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Abstract

The International Classification of Diseases001
(ICD) serves as a definitive medical classifi-002
cation system encompassing a wide range of003
diseases and conditions. The primary objective004
of ICD indexing is to allocate a subset of ICD005
codes to a medical record, which facilitates006
standardized documentation and management007
of various health conditions. Most existing008
approaches have suffered from selecting the009
proper label subsets from an extremely large010
ICD collection with a heavy long-tailed label011
distribution. In this paper, we leverage a multi-012
stage “retrieve and re-rank” framework as a013
novel solution to ICD indexing, via a hybrid014
discrete retrieval method, and re-rank retrieved015
candidates with contrastive learning that allows016
the model to make more accurate predictions017
from a simplified label space. The retrieval018
model is a hybrid of auxiliary knowledge of the019
electronic health records (EHR) and a discrete020
retrieval method (BM25), which efficiently col-021
lects high-quality candidates. In the last stage,022
we propose a label co-occurrence guided con-023
trastive re-ranking model, which re-ranks the024
candidate labels by pulling together the clinical025
notes with positive ICD codes. Experimen-026
tal results show the proposed method achieves027
state-of-the-art performance on a number of028
measures on the MIMIC-III benchmark.029

1 Introduction030

Electronic health records1 (EHRs) contain a com-031

prehensive repository of essential administrative032

and clinical data pertinent to a person’s care within033

a specific healthcare provider setting. In order to034

conduct meaningful statistical analysis, these EHR035

data are annotated with structured codes in a clas-036

sification system known as medical codes. The037

International Classification of Diseases2 (ICD) is038

1https://www.cms.gov/Medicare/E-Health/
EHealthRecords

2https://www.who.int/standards/classifications/
classification-of-diseases

one of the most widely-used coding systems, and it 039

provides a taxonomy of classes, each uniquely iden- 040

tified by a code assigned to an episode of patient 041

care. 042

The task of medical coding associates ICD codes 043

with EHR documents. The status quo of assign- 044

ing medical codes is a manual process, which is 045

labour-intensive, time-consuming, and error-prone 046

(Xie and Xing, 2018). To reduce coding errors and 047

cost, the demand for automated medical coding 048

has become imperative. Previous deep learning 049

approaches regarded medical coding as an extreme 050

multi-label text classification problem (Shi et al., 051

2017; Mullenbach et al., 2018; Baumel et al., 2018; 052

Xie et al., 2019; Yuan et al., 2022), where an en- 053

coder is typically employed to learn the representa- 054

tions of the clinical notes and a label-specific binary 055

classifier is subsequently constructed on top of the 056

encoder for label predictions. However, some re- 057

maining difficulties have still posed immense chal- 058

lenges. First, clinical documents are lengthy (con- 059

taining on average 1596 words in the MIMIC-III 060

dataset) and noisy (including terse abbreviations, 061

symbols, and misspellings). Second, the label 062

set is extremely large and complex; for instance, 063

in the 10th ICD edition, there are over 130,000 064

codes3. Third, the distribution of ICD codes is ex- 065

tremely long-tailed; while some ICD codes occur 066

frequently, many others seldom appear, if at all, 067

because of the rarity of the diseases. For instance, 068

among the 942 unique 3-digit ICD codes in the 069

MIMIC-III dataset (Johnson et al., 2016), the ten 070

most common codes account for 26% of all code 071

occurrences and the 437 least common codes ac- 072

count for only 1% of occurrences (Bai and Vucetic, 073

2019). To address the aforementioned challenges, 074

we propose a novel multi-stage retrieve and re-rank 075

framework, where the goal is to first generate a 076

curated ICD list and then provide suggested ICD 077

3https://www.cdc.gov/nchs/icd/icd10cm_pcs.htm
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Figure 1: An example of a medical record from the
MIMIC-III dataset which includes the discharge sum-
mary, assigned ICD codes and auxiliary knowledge. We
colour each code and its corresponding mentions in
the discharge summary and auxiliary knowledge. We
use the auxiliary knowledge of the notes to retrieve the
candidate subset of the label space.

