and
GWNN (Xu et al., 2019a) firstly fix the shape of wavelets as cubic spline or exponential, followed
by the approximation via Chebyshev polynomials. DEFT (Bastos et al., 2023) employs an MLP

6
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or GNN network to learn the coefficients for Chebyshev bases. Comprehensively, the constructed
wavelets from GWNN and DEFT fail to meet the wavelet admissible criteria because they impose no
constrains to guarantee this point. SGWT fails to learn more flexible and expressive wavelet to better
suit the dataset and task at hand.

• Learnable graph bases. If we uniformly learn the coefficients for all Chebyshev terms without
decomposition, WaveGC degrades to a variant similar to ChebNet (Defferrard et al., 2016). However,
mixture rather than decomposition blends the signals from different ranges, and the final spatial
ranges cannot be precisely predicted and controlled. ChebNetII (He et al., 2022), reducing the Runge
phenomenon via interpolation, confronts the same problem. Both JacobiConv (Wang & Zhang, 2022)
and OptBasisGNN (Guo & Wei, 2023) emphasize the orthogonality of bases, but fail to manage
multiple ranges information in spatial domain.

We provide numerical comparison and spectral visualization in section 6.2 for WaveGC against
these related studies. In addition, although both WaveGC and Transformers can handle various node
interaction ranges, the former adaptively learns which range must be emphasized, whereas the latter
mixes short- and long-range information together without distinction. Thus, WaveGC surpasses
Transformers in controlling distance based information.

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of WaveGC on both short-range and long-range bench-
marks using the following datasets: (1) Datasets for short-range tasks: CS, Photo, Computer
and CoraFull from the PyTorch Geometric (PyG) (Fey & Lenssen, 2019), and one large-size
graph, i.e. ogbn-arxiv from Open Graph Benchmark (OGB) (Hu et al., 2020) (2) Datasets for
long-range tasks: PascalVOC-SP (VOC), PCQM-Contact (PCQM), COCO-SP (COCO),
Peptides-func (Pf) and Peptides-struct (Ps) from LRGB (Dwivedi et al., 2022).
Please refer to Appendix D.2 for details of datasets.

Our aim is to mainly compare WaveGC and graph Transformers on capturing both short- and
long-range information. Consequently, we replace the Transformer component in base models
with WaveGC, while keeping the remaining components unchanged. The base models are Trans-
former (Vaswani et al., 2017), SAN (Kreuzer et al., 2021), and GraphGPS (Rampásek et al., 2022)
because of the presence of the vanilla Transformer architecture in these three methods. Detailed
descriptions of Transformer, SAN, and GraphGPS can be found in Appendix D.8. Additionally, we
compare our method with other state-of-the-art models tailored to specific scenarios. Please refer to
Appendix D.1 for implementation details.

6.1 BENCHMARKING WAVEGC

Table 2: Quantified results on short-range (S) and long-range (L) datasets compared to base models.

Model
CS (S) Photo (S) Computer (S) CoraFull (S) ogbn-arxiv (S) VOC (L) PCQM (L) COCO (L) Pf (L) Ps (L)

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ F1 score ↑ MRR ↑ F1 score ↑ AP ↑ MAE ↓
Transformer 93.54±0.43 89.78±0.68 83.23±0.75 50.69±1.17 57.55±0.53 26.94±0.98 31.74±0.20 26.18±0.31 63.26±1.26 25.29±0.16
w/ WaveGC 94.77±0.30 93.93±0.62 89.69±0.66 63.97±1.49 71.69±0.26 29.42±0.94 33.30±0.10 25.11±0.25 65.18±0.77 25.04±0.26

SAN 93.82±0.41 94.92±0.38 91.31±0.33 64.15±1.01 70.25±0.26 32.30±0.39 33.50±0.03 25.92±1.58 63.84±1.21 26.83±0.43
w/ WaveGC 95.47±0.31 95.51±0.22 91.64±0.42 66.65±0.83 71.98±0.23 33.33±0.91 34.23±0.13 26.06±0.78 64.54±0.37 26.06±0.17
GraphGPS 95.47±0.31 94.47±0.46 89.51±0.74 62.79±0.72 71.45 ± 0.40 37.48±1.09 33.37±0.06 34.12±0.44 65.35±0.41 25.00±0.05

w/ WaveGC 95.89±0.34 95.37±0.44 91.00±0.48 69.14±0.78 72.85±0.24 40.24±0.28 34.50±0.02 35.01±0.22 70.10±0.27 24.95±0.07

For short-range (S) datasets, we follow the settings from (Chen et al., 2022b). For ogbn-arxiv,
we use the public splits in OGB (Hu et al., 2020). For long-range datasets, we adhere to the
experimental configurations outlined in (Dwivedi et al., 2022). (1) The results for comparing with
base models are presented in Table 2. WaveGC consistently enhances the performance of base
models across all datasets. (2) The results of the comparison with other SOTA models are shown
in Table 3 and 4. Remarkably, our WaveGC demonstrates competitive performance and achieves
the best results on CS, Photo, ogbn-arixv, VOC, COCO and Pf, as well as securing the second
position on Computer and PCQM. In the experiments conducted on the five short-range datasets,
the model is required to prioritize local information, while the five long-range datasets necessitate
the handling of distant interactions. The results clearly demonstrate that the proposed WaveGC
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Table 3: Qualified results on short-range tasks compared to baselines. Bold: Best, Underline:
Runner-up, OOM: Out-of-memory, ‘*’ Taken from original paper.

Model CS Photo Computer CoraFull ogbn-arxiv

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GCN (Kipf & Welling, 2017) 92.92±0.12 92.70±0.20 89.65±0.52 61.76±0.14 71.74±0.29
GAT (Velickovic et al., 2017) 93.61±0.14 93.87±0.11 90.78±0.13 64.47±0.18 71.82±0.23

APPNP (Gasteiger et al., 2018) 94.49±0.07 94.32±0.14 90.18±0.17 65.16±0.28 71.90±0.25
GPRGNN (Chien et al., 2020) 95.13±0.09 94.49±0.14 89.32±0.29 67.12±0.31 71.78±0.18

ChebNetII (He et al., 2022) 95.39±0.39 94.71±0.25 89.85±0.85 72.18±0.58 72.32±0.23
JacobiConv (Wang & Zhang, 2022) 95.28±0.32 95.43±0.23* 90.39±0.29* 70.02±0.60 72.14±0.17
OptBasisGNN (Guo & Wei, 2023) 88.33±1.01 93.12±0.43 89.65±0.25 65.86±1.03 72.27±0.15*

Graphormer (Ying et al., 2021) OOM 92.74±0.14 OOM OOM OOM
Nodeformer (Wu et al., 2022) 95.28±0.28 95.27±0.22 91.12±0.43 61.82±0.81 59.90±0.42
Specformer (Bo et al., 2023) 93.43±0.35 95.48±0.32* 92.19±0.48 68.41±0.65 72.37±0.18*
SGFormer (Wu et al., 2023b) 93.63±0.36 94.08±0.35 91.17±0.38 69.66±0.63 72.63±0.13*

NAGphormer (Chen et al., 2022b) 95.75±0.09* 95.49±0.11* 91.22±0.14* 71.51±0.13* 71.79±0.37
Exphormer (Shirzad et al., 2023) 95.77±0.15* 95.27±0.42* 91.59±0.31* 65.42±0.75 72.44±0.28*

WaveGC (ours) 95.89±0.34 95.51±0.22 91.64±0.42 69.14±0.78 72.85±0.24

Table 4: Qualified results on long-range tasks compared to baselines. Bold: Best, Underline: Runner-
up, OOM: Out-of-memory, ‘†’ Original code run by us.

Model VOC PCQM COCO Pf Ps

F1 score ↑ MRR ↑ F1 score ↑ AP ↑ MAE ↓
GCN (Kipf & Welling, 2017) 12.68±0.60 32.34±0.06 08.41±0.10 59.30±0.23 34.96±0.13

GINE (Xu et al., 2019b) 12.65±0.76 31.80±0.27 13.39±0.44 54.98±0.79 35.47±0.45
GatedGCN (Bresson & Laurent, 2017) 28.73±2.19 32.18±0.11 26.41±0.45 58.64±0.77 34.20±0.13

ChebNetII† (Heet al., 2022) 36.45±0.52 34.34±0.10 26.02±0.53 68.19±0.27 26.18±0.58
JacobiConv† (Wang&Zhang, 2022) 32.52±0.87 34.24±0.24 30.46±0.46 68.00±0.53 25.20±0.21

OptBasisGNN† (Guo&Wei, 2023) 33.83±0.61 32.42±0.45 22.02±0.18 61.92±0.75 25.61±0.19
GraphViT (He et al., 2023) 30.46±1.15† 32.80±0.05† 27.29±0.49† 69.42±0.75 24.49±0.16

GRIT (Ma et al., 2023) OOM† 34.33±0.26† OOM† 69.88±0.82 24.60±0.12
Specformer (Bo et al., 2023)† 35.64±0.85 33.73±0.27 25.40±0.55 66.86±0.64 25.50±0.14

Exphormer (Shirzad et al., 2023) 39.60±0.27 36.37±0.20 34.30±0.08 65.27±0.43 24.81±0.07
WaveGC (ours) 40.24±0.28 34.50±0.02 35.01±0.22 70.10±0.27 24.95±0.07

consistently outperforms traditional graph convolutions and GTs in effectively aggregating both local
and long-range information.

