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Abstract

The Incremental Named Entity Recognition
(INER) task aims to update a model to extract
entities from an expanding set of entity type
candidates due to concerns related to data pri-
vacy and scarcity. However, conventional incre-
mental learning methods for INER often suf-
fer from the catastrophic forgetting problem,
which leads to the degradation of the model’s
performance on previously encountered entity
types. In this paper, we propose a parameter-
efficient dynamic prefix method and formalize
INER as a unified seq2seq generation task. By
employing the dynamic prefix as a task instruc-
tor to guide the generative model, our approach
can preserve task-invariant knowledge while
adapting to new entities with minimal parame-
ter updates, making it particularly effective in
low-resource scenarios. Additionally, we de-
sign a generative label augmentation strategy
and a novel self-entropy loss to balance the sta-
bility and plasticity of the model. Empirical
experiments on NER benchmarks demonstrate
the effectiveness of our proposed method in ad-
dressing the challenges associated with INER.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal problem in information extraction tasks. Tra-
ditional NER systems typically require a large
amount of annotated training data encompassing
all predefined entity types. However, as new entity
types emerge, retraining the entire model becomes
impractical. Furthermore, obtaining sufficient su-
pervised data for training is challenging due to
concerns related to data privacy and scarcity (Ma
et al., 2020). Consequently, continual learning (or
incremental learning) for NER has been proposed
(Monaikul et al., 2021) as a solution to train the
model incrementally on new datasets labeled exclu-
sively with new entity types, addressing the issues
associated with retraining and data availability.
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Figure 1: Challenges in class-incremental NER. At the
current incremental step ¢, the data is only annotated
with the current entity type [MISC], while previous
entity types [LOC] and [PER] are annotated with [O].
[TIME] is a future entity type. “Current Pred” indicates
that the model forgets previous entity type [LOC] after
training at step .

Continual learning aims to learn a sequence of
tasks incrementally which mirrors the human ca-
pability of learning and accumulating knowledge
continually without forgetting previously learned
knowledge and and leveraging it to facilitate learn-
ing new tasks (Ke and Liu, 2022). However, catas-
trophic forgetting (McCloskey and Cohen, 1989)
poses a significant challenge in continual learning
where the model gradually forgets previous knowl-
edge in the current learning step. In continual learn-
ing for NER, the information of previous and future
entity types is missing in the current step. Ma et al.
(2023) point out that the majority of prediction er-
rors of INER stem from the confusion between
pre-defined entities and other entities (“O”). As
shown in Figure 1, the model learned to recognize
“PER” (person) and “LOC” (location) in one step
would be trained to annotate “PER” or “LOC” as
“0O” in current and subsequent steps. At step ¢, only
the entity type “MISC” (miscellaneous) is labeled,
which leads to the wrong prediction of the entity
“Croatia”. This indicates that the model has for-
gotten the entity information of “LOC” learned in
previous tasks.

Directly training the model on the new data
will exacerbate this problem with background shift



(Zhang et al., 2023), where old and future entity
types are labeled as the non-entity type in the cur-
rent task. This results in a significant performance
drop on test data containing all encountered enti-
ties. To address this, we conduct an experiment to
investigate the catastrophic forgetting problem in
NER. As illustrated in Figure 2, we train our model
with three different settings. The multi-task learn-
ing setting (the green line) serves as an upperbound
since all the seen entity types are annotated in the
new data. The naive method involves directly fine-
tuning the model on the new task data (the blue
line), leading to a sharp decline in F1 score for
old entities. In contrast, when trained with con-
tinual learning methods, the model performance
only decrease slightly compared to the upperbound,
effectively alleviating the catastrophic forgetting
problem.

