

ACTIVE MODEL SELECTION FOR LARGE LANGUAGE MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 We introduce LLM SELECTOR, the first framework for active model selection of
012 Large Language Models (LLMs). Unlike prior evaluation and benchmarking ap-
013 proaches that rely on fully annotated datasets, LLM SELECTOR efficiently identi-
014 fies the best LLM *with limited annotations*. In particular, for any given task, LLM
015 SELECTOR adaptively selects a small set of queries to annotate that are most in-
016 formative about the best model for the task. To further reduce annotation cost, we
017 leverage a judge-based oracle annotation model. Through extensive experiments
018 on 6 benchmarks with 151 LLMs, we show that LLM SELECTOR reduces anno-
019 tation costs by up to 59.62% when selecting the best and near-best LLM for the
020 task.
021

1 INTRODUCTION

024 How can we select the best Large Language Model (LLM) for a given application or data distribution
025 without retraining? Answering this question has become increasingly difficult as the number of
026 readily available models continues to expand. Recent advances in architectures, training strategies,
027 and access to massive datasets have enabled impressive zero-shot capabilities, allowing LLMs to
028 perform a wide range of tasks without task-specific fine-tuning (Wei et al.; Kojima et al., 2022). As
029 a result, a large and diverse collection of pretrained models differing in architecture, training data,
030 and optimization objectives is now easily accessible through academic repositories and commercial
031 platforms (Hugging Face; OpenAI; Google DeepMind; Anthropic).

032 This abundance of choice, while offering wide flexibility for deployment, also introduces a funda-
033 mental challenge for practitioners as the performance differences across these LLMs can be sub-
034 stantial, particularly when transferring across domains, tasks, or languages (Liang et al., 2023).
035 Although significant efforts have been devoted to the evaluation and benchmarking of LLMs (Liang
036 et al., 2023; Fourrier et al., 2024; OpenCompass, 2023), the rapid expansion of both candidate
037 models and evaluation scenarios makes existing practices increasingly difficult to apply for model
038 selection (Chang et al., 2024). In particular, benchmarks often struggle to keep pace with the fast
039 release cycle of new models or frequently focus on narrow or standardized tasks, which may not
040 adequately capture the requirements of domain-specific applications. A common approach to model
041 selection is to rely on random or heuristically chosen small subsets of annotated data (Polo et al.,
042 2024; Vivek et al., 2024), but such approaches often result in suboptimal use of resources and fail
043 to reliably capture differences across models (Kossen et al., 2021). To address this, several studies
044 have explored active model selection (Karimi et al., 2021; Liang et al., 2020; Okanovic et al., 2025;
045 Gardner et al., 2015; Tahan et al., 2024), where limited annotations of strategically chosen subsets
046 are utilized, but this line of work is largely centered around classification tasks rather than generative
047 settings (Okanovic et al., 2025; Kay et al., 2025; Madani et al., 2012; Karimi et al., 2021; Piratla
048 et al., 2021; Liu et al., 2022; Kassraie et al., 2023; Xia et al., 2024a; Li et al., 2024a;b). Thus, to
049 date, how to reliably identify the best LLM for a specific task and data distribution under limited
050 annotation resources remains an open question.

051 In this work, we address this problem and ask: Given a pool of queries and a set of candidate
052 LLMs, which examples should be annotated in order to reliably identify the best LLM, both in a
053 model-agnostic and annotation-efficient manner?

Contributions: In this paper, we introduce the active model selection problem for LLMs and present
054 LLM SELECTOR, a principled framework for selecting the best LLM under a limited annotation

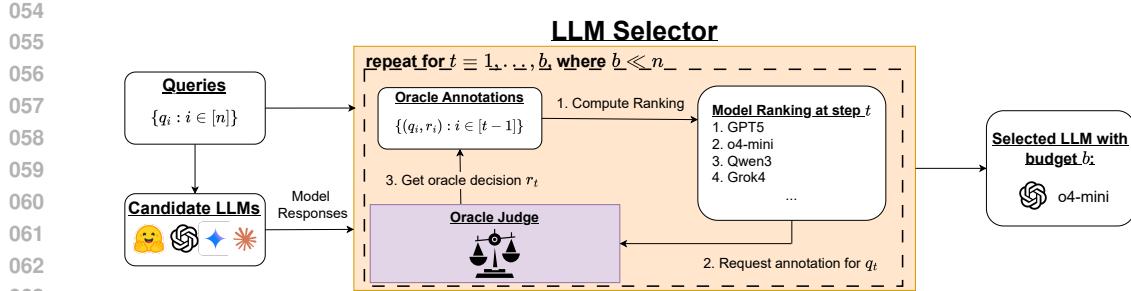


Figure 1: An overview of LLM SELECTOR. For an arbitrary pool of n queries and a set of candidate language models, LLM SELECTOR adaptively annotates most informative $b \ll n$ queries for identifying the best language model for the pool.

budget, along with adapted baseline strategies for this problem. Given a large set of n queries and a limited annotation budget b with $b \ll n$, LLM SELECTOR selects b queries whose annotations are expected to maximally reduce uncertainty about the best model for the entire set. Our approach builds on information-gain criteria (Chen et al., 2015), and quantifies informativeness using a two-parameter model that measures information gain as Shannon’s mutual information between the unknown best model and annotations.

Motivated by the growing adoption of judge-based approaches (Zheng et al., 2023; Li et al., 2024c; 2023; Zheng et al., 2023), we employ a judge-based annotation process in which each query is annotated with a vector over candidate models. For each model candidate, we compare its response to the query against that of a baseline model using oracle preference judgments. This judge-based design alleviates the need for costly reference answers or summaries that are known to be far more expensive than pairwise judgments (Zopf, 2018; Ouyang et al., 2022a; Rafailov et al., 2023; Luo et al., 2022; Callison-Burch et al., 2006), and mitigates the noise commonly introduced by reference-based evaluation metrics (Zopf, 2018; Ouyang et al., 2022a; Rafailov et al., 2023; Novikova et al., 2017).

We validate LLM SELECTOR across 6 benchmarks on 151 LLMs. Specifically, our evaluation covers three categories of datasets: (i) *general dialogue*: AlpacaEval (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al., 2023); (ii) *vision-language*: Flickr30k (Young et al., 2014) and Bingo (Cui et al., 2023); and (iii) *medical*: MediQA (Ben Abacha et al., 2019). These benchmarks employ LLM-as-a-Judge for evaluation, which has been shown to correlate strongly with human evaluations, even exceeding the agreement level between human annotators (Zheng et al., 2023). Importantly, our method does not rely on LLM judges specifically and is equally compatible with other oracle judges, such as human evaluators or alternative assessment methods.

LLM SELECTOR shows consistently competitive performance across all experiments, while providing significant reductions in annotation costs on several datasets, with only a small fraction of the annotation budget required by baseline selection strategies where it reduces the annotation costs by up to 58.33%, while achieving a 59.62% reduction when selecting models within a 1% win-rate vicinity of the best model. Moreover, we show that LLM SELECTOR can find near-best models even before exhausting the budget needed to reach the best model, indicating that LLM SELECTOR maintains robust performance under extreme budget constraints.

Once the best LLM is selected based on b annotated queries, we use it to generate outputs for the remaining $n - b$ queries where $n - b \gg b$. Our method is fully model-agnostic: it requires no access to internal parameters and imposes no restrictions on output format, making it directly applicable in black-box or API-only settings. An overview of LLM SELECTOR is shown in Figure 1.