6.2 EFFECTIVENESS OF GENERAL WAVELET BASES

Table 5: Numerical comparison between WaveGC and other graph wavelets and polynomial bases

Model Graph wavelet Polynomial bases Ours

SGWT DEFT GWNN ChebNet* ChebNetII JacobiConv OptBasisGNN WaveGC
Computer (Accuarcy ↑) 89.05 91.34 90.36 90.28 89.85 90.39 89.65 91.64

VOC (F1 score ↑) 31.22 35.98 25.60 37.80 36.45 32.52 33.83 40.24

In this section, we compare the learnt wavelet bases from WaveGC with other baselines, including
three graph wavelets (i.e. SGWT (Hammond et al., 2011), DEFT (Bastos et al., 2023), GWNN (Xu
et al., 2019a)) and four polynomial bases as in Table 5. Here, ChebNet* is a variant of our WaveGC
where the only change is to combine odd and even terms without decomposition. Therefore, the
improvement of WaveGC over ChebNet* reflects the effectiveness of decoupling operation. The nu-
merical comparison on Computer and PascalVOC-SP is shown in Table. 5, which demonstrates
obvious gains from WaveGC especially on long-range PascalVOC-SP.

To address the performance gap observed on the VOC dataset, we provide insights through the spectral
visualization of various bases in Fig. 2 1. These visualizations again confirm the disadvantages of
other bases analyzed in section 5. For our WaveGC, the figure intuitively demonstrates that the unit
wavelet got by decomposition of Chebyshev polynomials strictly meets the admissibility criteria,
as Eq. equation 1, while the corresponding base scaling function supplements the direct current

1We do not visualize OptBasisGNN, as it learns bases with implicit recurring relation.
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!! = 0.12 !" = 0.21 !# = 0.72

SGWT DEFT GWNN JacobiConvChebNetIIChebNet*
(Coulping of WaveGC)

WaveGC

Figure 2: The spectral and spatial visualization of different bases on PascalVOC-SP.

signals at λ = 0. We also depicts the signal distribution over the topology centered on the target node
(the red-filled circle). The receptive field of the central node expands with the increasing of scale
s, aggregating both short- and long-range information simultaneously. More analyses are given in
Appendix D.3.

6.3 EFFECTIVENESS OF MATRIX-VALUED KERNEL

Newly proposed matrix-valued kernel and weight-sharing technique constitutes the first advancement
over graph convolution. In this section, we deeply explore the effectiveness of these two designs.

Table 6: Comparison between Matrix-valued
and Vector-valued kernels.

Kernel Photo (Accuracy ↑) Ps (MAE ↓)
Vector-valued 94.61 25.30
Matrix-valued 95.37 24.95

Table 7: Comparison between sharing and
non-sharing kernel weights

Result (Parameters) CoraFull (Accuracy ↑) Ps (MAE ↓)
Non-sharing 67.67 (883,215) 26.22 (1,410,029)

Sharing 69.14 (621,135) 24.95 (534,701)

Observing the results from Table 6, the better performance from matrix-valued kernel indicates that
more parameters on parameterizing kernels lead to enhanced feature learning. Meanwhile, upon
analysis of Table 7, specifically learning kernels for each frequency does not yield improvement,
and may even degrade performance. This degradation may be attributed to the large number of
involved parameters, with potentially over-fitting. Matrix-valued kernels necessitates a mapping
from each eigenvalue embedding to a specific matrix, f : Rd → Rd×d, which involves a MLP with
weight dimension Rd×d×d, d is the embedding dimension. This results in a significant increase in
the number of learnable parameters, as seen with d = 96 in Ps, where the total number is nearly
96× 96× 96 = 884, 736.

Other experiments In Appendix D.4, we analyze the effect of different components, explore the
mixing benefit between different architectures WaveGC, GCN and Transformer, and test differences
between WaveGC and ChebNet. In Appendix D.5, we conduct a deep study on time and space
consumption. Moreover, we also test our WaveGC on heterophily scenarios in Appendix D.6.
Though WaveGC does not initially target on this topic, its positive performances convince us its
potential to be further explored. In the end, we test the sensitivity of two important hyper-parameters
in Appendix D.7.

7 CONCLUSION

In this study, we proposed a novel graph convolution operation based on wavelets (WaveGC),
establishing its theoretical capability to capture information at both short and long ranges through a
multi-resolution approach.

Limitation. One potential limitation of WaveGC is the computational complexity. The main
contribution of WaveGC is to address long-range interactions in graph convolution, so it inevitably
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establishes connections between most of nodes. This results in the same O(N2) complexity as
Transformer (Vaswani et al., 2017) and Specformer (Bo et al., 2023). A possible solution is to
decrease the number of considered frequency modes from N to ν. In this way, the complexity is
reduced to O(ν ·N). This operation makes WaveGC run on large-scale graph, i.e. ogbn-arxiv,
and the good performance supports this simplification. Moreover, the eigen-decomposition process
involves O(N3) complexity. However, this decomposition is performed only once, prior to all
training experiments. To accelerate the decomposition, we may adopt randomized SVD Halko et al.
(2009) with complexity O(N2 logK). Future work will focus on further simplification and scaling
up to larger graphs.

REFERENCES

G. Arfken. Convolution theorem. In Mathematical Methods for Physicists). Academic Press, 1985.

Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Toyotaro Suzumura, and Manish Singh. Learnable
spectral wavelets on dynamic graphs to capture global interactions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 6779–6787, 2023.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023, 2023.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Hyuna Cho, Minjae Jeong, Sooyeon Jeon, Sungsoo Ahn, and Won Hwa Kim. Multi-resolution
spectral coherence for graph generation with score-based diffusion. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Swakshar Deb, Sejuti Rahman, and Shafin Rahman. Sea-gwnn: Simple and effective adaptive
graph wavelet neural network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11740–11748, 2024.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc Lackenby,
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A THEORETICAL PROOF

Firstly, we give two auxiliary but indispensable lemma and theorem. Let starts from the formula
σ(ΨsHW ). In this equation, we bound the first derivate of non-linear function as |σ′| < cσ , and set
||W || ≤ w, where || · || is the operator norm. First, we give an upper bound for each entry in Ψs.
Lemma A.1 (Upper bound for graph wavelet). Let Ψ = Ug(Λ)UT . Given a large even number
K > 0, then for ∀i, j ∈ V × V , we have:

(Ψs)ij <
(
α(Â)K/2sK

)
ij
, α =

C · 2K(K + 1)

K!
. (14)

The proof is given in Appendix A.1. In this lemma, we assume g is smooth enough at λ = 0. For fair
comparison with traditional K-hop message passing framework σ(

∑K
j=0 τjA

jHW ), we just test the
flexibility with the similar form σ(ΨsHW ). In this case, we derive the depth mΨ necessary for this
wavelet basis Ψs to induce the amount of mixing mixyG

(a, b) between two nodes a and b.
Theorem A.2 (The least depth for mixing). Given commute time τ(a, b) (Lovász, 1993) and number
of edges |E|. If Ψs generates mixing mixyG

(b, a), then the number of layers mΨ satisfies

mΨ ≥ τ(a, b)

2K
+

2|E|
K
√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1
(γ + |1− λ∗|KmΨ+1)

]
, (15)

where da and db are degrees of two nodes, γ =
√

dmax

dmin
, and |1−λ∗| = max0<n≤N−1 |1−λn| < 1.

The proof is given in Appendix A.2. In the following subsections, we firstly prove these lemma and
theorem, and finally give the complete proof of Theorem 4.2.

A.1 PROOF OF LEMMA A.1 (UPPER BOUND FOR GRAPH WAVELET)

Proof. We aim to investigate the properties of filters Ψsj = Ug(sjλ)U
⊤ to capture both global

and local information, corresponding to the cases sj → 0 and sj → ∞, respectively. In the former
case, as sj approaches zero, g(sjλ) tends towards g(0). For the latter case, the spectral information
becomes densely distributed and concentrated near zero. Hence, the meaningful analysis of g(λ)
primarily revolves around λ = 0. Expanding g(λ) using Taylor’s series around λ = 0, we get:

g(λ) =

K∑
k=0

Ck
λk

k!
+ g(K+1)(λ∗)

λK+1

(K + 1)!
≈

K∑
k=0

Ck
λk

k!
, (16)

where we neglect the high-order remainder term. Next, we have

(Ψ)ij =
(
Ug(Λ)UT

)
ij
=

(
K∑

k=0

Ck
L̂k

k!