Previous methods (Monaikul et al., 2021; Zheng
et al., 2022; Zhang et al., 2023) treat INER as a se-
quence labeling classification task, which may en-
counter limitations, particularly in the era of Large
Language Models (LLMs). Following traditional
NER approaches, these methods use a text encoder
to extract context representations, followed by a
classification layer to assign each token an entity
type label. When encountering new entity types,
they need to expand the entity class set and ini-
tialize a new classification layer with old rows un-
changed. Consequently, these approaches need to
modify the model architecture, and both the param-
eters of the entire model and the classification layer
will be updated. Additionally, though sequence
labeling methods have achieved outstanding per-
formance on the INER task, they struggle to rec-
ognize nested entities and require task-specialized
solutions or model modifications (Yan et al., 2021).

Motivated by them, in this paper, we formalize
INER as a seq2seq generation task, which not only
aligns well with the nature of NER but also facili-
tates prompt tuning in a more intuitive manner. Our
proposed method leverages a parameter-efficient
dynamic-prefix strategy for incremental learning
in INER. By dynamically appending prefixes as in-
structors during the incremental process, our model
inspires the model to acquire new knowledge while
retaining old prefixes to maintain stability. Differ-
ent from prior INER methods, all prefixes are plug-
gable, and no modifications are applied on the base
model, making our method more practical. More
importantly, the generative nature of the proposed
model, as opposed to relying solely on classifica-

tion, facilitates the adaptation to new entities while
preserving task-invariant knowledge, especially in
low-resource scenarios.

Specifically, we integrate manually constructed
task instructions and entity type options in the input
sentence (as shown in Figure 3). Then we introduce
dynamic prefix as an instructor to guide the frozen
Pre-trained Language Model (PLM) in learning
new entity types incrementally. When training the
model at each step, we dynamically increase the
number of prefixes, where the newly appended pre-
fixes are the only trainable parameters. This results
in significantly fewer parameters to fine-tune com-
pared to prior INER methods. During inference, all
prefixes collaborate to generate a sequence of entity
types from current options and their corresponding
entities. Moreover, we integrate the generation-
based label augmentation strategy and self-entropy
loss to achieve a more refined equilibrium between
stability and plasticity.

Our main contributions are summarized as fol-
lows:

* We propose a dynamic prefix method to retain
task-invariant capabilities and preserve task-
specific knowledge in INER.

* As an instructor, our proposed dynamic prefix
method inspires the seq2seq model, demon-
strating robustness and practicality, particu-
larly in more realistic low-resource setting.

* Empirical experiments on INER benchmark
demonstrate the effectiveness of our proposed
DPI. Notably, our method based on generation
architecture achieves better performance with
significantly fewer fine-tuned parameters than
prior sequence labeling INER methods.

2 Related Work

2.1 Class-Incremental Learning

Prior approaches to class-incremental learning can
be divided into three categories: (1) Architecture-
based methods dynamically adjust the model ar-
chitecture to learn new knowledge while mitigat-
ing forgetting of previously learned tasks (Chen
et al., 2016; Rusu et al., 2016; Mallya et al., 2018).
(2) Regularization-based methods constrain the
updates of parameters that are important to the
learned tasks to retain previous knowledge (Li and
Hoiem, 2017; Kirkpatrick et al., 2016; Aljundi
et al., 2018). (3) Rehearsal-based methods keep
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Figure 2: An illustration of catastrophic forgetting. We
conduct the comparison with three different settings on
the CoNLLO3 (Sang and De Meulder, 2003) dataset.

exemplars from previous tasks in memory to al-
leviate forgetting (Lopez-Paz and Ranzato, 2017;
Chaudhry et al., 2019; de Masson d’ Autume et al.,
2019).

2.2 Prompt Tuning in Continual Learning

There have been some explorations in using
prompts to enhance performance in continual learn-
ing of image classification. As a lightweight alter-
native to fine-tuning, prompt-based methods often
learn a prompt pool or a series of soft prompts to
instruct the model while keeping the base model
frozen (Wang et al., 2022b;Razdaibiedina et al.,
2023;Wang et al., 2022a). These prompts serve
as both task-invariant and task-specific instruc-
tions. When learning new tasks, the prompt pool
is updated, or new prompts are introduced, ensur-
ing the preservation of knowledge from previous
tasks. Some works have already demonstrated that
prompts can alleviate the problem of catastrophic
forgetting to a certain extent (Smith et al., 2023).
For instance, Razdaibiedina et al. (2023) propose
Progressive Prompts and demonstrate their efficacy
across 15 text classification tasks.