codes for a given medical record. In contrast to078

prior approaches, for instance, CAML(Mullenbach079

et al., 2018), MultiResCNN (Li and Yu, 2020) and080

KEPTLongformer (Yang et al., 2022), that primar-081

ily consider ICD indexing as a multi-label text clas-082

sification task, we introduce a new perspective that083

conceptualizes the task as a recommendation prob-084

lem. More precisely, we first conduct a two-stage085

retrieval process leveraging auxiliary knowledge086

and BM25 to obtain a small subset of candidate087

ICD codes from the large number of labels to alle-088

viate issues caused by the label set and imbalanced089

label distribution. EHR auxiliary knowledge holds090

significant potential, but it has often been under-091

utilized in prior studies. In addition to clinical092

texts, our focus centers on two code terminologies:093

Diagnosis-Related Group codes4 (DRG) and Cur-094

rent Procedural Terminology codes5 (CPT), as well095

as patient prescribed medications. These external096

sources can serve as robust indicators for predicting097

ICD codes. For instance, within a drug prescription,098

the presence of a medication like “Namenda” can099

4https://www.cms.gov/Medicare/
Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/
MS-DRG-Classifications-and-Software

5https://www.ama-assn.org/amaone/
cpt-current-procedural-terminology

strongly imply a likelihood of Alzheimer’s disease, 100

as depicted in Figure 1. Subsequently, we design 101

a re-ranking model via co-occurrence guided con- 102

trastive learning to refine the candidate set, which 103

can deal with lengthy clinical notes and generate 104

semantically meaningful representations via the 105

pre-trained language model and leverage code co- 106

occurrence to generate co-occurrence-aware label 107

representations. The co-occurrence of codes in 108

clinical texts yields valuable insights into the in- 109

terconnections among different diseases or con- 110

ditions. As illustrated in Figure 1, the code for 111

“Dementia in conditions classified elsewhere with- 112

out behavioral disturbance” (294.10) can be eas- 113

ily found in the text; however, inferring the code 114

“Alzheimer’s disease” (331.0) presents a more in- 115

tricate challenge with less explicit clues. Fortu- 116

nately, a robust association exists between these 117

two diseases, with “Alzheimer’s disease” serving 118

as a prevalent cause of “dementia”. This linkage 119

can be effectively captured as these two diseases 120

frequently co-occur within the clinical notes. This 121

empowers us to gain a deeper understanding of the 122

contexts, which could mitigate the limitation of 123

long-tailed label distributions as rare labels might 124

be suggested based on these relationships. We train 125

the re-ranking model via contrastive learning as it 126

has strong discriminative power that can extract 127

features uniquely associated with each class, which 128

empowers the model to make more accurate recom- 129

mendations. 130

To summarize, the major contributions of this 131

paper are: 132

• We formalize the medical coding task as a 133

recommendation problem and present a novel 134

multi-stage retrieve and re-rank framework 135

to make more accurate predictions by ruling 136

out the irrelevant codes before ranking, rather 137

than making direct predictions on the entire 138

large label set. 139

• To address the large label set and long-tailed 140

distribution issues, in the two-stage retrieval 141

process, we use external knowledge and 142

BM25 to retrieve a subset of candidate la- 143

bels from the large label space. We further 144

leverage the code co-occurrence in the re- 145

ranking stage to capture the internal connec- 146

tions among the codes. 147

• We apply contrastive learning in the re- 148

ranking stage. It effectively pulls together the 149
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representations of a clinical note and its cor-150