2 RELATED WORK

Several methodologies exist for **LLM evaluation**. Traditional multiple-choice (Srivastava et al., 2022; Suzgun et al., 2022), or short-answer benchmarks (Cobbe et al., 2021) provide a standardized way to evaluate model performance, though they do not assess the generative abilities of LLMs. For

108 tasks such as summarization (See et al., 2017; Narayan et al., 2018) and translation (Goyal et al.,
 109 2022), reference-based benchmarks are commonly used, where model outputs are compared against
 110 human-written ground truth using metrics like BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
 111 and BERTScore (Zhang et al., 2020). More recently, judge-based evaluation has seen growing adoption.
 112 LMArena (Zheng et al., 2023) is a live leaderboard using human annotators. Static benchmarks
 113 like Arena-Hard (Li et al., 2024c), AlpacaEval (Li et al., 2023) and MT-Bench (Zheng et al., 2023)
 114 rely on LLM-as-a-Judge for automated evaluation. At a higher level, leaderboards such as HELM
 115 (Liang et al., 2023), OpenCompass (OpenCompass, 2023), and OpenLLM (Fourrier et al., 2024)
 116 aggregate benchmarks measuring models on different capabilities in order to give a full view of
 117 LLM capabilities. However, these evaluation methodologies require relying on full access to human
 118 annotators or LLM-as-a-Judge, and due to the large scale of modern benchmarks, such evaluations
 119 are often not feasible with limited resources.
 120

121 Most prior work on **active model selection** focus on classification tasks (Zhao et al., 2008; Liang
 122 et al., 2020; Gardner et al., 2015; Okanovic et al., 2025; Kay et al., 2025). Some studies consider
 123 an online setting, where data arrive sequentially from a stream (Madani et al., 2012; Karimi et al.,
 124 2021; Piratla et al., 2021; Liu et al., 2022; Kassraie et al., 2023; Xia et al., 2024a; Li et al., 2024a;b;
 125 Xia et al., 2024b). Active model selection has also been studied for LLMs, but limited to scenarios
 126 with two candidate models (Tahan et al., 2024) or a single model under active testing (Berrada
 127 et al., 2025; Huang et al., 2025). In contrast, our method, LLM SELECTOR, can handle an arbitrary
 128 number of candidate LLMs.
 129

130 Finally, while some prior work explores efficient active ranking based on comparisons (Jamieson
 131 & Nowak, 2011; Caron & Doucet, 2012), they primarily select pairs of models for evaluation. By
 132 contrast, our setup compares models on LLM queries spanning diverse levels of difficulty, where the
 133 outcome of the evaluation depends on the query itself. This motivates a data-centric perspective in
 134 which we prioritize selecting examples for annotation rather than model pairs.
 135

3 LLM SELECTOR

137 In this section, we introduce LLM SELECTOR. We first define the problem setting in Section 3.1,
 138 and describe our annotation framework based on preference judgments in Section 3.2. In Section
 139 3.3, we present LLM SELECTOR algorithm for annotation-efficient LLM selection. Finally, Section
 140 3.4 details our hyperparameter selection strategy, which requires no oracle annotations.
 141

3.1 PROBLEM SETTING

144 Consider the inference-time scenario in which we are provided with a set of n unannotated queries
 145 $Q = \{q_i \in \mathcal{Q} \mid i \in [n]\}$. Each query q_i represents a user-issued prompt or request to an oracle. We
 146 denote the oracle-annotated ground-truth response to q_i by $r_i \in \mathcal{R}$. Since these annotations are not
 147 observed, we use R_i to denote the unknown response r_i .
 148

149 Given a collection of m pretrained language models $\mathcal{M} = \{f_j : \mathcal{Q} \rightarrow \mathcal{R} \mid j \in [m]\}$, our objective
 150 is to identify the best language model in \mathcal{M} for producing high-quality responses to the queries Q .
 151 Because oracle-provided annotations are costly, we assume access to only a limited number of at
 152 most $b \ll n$ annotations. The problem therefore reduces to selecting b queries whose annotations
 153 provide maximal information about the identity of the best model. We define the best model, denoted
 154 by f^* , as the model with the highest utility among M if all annotations $\{r_i \mid i \in [n]\}$ were observed.
 155 Once identified, we deploy this model to generate responses for the remaining $n - b$ unannotated
 156 queries. [We define the random variable \$F\$ to represent the unknown best model.](#)
 157

158 Formally, we cast the selection problem as one of maximizing mutual information. That is, we aim
 159 to identify a subset $\mathcal{A} \subseteq \{(q_i, r_i) \mid i \in [n]\}$ of at most b annotated examples that maximizes the
 160 mutual information between F and the selected annotations:
 161

$$\mathcal{A}_{\text{opt}[b]} = \arg \max_{\substack{\mathcal{A} \subseteq \{(q_i, r_i) \mid i \in [n]\} \\ |\mathcal{A}| \leq b}} \mathbb{I}(F; \mathcal{A}). \quad (1)$$

162 3.2 ANNOTATION VIA DIRECT PREFERENCE JUDGMENTS
163

164 The evaluation of long-form candidate responses cannot rely on exact string matching, and therefore
165 requires more sophisticated methods. Beyond correctness, factors such as relevance, helpfulness,
166 complexity, and level of detail influence the desirability of an answer. Because reference-based
167 metrics often produce noisy scores (Novikova et al., 2017; Callison-Burch et al., 2006), we instead
168 evaluate models using direct preference judgments (Zheng et al., 2023; Rafailov et al., 2023), which
169 compare model responses pairwise and is shown to be more stable than individual model ratings
170 (Jones et al., 2011; Zopf, 2018). As for LLMs, the preference-based is already being adopted as
171 the evaluation method in many open-ended contemporary LLM benchmarks (Zheng et al., 2023; Li
172 et al., 2024c; 2023).

173 Formally, for a given query $q_i \in Q$, an *oracle judge* performs a pairwise comparison between the
174 responses of the models f_j and f_k . We write $>$, $<$, and $=$ to denote the oracle judge’s preference
175 relation, with the following outcomes:

- 176 • $f_j(q_i) > f_k(q_i)$: the response of f_j is preferred,
- 177 • $f_j(q_i) < f_k(q_i)$: the response of f_k is preferred,
- 178 • $f_j(q_i) = f_k(q_i)$: the responses are judged equally good (or equally poor).

180 We express the pairwise judgment of the oracle as
181

$$182 \text{OracleJudge}(q_i, f_j(\cdot), f_k(\cdot)) = \mathbb{1}[f_j(q_i) > f_k(q_i)] + \frac{1}{2} \cdot \mathbb{1}[f_j(q_i) = f_k(q_i)],$$

183 where $\mathbb{1}[\cdot]$ denotes the indicator function.
184

185 To compare two models across a collection of queries, we adopt the *win rate* metric (Li et al., 2023).
186 For the query set Q , the win rate of f_j over f_k is defined as
187

$$188 \text{WR}_Q(f_j, f_k) = \frac{1}{n} \sum_{i=1}^n \text{OracleJudge}(q_i, f_j(\cdot), f_k(\cdot))$$

191 with $\text{WR}_Q(f_j, f_k) + \text{WR}_Q(f_k, f_j) = 1$ for $j, k \in [m]$.
192

193 Since identifying the best model through full pairwise ranking requires $\mathcal{O}(m^2)$ oracle annotations,
194 we instead adopt a simplified strategy based on comparisons against a single baseline. Specifically,
195 we designate one of the language models in \mathcal{M} as *baseline model* to reduce the annotation cost
196 further. We denote the baseline model by \bar{f} . We select a candidate LLM expected to perform
197 strongly as the baseline, aiming to produce a more informative ranking. We provide details of
198 baseline model selection in Section 4.1. Each remaining model is then evaluated according to its
199 win rate relative to \bar{f} , and LLM SELECTOR returns the model the model with the highest win rate
200 based on the annotated queries.