2.3 Incremental Named Entity Recognition

Monaikul et al. (2021) introduce the incremental
learning paradigm into NER (i.e., INER) and pro-
pose AdANER and ExtendNER to alleviate catas-
trophic forgetting. L&R (Xia et al., 2022) adopts a
replay-based approach to synthesize samples of old
entity types. CFNER (Zheng et al., 2022) and RDP
(Zhang et al., 2023) focus on extracting information
from non-entity type and task relationships. Ma
et al. (2023) proposes an entity-aware contrastive

learning method that adaptively detects entity clus-
ters in the “O” class. In line with CFNER and RDP,
our method is rehearsal-free and do not keep any
exemplars from previous tasks.

2.4 Generation based Named Entity
Recognition

A seq2seq architecture is introduced with a pointer
mechanism in Yan et al. (2021) to generate en-
tity index sequences. Lu et al. (2022) introduce a
universal information extraction model based on
a unified generation structure. Chen et al. (2023)
propose a collaborative prefix method based on
the generative paradigm for knowledge transfer.
However, in INER, it is essential to consider not
only the performance in the target domain but also
across all tasks. As a consequence, these methods
show limited performance when directly applied to
INER since they are not designed for incremental
scenarios.

3 Methodology

In this section, we introduce our dynamic prefix
method designed to facilitate INER by seq2seq
generation framework. We start with providing a
formalized definition of INER in Section 3.1, fol-
lowed by the working mechanism of prefix tuning
for NER in Section 3.2. In Section 3.3 we propose
a dynamic prefix method as a task-invariant and
task-specific instructor based on seq2seq genera-
tion framework. Finally, Section 3.4 outlines the
strategy employed to achieve a balance between
stability and plasticity of INER.

3.1 Problem Definition

Following previous works (Monaikul et al.,
2021;Xia et al., 2022;Zheng et al., 2022;Zhang
et al., 2023;Ma et al., 2023), we focus on class-
incremental learning on NER (INER). Formally,
INER contains N incremental steps, each associ-
ated with its corresponding task {71, 72,..., Tn }.
Every task has its own dataset {Dy,Ds,...,Dn}.
Specifically, the task at the ¢-th step can be de-
scribed as T; = (D", Dfev Diest cpew cold),
where C;/*“" is the label set (i.e., new entity types)

of the current task (e.g., {“PER”, “ORG”}) and
t—1

C'd = |J Cre® represents the label set contain-
i=1

ing all seen entity types in old tasks. Each task

has its unique training set D} = {X],Y/}"

: ) . =
where X7 = {aJ',... 27"} (with [ as the se-



Instruction: Please extract entities and
their types from the input sentence
according to the entity type options.

Entity type options: [Ent] location [Ent]
misc [Ent] organisation [Ent] person

Input sentence: Attacking midfielder
Adrian Ilie, who recently moved from
Steaua to Turkish club Galatasaray, is
ruled out after two yellow-card offences.

Prefixes

UL

( person: Adrian Ilie
Seq2Seq organisation: Steaua
Model misc: Turkish
L organisation: Galatasaray

Figure 3: An illustration of the unified seq2seq approach for NER.

quence length) and Ytj = {yt"l, . ,yf’l},yf’k €
Cr*(k = 1,...,1) are annotated with only the
new entity types or “O”. At step ¢, with the model
M;_q trained at step t — 1, we update M;_ 4
at 7; in order to train a model M; which is ex-
pected to perform well on all seen entity types
Cf,ll — C;new U Cfld.

3.2 Prefix Tuning for Seq2Seq Generation in
Named Entity Recognition

Prompt-based learning has been widely applied
in NLP tasks, especially with the rise of LLMs.
By providing manually designed hard prompts or
attaching a set of soft prompts, they can serve
as instructions for Pre-Trained Language Models
(PLMs) in downstream tasks.