responding golden truth labels, which allows151

the model to make more accurate predictions.152

2 Related Work153

The automatic ICD indexing task is well estab-154

lished in the healthcare domain. Extensive re-155

search using deep learning has been dedicated to156

ICD indexing, including recurrent-based neural157

networks (RNNs), convolution-based neural net-158

works (CNNs), and their variations. These archi-159

tectures are able to extract and categorize semantic160

features, reducing the need for medical domain161

expertise during the traditional feature selection162

stage seen in conventional algorithms (Teng et al.,163

2023). The ICD indexing task is formulated as164

a multi-label classification problem in these ap-165

proaches. Mullenbach et al. (2018) introduced a166

combination of CNN with an attention mechanism167

to effectively capture pertinent information within168

clinical texts for each ICD code. Building on this169

foundation, Xie et al. (2019) enhanced the CNN170

attention model by integrating a multi-scale fea-171

ture attention technique. Many CNN variants were172

subsequently introduced to address the challenges173

posed by lengthy and noisy clinical texts, including174

MultiResCNN (Li and Yu, 2020), DCAN (Ji et al.,175

2020), and EffectiveCAN (Liu et al., 2021). RNN-176

based models, renowned for their capacity to cap-177

ture contextual information across input texts, have178

also been widely used for ICD indexing. Shi et al.179

(2017) proposed a character-aware Long Short-180

Term Memory (LSTM) recurrent network to learn181

the underlying representations of clinical texts. Xie182

and Xing (2018) introduced a tree-of-sequences183

LSTM architecture alongside adversarial learning184

to capture hierarchical relationships among ICD185

codes. Additionally, Baumel et al. (2018) presented186

a Hierarchical Attention-Bidirectional Gated Re-187

current Unit (HA-GRU) model, facilitating docu-188

ment labeling by identifying sentences relevant to189

each ICD code. LAAT (Vu et al., 2020) used a bidi-190

rectional Long-Short Term Memory (BiLSTM) en-191

coder and a customized label-wise attention mech-192

anism to cultivate label-specific vectors across dis-193

tinct clinical text fragments.194

To address the hierarchical relationships intrin-195

sic to ICD codes, Graph Convolutional Neural Net-196

works (GCNNs) (Kipf and Welling, 2017) have197

emerged as a powerful tool. Rios and Kavuluru198

(2018) and Xie et al. (2019) used GCNNs to capture199

both the hierarchical interplay among ICD codes 200

and the semantic information specific to each code. 201

HyperCore (Cao et al., 2020) took a comprehensive 202

approach by considering both code hierarchy and 203

code co-occurrence, employing GCNNs to learn 204

code representations within the co-graph. 205

Incorporating external knowledge beyond ICD 206

code information has also gained traction. Bai and 207

Vucetic (2019) introduced a Knowledge Source 208

Integration (KSI) model that integrates external 209

knowledge from Wikipedia. This integration calcu- 210

lated matching scores between clinical notes and 211

disease-related Wikipedia documents, in order to 212

enrich the available information for ICD predic- 213

tions. Additionally, Yuan et al. (2022) proposed a 214

Multiple Synonym Matching Network (MSMN) to 215

use synonyms of ICD codes, enhancing the qual- 216

ity of code representation learning. Expanding on 217

this, Yang et al. (2022) integrated a pre-trained lan- 218

guage model with three domain-specific knowledge 219

sources: code hierarchy, synonyms, and abbrevia- 220

tions. This fusion of knowledge sources contributes 221

significantly to the performance of ICD classifica- 222

tion. 223

3 Method 224

3.1 A Multi-stage Framework 225

We formulate the medical coding task as a rec- 226

ommendation task, given medical records D = 227

{d1, d2, ..., dN} and a set of ICD codes Y = 228

{y1, y2, ..., yL} with associated external auxiliary 229

knowledge K. We construct the label information 230

as a graph structure G, using code co-occurrence 231

relations, and we train a multi-stage recommender 232

system R, based on the text information D, con- 233

structed label information G, and the external auxil- 234

iary knowledge K. The system R needs to predict 235

the relevant labels given a document d /∈ D. 236

In this section, we present a multi-stage retrieve 237

and re–rank framework for ICD indexing, which 238

is shown in Figure 2. Our model is composed of 239

a two-stage retrieval process that uses auxiliary 240

knowledge of the EHR and BM25 to obtain a short- 241

ened candidate list, and a re-ranking process that 242

conducts code co-occurrence guided contrastive 243

learning to further improve the recommended ICD 244

list. 245

3.2 The Retrieval Stage 246

Using Auxiliary Knowledge To retrieve the can- 247

didate list using auxiliary knowledge, we incorpo- 248
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Figure 2: Overview of the proposed multi-stage retrieve and re-rankframework. The model first leverages auxiliary
knowledge and BM25 to retrieve a candidate list from the full label space, then use a re-rank model that leverages
the code co-occurrence guided contrastive learning to generate the final relevant labels.