)
ij

=

(
K∑

k=0

Ck

k!
(I − Â)k

)
ij

=

(
K∑

k=0

Ck

k!

k∑
p=0

(
k
p

)
(−Â)p

)
ij

<

(
K∑

k=0

Ck

k!

k∑
p=0

(
k
p

)
(Â)p

)
ij

=

(
K∑

k=0

Ck

k!

k∑
p=0

k!

(k − p)!p!
(Â)p

)
ij

=

(
K∑

k=0

Ck

k∑
p=0

(Â)p

(k − p)!p!

)
ij

. (17a)

We introduce a new parameter µ =

(∑K−1
k=0 Ck

∑k
p=0

(ÂAA)p

(k−p)!p!

)
ij(

CK

∑K
p=0

(ÂAA)p

(K−p)!p!

)
ij

, so the above relation becomes:

(Ψ)ij <

(
(µ+ 1)CK

K∑
p=0

(ÂAA)p

(K − p)!p!

)
ij

=

(
C

K∑
p=0

(Â)p

(K − p)!p!

)
ij

, (18)
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where we set C = (µ + 1)CK . Then, let us explore the expression ϵpij =
(Â)pij

(K−p)!p! . First, we will
address the denominator (K − p)!p!. As p increases, this denominator experiences a sharp decrease
followed by a rapid increase. The minimum value occurs at (K/2)!(K/2)! when p = K/2, assuming
K is even. Second, let’s analyze the numerator (Â)pij , which involves repeated multiplication of Â.
According to Theorem 1 in (Li et al., 2018), this repeated multiplication causes (Â)p to converge
to the eigenspaces spanned by the eigenvector D−1/21 of λ = 0, where 1 = (1, 1, . . . , 1) ∈ Rn 2.
Then, let us assume there exists a value p∗ beyond which the change in (Â)p becomes negligible.
Given that K is a large even number, we can infer that K/2 ≫ p∗. Thus, when (K − p)!p! sharply

decreases, (Â)p has already approached a stationary state. Consequently, max ϵpij =
(Â)

K/2
ij

(K/2)!(K/2)! ,
where the denominator reaches its minimum. Thus, we have

(Ψ)ij <

(
C

K∑
p=0

(Â)p

(K − p)!p!

)
ij

< C(K + 1)

(
(Â)K/2

(K/2)!(K/2)!

)
ij

<

(
C · 2K(K + 1)

K!
(Â)K/2

)
ij

. (19a)

We have 1
(K/2)!(K/2)! <

2K

K! given that

(K/2)!(K/2)! = (
K

2
· K − 2

2
. . .

4

2
· 2
2
)(
K

2
· K − 2

2
. . .

4

2
· 2
2
)

> (
K

2
· K − 2

2
. . .

4

2
· 2
2
)(
K − 1

2
· K − 3

2
. . .

3

2
· 1
2
)

=
K ·K − 1 ·K − 2 ·K − 3 . . . 4 · 3 · 2 · 1

2 · 2 · 2 · 2 . . . 2 · 2 · 2 · 2︸ ︷︷ ︸
K terms

=
K!

2K
.

(20)

With α = C·2K(K+1)
K! and scale s, Eq. (19a) can be finally written as

(Ψs)ij <
(
α(Â)K/2sK

)
ij
. (21)

A.2 PROOF OF THEOREM A.2 (THE LEAST DEPTH FOR MIXING)

For this section, we mainly refer to the proof from (Di Giovanni et al., 2023).

Preliminary. For simplicity, we follow (Di Giovanni et al., 2023) to denote some operations utilized
in this section. As stated, we consider the message passing formula σ(ΨsHW ). First, we denote
h
(l),α
a as the α-th entry of the embedding h

(l)
a for node a at the l-th layer. Then, we rewrite the

formula as:
h(l),α
a = σ(h̃(l−1),α

a ), 1 ≤ α ≤ d, (22)

where h̃
(l−1),α
a = (ΨsHW )a is the entry α of the pre-activated embedding of node a at layer l.

Given nodes a and b, we denote the following differentiation operations:

∇ah
(l)
b :=

∂h
(l)
b

∂xa
, ∇2

abh
(l)
i :=

∂2h
(l)
i

∂xa∂xb
. (23)

Next, we firstly derive upper bounds on ∇ah
(l)
b , and then on ∇2

abh
(l)
i .

2Simple proof. (Â)p = U(I − Λ)pU⊤ =
∑n

i=0(1 − λi)
pu1u

⊤
1 . Provided only 1 − λ0 = 1 and

1− λi ∈ (−1, 1) for other eigenvalues, with p → ∞, only (1− λ0)
p = 1 but (1− λi)

p → 0. Thus, we have
(Â)p → u1u

⊤
1 , where u1 = D−1/21
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Lemma A.3. Given the message passing formula σ(ΨsHW ), let assume |σ′| ≤ cσ and ||W || ≤ w,
where || · || is the operator norm. For two nodes a and b after l layers of message passing, the
following holds:

||∇ah
(l)
b || ≤ (cσw)

l(Bl)ba, (24)

where Bba =
(
α(Â)K/2sK

)
ba

.

Proof. If l = 1 and we fix entries 1 ≤ α, β ≤ d, then we have:

(∇ah
(1)
b )αβ = (diag(σ′(h̃

(0)
b ))(W (1)ΨbaI))αβ . (25)

With Cauchy–Schwarz inequality, we bound the left hand side by

||∇ah
(1)
b || ≤ ||diag(σ′(h̃

(0)
b ))|| · ||W (1)Ψba||

≤ cσwBba.

Next, we turn to a general case where l > 1:

(∇ah
(l)
b )αβ = (diag(σ′(h̃

(l−1)
b )(W

∑
j

Ψbj∇ah
(m−1)
j ))αβ . (27)

Then, we can use the induction step to bound the above equation:

||∇ah
(l)
b || ≤ (cσw)

l|
∑
j0

∑
j1

· · ·
∑
jl−2

Ψbj0Ψj0j1 . . .Ψjl−3jl−2
Ψjl−2a|

≤ (cσw)
l(Bl)ba.

(28)

In Eq. (28), we implicitly use |Ψl
s|ba <

(
α(Â)K/2sK

)l
ba

= Bl
ba. Similar to proof given in

Appendix A.1, we can give the following proof:

|Ψl
s|ba =

∣∣Ug(sΛ)lUT
∣∣
ba

=

∣∣∣∣∣slKCl L̂lK

K!l

∣∣∣∣∣
ba

=

∣∣∣∣slK Cl

K!l
(I − Â)lK

∣∣∣∣
ba

=

∣∣∣∣∣slK Cl

K!l

lK∑
p=0

(
lK
p

)
(−Â)p

∣∣∣∣∣
ba

<

(
slK

Cl

K!l

lK∑
p=0

(
lK
p

)
(Â)p

)
ba

=

(
slK

Cl

K!l

lK∑
p=0

(lK)!

(lK − p)!p!
(Â)p

)
ba

=

(
slK

Cl(lK)!

K!l

lK∑
p=0

(Â)p

(lK − p)!p!

)
ba

<

(
slK

Cl(lK)!

K!l
(lK + 1)

(
(Â)lK/2

(lK/2)!(lK/2)!

))
ba

<

(
slK

Cl(lK)!

K!l
(lK + 1)

2lK

(lK)!
(Â)lK/2

)
ba

=

(
slK

Cl · 2lK(lK + 1)

K!l
(Â)lK/2

)
ba

<

(
slK

Cl · 2lK(K + 1)l

K!l
(Â)lK/2

)
ba

=
(
α(Â)K/2sK

)l
ba

,

(29)
where in the last line, we utilize the relation lK + 1 < (K + 1)l.