Specifically, given the input (X7,Y7) € D,
a sequence of soft prompts can be prepended to
each layer of the transformer to obtain the input
as: Z/ = [PREFIX; X/; PREFIX’; Y7] (Li and
Liang, 2021). The activations of the prefix are
always in the left context and will therefore affect
subsequent activations to the right.

Based on prompt-based learning, we tackle the
NER problem in a seq2seq paradigm, which of-
fers an intuitive framework for integrating prompt-
based techniques. Figure 3 shows the unified
seq2seq procedure. The trainable prefixes serve as
a guide for the seq2seq model, prompting it to ex-
tract all entities and the corresponding entity types
in the input sentence. Formally, given the manually
constructed task instruction (s) specific to NER, at
each step ¢ the model takes the input sentence X,
with the entity type options (o;), and generates a
sequence ¥; which is expected to contain all entity
types and their corresponding entities:

Vi = LMy g(s; 045 Xy), (D

where the language model parameters ¢ are frozen

and the prefix parameters 6 are the only trainable
parameters in our continual steps. Note that we can
obtain the label sequence §j; by post-processing the
original output y,.

3.3 Dynamic Prefix

When it comes to the incremental setting, the ob-
jective of the seq2seq INER is:

N
maxy Y logp(ylz.6.0)  (2)

t=1 (z,y)eT:

To adapt our method to the incremental set-
ting, we propose a Dynamic Prefix method as il-
lustrated in Figure 4. We dynamically increase
the number of prefixes which are expected to learn
task-specific knowledge. Simultaneously, by con-
catenating newly added prefixes with the existing
ones, we prevent forgetting knowledge pertaining
to previous entity types, while adapting to new enti-
ties with minimal parameter updates and maximal
knowledge acquisition. Specifically, when train-
ing the incremental task 7;, a set of new prefixes
P; € RIF1x? with length of |L;| parameterized
by 6, are inserted into each layer while keeping
the LM parameters (¢) and all old prefix param-
eters (f1,...,60;_1) frozen. The objective of our
dynamic prefix approach at step ¢ becomes:

max > logp(ylz, é.01,....0)  (3)

(z,y)€T:

As shown in Figure 4, we concatenate the new
prefixes with the old prefixes along the prefix length
dimension. Then the entire set of prefixes P is split
into P; and P,,, which are concatenated with the
original keys K and values V to compute each head
vector. The computation of the i-th head vector
head; can be written as:
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Figure 4: The overall architecture of our proposed DPI for INER. Here “+” denotes the concatenation operation.

head; = Attn(zW. ", [PV, cw V], [P cw ) )

The activation vector h; € R at time step ¢ is
computed as:

-]

where P € RI“1%4 is a partially trainable matrix
with L = [Ly;...;Lg;...; Ly]. Ly denotes the
sequence of prefix indices of new prefixes at incre-
mental step k.

Then we optimize the new prefix parameters 6;
by minimizing the negative log-likelihood over the
training set D}" of task 7;.

Pi, ],
LMy (Zi, hes),

ifi € L
otherwise

&)

Lan(6¢)

>

(z,y)eDE”

Ing(yl[Pt7 o '7P17$]7¢7 917 .. '79t) (6)

where the only trainable parameters are 6, related
to new prefixes.

3.4 Equilibrium Between Stability and
Plasticity

The entities annotated with “O” at the current step

may belong to the previous entity types C{'¢ or
N

the future entity types |J C*. Obviously, the
i=t+1
future entity types cannot be seen in the current

task. For entities that belong to Cfld, we employ a
generation-based label augmentation strategy. This
strategy leverages the capabilities of the old model.
By leveraging the old entity type information con-
tained in tokens annotated with “O”, the stability
is enhanced when learning new entity types. Be-
fore training each task, we utilize the old model
M1 to predict a “pseudo” entity type for entities
annotated with “O”. The augmented labels are then
fused with the current labels for training the current
task. As mentioned above, the original true label of
the current task is denoted as Y = {37!, ... "'}
To obtain the augmented label gj{ ¥ for the k'™ token
of the j*" input, we employ the strategy as follows:

~9,k .o gk «ry
ik ) O, ifylt =0
Y =9 ik . (N
y;, otherwise
where
g)i;l = argmax My_1(s;04—1; Xy) ®)

0€0t_1

After applying the label augmentation strategy,
we obtain the final training set D’ " for the current
step t: D'V = {X], Y/ "_;. The dynamic pre-
fix approach and label augmentation strategy are
expected to enhance the stability of our model.