rate insights from three external sources of knowl-249

edge: diagnosis-related group (DRG) codes, cur-250

rent procedural terminology (CPT) codes, and med-251

ications prescribed to patients. DRG codes are used252

by hospitals and healthcare providers to classify253

patients into groups based on their diagnosis, treat-254

ment, and length of stay. These codes are used255

for reimbursement purposes, and they help deter-256

mine the amount that healthcare providers are remu-257

nerated for their services. DRG codes are further258

classified into medical DRGs (which exclude oper-259

ating room procedures) and surgical DRGs. CPT260

codes are used to describe medical procedures and261

services provided by healthcare providers. They262

provide a standardized way of documenting and263

billing for medical services. CPT codes are used264

by insurance companies to determine reimburse-265

ment rates for healthcare providers. Such code266

terminologies significantly contribute to the refine-267

ment of ICD indexing. Moreover, the medications268

prescribed to patients offer a wealth of predictive269

information for ICD codes. These prescriptions of-270

ten mark the conclusion of a patient’s care episode.271

As patients approach the conclusion of their treat-272

ment, the prescribed medications serve a critical273

role in managing their conditions. Consequently,274

these medications emerge as potent indicators of275

underlying health conditions or diagnoses. Their276

inclusion in the retrieval process greatly enhances277

the accuracy and relevance of the corresponding278

ICD code recommendations.279

Given a clinical note d, we retrieve the candidate280

ICD list by calculating the auxiliary knowledge and281

label co-occurrence matrix using conditional prob-282

abilities, i.e., P (yi | kj), which denote the prob-283

abilities of occurrence of ICD yi when auxiliary 284

knowledge kj appears. 285

P (yi | kj) =
Cyi∩kj
Ckj

, (1) 286

where Cyi∩kj denotes the number of co- 287

occurrences of yi and kj , and Ckj is the number of 288

occurrences of kj in the training set. To avoid the 289

noise of rare co-occurrences, a threshold η filters 290

noisy correlations. K̃j denotes the selected ICD 291

set for auxiliary knowledge j. 292

K̃j = {yi|P (yi|kj) > η, i = 1, ..., L}, (2) 293

where L is total number of ICD codes in the label 294

set. We then join the ICD codes retrieved from the 295

auxiliary knowledge co-occurrences for the DRG 296

codes, CPT codes and prescribed drugs to form the 297

candidate ICD subset Cauxiliary: 298

Cauxiliary(d) = K̃DRG(d) ∪ K̃CPT(d) ∪ K̃drug(d), (3) 299

where Cauxiliary ⊆ Y . 300

Using BM25 The retrieval stage using auxiliary 301

knowledge incorporates the co-relations between 302

ICD codes and external knowledge, but ignores 303

the relationship between clinical texts and labels. 304

To increase the recall of the retrieval stage, we 305

adopt BM25 (Robertson and Walker, 1994) to allow 306

lexical matching between the medical documents 307

and labels on the retrieved candidate list Cauxiliary. 308

Given a medical record d and an ICD code y, the 309

score between d and y is calculated as: 310

BM25(d, y) =
∑

w∈d∩ty

IDF(w)
TF(w,ty)·(k1+1)