201 To formally characterize the mutual information between the unknown best model and the annotations,
202 we propose a two-parameter model that describes the behavior of the unknown best language
203 model relative to the baseline, with respect to the oracle preference relation introduced earlier:
204

$$205 \begin{aligned} \mathbb{P}(F(q) < \bar{f}(q) | F = f^*) &= \epsilon_{\text{loss}} \\ \mathbb{P}(F(q) = \bar{f}(q) | F = f^*) &= \epsilon_{\text{draw}} \\ \mathbb{P}(F(q) > \bar{f}(q) | F = f^*) &= 1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}} \end{aligned} \tag{2}$$

208 where $\epsilon_{\text{loss}}, \epsilon_{\text{draw}} \in [0, 1]$ and $\epsilon_{\text{loss}} + \epsilon_{\text{draw}} \leq 1$. The values of ϵ_{loss} and ϵ_{draw} are determined in advance,
209 following the procedure described in Section 3.4.
210

211 3.3 THE ALGORITHM
212

213 Given the query set Q , our objective is to select at most b queries such that, once annotated, they
214 maximize our information about the best language model as defined in Equation 1. To this end, we
215 adopt a sequential information maximization strategy (Chen et al., 2015; Okanovic et al., 2025) for
216 selecting queries one at a time until the budget b is exhausted.

In our sequential framework, let U_t denote the pool of unannotated queries, and A_t the set of annotated queries accumulated up to the sequential step t with $U_0 = Q$ and $A_0 = \emptyset$. At each t , we select the next query q_t to annotate as follows:

$$\begin{aligned} q_t &= \arg \max_{q \in U_t} \mathbb{I}(F; R | A_t, q) \\ &= \arg \max_{q \in U_t} \mathbb{H}(F | A_t) - \mathbb{E}_R[\mathbb{H}(F | A_t \cup \{(q, R)\})] \\ &= \arg \min_{q \in U_t} \mathbb{E}_R[\mathbb{H}(F | A_t \cup \{(q, R)\})], \end{aligned} \quad (3)$$

where $\mathbb{H}(F | A_t)$ denotes the conditional entropy of F given the annotations observed up to step t .

Selecting the next query reduces to finding the query that minimizes the expected conditional entropy of F given the current annotations as in Equation 3. As oracle responses for unannotated queries are unavailable, we compute this expectation through noisy annotation of the responses to each $q \in \mathcal{U}_t$ using *weak judges*.

3.3.1 NOISY ANNOTATIONS VIA WEAK JUDGES

The intuition behind the noisy annotation approach is to evaluate a candidate response by comparing it against the set of possible model responses, assigning higher preference to those that has greater similarity to other candidates.

Formally, we tokenize each response as a sequence of words: (w_1, w_2, \dots, w_L) . For a given $k \in \mathbb{N}$, we construct a language model based on k -grams. The estimated probability of a word w_l in this language model is determined by the previous $k-1$ words where $\mathbb{P}(w_l | w_{1:L}) := \mathbb{P}(w_l | w_{l-k+1:L-1})$. We fit the k -gram model on the responses of the candidate models \mathcal{M} , independently for each query q . For computing the average sequence likelihood of a sequence, we average the word probabilities:

$$\mathbb{P}(w_1, w_2, \dots, w_L) = \frac{1}{L} \sum_{l=1}^L \mathbb{P}(w_l | w_{l-k+1:L-1}).$$

Comparison of models f and \bar{f} by a weak judge is done by choosing the response with the higher average likelihood, $\mathbb{P}(f_j(q))$ or $\mathbb{P}(\bar{f}(q))$. The weak judge decision with k -gram model is denoted as $f(q) >_{(k)} \bar{f}(q)$, $f(q) =_{(k)} \bar{f}(q)$ or $f(q) <_{(k)} \bar{f}(q)$. We use $r_{(k)}$ to represent the noisy annotation made by weak judge k . Based on the weak judge decision and parameter model in Equation 2, we can compute the estimated information gain through the following probability:

$$\begin{aligned} \mathbb{P}(F = f_j | A_t \cup \{(q, r_{(k)})\}) &\propto \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q) <_{(k)} \bar{f}(q)]} \cdot \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q) =_{(k)} \bar{f}(q)]} \\ &\quad \cdot (1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}})^{\mathbb{1}[f_j(q) >_{(k)} \bar{f}(q)]} \mathbb{P}(F = f_j | A_t) \end{aligned} \quad (4)$$

In total, we have $z \geq 1$ weak judges, each using the k -gram model with $k \in [z]$. Given $\mathbb{H}(F | A_t \cup \{(q, r_{(k)})\})$, the estimated entropy by a weak judge, we compute the expected entropy by averaging over all weak judges:

$$q_t = \arg \min_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^z \mathbb{H}(F | A_t \cup \{(q, r_{(k)})\})$$

where we use a uniform distribution over weak judges for computing the expectation.

3.3.2 UPDATING MODEL POSTERIOR BELIEF

After annotating the selected query at step t , we update the posterior belief over the best language model conditioned on all annotations observed up to time t :

$$\mathbb{P}(F = f_j | A_t \cup \{(q, R = r)\}) \propto \mathbb{P}(A_t \cup \{(q, R = r)\} | F = f_j) \cdot \mathbb{P}(F = f_j).$$

270 With the two-parameter annotation model in Equation 2, the posterior belief is updated as:
 271

$$272 \mathbb{P}(F = f_j | A_{t+1}) \propto \mathbb{P}(F(q_t) = r_t | F = f_j) \cdot \mathbb{P}(F = f_j | A_t) \\ 273 \propto \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q_t) < \bar{f}(q_t)]} \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q_t) = \bar{f}(q_t)]} (1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}})^{\mathbb{1}[f_j(q_t) > \bar{f}(q_t)]} \mathbb{P}(F = f_j | A_t) \\ 274$$

275 The pseudocode of the algorithm is provided in Algorithm 1.
 276

Algorithm 1 LLM Selector Algorithm

279 **Require:** models \mathcal{M} , test queries \mathcal{Q} , parameters $\epsilon_{\text{loss}}, \epsilon_{\text{draw}}, \epsilon_3$, labeling budget b , number of weak
 280 judges $z, j \in [m]$
 281 $\mathcal{A}_0 \leftarrow \{\}, \mathcal{U}_0 \leftarrow \mathcal{Q}$
 282 //Uniform model prior
 283 $\mathbb{P}(F = f^j | \mathcal{A}_0) \leftarrow 1/M$
 284 **for** $t = 0$ to $b - 1$ **do**
 285 **for** $k = 1$ to z **do**
 286 //Estimate model posterior with weak judge decisions
 287 $\mathbb{P}(F = f_j | \mathcal{A}_t \cup \{(q, r_{(k)})\}) \leftarrow \frac{1}{Z} \mathbb{P}(F = f_j | \mathcal{A}_t) \cdot \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q) <_{(k)} \bar{f}(q)]} \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q) =_{(k)} \bar{f}(q)]} \epsilon_3^{\mathbb{1}[f_j(q) >_{(k)} \bar{f}(q)]}$
 288 **end for**
 289 //Choose the sample with minimum expected entropy
 290 $q_t \leftarrow \arg \min_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^z \mathbb{H}(F | \mathcal{A}_t \cup \{(q, r_{(k)})\})$
 291 //Get oracle decision
 292 $r_t \leftarrow \text{OracleJudge}(q_t, f_j(\cdot), \bar{f}(\cdot))$
 293 $\mathcal{A}_{t+1} \leftarrow \mathcal{A}_t \cup \{(q_t, r_t)\}$
 294 $\mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \{q_t\}$
 295 //Update model posterior
 296 $\mathbb{P}(F = f_j | \mathcal{A}_{t+1}) \leftarrow \frac{1}{Z} \mathbb{P}(F = f_j | \mathcal{A}_t) \cdot \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q) < \bar{f}(q)]} \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q) = \bar{f}(q)]} \epsilon_3^{\mathbb{1}[f_j(q) > \bar{f}(q)]}$
 297 **end for**
 298 **return** $\arg \max_{h \in \mathcal{M}} \text{WR}_{\mathcal{A}_b}(h, \bar{f})$

301

302 **3.4 PARAMETER SELECTION**

303

304 We choose the parameters ϵ_{loss} and ϵ_{draw} prior to LLM selection, therefore the oracle annotations are
 305 not available during parameter optimization. As a replacement, we use ensemble of all weak judges
 306 as a noisy oracle. More specifically, the noisy oracle behaves as follows:
 307

308

$$309 \text{WeakJudges}(q, f(q), \bar{f}(q)) = \begin{cases} 1 & \text{if } \nu \geq 2/3 \quad // \text{ win} \\ 310 0.5 & \text{if } 2/3 > \nu \geq 1/3 \quad // \text{ draw} \\ 311 0 & \text{otherwise} \quad // \text{ loss} \end{cases}$$

312

$$313 \text{where } \nu = \frac{1}{z} \sum_{k=1}^z \mathbb{1}[f(q) >_{(k)} \bar{f}(q)] + \frac{1}{2} \cdot \mathbb{1}[f(q) =_{(k)} \bar{f}(q)].$$

314

315 We perform a grid search over ϵ_{loss} and ϵ_{draw} using the weak judge decisions as the ground-truth
 316 annotations. We select the parameter set that maximizes the identification probability, defined as the
 317 probability of correctly recognizing the best LLM under the budget b .