To further extend the model’s plasticity, we min-
imize the self-entropy loss to promote the model’s



confidence in learning the new entity types:
1<
_ N N
Lse=—7 g_l Y~ logy ©)

Here ¢/* denotes the output probability distribution.
With the augmented labels, the Equation (6) can
be formulated as follows:

Lan(6y)

X

(z,y)€DyPT

logp(y|[Ps,...,P1,2],¢,01,...,0¢)

(10)

In summary, the objective function of our pro-
posed method is:

»Coverall = *Cnll + )\Ese (11)

4 Experiment

4.1 Experimental Settings

Datasets. We conduct experiments on two widely
used NER dataset: CoNLLO3 (Sang and De Meul-
der, 2003), 12B2 (Murphy et al., 2010) and
OntoNotes5 (Hovy et al., 2006) for evaluating the
effectiveness of our method. The dataset statistics
are shown in Table 8 in Appendix A. Following
CFNER (Zheng et al., 2022), for each dataset, a
greedy sampling strategy is adopted to partition
the training set into disjoint slices to better simu-
late realistic scenarios. Each slice corresponds to
an incremental step. Specifically, F'G entity types
are used to train the initial model, and PG entity
types are used for training in each subsequent incre-
mental step. For example, under the “FG-8-PG-2”
setting, 8 entity types are annotated in the first step
and 2 entity types are annotated in each subsequent
step. After dividing the original dataset into slices,
we utilize UIE! for data pre-processing. Finally,
the data annotated with “BIO” schema is converted
into the UIE format (Lu et al., 2022) (i.e., the “Data
Format” module in Figure 4) for seq2seq genera-
tion.

Training. Different from previous works (Zheng
et al.,, 2022;Zhang et al., 2023) using BERT-
base (Devlin et al., 2018) for INER, we use T5-
base (Raffel et al., 2019) as the backbone model
for INER via seq2seq generation. Instead of fine-
tuning almost all of the parameters, including the

"https://github.com/universal-ie/UIE

backbone model, at each incremental step as in pre-
vious methods, our dynamic prefix tuning method
keeps the parameters of the backbone model frozen.
The pluggable new prefixes are the only trainable
parameters (approximately 0.1% of the backbone
model). The implementation details can be found
in Appendix B.

Baselines. We compare our method (DPI) with
representative INER methods, including Extend-
NER (Monaikul et al., 2021), CFNER (Zheng et al.,
2022), and RDP (Zhang et al., 2023). Additionally,
PODNet (Douillard et al., 2020) and LUCIR (Hou
etal., 2019) are adapted to INER scenario by Zheng
et al. (2022). We re-implement RDP which is the
previous state-of-the-art INER method, while the
results of the other baseline” are directly cited from
Zheng et al. (2022).

5 Results and Discussion

5.1 Main Results

We report the results of our proposed method (DPI)
on the CoNLLO03 (Sang and De Meulder, 2003) and
12B2 (Murphy et al., 2010) datasets. We conduct
experiments under INER settings and present the
quantitative task-wise performance compared to
the baselines.

As shown in Table 1, the Full Data results,
where all the seen entity types are annotated, are
relatively stable, serving as an upperbound of our
method. Directly Fine-tune represents the naive
method where no incremental techniques are uti-
lized, resulting in a sharp decline in performance.
However, all the incremental learning methods
show varying degrees of forgetting during the in-
cremental process. Compared to the previous
SOTA baselines CFNER (Zheng et al., 2022) and
RDP (Zhang et al., 2023), our method demonstrates
improvements in both average and task-wise results
of CoNLLO03 (Sang and De Meulder, 2003) under
the FG-1-PG-1 INER setting.