Lemma A.4. Given the message passing formula σ(ΨsHW ), let assume |σ′|, |σ′′| ≤ cσ and
||W || ≤ w, where || · || is operator norm. For nodes i, a and b after l layers of message passing, the
following holds:

||∇2
abh

(l)
i || ≤

l−1∑
k=0

∑
j∈V

(cσw)
2l−k−1w(Bl−k)jb(B

k)ij(B
l−k)ja, (30)

where Bba =
(
α(Â)K/2sK

)
ba

.
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Proof. Considering ∇2
abh

(l)
i ∈ Rd×(d×d), we refer to (Di Giovanni et al., 2023) to use the following

ordering for indexing the columns:

∂2h
(l),α
i

∂xβ
b ∂x

γ
a

:= (∇2
abh

(l)
i )α,d(β−1)+γ . (31)

Similar to the proof of Lemma A.3, we firstly focus on m = 1:

(∇2
abh

(1)
i )α,d(β−1)+γ = (diag(σ′′(h̃

(0),α
i ))(W (1)ΨibI)αγ × (W (1)ΨiaI)αβ . (32)

We bound the left-hand side as:

||∇2
abh

(1)
i || ≤ (cσw)(w|Bib||Bia|). (33)

Then, for m > 1:

(∇2
abh

(l)
i )α,d(β−1)+γ

= diag(σ′′(h̃
(l−1),α
i )(W

∑
j

Ψij∇ah
(l−1)
j )× (W

∑
j

Ψij∇bh
(l−1)
j )︸ ︷︷ ︸

R

+ diag(σ′(h̃
(l−1),α
i )(W (m)

∑
j

Ψij∇2
abh

(l−1)
j )︸ ︷︷ ︸

Z

.

(34)

We denote ||∇jh
(l−1)
i || as (Dh(l−1))ij , and ||∇2

abh
(l−1)
i || as (D2h(l−1)

ba)i. To bound R, we
deduce as follows:

||R|| ≤ cσ(w
∑
j

Bij ||∇ah
(l−1)
j ||)× (w

∑
j

Bij ||∇bh
(l−1)
j ||)

= cσw(wBDh(l−1))ib(BDh(l−1))ia

≤ cσw(wB(cσw)
l−1Bl−1)ib(B(cσw)

l−1Bl−1)ia (35a)

= (cσw)
2l−1(w(Bl)ib(B

l)ia),

where we utilize the conclusion from Theorem A.3 in (35a). For term Z, we have:

||Z|| ≤ cσw(BD2h(l−1))i

≤ cσw
∑
s

Bis

l−2∑
k=0

∑
j∈V

(cσw)
2l−2−k−1w(Bl−1−k)jb(B

k)sj(B
l−1−k)ja (36a)

=

l−2∑
k=0

∑
j∈V

(cσw)
2l−2−k(Bl−1−k)jb(B

k+1)ij(B
l−1−k)ja

=

l−1∑
k=1

∑
j∈V

(cσw)
2l−1−k(Bl−k)jb(B

k)ij(B
l−k)ja,

where in (36a), we recursively use the Eq. (34). Finally, we finish the proof as:

||∇2
abh

(l)
i || ≤ ||R||+ ||Z||

≤
l−1∑
k=0

∑
j∈V

(cσw)
2l−1−k(Bl−k)jb(B

k)ij(B
l−k)ja.

(37)

With Lemma A.3 and A.4, now we give the following theorem.
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Theorem A.5. Consider the message passing formula σ(ΨsHW ) with mΨ layers, the induced
mixing mixyG

(b, a) over the features of nodes a and b satisfies:

mixyG
(b, a) ≤

mΨ−1∑
l=0

(cσw)
(2mΨ−l−1)

(
w
(
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

, (38)

where Bba =
(
α(Â)K/2sK

)
ba

and 1 ∈ Rn is the vector of ones.

Proof. Here, we define the prediction function yG : N × d → d on G as y
(mΨ)
G =

Readout(H(mΨ)θ), where Readout is to gather all nodes embeddings to get the final graph
embedding, H(mΨ) is the node embedding matrix after mΨ layers and θ is the learnable weight for
graph-level task. If we set Readout = sum, we derive:

mixyG
(b, a) = max

x
max

1≤β,γ≤d

∣∣∣∣∣∂2yG
(mΨ)(X)

∂xβ
a∂x

γ
b

∣∣∣∣∣
≤
∑
i∈V

∣∣∣∣∣
d∑

α=1

θα
∂2h

(mΨ),α
i

∂xβ
a∂x

γ
b

∣∣∣∣∣
=
∑
i∈V

||(∇2
abh

(mΨ)
i )⊤θ||

≤
∑
i∈V

||∇2
abh

(mΨ)
i || (39a)

≤
mΨ−1∑
k=0

(cσw)
(2mΨ−k−1)

(
w
(
BmΨ−k

)⊤
diag

(
1⊤Bk

)
BmΨ−k

)
ab

, (39b)

where in (39a), we assume the norm ||θ|| ≤ 1. In (39b), we use the results from Lemma A.4. This
upper bound still holds if Readout is chosen as MEAN or MAX (Di Giovanni et al., 2023).

In theorem A.5, we can assume that cσ to be smaller or equal than one, which is satisfied by the
majority of current active functions. Furthermore, considering the normalization (e.g., L2 norm) on
W , we assume w < 1. With these two assumptions, the conclusion of theorem A.5 is rewritten as:

mixyG
(b, a) ≤

mΨ−1∑
l=0

((
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

. (40)

With this new conclusion, we now turn to the proof of Theorem A.2:

Proof. Firstly, diag
(
1⊤Bl

)
i
= (αsK)l(((Â)K/2)l1)i ≤ γ(αsK)l by using (((Â)K/2)l1)i ≤

γ (Di Giovanni et al., 2023). Then, we find
mΨ−1∑
l=0

((
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

≤ γ

(
mΨ−1∑
l=0

B2(mΨ−l) · (αsK)l

)
ab

< γ

(
mΨ−1∑
l=0

(α(Â)K/2sK)2(mΨ−l) · (αsK)l

)
ab

< γ(αsK)2mΨ

(
mΨ−1∑
l=0

ÂK(mΨ−l)

)
ab

= γ(αsK)2mΨ

(
mΨ∑
l=1

ÂKl

)
ab

.

(41)
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The following proof depends on commute time τ(a, b) (Lovász, 1993), whose the definition is as
follows using the spectral representation of the graph Laplacian (Di Giovanni et al., 2023):

τ(a, b) = 2|E|
N−1∑
n=0

1

λn

(
un(a)√

da
− un(b)√

db

)2

. (42)

Then, we have:(
mΨ∑
l=1

ÂKl

)
ab

≤
KmΨ∑
l=0

(
Âl
)
ab

=

KmΨ∑
l=0

∑
n≥0

(1− λn)
lun(a)un(b)

= (KmΨ + 1)

√
dadb
2|E|

+
∑
n>0

1− (1− λ)KmΨ+1

λn
un(a)un(b) (43a)

= (KmΨ + 1)

√
dadb
2|E|

+
∑
n>0

1

λn
un(a)un(b)−

∑
n>0

(1− λ)KmΨ+1

λn
un(a)un(b).

In Eq. (43a), we use u0(a) =
√

da

2|E| . Then, from the definition of commute time, we can get:

N−1∑
n=1

1

λn
un(a)un(b) =

−τ(a, b)

4|E|
√
dadb +

1

2

∑
n>0

1

λn
(u2

n(a)

√
db
da

+ u2
n(b)

√
da
db

)

≤ −τ(a, b)

4|E|
√
dadb +

1

2λ1

(√
da
db

+

√
db
da

−
√
dadb
|E|

)
,

(44)

where in the last inequation, we utilize the fact that
∑

n>0 u
2
n(a) = 1− u2

0(a) because {un} is a set
of orthonormal basis. Besides, we use λn > λ1,∀n > 1. Next, we derive

−
∑
n>0

(1− λ)KmΨ+1

λn
un(a)un(b) ≤

∑
n>0

|1− λ∗|KmΨ+1

λn
|un(a)un(b)||

≤ |1− λ∗|KmΨ+1

2λ1

∑
n>0

(u2
n(a) + u2

n(b))

≤ |1− λ∗|KmΨ+1

2λ1

(
2− da + db

2|E|

)
,

(45)

where |1− λ∗| = max0<n≤N−1 |1− λn| < 1. Insert derivations (44) and (45) into (43), then gather
all above derivations:

mixyG
(b, a) ≤ γ(αsK)2mΨ

{
(KmΨ + 1)

√
dadb
2|E|

− τ(a, b)

4|E|
√
dadb

+
1

2λ1

(√
da
db

+

√
db
da

−
√
dadb
|E|

)
+

|1− λ∗|KmΨ+1

2λ1

(
2− da + db

2|E|

)}

≤ γ(αsK)2mΨ
√

dadb

(
KmΨ

2|E|
− τ(a, b)

4|E|

)
+

γ(αsK)2mΨ

2λ1

(√
da
db

+

√
db
da

)
+

γ(αsK)2mΨ

λ1
|1− λ∗|KmΨ+1.