TF(w,ty)·k1(1−b+b
|Y|

avgdl )
, (4) 311
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and312

avgdl =
1

|Y|
∑
y∈Y

|ty|, (5)313

where ty represents the words in the label descrip-314

tors, |Y| is the length of the label descriptors in315

words, avgdl is the average length of text informa-316

tion in the label.317

When the BM25 score between d and yi exceeds318

a certain threshold θ, we add yi as a candidate of d:319

CBM25(d) = {yi|BM25(d, yi) > θ, yi ∈ Cauxiliary} (6)320

Given a clinical note d, its candidate ICD set is first321

generated by using the auxiliary knowledge in the322

retrieval stage and then reduced by using BM25,323

where CBM25 ⊆ Cauxiliary and Cauxiliary ⊆ Y .324

3.3 The Re-ranking Stage325

Clinical Text Encoder Encouraged by the suc-326

cess of the pre-trained language model Longformer327

(Beltagy et al., 2020) in dealing with longer texts,328

we use a Clinical-Longformer (Li et al., 2023),329

specifically pre-trained in the medical domain, as a330

text encoder. Given a medical document d as input331

that consists of a sequence of tokens:332

d = {[CLS], x1, x2, ..., xn−2, [SEP]}, (7)333

where [CLS] and [SEP] are two special tokens that334

indicate the beginning and end of the sequence, and335

n is the sequence length, the Clinical-Longformer336

encodes the tokens and outputs the hidden repre-337

sentations for each token:338

Hhidden = ClinicalLongformer(d), (8)339

where Hhidden ∈ Rn×he , and he is the hidden size.340

Following previous work (Wang et al., 2022; Yang341

et al., 2022), we use the hidden state of the [CLS]342

token to represent the document, denoted as HT.343

Label Encoder The occurrence of two ICD344

codes together in clinical texts frequently indicates345

a simultaneous presence or a causal connection346

between specific diseases. This implies that the347

codes representing these interconnected diseases348

often manifest together within clinical notes. We349

employ a Graphormer (Ying et al., 2021) to in-350

corporate the co-occurrence relationships among351

ICD codes. Unlike the original GNN, Graphormer352

models graphs using Transformer layers (Vaswani353

et al., 2017) with spatial encoding and edge en-354

coding, which could effectively encode the struc-355

tural information (i.e., code co-occurrence) of a356

graph into the model. We create a directed code co- 357

occurrence graph G = (Y, E), where node set Y is 358

the labels and edge set E denotes the co-occurrence 359

relations. This graph is constructed using the code 360

co-occurrence matrix, which has been used as the 361

edge matrix for the graph. We create the code 362

co-occurrence matrix by using the correlated rela- 363

tionship between labels based on conditional proba- 364

bilities. This approach encapsulates the interdepen- 365

dence between various ICD codes in a quantifiable 366

manner, offering valuable insights into the under- 367

lying connections among disease codes within the 368

clinical texts. To be more specific, we calculate the 369

probability of occurrence of label yj when label yi 370

appears as follows: 371

P (yj | yi) =
Cyi∩yj
Cyi

(9) 372

where Cyj∩yi denotes the number of co- 373

occurrences of yi and yj , and Cyi is the number 374

of occurrences of yi in the training set. To facili- 375

tate graph construction, we binarize the correlation 376

probability P (yj | yi). This entails converting the 377

probability values into binary values, indicating 378

whether a correlation exists (or not) between two 379

labels. The operation can be written as: 380

Eij =

{
0, if P (yj | yi) < λ

1, if P (yj | yi) ≥ λ,
(10) 381

where E is the binary correlation matrix also known 382

as the edge set, and λ is the hyper-parameter thresh- 383

old to filter the noise edges. λ = 1 in our experi- 384

ment, which means that a edge is formed when the 385

two labels in each pair always appear together. 386

To encode the graph G, we first generate the 387

initial node features using the ICD full descriptors 388

for each code y via Clinical-Longformer: 389

y = {[CLS], x1, x2, ..., xn−2, [SEP]},
Hv = ClinicalLongformer(y),

(11) 390

where y represents a sequence of words in the label 391

descriptors of label y, Hv ∈ Rn×he , and he is 392

the hidden size. We use the hidden state of the 393

first token ([CLS]) for representing the initial node 394

feature denoted as H i
node for the ith label. 395

With all initial node features stacked as a ma- 396

trix V = {H1
node, H

2
node, ...,H

L
node}, where V ∈ 397

Rhe×L, a standard self-attention layer is then used 398

for feature migration. To leverage the structural 399

information, a novel spatial encoding method is 400
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used to modify the Query-Key product matrix AG401