318

319

4 EXPERIMENTS

320

321

322 In our experiments, we evaluate the effectiveness of strategies using LLM-as-a-Judge as the oracle.
 323 LLM-based evaluation serves as a reliable oracle, demonstrating strong correlation with human
 324 judgment. Moreover, LLM annotations maintain high efficiency while providing consistent and
 325 trustworthy feedback, making them a scalable and practical choice for our evaluation setting.

324
325

4.1 DATASET AND MODEL COLLECTIONS

326
327
328
329
330
331
332
333

We conduct experiments on several datasets including AlpacaEval (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al., 2023), which contain general user dialogues; Flickr30k (Young et al., 2014) and Bingo (Cui et al., 2023), which are vision–language datasets; and MediQA (Ben Abacha et al., 2019), which focuses on medical question answering. AlpacaEval consists of 805 queries, on which we evaluate 53 LLMs. Arena-Hard contains 500 queries, with evaluations conducted on 68 LLMs. MT-Bench comprises 80 multi-turn dialogues, and we assess 6 LLMs. For Flickr30k, we use 1,000 test samples and evaluate 51 LLMs. Bingo includes 762 samples, with evaluations over 31 LLMs. Finally, MediQA contains 150 samples, on which we evaluate 9 LLMs.

334
335
336
337
338
339
340
341
342
343

Candidate models include LLMs from diverse families, including proprietary systems such as GPT-3.5 and GPT-4 (Ouyang et al., 2022b; OpenAI, 2023a), Claude 2/3 (Anthropic, 2023; 2024), and Gemini (Google, 2023), as well as open-weight architectures like LLaMA-2/3 (Touvron et al., 2023; Meta AI, 2024), Mistral and Mixtral (Jiang et al., 2023; 2024), Falcon (Almazrouei et al., 2023), Yi (Young et al., 2024), Qwen (Bai et al., 2023), Gemma (Google, 2024), InternLM (InternLM, 2023), GLM (Du et al., 2022), and DBRX (Databricks, 2024). We further consider several widely adopted instruction-tuned derivatives, including Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), Guanaco (Dettmers et al., 2023), Tulu-2 (Ivison et al., 2023), WizardLM (Xu et al., 2024), Zephyr (Tunstall et al., 2024), and Starling (Zhu et al., 2024). The chosen LLMs differ in both number of parameters and training methodology.

344
345
346
347
348
349
350
351
352
353
354
355

For text-only benchmarks, we employ GPT-4 (OpenAI, 2023b) as the oracle judge. For vision–language benchmarks, we rely on Prometheus-Vision (Lee et al., 2024a) as the oracle judge. For each dataset, we adopt the following baseline LLMs. AlpacaEval, Arena-Hard, and MT-Bench follow the baselines specified by their respective benchmarks: `text_davinci-003`, `gpt-4-0314`, and `gpt-3.5-turbo`, respectively. For the remaining datasets, we select as the baseline the LLM that achieves the highest performance under noisy annotations from WeakJudges. Specifically, we use `gemini-1.5-pro-preview-0514` for Flickr30k, and `gpt-4o-2024-05-13` for both Bingo and MediQA.

356
357
358
359
360
361
362
363
364
365
366
367

We choose the parameters ϵ_{loss} and ϵ_{draw} independently for each dataset, based on the procedure described in Section 3.4. Based on preliminary analysis, we set the number of weak judges z to 10 in all experiments, as additional weak judges beyond this number are highly correlated with the existing ones and provide little new information.

368

4.2 BASELINES

369

We evaluate LLM SELECTOR against a set of baseline strategies we adapt for the active model selection task.

370
371
372
373
374
375
376
377

Random. At time t , the query q_t is selected uniformly from the unannotated set \mathcal{U}_t : $q_t \sim \text{Uniform}(\mathcal{U}_t)$.

Bradley-Terry. Bradley–Terry coefficients (Bradley & Terry, 1952) are computed using annotated queries \mathcal{A}_t to model LLM performances, which defines a posterior distribution over the best model. In our setting, we leverage this posterior together with entropy minimization strategy. The next query is selected by greedily minimizing the posterior entropy: $q_t = \arg \min_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^z \mathbb{H}(F|\mathcal{A}_t \cup \{(q, r_{(k)})\})$

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Most Draws. For each $q \in \mathcal{U}_t$, let $d(q)$ denote the number of responses that result in a draw with the baseline response according to the ensemble WeakJudges. The next query is selected as $q_t = \arg \max_{q \in \mathcal{U}_t} d(q)$.

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901

378 Among the baseline strategies, only Bradley-Terry is adaptive, as its selection rule depends on the
 379 observed annotations. The remaining strategies are non-adaptive.
 380

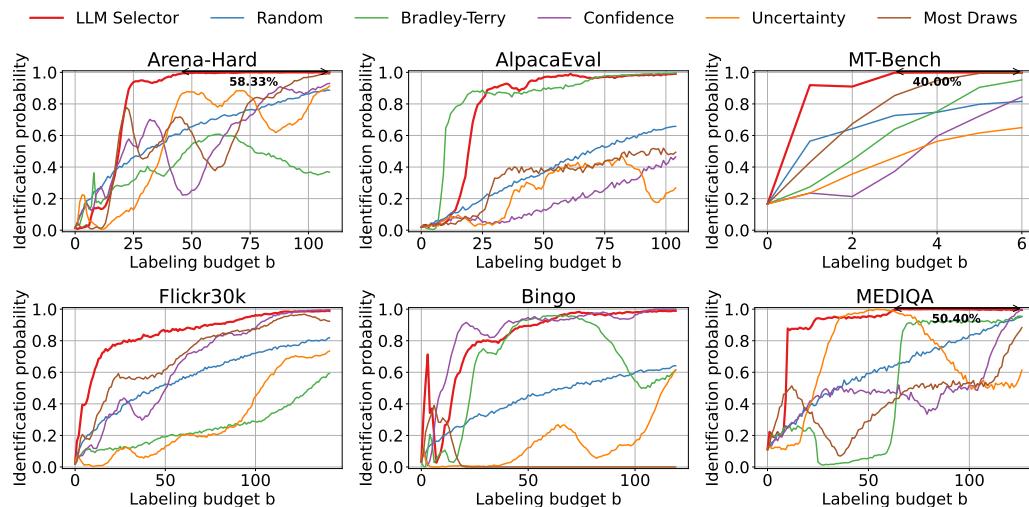
381 4.3 EXPERIMENTAL SETUP

383 In our experiments, we uniformly sample a pool of n examples from the test set. We run model
 384 selection strategies on the sampled pool to select b queries to annotate, and choose the LLM with the
 385 highest average utility on the annotated queries. We call this process a *realization*, and we evaluate
 386 selection strategies on multiple realizations to obtain a performance estimate.

387 We compare strategies by three metrics. *Identification probability* is defined as the ratio of experiments
 388 that correctly find the best model for a given budget b . We present results for $b = 1, \dots, n$.
 389 *Annotation efficiency* refers to the percentage reduction in the number of labels needed to identify
 390 the best or reach within a δ vicinity of the best model across all realizations. *95th Percentile Win
 391 Rate Gap* is the 95th percentile of the win rate difference of the chosen LLMs, compared to the
 392 absolute best LLM.