To simulate a realistic scenario allowing the
model to acquire sufficient “base knowledge” be-
fore incremental learning, we conduct experiments
where we initially learn half of all entity types. The
results of CoNLLO3 (Sang and De Meulder, 2003)
under FG-2-PG-1 and I12B2 (Murphy et al., 2010)
under FG-8-PG-2 are summarized in Table 2 and
Table 3, demonstrating an improvement of approx-

*Please refer to Appendix C of CENER (Zheng et al., 2022)
for a more detailed introduction of the baselines and greedy
sampling strategy.
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Task ID =1 =2 =3 =

Method Trainable Param. | [LOC] | +[MISC] | +[ORG] | +[PER] &

Full Data 0.1% of 220M | 86.14 | 8799 | 8798 | 89.97 | 88.02

PODNet (Douillard et al., 2020) 8506 | 1113 | 24.16 | 2549 | 36.74
LUCIR (Hou et al., 2019) 8506 | 7385 | 6281 | 7378 | 74.15
ExtendNER (Monaikul et al., 2021)  ~100% of 110M | 8596 | 7442 | 6927 | 7578 | 76.36
CENER (Zheng et al., 2022) 8506 | 8063 | 7610 | 80.95 | 80.91
RDP*} (Zhang et al., 2023) 8453 | 7731 | 7667 | 7922 | 79.43
DPI (Ours) 86.14 | 8190 | 7662 | 80.08 | SLI9

Directly Fine-tune ~0.1%0f 220M | ¢4 | 3583 | 4185 | 4197 | 5145

Table 1: Main results of the proposed method and baselines under the FG-1-PG-1 setting of the CoNLLO03

dataset (Sang and De Meulder, 2003). [LOC], [MISC],

[ORG], and [PER] denote Location, Miscellaneous,

Organization, and Person, respectively. Micro-F1 score is reported. * represents results from our re-implementation.
T represents results without using knowledge distillation loss during continual learning. Other baseline results are

directly cited from CFNER (Zheng et al., 2022).

Task ID t=1 =2 t=3 Av
Method Trainable Param. | [LOC], [MISC] | +[ORG] | +[PER] &
PODNet (Douillard et al., 2020) 87.21 46.14 44.24 59.12
LUCIR (Hou et al., 2019) 87.21 74.59 80.02 80.53
ExtendNER (Monaikul et al., 2021)  ~100% of 110M 87.21 67.93 74.84 76.66
CFENER (Zheng et al., 2022) 87.21 76.23 79.05 80.83
RDP*{ (Zhang et al., 2023) 86.05 78.48 82.45 82.33
DPI (Ours) ~0.1% of 220M 88.27 81.14 78.69 82.70

Table 2: Comparison under the FG-2-PG-1 setting of the CoNLLO03 dataset (Sang and De Meulder, 2003).

imately 0.4% and 5.9% respectively compared to
RDP (Zhang et al., 2023). To delve deeper into the
performance of DPI, we conduct experiments with
a broader range of incremental steps. As depicted
in Figure 5, under the FG-2-PG-2 setting of I12B2,
a total of 8 steps are considered. The performance
of CFNER (Zheng et al., 2022) declines signifi-
cantly with deeper incremental steps. However,
our method consistently outperforms the previous
SOTA method RDP (Zhang et al., 2023) throughout
the incremental steps. Figure 5 indicates that our
method outperforms significantly with the previous
methods when encountering more entity types and
incremental steps. These quantitative results indi-
cate that our proposed method can achieve better
performance and alleviate catastrophic forgetting
by fine-tuning significantly fewer parameters.

90
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Figure 5: Task-wise results compared to baselines on
the 12B2 (Murphy et al., 2010) dataset under the FG-2-
PG-2 INER setting.