in the self-attention layer:402

AG
ij =

(H i
nodeW

G
Q)(H

j
nodeW

G
K)T

√
he

+bϕ(yi,yj), (12)403

where W G
Q and W G

K are layer-specific weight matri-404

ces, and ϕ(yi, yj) is the spatial relation between yi405

and yj in graph G, and the function ϕ(·) is defined406

as the connectivity between the nodes in the G,407

which is the co-occurrence relation among labels.408

bϕ(yi,yj) is a learnable scalar indexed by ϕ(yi, yj),409

and shared across all layers. The attention score410

AG
ij then has been used to aggregate the multi-head411

attention for the final output:412

hl+1 = MHA(LN(hl)) + hl, (13)413

where LN denotes the layer normalization, MHA414

denotes the multi-head self-attention, hl and415

hl+1 ∈ RL×he indicate the node representation416

of the lth and (l+1)th layers. We use the last layer417

to represent the label feature denoted as HL. For418

more details on the full structure of Graphormer,419

please refer to the original paper (Ying et al., 2021).420

Contrastive Learning for Re-ranking Now we421

construct a code co-occurrence guided contrastive422

learning framework. Unlike supervised learning423

that aims to understand “what is what”, contrastive424

learning adopts a different perspective by learning425

“what is similar or dissimilar to what”. In our prob-426

lem setting, we focus on the distances between a427

clinical document and its associated ICD codes,428

rather than solely between samples themselves. We429

consider the ground truth labels as positive sam-430

ples, while the negative samples comprise all the431

other labels within the label space. Given HT , the432

representation for a clinical note d and the set of433

representations of its corresponding ICD codes de-434

noted as H+
L , we denote the representations of N435

negative ICD codes randomly chosen from the ICD436

codes of the documents in the batch (batch size is437

N ) which are not ICD codes of document d as H−
L .438

Contrastive learning aims to learn the effective rep-439

resentations by pulling d and H+
L together while440

pushing apart d and H−
L , represented as S and D,441

respectively, in the equation below. The contrastive442

loss can be defined as:443

L = −log
S/τ

S/τ +D/τ
, (14)444

where S = exp(
∑

c∈L+
L
cos(HT, c)/|H+

L |), D =445

exp(
∑

c′∈L−
L
cos(HT, c

′)/N), and τ is the temper-446

ature hyper-parameter.447

4 Experiments 448

4.1 Dataset and Pre-processing 449

We conduct our experiments on the publicly avail- 450

able benchmark MIMIC-III (Johnson et al., 2016) 451

dataset that contains a variety of patient data types, 452

including discharge summaries, demographic de- 453

tails, interventions, laboratory results, physiologic 454

measures, and medication information. Follow- 455

ing previous work, we are interested in the de- 456

identified discharge summaries with annotated 457

ICD-9 codes. There are 52,722 discharge sum- 458

maries and 8,922 unique ICD-9 codes in the dataset. 459

We mainly use three major data resources from 460

the dataset: (1) de-identified discharge summaries 461

(from the NOTEEVENTS table); (2) ICD-9 codes 462

(from DIAGNOSES_ICD and PROCEDURES_- 463

ICD tables); and (3) auxiliary knowledge includ- 464

ing DRG codes, CPT codes and drug prescrip- 465

tions (from DRGCODES, CPTEVENTS, and PRE- 466

SCRIPTIONS tables). 467

To preprocess the clinical notes, we first remove 468

all de-identified information, then replace punctu- 469

ation and atypical alphanumerical character com- 470

binations (e.g., ‘3a’, ‘4kg’) with white space, and 471

lowercase every token. We truncate the discharge 472

summaries at a maximum length of 4000 tokens. 473

We follow Mullenbach et al. (2018) to form two 474

settings: full codes (MIMIC-III-full) and top-50 475

frequent codes (MIMIC-III-top 50). In MIMIC- 476

III-full, there are 47,719 discharge summaries for 477

training, with 1,632 for validation, and with 3,372 478

for testing. 479

4.2 Implementation and Evaluation 480

We implement our model in PyTorch (Paszke et al., 481

2019) on a single NVIDIA A100 40G GPU. We use 482

the Adam optimizer and early stopping strategies 483

using Micro-F1 score over the validation set as 484

stopping criterion to avoid over-fitting. We set the 485

initial learning rate as 5e-5 with batch size 16. We 486

choose a learning rate scheduler which is warmed 487

up with cosine decay, and the warm up ratio is set 488

to 0.1. 489

For evaluating the performance of our proposed 490

model, we employ three commonly used metrics: 491

F1-score (Micro and Macro), AUC (Micro and 492

Macro), and precision at K (P@K). 493

5 Results and Discussion 494

In order to asses the efficacy of our proposed frame- 495

work, we compare with the existing state-of-the-art 496
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Models
MIMIC-III-full MIMIC-III-top 50

AUC F1 P@K AUC F1
P@5

Macro Micro Macro Micro P@8 P@15 Macro Micro Macro Micro
CAML (Mullenbach et al., 2018) 0.895 0.986 0.088 0.539 0.709 0.561 0.875 0.909 0.532 0.614 0.609

DR-CAML (Mullenbach et al., 2018) 0.897 0.985 0.086 0.529 0.690 0.548 0.884 0.916 0.576 0.633 0.618
MultiResCNN (Li and Yu, 2020) 0.910 0.986 0.085 0.552 0.734 0.584 0.899 0.928 0.606 0.670 0.641

LAAT (Vu et al., 2020) 0.919 0.988 0.099 0.575 0.738 0.591 0.925 0.946 0.666 0.715 0.675
Joint-LAAT (Vu et al., 2020) 0.921 0.988 0.107 0.575 0.735 0.590 0.925 0.946 0.661 0.716 0.671

EffectiveCAN (Liu et al., 2021) 0.915 0.988 0.106 0.589 0.758 0.606 0.915 0.938 0.644 0.702 0.656
MSMN (Yuan et al., 2022) 0.950 0.992 0.103 0.584 0.752 0.599 0.928 0.947 0.683 0.725 0.680

KEPTLongformer (Yang et al., 2022) - - 0.118 0.599 0.771 0.615 0.926 0.947 0.689 0.728 0.672
Ours 0.949 0.995 0.114 0.603 0.775 0.623 0.927 0.947 0.687 0.732 0.685

Table 1: Comparison to previous methods across three main evaluation metrics MIMIC-III dataset. Bold: the
optimal values.