394 4.4 RESULTS

396 4.4.1 IDENTIFICATION PROBABILITY



416 Figure 2: Best model identification probability of LLM SELECTOR and the baselines.
 417

418 We present the best model identification probability of LLM SELECTOR and baseline methods in
 419 Figure 2. On Arena-Hard, MediQA, and MT-Bench, LLM SELECTOR achieves 100% identifica-
 420 tion probability with 58.33%, 50.40%, and 40.00% fewer annotated queries compared to the best
 421 competing baseline, respectively. On the remaining benchmarks, LLM SELECTOR requires a sim-
 422 ilar number of labels as the strongest baseline method. Across most values of b , LLM SELECTOR
 423 attains higher or comparable identification probability relative to the baselines. In contrast, baseline
 424 methods exhibit inconsistent performance: for example, Bradley-Terry performs well on AlpacaE-
 425 val but is not competitive on other datasets, while Confidence performs strongly on Bingo but poorly
 426 elsewhere. By comparison, LLM SELECTOR demonstrates consistently competitive performance
 427 across all benchmarks.

428 4.4.2 ANNOTATION EFFICIENCY FOR NEAR-BEST MODELS

430 Table 1 shows the annotation efficiency of LLM Selector to recover the near-best models on all
 431 datasets. We compute annotation efficiency as the relative reduction in the percentage of required
 432 annotations compared to the best competing baseline, when selecting a model within δ vicinity of

Dataset	$\delta = 1\%$	$\delta = 2.5\%$	$\delta = 5\%$
Arena-Hard	$\downarrow \mathbf{59.62\%}$	$\downarrow \mathbf{59.62\%}$	$\downarrow \mathbf{58.42\%}$
AlpacaEval	$\uparrow 7.06\%$	$\downarrow \mathbf{30.99\%}$	$\downarrow \mathbf{35.85\%}$
MT-Bench	$\downarrow \mathbf{40.00\%}$	$\downarrow \mathbf{40.00\%}$	$\downarrow \mathbf{42.68\%}$
Flickr30k	$\downarrow \mathbf{3.39\%}$	$\downarrow \mathbf{6.25\%}$	$\downarrow \mathbf{36.47\%}$
Bingo	$\downarrow \mathbf{7.69\%}$	$\downarrow \mathbf{10.10\%}$	$\uparrow 6.00\%$
MEDIQA	$\downarrow \mathbf{13.70\%}$	$\downarrow \mathbf{6.00\%}$	$= 0.00\%$

Table 1: Annotation efficiency for near-best models across datasets: bolded numbers with \downarrow indicate decreases.

the best LLM. Specifically, we measure the annotation cost saved by LLM SELECTOR to return a model within 1%, 2.5%, and 5% win rate of the best model.

We observe that LLM SELECTOR is highly annotation efficient, reaching high-performing models faster than best competing baseline. On Arena-Hard and MT-Bench, LLM SELECTOR is able to reach the top 1% and 2.5% vicinity of the best model with relatively few annotations, showing that it can reliably identify near-optimal models with limited annotation effort. On Flickr30k, Bingo, and MEDIQA LLM SELECTOR still manages to reduce the number of required annotations compared to alternative strategies, even though the improvement is smaller. LLM SELECTOR also maintains robustness under $\delta = 5\%$, using up to 58.42% fewer annotations.

4.4.3 ROBUSTNESS ANALYSIS

Dataset	LLM Selector (80%/90%/95%/100%)	Random (80%/90%/95%/100%)	Bradley-Terry (80%/90%/95%/100%)	Confidence (80%/90%/95%/100%)	Uncertainty (80%/90%/95%/100%)	Most Draws (80%/90%/95%/100%)
Arena-Hard	11.75 /8.13/0.00/0.00	13.38/13.12/11.38/8.25	13.00/13.00/13.00/7.87	13.25/13.00/14.25/9.62	14.12/14.00/12.25/6.87	<u>12.87</u> /13.25/12.62/7.25
AlpacaEval	4.57 /3.14/0.00/0.00	8.21/7.86/6.50/2.93	3.93 /3.71/2.93/0.00	3.50 /3.29/3.29/2.14	8.36 /3.14/3.21/2.71	11.36/8.71/5.93/2.79
MT-Bench	12.50 /12.50/0.00/0.00	34.17/34.17/16.67/14.17	33.39 /33.33/16.67/0.00	34.17/34.17/32.50/0.00	34.17/34.17/30.83/15.83	52.50/52.50/17.50/0.00
Flickr30k	6.20 /3.30/0.00/0.00	8.40/6.10/5.30/0.00	9.60/7.30/6.70/0.00	6.60 /5.00/3.90/0.00	11.00/6.40/5.70/0.00	8.40/6.00/5.40/0.00
Bingo	5.33 /2.83/0.00/0.00	8.08/6.50/6.17/3.58	4.00 /2.58/0.00/4.00	6.50/0.00/2.50/0.00	11.67/4.33/3.75/1.83	7.75/18.33/6.08/3.67
MEDIQA	2.14 /1.07/0.00/0.00	3.21/2.86/2.86/1.07	3.21/3.21/3.21/0.36	3.21/3.21/1.07/1.07	3.93/3.21/1.07/0.00	1.07 /1.07/1.07/0.71

Table 2: 95th percentile win rate gap (%) at budget needed to reach identification probability 80%, 90%, 95%, and 100% on all benchmarks. Best results are in bold; second-best underlined.

To analyze the robustness, we compute the win rate gap between the selected and the true best model across all realizations. We then report the 95th percentile of these gaps, capturing the error that is larger than 95% of the observed outcomes. We perform this evaluation with varying annotation budgets, where the budgets are chosen as the amounts required for LLM SELECTOR to reach 80%, 90%, 95%, and 100% identification probability.

Table 2 shows 95th percentile win rate gap between the chosen and the best LLMs. LLM SELECTOR achieves a smaller accuracy gap when measured against the budget required to reach 80%, 90%, 95%, and 100% identification probability across nearly all datasets. The accuracy gap of LLM SELECTOR is either the best among all strategies or, the second best. Our results show that LLM SELECTOR consistently select best or near-best models with high confidence for the majority of time.

5 DISCUSSION

We study the novel problem of active model selection for LLMs. We adapt several baselines and introduce LLM SELECTOR, the first strategy tailored to this task. To further reduce supervision, we propose a judge-based oracle annotation scheme. Our experiments show that LLM SELECTOR lowers annotation costs while reliably identifying the best LLM across tasks and datasets. Designed for settings with scarce annotations and evolving data, LLM SELECTOR enables adaptive, cost-efficient, and robust model selection for LLM deployment.

486 **Ethics statement.** This work uses only publicly available datasets and models, with all sources
 487 properly cited and used according to their licenses. We introduce the first framework for active
 488 model selection of LLMs. We believe this work poses no ethical risks.
 489

490 **Reproducibility statement.** We prioritize making our work easy to reproduce. All datasets we
 491 used are publicly available, and we provide the code and instructions needed to recreate every result
 492 we report. We include all code and documentation in the supplementary material so that others can
 493 reproduce our results and use our work for future comparisons.
 494

495 **Large Language Model Usage.** Large Language Models helped improve the writing quality by
 496 correcting grammar mistakes, fixing typos, and enhancing text flow. The models were used only for
 497 language improvement and had no impact on the technical content, study design, or result interpre-
 498 tation.
 499

500 **REFERENCES**

501 Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
 502 jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
 503 et al. The falcon series of open language models. *arXiv preprint arXiv:2311.16867*, 2023.
 504

505 Anthropic. Anthropic claudie api. <https://console.anthropic.com>.
 506

507 Anthropic. Model card and evaluations for claudie models, 2023. URL <https://www.anthropic.com/news/claudie-2>.
 508

509 Anthropic. Introducing the next generation of claudie, 2024. URL <https://www.anthropic.com/news/claudie-3-family>.
 510