(46)
In last inequation, we discard

√
dadb

2|E|

[
1− 1

λ1

(
1 + |1−λ∗|KmΨ+1

2

(√
da

db
+
√

db

da

))]
< 0 because

λ1 < 1. Then,

mixyG
(b, a)

γ(αsK)2mΨ
√
dadb

≤ KmΨ

2|E|
− τ(a, b)

4|E|
+

1

2λ1

√
dadb

(√
da
db

+

√
db
da

+ 2|1− λ∗|KmΨ+1

)
. (47)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

From (47), we can finally give the lower bound of mΨ as:

mΨ ≥ 2|E|
K

{
τ(a, b)

4|E|
+

mixyG
(b, a)

γ(αsK)2mΨ
√
dadb

− 1

2λ1

√
dadb

(√
da
db

+

√
db
da

+ 2|1− λ∗|KmΨ+1

)}

>
2|E|
K

{
τ(a, b)

4|E|
+

1√
dadb

[
mixyG

(b, a)

γ(αsK)2mΨ
− 1

2λ1

(
2γ + 2|1− λ∗|KmΨ+1

)]}
=

2|E|
K

{
τ(a, b)

4|E|
+

1√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]}
=

τ(a, b)

2K
+

2|E|
K
√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]
(48)

A.3 PROOF OF THEOREM 4.2 (SHORT-RANGE AND LONG-RANGE RECEPTIVE FIELDS)

Proof. From theorem A.2, we denote LmΨ
= τ(a,b)

2K +
2|E|

K
√
dadb

[
mixyG (b,a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]
. For K-order message passing

σ(
∑K

j=0 τjA
jHW ), τj ∈ [0, 1], we assume that (τPA

P )ba is the maximum among
{(τ0A0)ba, . . . , (τKAK)ba}. According to theorem A.5, we can get the similar conclusion,
replacing B with C = (K + 1)τPA

P . Then, we have the following proof:

Proof. Again, diag
(
1⊤Cl

)
i
= ((K + 1)τP )

l(APl)1)i ≤ γ((K + 1)τP )
l. Then, we have

mA−1∑
l=0

((
CmA−l

)⊤
diag

(
1⊤Cl

)
CmA−l

)
ab

≤ γ

(
mA−1∑
l=0

C2(mA−l) · ((K + 1)τP )
l

)
ab

< γ

(
mA−1∑
l=0

((K + 1)τPA
P )2(mA−l) · ((K + 1)τP )

l

)
ab

< γ((K + 1)τP )
2mA

(
mA−1∑
l=0

Â2P (mA−l)

)
ab

= γ((K + 1)τP )
2mA

(
mA∑
l=1

Â2Pl

)
ab

< γ(
√

(K + 1)τP )
4mA

(
2mA∑
l=1

ÂPl

)
ab

.

(49)

Following the rest proof of LmΨ
, replace {αsK ,mΨ,K} with {

√
(K + 1)τP , 2mA, P}, and get the

expression of LmA
:

LmA
=

τ(a, b)

2P
+

2|E|
P
√
dadb

[
mixyG

(b, a)

γ((K + 1)2τP 2)mA
− 1

λ1

(
γ + |1− λ∗|2PmA+1

)]
. (50)

Therefore, we have

LmΨ ≈ P

K
LmA

+
2|E|

K
√
dadb

[
mixyG

(b, a)

γ

(
1

(α2s2K)mΨ
− 1

((K + 1)2τP 2)mA

)]
, (51)

where we ignore |1− λ∗|KmΨ+1 and |1− λ∗|2PmA+1. Since |1− λ∗| < 1 as shown in theorem A.2,
therefore |1− λ∗|KmΨ+1 − |1− λ∗|2PmA+1 will be very small, especially when mΨ and mA are
large. From Eq. (51), when s → ∞, the relation becomes:

LmΨ
≈ P

K
LmA

− 2|E|
K(K + 1)2mAτP 2mA

√
dadb

mixyG
(b, a)

γ
. (52)
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Or, when s → 0, the relation becomes:

LmΨ ≈ P

K
LmA

+
2|E|

K
√
dadb

mixyG
(b, a)

γ
· 1

(α2s2K)mΨ
. (53)

B RELATIONSHIP BETWEEN GRAPH CONVOLUTION AND TRANSFORMER

To recap, the vanilla Transformer (Vaswani et al., 2017) is given as:

H(l+1) = softmax
(
H(l)Wq(H

(l)Wk)
⊤

√
d

)
H(l)Wv, (54)

where H(l),H(l+1) ∈ RN×d are node embeddings from lth and (l + 1)th layers, and
{Wq,Wk,Wv} ∈ Rd×d are the query, key, and value learnable matrices. This self-attention
mechanism can be written as a kernel summation in the discrete case (Mialon et al., 2021;
Tsai et al., 2019; Guibas et al., 2021). Specifically for node s, h(l+1)

s =
∑
t
κ(s, t)h

(l)
t , where

κ(s, t) = softmax(H
(l)Wq(H

(l)Wk)
⊤

√
d

)(s,t) ·Wv . Therefore, κ : {1, . . . , N}× {1, . . . , N} → Rd×d

is treated as an asymmetric matrix-valued kernel. Note that the usage of asymmetric kernel is also com-
monly used in various machine learning tasks (Kulis et al., 2011). Further assume κ(s, t) = κ(s− t),
which indicates a shift-invariant GT since the attention depends on the difference between two nodes
rather than their positions. Then, Eq. (54) becomes a convolution h

(l+1)
s =

∑
t
κ(s− t)h

(l)
t , which

can be expressed with the convolution theorem as:

h(l+1)
s = F−1(F(κ) · F(H(l)))(s) ∈ R1×d. (55)

Eq. (55) is also known as Fourier integral operator (Hörmander, 1971). In Eq. (55), for each frequency
mode n ∈ N (i.e., F(H(l))(n, ·)), F(κ)(n) ∈ Rd×d, because κ : {1, . . . , N} × {1, . . . , N} →
Rd×d. Hence, for all modes, F(κ) can be fully parameterized by a neural network Rθ ∈ RN×d×d (Li
et al., 2021):

h(l+1)
s = F−1(Rθ · F(H(l)))(s) ∈ R1×d. (56)

C DETAILS OF ENCODING EIGENVALUES

In this paper, we adopt Eigenvalue Encoding (EE) Module (Bo et al., 2023) to encode eigenvalues.
EE functions as a set-to-set spectral filter, enabling interactions between eigenvalues. In EE, both
magnitudes and relative differences of all eigenvalues are leveraged. Specifically, the authors use an
eigenvalue encoding function to transform each λ from scalar R1 to a vector Rd:

ρ(λ, 2i) = sin (ϵλ/100002i/d), ρ(λ, 2i+ 1) = cos (ϵλ/100002i/d), (57)

where i is the dimension of the representations and ϵ is a hyper parameter. By encoding in this
way, relative frequency shifts between eigenvalues are captured. Then, the raw representations of
eigenvalues are the concatenation between eigenvalues and corresponding representation vectors:

Zλ = [λ1||ρ(λ1), . . . , λN ||ρ(λN )]⊤ ∈ RN×(d+1). (58)

To capture the dependencies between eigenvalues, a standard Transformer is used followed by
skip-connection and feed forward network (FFN):

Ẑλ = Transformer(LN(Zλ))+Zλ ∈ RN×(d+1), Z = FFN(LN(Ẑλ))+ Ẑλ ∈ RN×(d+1), (59)

where LN is the layer normalization. Then, Z is the embedding matrix for eigenvalues, which is
injected into the learning of combination coefficients ã and b̃, and scales s̃.
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D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

For the short-range task, we present the results of all baselines from NAGphormer (Chen et al.,
2022b) and Exphormer (Shirzad et al., 2023), excluding three base models (Transformer, SAN, and
GraphGPS). This omission is due to the necessity of knowing the parameters of these base models
for parameter freezing, while such information is unavailable. Consequently, we provide the results
of these three models based on our experiments. For the long-range task, we showcase the outcomes
of GCN, GINE, GatedGCN, Transformer, SAN+LapPE, SAN+RWSE from (Dwivedi et al., 2022),
alongside the results of the remaining baselines sourced from their original papers.

Considering that our WaveGC replaces the Transformer in each base model, we focus on tuning
the parameters newly introduced by WaveGC while keeping the others unchanged. Specifically, we
explore the number of truncated terms ρ from 1 to 10 and adjust the number of scales J from 1 to 5.
Additionally, for the pre-defined vector s controlling the amplitudes of scales, we test each element
in s from 0.1 to 10. The usage of the tight frames constraint is also a parameter subject to tuning,
contingent on the given dataset. Typically, models iterate through several layers to produce a single
result, thus the parameters of WaveGC may or may not be shared between different layers. Finally,
due to the large scale of short-range datasets, we implement two strategies to prevent out-of-memory
issues. Firstly, only the first 30% of eigenvalues and their corresponding eigenvectors are retained for
training in each dataset. Secondly, for the learned scaling function basis Φ and multiple wavelet bases
Ψsj , we set a threshold ℵ and filter out entries in Φ and Ψsj whose absolute value is lower than ℵ.

For fair comparisons, we randomly run 4 times on long-range datasets (Dwivedi et al., 2022), and 10
times on short-range datasets (Chen et al., 2022b), and report the average results with their standard
deviation for all methods. For the sake of reproducibility, we also report the related parameters in
Appendix D.9.