(SotA) models, as outlined in Table 1. The top497

score for each metric is denoted in bold. As shown,498

our model outperforms in the majority of evalua-499

tion metrics, with the exception of Macro-AUC and500

Macro-F1 on the MIMIC-III-full and MIMIC-III-501

top 50. Notably, our model achieves comparable502

performance on Micro-F1 and Micro-AUC, and503

improves precision at K on both MIMIC-III-full504

and MIMIC-III-top 50. These results provide solid505

evidence to validate the efficacy of integrating aux-506

iliary knowledge in the retrieval stage and leverag-507

ing code co-occurrence guided contrastive learning508

in the re-ranking stage.509

As the occurrence frequencies of each ICD codes510

are imbalanced, our focus lies in assessing the effi-511

cacy of our model specifically on infrequently ap-512

pearing ICD codes. We categorize the ICD codes513

into four groups based on their occurrences in the514

training set: [0, 10), [10, 50), [50, 500), and [500,515

). Figure 3 illustrates the distribution of ICD codes516

and their occurrence percentages across the four517

categorized groups in the training set, which show518

that the distribution of ICD frequency is highly519

biased, conforming to a long-tail distribution. Fig-520

ures 3b and 3c present the performance of our521

model on MIMIC-III-full in comparison to the522

CAML baseline (Mullenbach et al., 2018) across523

the four ICD groups on Macro-AUC and Micro-F1,524

respectively. Our model demonstrates significant525

improvements for both frequent and infrequent la-526

bels on both metrics.527

To confirm the specific contributions of these528

modules in terms of enhancing both the effective-529

ness and robustness of the model, we conduct ab-530

lation studies with three different settings: (a) we531

examine the effectiveness of using auxiliary knowl-532

edge in the retrieval stage by removing the retrieval533

stage and rank the ICD codes on the whole label set;534

Methods
F1 P@K

Macro Micro P@8 P@15
Full Model 0.114 0.603 0.775 0.623

w/o auxiliary knowledge 0.097 0.579 0.748 0.587
embedded w/ Clinical-BERT 0.083 0.548 0.711 0.546

w/o Graphormer 0.102 0.583 0.753 0.591

Table 2: Ablation experiment results on the MIMIC-III-
full. Bold: the optimal values.

(b) we examine the influence of different embed- 535

ding methods by replacing the Clinical-Longformer 536

with Clinical-BERT; and (c) we test the effective- 537

ness of label embedding by replacing the encoding 538

of the label with the average of words embeddings 539

in the label descriptors. The experimental results 540

are shown in Table 2. We also conduct case studies 541

to qualitatively understand the effects of incorpo- 542

rating the label co-occurrence and the auxiliary 543

knowledge. Two have been presented in the Ap- 544

pendix A. 545

Effectiveness of Using Auxiliary Knowledge for 546

Retrieval We employ three distinct types of aux- 547

iliary knowledge in the retrieval stage: DRG codes, 548

CPT codes, and drug prescriptions. As shown in 549

Table 2, removing auxiliary knowledge leads to 550

a decline in performance, indicating the pivotal 551

role of the retrieval stage. This outcome further 552

provides evidence that external knowledge effec- 553

tively addresses the challenge presented by a large 554

pool of potential ICD codes. Through integrat- 555

ing external knowledge, the retrieval stage attains 556

the capability to refine the candidate list using the 557

co-occurrence relationships between ICD codes 558

and the auxiliary knowledge, thereby amplifying 559

both the efficiency and accuracy of the re-ranking 560

stage. The selection of an appropriate candidate 561

list for a given medical record hinges upon a hyper- 562

parameter, specifically the threshold ρ governing 563

the co-occurrence between auxiliary knowledge 564

7



Figure 3: (a) ICD code distribution. (b) Macro-AUC performance comparison of our model and CAML on ICD
codes at different frequency. (c) Micro-F1 performance comparison of our model and CAML on ICD codes at
different frequency.