511 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 512 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
 513 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 514 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 515 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 516 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
 517 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint*
 518 *arXiv:2309.16609*, 2023.
 519

520 Suhana Bedi, Hejie Cui, Miguel Fuentes, Alyssa Unell, Michael Wornow, Juan M Banda, Nikesh
 521 Kotecha, Timothy Keyes, Yifan Mai, Mert Oez, et al. Medhelm: Holistic evaluation of large
 522 language models for medical tasks. *arXiv preprint arXiv:2505.23802*, 2025.
 523

524 Asma Ben Abacha, Chaitanya Shivade, and Dina Demner-Fushman. Overview of the MEDIQA
 525 2019 shared task on textual inference, question entailment and question answering. In Dina
 526 Demner-Fushman, Kevin Bretonnel Cohen, Sophia Ananiadou, and Junichi Tsujii (eds.), *Pro-
 527 ceedings of the 18th BioNLP Workshop and Shared Task*, pp. 370–379, Florence, Italy, Au-
 528 gust 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5039. URL
 529 <https://aclanthology.org/W19-5039/>.
 530

531 Gabrielle Berrada, Jannik Kossen, Muhammed Razzak, Freddie Bickford Smith, Yarin Gal, and Tom
 532 Rainforth. Scaling up active testing to large language models. *arXiv preprint arXiv:2508.09093*,
 533 2025.

534 Ralph Allan Bradley and Milton E Terry. The rank analysis of incomplete block designs: I. the
 535 method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

536 Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of Bleu in machine
 537 translation research. In Diana McCarthy and Shuly Wintner (eds.), *11th Conference of the Eu-
 538 ropean Chapter of the Association for Computational Linguistics*, pp. 249–256, Trento, Italy,
 539 April 2006. Association for Computational Linguistics. URL <https://aclanthology.org/E06-1032/>.
 540

540 Francois Caron and Arnaud Doucet. Efficient Bayesian Inference for Generalized Bradley-Terry
 541 Models. *Journal of Computational and Graphical Statistics*, 21(1):174–196, 2012. URL <https://inria.hal.science/inria-00533638>.

542

543

544 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
 545 Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
 546 Xing Xie. A survey on evaluation of large language models. *ACM Trans. Intell. Syst. Technol.*,
 547 15(3), March 2024. ISSN 2157-6904. doi: 10.1145/3641289. URL <https://doi.org/10.1145/3641289>.

548

549 Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information
 550 maximization: When is greedy near-optimal? In Peter Grünwald, Elad Hazan, and Satyen
 551 Kale (eds.), *Proceedings of The 28th Conference on Learning Theory*, volume 40 of *Proceed-
 552 ings of Machine Learning Research*, pp. 338–363, Paris, France, 03–06 Jul 2015. PMLR. URL
 553 <https://proceedings.mlr.press/v40/Chen15b.html>.

554

555 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 556 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 557 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

558

559 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 560 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 561 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 562 2021.

563

564 Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu, Linjun Zhang, James Zou, and Huaxiu Yao.
 565 Holistic analysis of hallucination in gpt-4v(ision): Bias and interference challenges, 2023.

566

567 Ido Dagan and Sean P. Engelson. Committee-based sampling for training probabilistic classifiers.
 568 In Armand Prieditis and Stuart Russell (eds.), *Machine Learning Proceedings 1995*, pp. 150–
 569 157. Morgan Kaufmann, San Francisco (CA), 1995. ISBN 978-1-55860-377-6. doi: <https://doi.org/10.1016/B978-1-55860-377-6.50027-X>. URL <https://www.sciencedirect.com/science/article/pii/B978155860377650027X>.

570

571 Databricks. Introducing dbrx: A new state-of-the-art open llm. <https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm>, March 2024. Accessed: 2025-08-31.

572

573

574 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 575 of quantized llms. *arXiv preprint arXiv:2305.14314*, 2023.

576

577 Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
 578 general language model pretraining with autoregressive blank infilling. pp. 320–335, 2022.

579

580 Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
 581 llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.

582

583 Jacob Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q Weinberger, Dennis Barbour,
 584 and John P Cunningham. Bayesian active model selection with an application to auto-
 585 mated audiometry. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
 586 *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc.,
 587 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/d9731321ef4e063ebbee79298fa36f56-Paper.pdf.

588

589 Google. Gemini: A family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*,
 590 2023.

591

592 Google. Gemma open models, 2024. URL <https://ai.google.dev/gemma>.

593

Google DeepMind. Gemini api. <https://ai.google.dev>.

594 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
 595 jana Krishnan, Marc'Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The Flores-101 eval-
 596 uation benchmark for low-resource and multilingual machine translation. *Transactions of the*
 597 *Association for Computational Linguistics*, 10:522–538, 2022. doi: 10.1162/tacl_a_00474. URL
 598 <https://aclanthology.org/2022.tacl-1.30/>.

599 Yuheng Huang, Jiayang Song, Qiang Hu, Felix Juefei-Xu, and Lei Ma. Actracer: Active testing of
 600 large language model via multi-stage sampling. *ACM Transactions on Software Engineering and*
 601 *Methodology*, 2025.

602 Hugging Face. Hugging face hub. <https://huggingface.co>.

603 InternLM. Internlm: A multilingual language model with progressively enhanced capabilities.
 604 <https://github.com/InternLM/InternLM-techreport>, 2023.

605 Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
 606 Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels
 607 in a changing climate: Enhancing lm adaptation with tulu 2, 2023.

608 Kevin G. Jamieson and Robert D. Nowak. Active ranking using pairwise comparisons. In *Proceed-
 609 ings of the 25th International Conference on Neural Information Processing Systems*, NIPS'11,
 610 pp. 2240–2248, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN 9781618395993.

611 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 612 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 613 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 614 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint arXiv:2310.06825*,
 615 2023.

616 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 617 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
 618 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
 619 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
 620 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
 621 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

622 Nicolas Jones, Armelle Brun, and Anne Boyer. Comparisons instead of ratings: Towards more
 623 stable preferences. In *2011 IEEE/WIC/ACM International Conferences on Web Intelligence and*
 624 *Intelligent Agent Technology*, volume 1, pp. 451–456, 2011. doi: 10.1109/WI-IAT.2011.13.

625 Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlaš, Johannes Rausch, Ce Zhang, and
 626 Andreas Krause. Online active model selection for pre-trained classifiers. In *International Con-
 627 ference on Artificial Intelligence and Statistics (AISTATS)*, pp. 307–315. PMLR, April 2021.

628 Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, and Aldo Pacchiano. Anytime model
 629 selection in linear bandits. In *Proc. Neural Information Processing Systems (NeurIPS)*, December
 630 2023.

631 Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, and Sara Beery. Consensus-driven
 632 active model selection. In *Proceedings of the IEEE/CVF International Conference on Computer*
 633 *Vision (ICCV)*, 2025. ICCV 2025 Highlight.

634 Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 635 language models are zero-shot reasoners. In *Advances in Neural Information Processing Systems*,
 636 volume 35, pp. 22199–22213, 2022.

637 Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
 638 model evaluation. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International*
 639 *Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 640 5753–5763. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/kossen21a.html>.

641 Seongyun Lee, Seungone Kim, Sue Hyun Park, Geewook Kim, and Minjoon Seo. Prometheus-
 642 vision: Vision-language model as a judge for fine-grained evaluation, 2024a.

648 Tony Lee, Haoqin Tu, Chi H Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Josselin S Roberts,
 649 Michihiro Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: A holistic evaluation of vision lan-
 650 guage models. *Advances in Neural Information Processing Systems*, 37:140632–140666, 2024b.
 651

652 Junfan Li, Zenglin Xu, Zheshun Wu, and Irwin King. On the necessity of collaboration in online
 653 model selection with decentralized data. *arXiv preprint arXiv:2404.09494*, 2024a.