5.2 Low-resource Settings

Due to concerns related to data privacy and scarcity
in realistic applications, INER often encounters
low-resource scenarios. To further investigate the
effectiveness of our method regarding the data
scale, we conduct experiments on various datasets
with low-resource settings. We report the results
on the OntoNotes5 dataset (Hovy et al., 2006) in
Table 4. The results on the CoNLLO3 (Sang and
De Meulder, 2003) and 12B2 (Murphy et al., 2010)
datasets are shown in Table 5 and Table 6, respec-
tively. For each incremental step, we respectively
sample 5% and 10% of the training set while adopt-
ing a greedy sampling strategy to partition the train-
ing set. We compare our DPI method with the pre-
vious SOTA approach RDP (Zhang et al., 2023). In
the low-resource scenario with only 10% of the data
available, our DPI method improves over RDP by
approximately 1.8% and 13.6% on OntoNotes5 and
ConLLO03, respectively. In a more stringent low-
resource scenario, our method also outperforms
RDP by approximately 3.7% and 12.2%. On the
12B2 dataset, RDP consistently fails to recognize
almost all entities at every step. A possible reason
is that it fine-tunes nearly all parameters during
the incremental process, which hampers its ability
to extract useful information when training data is
limited. In comparison, our approach maintains the
ability to identify entities effectively, by fine-tuning



Method Trainable Param. t=1 t=2 t=3 t=4 t=5 Avg.

PODNet (Douillard et al., 2020) 89.53 | 28.50 | 22.89 | 21.86 | 18.32 | 36.22
LUCIR (Hou et al., 2019) 90.23 | 72.0 | 63.18 | 60.96 | 56.32 | 68.54
ExtendNER (Monaikul et al., 2021)  ~100% of 110M | 89.39 | 53.84 | 42.25 | 39.31 | 36.47 | 52.25
CFNER (Zheng et al., 2022) 89.39 | 70.29 | 64.1 | 62.01 | 59.58 | 69.07
RDP#*{ (Zhang et al., 2023) 90.94 | 77.86 | 69.16 | 63.95 | 53.36 | 71.05
DPI (Ours) ~0.1% of 220M | 91.43 | 83.47 | 73.15 | 68.34 | 68.5 | 76.98

Table 3: Comparison with baselines under the FG-8-PG-2 setting of the I2B2 dataset (Murphy et al., 2010). Micro-F1
score is reported. * represents results from our re-implementation. T represents results without using knowledge
distillation loss during continual learning. Other baseline results are directly cited from CFNER (Zheng et al., 2022).

significantly fewer parameters at each step, and ef-
fectively capturing the patterns of different entity
types in low-resource scenarios. These quantitative
results demonstrate the robustness of our approach
in low-resource scenarios.

without the self-entropy loss term. By employing
LAS and introducing the self-entropy loss, we fur-
ther achieve an equilibrium between stability and
plasticity. Removing any of them will lead to a
performance decline.

Rate Method t=1 t=2 t=3 =4 =5 =6 Avg. CoNLLO3 12B2
DPL(Ours) 79.53 7554 7202 7644 72.61 7059 74.46 Method
10% RDP 7850 7479 7092 7343 70.10 6825 72.67 FG-1-PG-1 FG-2-PG-1 FG-2-PG-2 FG-8-PG-2
DPI (Ours) 72.79 7033 6581 66.58 66.09 6549 67.85 DPI (Ours) 31.19 $2.70 77.64 76.98
5% RDP 6870 6201 6228 6532 65.17 6150 64.16 w0 DP 76,43 7933 7128 72,64
Table 4: Performance in low-resource conditions on wio Ly 80.96 81.23 76.02 74.80
wioLAS  59.45 61.40 54.26 57.03

the OntoNotes5 (Hovy et al., 2006) dataset under the
FG-8-PG-2 INER setting. The task-wise and average
Micro-F1 scores are reported.

Method t=1 =2 t=3 t=4
DPI (Ours) 60.63 50.85 55.07 66.90
10% RDP 52.81 4527 3503 4585

DPI (Ours) 55.67 S51.17 55.05 61.92
5% RDP 54.00 3627 39.73 45.03

Rate Avg.
58.36
44.74
55.95

43.76

Table 5: Performance in low-resource conditions on the
CoNLLO03 (Sang and De Meulder, 2003) dataset under
the FG-1-PG-1 INER setting.