D.2 DATASETS DESCRIPTION

Table 8: The statistics of the short-range datasets.

Dataset # Graphs # Nodes # Edges # Features # Classes
CS 1 18,333 163,788 6,805 15

Photo 1 7,650 238,163 745 8
Computer 1 13,752 491,722 767 10
CoraFull 1 19,793 126,842 8,710 70

ogbn-arxiv 1 169,343 1,116,243 128 40

For short-range datasets, we choose five commonly used CS, Photo, Computer, CoraFull (Fey
& Lenssen, 2019) and ogbn-arxiv (Hu et al., 2020). CS is a network based on co-authorship, with
nodes representing authors and edges symbolizing collaboration between them. In the Photo and
Computer networks, nodes stand for items, and edges suggest that the connected items are often
purchased together, forming co-purchase networks. CoraFull is a network focused on citations,
where nodes are papers and edges indicate citation connections between them. ogbn-arxiv is a
citation network among all Computer Science (CS) Arxiv papers, where each node corresponds to an
Arxiv paper, and the edges indicate the citations between papers. The details of these five datasets are
summarized in Table 8.

Table 9: The statistics of the long-range datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Prediction level Task Metric
PascalVOC-SP 11,355 479.4 2,710.5 inductive node 21-class classif. F1 score
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR

COCO-SP 123,286 476.9 2,693.7 inductive node 81-class classif. F1 score
Peptides-func 15,535 150.9 307.3 graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 graph 11-task regression Mean Abs. Error
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For long-range tasks, we choose five long-range datasets (Dwivedi et al., 2022), including
PascalVOC-SP (VOC), PCQM-Contact (PCQM), COCO-SP(COCO), Peptides-func
(Pf) and Peptides-struct (Ps). These five datasets are usually used to test the perfor-
mance of different transformer architectures. VOC and COCO datasets are created through SLIC
superpixelization of the Pascal VOC and MS COCO image collections. They are both utilized for
node classification, where each super-pixel node is categorized into a specific object class. PCQM is
developed from PCQM4Mv2 (Hu et al., 2021) and its related 3D molecular structures, focusing on
binary link prediction. This involves identifying node pairs that are in 3D contact but distant in the 2D
graph. Both Pf and Ps datasets consist of atomic graphs of peptides sourced from SATPdb. In the
Peptides-func dataset, the task involves multi-label graph classification into 10 distinct peptide
functional classes. Conversely, the Peptides-struct dataset is centered on graph regression
to predict 11 different 3D structural properties of peptides. The details of these five datasets are
summarized in Table 9.

D.3 MORE ANALYSES FOR SECTION 6.2

Figure 3: Illustration of the spectral and spatial
signals of the learned function basis and multiple
wavelet bases with full spectrum.

Figure 4: Illustration of the spectral and spatial
signals of the learned function basis and multiple
wavelet bases with partial spectrum.

In this section, we provide more analyses on the visualization performances for different bases.
Upon examination of three kinds of wavelets (i.e., {SGWT, DEFT, GWNN}), those from SGWT
meet admissibility criteria with multiple resolutions, but these cubic splines are not adaptive. DEFT
outputs several bases with unpredictable shapes, so it is hard to strictly restrain these outputs as
wavelets. GWNN adopts one exponential wavelet base, omitting information from different ranges
as well as not meeting criteria. The following three polynomial bases (i.e., ChebNet*, ChebNetII
and JacobiConv) comprehensively entangles signals from different frequency intervals, where crucial
band-pass signals for long-range tasks are overwhelmed. Consequentially, these bases blend local
and distant information in spatial space, hampering the decision on the best range. For our WaveGC,
Fig. 2 intuitively demonstrates that the unit wavelet got by our decoupling of Chebyshev polynomials
strictly meets the admissibility criteria, as Eq. equation 1, while the corresponding base scaling
function supplements the direct current signals at λ = 0. After integration of learnable scales,
the final wavelets also meet criteria and adapt to the demand on multiresolution. The plot of
G(λ) = h(λ)2 +

∑3
j=1 g(sjλ)

2 as a black dashed line (located at 1) confirms the construction
of tight frames via normalization technique. Fig.2 also depicts the signal distribution over the
topology centered on the target node (the red-filled circle). This figure also demonstrates that as the
scale sj increases, the receptive field of the central node expands. Once again, this visualization
intuitively confirms the capability of WaveGC to aggregate both short- and long-range information
simultaneously but distinguishingly.

To give one more example, we provide additional visualization results on the CoraFull dataset. These
results are presented in Fig. 3, where the learned scaling functions h(λ) and g(λ) meet the specified
requirements. The four subfigures in Fig. 3(c) illustrate that as the scale sj increases, the receptive
field of the center node expands. This highlights WaveGC’s capability to capture both short- and long-
range information by adjusting different values of sj . However, one of our strategies for CoraFull
involves considering only 30% of eigenvalues as input. Consequently, the full spectrum is truncated,
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leaving only the remaining 30% parts, as depicted in Fig. 4. As shown in Fig. 4(b), all g(sjλ)
functions behave like band-pass filters with large sj values due to this truncation. Consequently,
all three learned wavelets enable the center node to receive distant information, as demonstrated in
Fig. 4(c).

D.4 MORE ABLATION STUDY

Table 10: Results of the ablation study. Bold: Best.

Variants Pf VOC Computer CoraFull

AP ↑ F1 score ↑ Accuracy ↑ Accuracy ↑
w/o h(λ) 56.56 15.69 89.37 63.36

w/o g(sjλ) 61.89 25.51 89.67 63.78
w/o tight frame 64.71 27.79 89.77 64.74

Ours 65.18 29.42 89.69 63.97

Table 11: Different combinations between
WaveGC GCN and Transformer. Bold: Best.

Combinations Pf Photo

AP ↑ Accuracy ↑
MPGNN + Transformer 94.47 65.35
WaveGC + Transformer 95.04 67.57

WaveGC + MPGNN 95.37 70.10

In this section, we conduct an ablation study of our WaveGC to assess the effectiveness of each
component, and the corresponding results are presented in Table 10. The table compares Trans-
former+WaveGC with several variants. These variants involve removing the scaling function basis
(denoted as ‘w/o h(λ)’), excluding multiple wavelet bases (denoted as w/o ‘g(sjλ)’), or eliminating
the constraint on tight frames (denoted as ‘w/o tight frame’). The evaluation is conducted on two
long-range datasets (Pf and VOC) and two short-range datasets (Computer and CoraFull). (1)
Both the scaling function basis h(λ) and wavelet bases g(sjλ) are essential components of our
WaveGC. In particular, neglecting h(λ) results in a significant drop in performance, emphasizing the
crucial role of low-frequency information. (2) The tight frame constraint proves beneficial for Pf and
VOC datasets but is less effective for Computer and CoraFull. This suggests a trade-off, as the tight
frame constraint limits the flexibility of the learned filters.

This work involves three frameworks, including MPGNN (graph convolution), Transformer and
WaveGC, and exploring the benefits of combination between these frameworks is also an interesting
topic. The related results are given in Table 11. Upon comparing the first two combinations
in the table, ‘Transformer’ primarily focuses on capturing global information, while ‘MPGNN’
or ‘WaveGC’ are expected to focus on local information. Given that MPGNN is proficient in
depicting local structure, the improvement from WaveGC is somewhat limited. However, in the third
combination ‘MPGNN+WaveGC’, WaveGC is designed to capture both local and global information.
The noticeable improvement compared to ‘MPGNN+Transformer’ can be attributed to the flexibility
and multi-resolution capabilities of WaveGC. In summary, both MPGNN and WaveGC are effective
at capturing local structure, while WaveGC excels in encoding long-range information. For practical
applications, it is advisable to select the specific encoder based on the given graph.

Table 12: More ablations for differences between WaveGC and ChebNet.

Free α̃ Free β̃ Fix s=1 Free s̃ Original
Computer 90.35±0.07 90.30±0.12 90.55±0.02 90.32±0.01 91.00±0.48

Ps 25.08±0.01 25.09±0.12 25.28±0.00 25.15±0.25 24.95±0.07

Obviously, both WaveGC and ChebNet attempt weighted combination of Chebyshev polynomials
in different ways. On one hand, ChebNet learns term coefficients independently, while WaveGC
map eigenvectors into coefficients α̃ and β̃. On the other hand, WaveGC further involve multiple
and learnable scales s̃. Finally, we test importance of these differences on the Computer and Ps. The
results are summarized in Table 12, showcasing different variants such as free learning coefficients
(i.e., α̃αα, β̃ββ), adopting single scale s=1, and free learning s̃ss to avoid joint parameterization. Each of
these modifications resulted in degraded performance compared to the original model, demonstrating
the improvements our new model offers over ChebNet.
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D.5 TIME AND SPACE COMPLEXITY ANALYSIS

In this section, we report the running time and GPU memory consumption of the three base models
and their corresponding WaveGC versions. The results for Photo and PCQM are presented in Table 13.
According to the table, the resource consumption of WaveGC is nearly the same as that of the base
models. Specifically, SAN+WaveGC runs faster and uses less GPU memory than SAN on PCQM
because SAN also includes edge features when calculating attention. Due to memory limitations, we
ran SAN in sparse mode on Photo, where the attention range is limited to one-hop rather than the
full graph. This accounts for its efficiency on Photo. Moreover, WaveGC consumes less memory on
Photo compared to GPS and the vanilla Transformer. This advantage stems from using only a subset
of the eigenvalues and eigenvectors.