654 Po-han Li, Oyku Selin Toprak, Aditya Narayanan, Ufuk Topcu, and Sandeep Chinchali. Online
 655 foundation model selection in robotics. *arXiv preprint arXiv:2402.08570*, 2024b.

656

657 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and Ion
 658 Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024c. URL
 659 <https://lmsys.org/blog/2024-04-19-arena-hard/>.

660

661 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 662 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 663 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

664

665 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
 666 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
 667 Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re,
 668 Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
 669 Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng,
 670 Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khat-
 671 tab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar,
 672 Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William
 673 Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of lan-
 674 guage models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL
 675 <https://openreview.net/forum?id=iO4LZibEqW>. Featured Certification, Expert
 Certification.

676

677 Shen Liang, Yanchun Zhang, and Jianguang Ma. Active model selection for positive unlabeled time
 678 series classification. In *2020 IEEE 36th International Conference on Data Engineering (ICDE)*,
 pp. 361–372, 2020. doi: 10.1109/ICDE48307.2020.00038.

679

680 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 681 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 682 tics. URL <https://aclanthology.org/W04-1013/>.

683

684 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei
 685 Shen, Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling
 preference data curation via human-ai synergy. *arXiv preprint arXiv:2507.01352*, 2025.

686

687 Xuefeng Liu, Fangfang Xia, Rick L Stevens, and Yuxin Chen. Contextual active online model
 688 selection with expert advice. In *ICML2022 Workshop on Adaptive Experimental Design and
 689 Active Learning in the Real World*. ICML, 2022.

690

691 Ge Luo, Hebi Li, Youbiao He, and Forrest Sheng Bao. PrefScore: Pairwise preference learning
 692 for reference-free summarization quality assessment. In Nicoletta Calzolari, Chu-Ren Huang,
 693 Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen,
 694 Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim,
 695 Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon
 696 Na (eds.), *Proceedings of the 29th International Conference on Computational Linguistics*, pp.
 697 5896–5903, Gyeongju, Republic of Korea, October 2022. International Committee on Computa-
 698 tional Linguistics. URL <https://aclanthology.org/2022.coling-1.515/>.

699

700 Omid Madani, Daniel J. Lizotte, and Russell Greiner. Active model selection, 2012. URL <https://arxiv.org/abs/1207.4138>.

701

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
<https://ai.meta.com/blog/meta-llama-3>.

702 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don't give me the details, just the sum-
 703 mary! topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff,
 704 David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Confer-
 705 ence on Empirical Methods in Natural Language Processing*, pp. 1797–1807, Brussels, Bel-
 706 gium, October–November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
 707 D18-1206. URL <https://aclanthology.org/D18-1206/>.

708 Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser. Why we need new
 709 evaluation metrics for NLG. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Pro-
 710 ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp.
 711 2241–2252, Copenhagen, Denmark, September 2017. Association for Computational Linguis-
 712 tics. doi: 10.18653/v1/D17-1238. URL <https://aclanthology.org/D17-1238/>.

713 Patrik Očanović, Andreas Kirsch, Jannes Kasper, Torsten Hoefer, Andreas Krause, and Nez-
 714 ihe Merve Gürel. All models are wrong, some are useful: Model selection with limited la-
 715 bels. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings
 716 of The 28th International Conference on Artificial Intelligence and Statistics*, volume 258 of
 717 *Proceedings of Machine Learning Research*, pp. 2035–2043. PMLR, 03–05 May 2025. URL
 718 <https://proceedings.mlr.press/v258/okanovic25a.html>.

719 OpenAI. Openai api. <https://platform.openai.com>.

720 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023a.

721 OpenAI. Gpt-4 technical report. <https://openai.com/research/gpt-4>, 2023b. Ac-
 722 cessed: 2025-05-26.

723 OpenCompass. Opencompass: A universal evaluation platform for foundation models. <https://github.com/open-compass/opencompass>, 2023.

724 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 725 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 726 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 727 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Pro-
 728 ceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS
 729 '22, Red Hook, NY, USA, 2022a. Curran Associates Inc. ISBN 9781713871088.

730 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 731 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 732 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 733 and Ryan Lowe. Training language models to follow instructions with human feedback. *arXiv
 734 preprint arXiv:2203.02155*, 2022b.

735 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 736 evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
 737 *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp.
 738 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
 739 tics. doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.

740 Vihari Piratla, Soumen Chakrabarti, and Sunita Sarawagi. Active assessment of prediction services
 741 as accuracy surface over attribute combinations. *Advances in Neural Information Processing
 742 Systems*, 34:23140–23151, 2021.

743 Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
 744 Yurochkin. tinybenchmarks: evaluating llms with fewer examples. In *Proceedings of the 41st
 745 International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

746 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 747 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 748 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.

756 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 757 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 758 *Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

759

760 Abigail See, Peter Liu, and Christopher Manning. Get to the point: Summarization with pointer-
 761 generator networks. In *Association for Computational Linguistics*, 2017. URL <https://arxiv.org/abs/1704.04368>.

762

763

764 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 765 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 766 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 767 *arXiv:2206.04615*, 2022.

768

769 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 770 Akanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
 771 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 772 2022.

773

774 Shir Ashury Tahan, Ariel Gera, Benjamin Sznajder, Leshem Choshen, Liat Ein Dor, and Eyal
 775 Shnarch. Label-efficient model selection for text generation. In *Proceedings of the 62nd An-
 776 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 777 8384–8402, 2024.

778

779 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 780 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 781 https://github.com/tatsu-lab/stanford_alpaca, 2023.

782

783 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 784 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 785 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 786 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 787 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 788 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 789 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 790 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 791 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 792 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 793 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 794 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 795 *arXiv preprint arXiv:2307.09288*, 2023.

796

797 Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul,
 798 Younes Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib,
 799 Nathan Sarrazin, Omar Sanseviero, Alexander M Rush, and Thomas Wolf. Zephyr: Di-
 800 rect distillation of LM alignment. In *First Conference on Language Modeling*, 2024. URL
 801 <https://openreview.net/forum?id=aKkAwZB6JV>.

802

803 Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking mod-
 804 els with much fewer examples. In Yvette Graham and Matthew Purver (eds.), *Proceedings of*
 805 *the 18th Conference of the European Chapter of the Association for Computational Linguistics*
 806 *(Volume 1: Long Papers)*, pp. 1576–1601, St. Julian’s, Malta, March 2024. Association for Com-
 807 putational Linguistics. URL <https://aclanthology.org/2024.eacl-long.95/>.

808

809 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
 810 drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International*
 811 *Conference on Learning Representations*.

812

813 Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, and Shuai Li. Convergence-
 814 aware online model selection with time-increasing bandits. In *The Web Conference 2024*, 2024a.
 815 URL <https://openreview.net/forum?id=2IwSOTWvXu>.

810 Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A Rossi, Sungchul Kim, and Shuai Li. Which llm to
 811 play? convergence-aware online model selection with time-increasing bandits. In *Proceedings of*
 812 *the ACM on Web Conference 2024*, pp. 4059–4070, 2024b.

813
 814 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 815 Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
 816 complex instructions. In *The Twelfth International Conference on Learning Representations*,
 817 2024. URL <https://openreview.net/forum?id=CfXh93NDgH>.

818 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 819 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 820 *arXiv:2403.04652*, 2024.

821 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 822 denotations: New similarity metrics for semantic inference over event descriptions. *TACL*, 2:
 823 67–78, 2014.

824 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
 825 text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.

826 Bin Zhao, Fei Wang, Changshui Zhang, and Yangqiu Song. Active model selection for graph-
 827 based semi-supervised learning. In *2008 IEEE International Conference on Acoustics, Speech*
 828 and *Signal Processing*, pp. 1881–1884, 2008. doi: 10.1109/ICASSP.2008.4518001.

829 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 830 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 831 Judging llm-as-a-judge with mt-bench and chatbot arena. In *Proceedings of the 37th International*
 832 *Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023.
 833 Curran Associates Inc.

834 Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang,
 835 and Jiantao Jiao. Starling-7b: Improving helpfulness and harmlessness with RLAIF. In *First*
 836 *Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=GqDntYTTbk>.