Rate  Method t=1 t=2 t=3 t=4 t=5  Avg.
DPI(Ours) 82.85 7140 5695 48.86 42.76 60.56
10%  Rpp 121 004 032 028 023 042
DPI(Ours) 7743 6528 49.12 40.65 38.16 54.13
5% RDP 121 042 031 006 015 043

Table 6: Performance in low-resource conditions on the
12B2 dataset (Murphy et al., 2010) dataset under the
FG-8-PG-2 INER setting.

5.3 Ablation Studies

We conduct ablation studies to analyze the factors
influencing the performance of our method. As
shown in Table 7, all ablation factors degrade the
INER performance of DPI. DPI w/o DP represents
our method without the dynamic prefix strategy,
where a fixed size of prefixes are trained throughout
the incremental process. The results indicate that
the fixed size of prefixes lack the continual ability,
which is exacerbated with more incremental steps.
DPI w/o LAS means no label augmentation strat-
egy is employed and w/o L. indicates the result

Table 7: Ablation study of our DPI method un-
der the FG-1-PG-1 and FG-2-PG-1 settings of the
CoNLLO3 (Sang and De Meulder, 2003) dataset and the
FG-2-PG-2 and FG-8-PG-2 settings of the [2B2 (Mur-
phy et al., 2010) dataset. The average Micro-F1 score is
reported.

6 Conclusion

In this work, we introduce the dynamic prefix
method and formalize INER as a seq2seq genera-
tion task. By employing the dynamic prefix based
on a seq2seq generation framework, our method re-
tains task-invariant capabilities and preserves task-
specific knowledge in INER. Additionally, we in-
tegrate the generation-based label augmentation
strategy and self-entropy loss to achieve a refined
equilibrium between stability and plasticity. Empir-
ical experiments on CoNLLO03 and I2B2 datasets
on INER benchmark demonstrate the effectiveness
of our proposed method. We further evaluate our
method on various datasets with low-resource set-
tings, and the results indicate the robustness and
practicality of our method in more realistic scenar-
ios with limited training data. This work provides
a potential direction that addresses the INER task
more naturally in a generative manner.

7 Limitations

The limitations of this work include: (1) More com-
plex NER problems are not considered in this work,
such as coarse-to-fine INER. Our approach is not



designed to address the problem that a new entity
type might be entailed in an old entity type, for
example, “Doctor” emerging after “Person”. Addi-
tionally, while our seq2seq generation framework
is capable of addressing nested or discontinuous
NER problems, we do not evaluate its performance
on nested or discontinuous NER datasets due to
the absence of suitable split algorithms for the in-
cremental setting. (2) Our proposed label augmen-
tation strategy relies on the old model to predict
“pseudo” entity types, which may lead to error prop-
agation. More refined label augmentation strategies
will be explored in our future work.
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A Dataset Statistics

Dataset Entity Type

LOCATION, MISC, ORGANISATION, PERSON
AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,
IDNUM, MEDICALRECORD, ORGANIZATION,PATIENT,
PHONE, PROFESSION, STATE, STREET,USERNAME, ZIP
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,
LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT,
PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

#Entity Type # Sample
21k

CoNLLO03 4

12B2 16 141k

OntoNotes5 77k

Table 8: Statistics of the NER datasets CoONLLO3 (Sang
and De Meulder, 2003), I2B2 (Murphy et al., 2010) and
OntoNotesS (Hovy et al., 2006).
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B Implementation Details

The model is implemented in the PyTorch frame-
work on top of the T5 Huggingface implementa-
tion. Consistent with RDP, we train the model for
20 epochs if PG=2, and 10 epochs otherwise. The
learning rate, batch size, prompt length and prompt
hidden dim are set to 7e-5, 32, 10, and 1024, respec-
tively. All experiments are conducted on a single
NVIDIA GeForce RTX 3090 GPU with 24GB of
memory.
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