Table 13: Comparison on running time and GPU memory consumption.
Datasets Consumption GPS WaveGC+GPS SAN WaveGC+SAN Transformer WaveGC+Transformer

Photo times / epoch (s) 0.33 0.72 0.28 1.66 0.25 0.65
GPU memory (MB) 5837 4829 5559 11691 5733 4783

PCQM times / epoch (s) 326 473 867 484 295 402
GPU memory (MB) 1647 4229 17499 16137 1423 2035

For a deeper investigation, we measure the growth trend of space and computational complexity
with 1) increasing the graph size and 2) increasing the layer depth. For the first scenario, we used
ogbn-arxiv as the reference graph and constructed a series of subgraphs of varying sizes by retaining
different ratios of nodes. For the second scenario, we used a subgraph containing 50% of the nodes
as the base graph and varied the model layers from 1 to 10. The results are illustrated in Fig. 5,
leading to the following conclusions: (1) As the graph size and layer depth increase, both the time
and space complexities of WaveGC scale linearly. (2) While the time difference between WaveGC
and Performer remains nearly constant as the graph size increases, increasing the layer depth widens
their time gap. (3) In both scenarios, WaveGC uses less memory than Performer, and this memory
advantage becomes more pronounced as the graph size and number of layers increase.

(a) Varying graph size (b) Varying layer depth

Figure 5: The time and memory grows with increasing graph size and layer depth.

D.6 EXPERIMENTAL RESULTS ON HETEROPHILY DATASETS

Table 14: The statistics of the heterophily datasets.

Dataset # Graphs # Nodes # Edges # Features # Classes
Actor 1 7,600 33,544 932 5

Minesweeper 1 10,000 39,402 7 2
Tolokers 1 11,758 519,000 10 2

Besides the short-rang and long-range
tasks, heterophily benchmark datasets
are also important scenarios for test-
ing graph spectral methods. Here,
we choose three heterophily datasets,
including Actor (Pei et al., 2020),
Minesweeper and Tolokers (Platonov et al., 2023). Table 14 shows their basic statistics. We
firstly compare WaveGC with corresponding base models (Table 15), and then compare with other
graph Transformers (Table 16), including {Graphormer, Nodeformer, Specformer, SGFormer, NAG-
phormer and Exphormer}. Again, our WaveGC outperforms both base models and other powerful
graph Transformers. Especially, for Minesweeper and Tolokers, WaveGC also defeats other
baselines reported in the original paper (Platonov et al., 2023).
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Figure 6: Spectrum of Actor.

The superiority on heterophily owes to the "scale effect" of s men-
tioned in section 3.1. Thus, if WaveGC can finally learn s < 1,
g(sλ) > 0 when λ = 2 ("stretch" effect), so WaveGC will main-
tain high-frequency signals and achieve better performance on het-
erophily graphs. To illustrate, we plotted the graph spectrum on
Actor in Fig. 6, and showed that indeed s < 1 for two learned scales
with corresponding high-pass filters. Please note g(sλ) still belongs
to the class of graph wavelets in this case, since it always meets the
wavelet admissibility criteria in Eq. 1.

Table 15: Quantified results (i.e. %±σ) on heterophily datasets compared to base models.

Model Transformer w/ WaveGC SAN w/ WaveGC GraphGPS w/ WaveGC
Actor (Accuracy ↑) 37.63±0.55 38.61±0.74 31.18±1.08 33.63±0.82 36.52±0.56 37.40±1.04

Minesweeper (ROC AUC ↑) 50.75±1.14 93.19±1.56 92.07±0.35 93.98±0.60 94.03±0.42 94.81±0.42
Tolokers (ROC AUC ↑) 74.04±0.53 82.81±1.12 83.37±0.55 82.73±0.98 84.63±0.88 85.38±0.52

Table 16: Qualified results (i.e. %±σ) on heterophily tasks compared to baselines. Bold: Best,
Underline: Runner-up, ‘*’ Taken from original papers.

Model Graphormer Nodeformer Spcformer SGFormer NAGphormer Exphormer WaveGC
Actor (Accuracy ↑) 36.41±0.49 34.62±0.82 41.93±1.04* 37.90±1.10 35.39±0.80 36.45±1.21 38.61±0.74

Minesweeper (ROC AUC ↑) 90.89±0.53 86.71±0.88 89.93±0.41 94.31±0.41 88.06±0.43 90.57±0.64 94.81±0.42
Tolokers (ROC AUC ↑) 82.75±0.88 78.10±1.03 80.42±0.55 84.57±0.70 82.02±0.98 84.68±0.77 85.38±0.52

D.7 HYPER-PARAMETER SENSITIVITY ANALYSIS

In WaveGC, two key hyper-parameters, namely ρ and J , play important roles. The parameter ρ
governs the number of truncated terms for both T o

i and T e
i , while J determines the number of scales

sj in Eq. equation 7. In this section, we explore the sensitivity of ρ and J on the Peptides-struct (Ps)
and Computer datasets. The results are visually presented in Fig.7, where the color depth of each
point reflects the corresponding performance (the lighter the color, the better the performance), and
the best points are identified with a red star. Observing the results, we note that the optimal value
for ρ is 2 for Ps and 7 for Computer. This discrepancy can be attributed to the substantial difference
in the graph sizes between the two datasets, with Computer exhibiting a significantly larger graph
size (refer to Appendix D.2). Consequently, a more intricate filter design is necessary for the larger
dataset. Concerning J , the optimal value is determined to be 3 for both Ps and Computer. A too
small J leads to inadequate coverage of ranges, while an excessively large J results in redundant
scales with overlapping ranges.

(a) Ps: ρ-analysis (b) Computer: ρ-analysis (c) Ps: J-analysis (d) Computer: J-analysis

Figure 7: Analysis of the sensitivities of ρ and J .

D.8 DETAILED DESCRIPTIONS OF BASE MODELS

As introduced in experiments, we choose three base models, including Transformer (Vaswani et al.,
2017), SAN (Kreuzer et al., 2021) and GraphGPS (Rampásek et al., 2022), and then replace the
Transformer component with our WaveGC for each model, to roundly verify the effectiveness of
WaveGC. Therefore, it is necessary to briefly introduce their mechanisms in this section. The
illustrations of these three methods are given in Fig. 8.
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(a) Transformer+LapPE (b) SAN (c) GraphGPS

Figure 8: Illustrations of the three base models, including Transformer+LapPE, SAN and GraphGPS.
The component surrounded by blue dash line is the part that will be replaced by WaveGC.

• Transformer. In Fig. 8(a), we show the case that the first several eigenvectors are regarded
as positional encoding for each node, denoted as LapPE. During the training, the sign of
these eigenvectors is frequently flipped to manipulate the model to avoid the influence from
the original sign. Then, this positional encoding is concatenated with raw feature after
projection, and input to a vanilla Transformer (Global Attention). The output of Transformer
will be combined with its input, and pass through two-layers MLP (Feed Forward Network).
After another skip-connection and normalization, we finish one layer of Transformer. In
traditional settings, this process will loop several times.

• SAN. As shown in Fig. 8(b), SAN proposes some special designs for both positional
encoding and Transformer. For the former, Learned positional encoding (LPE) architecture
is given. Specifically, for some node i, the authors concatenate the eigenvalues and i th
entry in each normalized eigenvector, then they use linear layer to mix eigenvalues and
eigenvectors, and then a Transformer encoder is utilized to mix different channels. Finally, a
sum pooling layer is utilized to get the final LPE for each node. For the latter, similar to
Transformer, the authors additionally consider the effect of edge feature when calculating
attention values. To emphasize the importance of local structure, they assign different
weights to neighbor nodes and distant nodes.

• GraphGPS. The aim of this work is to build a general, powerful, scalable grpah Transformer
with linear complexity as shown in Fig. 8(c). Besides the global attention part, they explicitly
involve a parallel MPNN to encode the given topological structure. Then, these two branches
separately go through skip-connection and normalization, and then sum together followed
by FFN, skip-connection and normalization. For generalization, the authors also provide
different choices for positional encoding, local MPNN and Global Attention.