837 Markus Zopf. Estimating summary quality with pairwise preferences. In Marilyn Walker, Heng Ji,
 838 and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of*
 839 *the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
 840 *Papers)*, pp. 1687–1696, New Orleans, Louisiana, June 2018. Association for Computational Lin-
 841 *guistics*. doi: 10.18653/v1/N18-1152. URL <https://aclanthology.org/N18-1152/>.

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

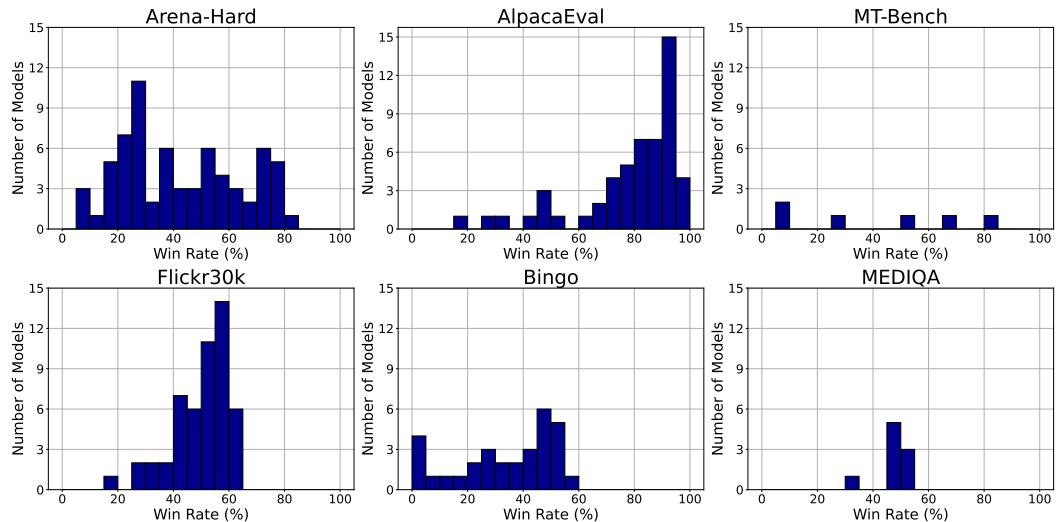
864 **A DATASET AND MODEL COLLECTIONS**
865

866 For Arena-Hard, AlpacaEval, and MT-Bench, we use the available model responses along with the
867 human judgment annotations provided by the respective benchmarks. For Flickr30k and Bingo, we
868 conduct experiments using the data published by the VHELM (Lee et al., 2024b) benchmark. For
869 MEDIQA, we use the data released by the MedHELM (Bedi et al., 2025) benchmark.
870

871 Dataset	872 Best ϵ_{loss} across 1,000 realizations	872 Best ϵ_{draw} across 1,000 realizations	873 Dataset size	873 Realization pool size	874 LLM win rates	875 Number of LLMs
873 Arena-Hard	0.20	0.40	874 500	874 400	875 5.20% - 84.70%	875 68
874 AlpacaEval	0.20	0.40	875 805	875 700	876 15.22% - 97.64%	876 53
875 MT-Bench	0.15	0.35	877 80	877 60	878 5.63% - 81.88%	878 6
876 Flickr30k	0.40	0.20	879 1000	879 500	880 17.25% - 64.85%	880 51
880 Bingo	0.60	0.20	881 1000	881 600	882 0.13% - 55.91%	882 31
883 MEDIQA	0.15	0.35	884 150	884 140	885 33.67% - 51.00%	885 9

879 Table 3: Summary of the six datasets used in our experiments.
880

881 Table 3 provides an overview of the six datasets used in our experiments, including the best ϵ_{loss} and
882 ϵ_{draw} across 1,000 realizations, dataset sizes, realization pool sizes, ranges of model win rates, and
883 the number of pretrained models. The datasets vary in size, number of available models, and ranges
884 of model win rates, allowing us to evaluate our methods under diverse experimental scenarios.
885

904 Figure 3: Candidate LLM win rate histograms.
905

906 The performance of the candidate LLMs is plotted in Figure 3. The plots show the histogram of
907 models which are in the different win rate ranges for each dataset. The histograms show that
908 experiments include a diverse range of win rates against the baseline. This indicates that our experiments
909 cover different scenarios and capture the variability present in real-world applications.
910

913 **B ANALYSIS OF ALTERNATIVE WEAK JUDGES**
914

915 Figure 4 presents the performance of LLM SELECTOR when using two additional weak judges
916 based on sentence embedding models and reward models. As shown, k -gram weak judges outper-
917 form both alternatives, highlighting the effectiveness of our k -gram-based approach.
918

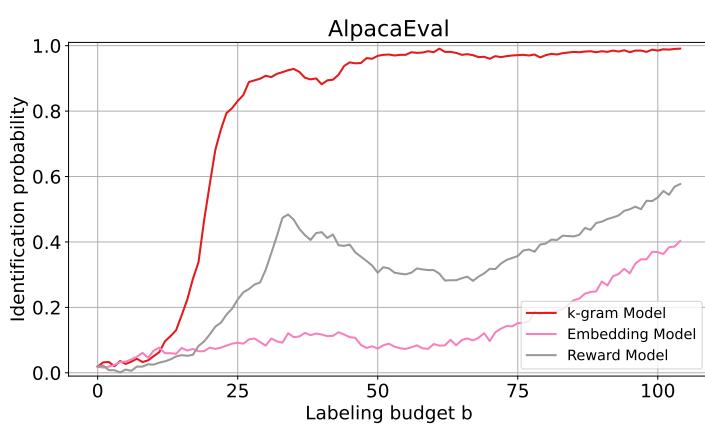


Figure 4: Comparison of the performance of LLM SELECTOR with k-gram, embedding, and reward model based weak judges.

Specifically, the embedding-based weak judge computes sentence embeddings for all responses to a given query using the `all-mpnet-base-v2` model from the Sentence Transformers library (Reimers & Gurevych, 2019). Then, the mean embedding across responses is calculated, and for any pair of responses, the weak judge prefers the response whose embedding is closer to this mean. On the other hand, the reward-model-based weak judge directly uses the pairwise comparison outputs of a reward model to make decisions. In particular, we employ `Skywork-Reward-V2-Llama-3.1-8B` (Liu et al., 2025) as the weak judge.

C DERIVATION OF THE POSTERIOR UPDATE

We provide here a derivation of the posterior update shown in Equation 4, starting from the likelihood model defined in Equation 2.

The probability in Equation 4 represents the posterior probability of each candidate LLM being the best model, conditioned on the oracle judge annotations on A_t and the weak judge annotation on q . We compute this posterior via Bayes' rule. Specifically, for each model f_j , the posterior is

$$\mathbb{P}(F = f_j \mid A_t \cup \{(q, R = r_{(k)})\}) \propto \mathbb{P}(A_t \cup \{(q, R = r_{(k)})\} \mid F = f_j) \cdot \mathbb{P}(F = f_j).$$

Assuming conditional independence of the oracle annotations in A_t and the weak annotation on q given the model f_j , the posterior factorizes as

$$\mathbb{P}(F = f_j \mid A_t \cup \{(q, R = r_{(k)})\}) \propto \mathbb{P}(\{(q, R = r_{(k)})\} \mid F = f_j) \cdot \mathbb{P}(F = f_j \mid A_t).$$

Using the likelihood defined in Equation 2, the posterior can be written as

$$\begin{aligned} \mathbb{P}(F = f_j \mid A_t \cup \{(q, r_{(k)})\}) &\propto \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q) <_{(k)} \bar{f}(q)]} \cdot \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q) =_{(k)} \bar{f}(q)]} \\ &\quad \cdot (1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}})^{\mathbb{1}[f_j(q) >_{(k)} \bar{f}(q)]} \mathbb{P}(F = f_j \mid A_t) \end{aligned}$$

This yields the expression shown in Equation 4.