and ICD codes. The choice of ρ determines the565

candidate numbers that implicitly affect the overall566

performance of the model. Setting ρ = 0.005, the567

candidate list guarantees inclusion of 99.22% of568

the gold-standard ICD codes, resulting in an aver-569

age of 1,460 codes within the subset. Notably, this570

accounts for approximately one-sixth of the com-571

plete code set. A further reduction using BM25572

limits candidate list to 1299 on average.573

Comparison of Clinical-Longformer and574

Clinical-BERT Increasing the maximum token575

limit is important in the context of clinical notes576

analysis as clinical texts are lengthy. Specially,577

in the MIMIC-III dataset, the average length of578

the discharge summaries is 1,596. Given the579

substantial token volume within the clinical notes,580

encoding a maximum number of tokens prior to581

downstream analysis becomes a pivotal require-582

ment, which facilitates robust and meaningful583

subsequent analysis. To test the effectiveness584

of using longer sequences, we compare the585

model performance of Clinical-Longformer586

and a BERT-based pre-trained language model587

(i.e., Clinical-BERT) which can only encode a588

maximum of 512 tokens. As shown in Table 2,589

Clinical-Longformer substantially outperforms590

Clinical-BERT, indicating that the importance of591

maximum token limit over language models in592

automatic medical coding task.593

Effectiveness of Learning Label Features Using594

Code Co-occurrence The graph structure has595

been shown to be effective in modeling code corre-596

lations and the Graphormer efficiently learns code597

representations. The findings presented in Table 2598

highlight the affirmative impact of integrating code599

co-occurrence into label representations. By using 600

Graphormer, the model effectively captures and 601

exploits the intricate connections and interdepen- 602

dencies among the labels, thereby improving the 603

overall performance. This indicates that incorpo- 604

rating code co-occurrence information within the 605

Graphormer empowers the model to gain insights 606

from the collaborative behaviours of the labels, con- 607

sequently facilitating a more holistic comprehen- 608

sion of the underlying label co-relations. 609

6 Conclusion 610

In this paper, we regard the medical coding task 611

as a recommendation problem and present a novel 612

multi-stage retrieve and re-rankframework. The 613

primary objective of the proposed framework is 614

twofold: to construct a curated list of ICD codes 615

and subsequently to further refine the candidate list 616

for a given medical record. Specifically, we first 617

conduct a two-step retrieval process, incorporating 618

auxiliary knowledge and the BM25 algorithm. This 619

approach retrieves of a concise subset of the candi- 620

date list, mitigating the challenges of a very large 621

and imbalanced label distribution. We then use a 622

re-ranking model to refine the previously obtained 623

candidate list, which employs code co-occurrence 624

guided contrastive learning. Experimental results 625

demonstrate that our proposed framework outper- 626

forms the previous SotA, which suggests that it pro- 627

vides more precise and contextually grounded ICD 628

recommendations for the given medical records. 629

In the future, our proposed framework may be ex- 630

tended with more external knowledge such as the 631

Unified Medical Language System (UMLS) and 632

code synonymy. 633

8



Limitations634

Our usage of auxiliary knowledge is limited using635

external knowledge including DRG codes, CPT636

codes, and drug prescriptions only. Other knowl-637

edge including disease-symptom, disease-lab rela-638

tions, Unified Medical Language System (UMLS),639

and others could also be potentially useful for the640

auto ICD coding task.641

Our study is constrained by its evaluation limited642

to MIMIC-III-full and MIMIC-III-top 50 datasets,643

primarily concentrated on common disease. To644

comprehensively assess the model’s performance645

on rare diseases, future work could benefit from a646

curated list of rare diseases validated by domain647

experts.648

Ethics Statement649

We are using the publicly available clinical dataset650

MIMIC-III, which contains deidentified patient in-651

formation. We do not see any ethics issue here in652

this paper.653
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A Case Studies781

We conducted case studies to qualitatively explore782

the impacts of integrating label co-occurrence (il-783

lustrated in Figure 4) and auxiliary knowledge (de-784

picted in Figure 5). We compared the full model785

with models that did not integrate the label co-786

occurence and the external knowledge on the pre-787

dictions of two patient records. For each patient,788

we present the discharge summary, ground truth789

ICD codes, label co-occurrence information, or790

auxiliary knowledge information, along with the791

predicted ICD codes from the full model and ab-792

lated models.793

Figure 4: Case study on the effectiveness of incorporat-
ing label co-occurrence. Correctly predicted labels are
marked in green and the incorrect ones are marked in
red.

In Case 1, the ground truth ICD codes include 794

‘785.51 Cardiogenic shock’ and ‘V49.86 Do not 795

resuscitate status’ are not explicitly mentioned in 796

the discharge summary. The observed label co- 797

occurrence between ‘427.5 Cardiac arrest’ and 798

‘785.51 Cardiogenic shock’, as well as co-relation 799

between ‘96.71 Continuous invasive mechanical 800

ventilation for less than 96 consecutive hours’ 801

and ‘V49.86 Do not resuscitate status’ provide 802

strong indicator suggesting the presence of the 803

codes ‘785.51’ and ‘V49.86’. Without the label 804

co-occurrence signals, the ablated model missed 805

the predictions of codes ‘785.51’ and ‘V49.86’, 806
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indicating a failure to leverage latent label informa-807

tion.808

In Case 2, the patient has been diagnosed with809

‘244.9 Unspecified acquired hypothyroidism’ with810

less explicit information in the discharge summary.811

Notably, the presence of the medication ‘Levothy-812

roxine’ in the drug prescription, an element of813

auxiliary knowledge, suggests that the patient is814

likely to have acquired hypothyroidism. The ab-815

lated model, lacking of the auxiliary knowledge,816

misses the prediction of code ‘244.9’. From the817

aforementioned cases 1 and 2 highlight the benefits818

of incorporating label co-occurrence and auxiliary819

knowledge, respectively.

Figure 5: Case study on the effectiveness of incorporat-
ing auxiliary knowledge. Correctly predicted labels are
marked in green and the incorrect ones are marked in
red.
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