The Global Attention (or Main Graph Transformer) part is surrounded by blue dash line, which is
replaced by our WaveGC. Our main target is to boost the base models by this replacement.

D.9 HYPER-PARAMETERS SETTINGS

We implement our WaveGC in PyTorch, and list some important parameter values in our model
in Table 17. Please note that for the five long-range datasets, we follow the parameter budget
∼500k (Dwivedi et al., 2022).

D.10 OPERATING ENVIRONMENT

The environment where our code runs is shown as follows:
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Table 17: The values of parameters used in WaveGC (T: True; F: False).
Method Dataset # parameters ρ J s Tight frames Parameters sharing ℵ

Transformer
+WaveGC

CS 437k 3 3 {0.5, 0.5, 0.5} T T 0.1
Photo 122k 3 3 {1.0, 1.0, 1.0} T T 0.1

Computer 150k 7 3 {1.0, 1.0, 1.0} T T 0.1
CoraFull 547k 3 3 {2.0, 2.0, 2.0} T T 0.1

ogbn-arxiv 2,091k 3 3 {0.1, 0.8, 5.0} F T 0.03
PascalVOC-SP 477k 3 3 {0.5, 1.0, 10.0} T F /
PCQM-Contact 480k 5 3 {0.5, 1.0, 5.0} T F /

COCO-SP 553k 3 3 {10.0, 10.0, 10.0} T T /
Peptides-func 467k 5 3 {10.0, 10.0, 10.0} T T /
Peptides-struct 534k 2 3 {0.3, 1.0, 10.0} F F /

SAN
+WaveGC

CS 524k 3 3 {0.5, 0.5, 0.5} T T 0.1
Photo 262k 3 3 {1.0, 1.0, 1.0} T T 0.01

Computer 292k 3 3 {2.0, 2.0, 2.0} T T 0.1
CoraFull 619k 3 2 {2.0, 2.0} T T 0.1

ogbn-arxiv 2,352k 3 3 {0.1, 0.8, 5.0} F T 0.03
PascalVOC-SP 464k 3 3 {0.5, 1.0, 10.0} T F /
PCQM-Contact 411k 3 3 {0.5, 1.0, 5.0} T F /

COCO-SP 469k 3 3 {10.0, 10.0, 10.0} T T /
Peptides-func 405k 5 3 {10.0, 10.0, 10.0} T T /
Peptides-struct 406k 3 3 {0.3, 1.0, 10.0} T F /

GraphGPS
+WaveGC

CS 495k 3 3 {0.5, 0.5, 0.5} T T 0.1
Photo 136k 3 3 {1.0, 1.0, 1.0} T T 0.1

Computer 167k 3 3 {1.0, 1.0, 1.0} T T 0.1
CoraFull 621k 3 3 {2.0, 2.0, 2.0} T T 0.1

ogbn-arxiv 2,354k 3 3 {0.1, 0.8, 5.0} F T 0.03
PascalVOC-SP 506k 5 3 {0.5, 1.0, 10.0} T F /
PCQM-Contact 508k 5 3 {0.5, 1.0, 5.0} T F /

COCO-SP 546k 3 3 {0.5, 1.0, 10.0} T F /
Peptides-func 496k 5 3 {10.0, 10.0, 10.0} T T /
Peptides-struct 534k 3 3 {0.3, 1.0, 10.0} F F /

• Operating system: Linux version 5.11.0-43-generic

• CPU information: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz

• GPU information: NVIDIA RTX A5000

E RELATED WORK

Graph Transformer. Graph Transformer (GT) has attracted considerable attentions, where re-
searchers mainly focus on two aspects, i.e., positional encoding and reduction of computational
complexity. Firstly, a suitable positional encoding (PE) can assist the Transformer to understand the
topology and complex relationships within the graph. GT (Dwivedi & Bresson, 2020) proposes to
employ Laplacian eigenvectors as PE with randomly flipping their signs. Graphormer (Ying et al.,
2021) takes the distance of the shortest path between two nodes as spatial encoding, which is involved
in attention calculation as a bias. SAN (Kreuzer et al., 2021) conducts a learned positional encoding
architecture to address key limitations of previous GT analyzed in the paper. GraphGPS (Rampásek
et al., 2022) provides different choices for PE, consisting of LapPE, RWSE, SignNet and Equiv-
StableLapPE. GRIT (Ma et al., 2023) uses the proposed relative random walk probabilities (RRWP)
initial PE to incorporate graph inductive biases. (Geisler et al., 2023) proposes two direction- and
structure-aware PE for directed graphs, i.e., Magnetic Laplacian and directional random walk encod-
ing. Both GraphTrans (Wu et al., 2021) and SAT (Chen et al., 2022a) adopts a GNN cascaded with
Transformer, where GNN can be viewed as an implicit PE to capture the local structure. Secondly,
because of the huge complexity of attention computation O(N2), some studies endeavor to reduce it
to the linear complexity. ANS-GT (Zhang et al., 2022) proposes a hierarchical attention scheme with
graph coarsening. DIFFORMER (Wu et al., 2023a) introduces an energy constrained diffusion model
with a linear-complexity version. EXPHORMER (Shirzad et al., 2023) consists of a sparse attention
mechanism based on virtual global nodes and expander graphs. NAGphormer (Chen et al., 2022b)
can be trained in a mini-bath manner by aggregating neighbors from different hops with Hop2Token.
NodeFormer (Wu et al., 2022) enables the efficient computation via kernerlized Gumbel-Softmax
operator. SGFormer (Wu et al., 2023b) is empowered by a simple attention model that can efficiently
propagate information among arbitrary nodes. Besides these two main aspects, Edgeformers (Jin
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et al., 2023) and EGT (Hussain et al., 2022) additionally explore the edges by injecting edge text
information or designing residual edge channels respectively. Recently, Xing et al. (2024) are the
first to reveal the over-globalizing problem in graph transformer, and propose CoBFormer to improve
the GT capacity on local modeling with a theoretical guarantee. Furthermore, BRAIN NETWORK
TRANSFORMER (Kan et al., 2022) and Grover (Rong et al., 2020) explore the applications of GT
on human brains and molecular data.

Graph Wavelet Transform. Graph wavelet transform is a generalization of classical wavelet
transform c(Mallat, 1999) into graph domain. SGWT (Hammond et al., 2011) defines the computing
paradigm on weighted graph via spectral graph theory. Specifically, it defines scaling operation in
time field as the scaling on eigenvalues. The authors also prove the localization properties of SGWT
in the spatial domain in the limit of fine scales. To accelerate the computation on transform, they
additionally present a fast Chebyshev polynomial approximation algorithm. Following SGWT, there
have been some efforts on designing more powerful graph wavelet bases in spectral domain, whereas
these methods have different flaws. GWNN (Xu et al., 2019a) chooses heat kernel as the filter to
construct the bases. SGWF (Shen et al., 2021) proposes an end-to-end learned kernel function using
MLP. LGWNN (Xu et al., 2022) designs neural network-parameterized lifting structures, where the
lifting operation is based on diffusion wavelets. FGT (Zheng et al., 2022) introduces a decimated
framelet for multiscale representation and constructs an up-down coarse-grained chain. SpGAT ??
introduces the attention mechanism in the spectral domain, using diffusion kernel as a basis. The
graph wavelet bases learnt from these five methods are not guaranteed as band-pass filters in λ ∈ [0, 2]
and thus violate admissibility condition (Mallat, 1999). UFGCONV (Zheng et al., 2021) defines a
framelet-based graph convolution with Haar-type filters. Wave-GD (Cho et al., 2023) focuses on
graph generation with score-based diffusion, and realizes multiple resolutions with graph wavelet.
Furthermore, the authors set k(s) = sxe−sx as band-pass filter and k(s) = e−sx as low-pass filter.
WaveNet (Yang et al., 2024) relies on Haar wavelets as bases, and uses the highest-order scaling
function to approximate all the other wavelets and scaling functions. WGGP (Opolka et al., 2022)
integrates Gaussian processes with Mexican Hat to represent varying levels of smoothness on the
graph. The above four methods fix the form of the constructed wavelets, extremely limiting the
adaptivity to different datasets. In this paper, our WaveGC constructs band-pass filter and low-pass
filter purely depending on the even terms and odd terms of Chebyshev polynomials. In this case, the
admissibility condition is strictly guaranteed, and the constructed graph wavelets can be arbitrarily
complex and flexible with the number of truncated terms increasing. In addition, there are also some
papers exploring the applications of graph wavelets on multi-resolution matrix factorization (Hy &
Kondor, 2022) and tensor decomposition (Leonardi & Van De Ville, 2013). SEA-GWNN (Deb et al.,
2024) focuses on the second generation of wavelets, or lifting schemes, which is a different topic
from ours.
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