ACTIVE MODEL SELECTION FOR LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce LLM SELECTOR, the first framework for active model selection of Large Language Models (LLMs). Unlike prior evaluation and benchmarking approaches that rely on fully annotated datasets, LLM SELECTOR efficiently identifies the best LLM *with limited annotations*. In particular, for any given task, LLM SELECTOR adaptively selects a small set of queries to annotate that are most informative about the best model for the task. To further reduce annotation cost, we leverage a judge-based oracle annotation model. Through extensive experiments on 6 benchmarks with 151 LLMs, we show that LLM SELECTOR reduces annotation costs by up to 59.62% when selecting the best and near-best LLM for the task.

1 Introduction

How can we select the best Large Language Model (LLM) for a given application or data distribution without retraining? Answering this question has become increasingly difficult as the number of readily available models continues to expand. Recent advances in architectures, training strategies, and access to massive datasets have enabled impressive zero-shot capabilities, allowing LLMs to perform a wide range of tasks without task-specific fine-tuning (Wei et al.; Kojima et al., 2022). As a result, a large and diverse collection of pretrained models differing in architecture, training data, and optimization objectives is now easily accessible through academic repositories and commercial platforms (Hugging Face; OpenAI; Google DeepMind; Anthropic).

This abundance of choice, while offering wide flexibility for deployment, also introduces a fundamental challenge for practitioners as the performance differences across these LLMs can be substantial, particularly when transferring across domains, tasks, or languages (Liang et al., 2023). Although significant efforts have been devoted to the evaluation and benchmarking of LLMs (Liang et al., 2023; Fourrier et al., 2024; OpenCompass, 2023), the rapid expansion of both candidate models and evaluation scenarios makes existing practices increasingly difficult to apply for model selection (Chang et al., 2024). In particular, benchmarks often struggle to keep pace with the fast release cycle of new models or frequently focus on narrow or standardized tasks, which may not adequately capture the requirements of domain-specific applications. A common approach to model selection is to rely on random or heuristically chosen small subsets of annotated data (Polo et al., 2024; Vivek et al., 2024), but such approaches often result in suboptimal use of resources and fail to reliably capture differences across models (Kossen et al., 2021). To address this, several studies have explored active model selection (Karimi et al., 2021; Liang et al., 2020; Okanovic et al., 2025; Gardner et al., 2015; Tahan et al., 2024), where limited annotations of strategically chosen subsets are utilized, but this line of work is largely centered around classification tasks rather than generative settings (Okanovic et al., 2025; Kay et al., 2025; Madani et al., 2012; Karimi et al., 2021; Piratla et al., 2021; Liu et al., 2022; Kassraie et al., 2023; Xia et al., 2024a; Li et al., 2024a;b). Thus, to date, how to reliably identify the best LLM for a specific task and data distribution under limited annotation resources remains an open question.

In this work, we address this problem and ask: Given a pool of queries and a set of candidate LLMs, which examples should be annotated in order to reliably identify the best LLM, both in a model-agnostic and annotation-efficient manner?

Contributions: In this paper, we introduce the active model selection problem for LLMs and present LLM SELECTOR, a principled framework for selecting the best LLM under a limited annotation

Figure 1: An overview of LLM Selector. For an arbitrary pool of n queries and a set of candidate language models, LLM Selector adaptively annotates most informative $b \ll n$ queries for identifying the best language model for the pool.

budget, along with adapted baseline strategies for this problem. Given a large set of n queries and a limited annotation budget b with $b \ll n$, LLM SELECTOR selects b queries whose annotations are expected to maximally reduce uncertainty about the best model for the entire set. Our approach builds on information-gain criteria (Chen et al., 2015), and quantifies informativeness using a two-parameter model that measures information gain as Shannon's mutual information between the unknown best model and annotations.

Motivated by the growing adoption of judge-based approaches (Zheng et al., 2023; Li et al., 2024c; 2023; Zheng et al., 2023), we employ a judge-based annotation process in which each query is annotated with a vector over candidate models. For each model candidate, we compare its response to the query against that of a baseline model using oracle preference judgments. This judge-based design alleviates the need for costly reference answers or summaries that are known to be far more expensive than pairwise judgments (Zopf, 2018; Ouyang et al., 2022a; Rafailov et al., 2023; Luo et al., 2022; Callison-Burch et al., 2006), and mitigates the noise commonly introduced by reference-based evaluation metrics (Zopf, 2018; Ouyang et al., 2022a; Rafailov et al., 2023; Novikova et al., 2017).

We validate LLM SELECTOR across 6 benchmarks on 151 LLMs. Specifically, our evaluation covers three categories of datasets: (i) *general dialogue*: AlpacaEval (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al., 2023); (ii) *vision-language*: Flickr30k (Young et al., 2014) and Bingo (Cui et al., 2023); and (iii) *medical*: MediQA (Ben Abacha et al., 2019). These benchmarks employ LLM-as-a-Judge for evaluation, which has been shown to correlate strongly with human evaluations, even exceeding the agreement level between human annotators (Zheng et al., 2023). Importantly, our method does not rely on LLM judges specifically and is equally compatible with other oracle judges, such as human evaluators or alternative assessment methods.

LLM SELECTOR shows consistently competitive performance across all experiments, while providing significant reductions in annotation costs on several datasets, with only a small fraction of the annotation budget required by baseline selection strategies where it reduces the annotation costs by up to 58.33%, while achieving a 59.62% reduction when selecting models within a 1% win-rate vicinity of the best model. Moreover, we show that LLM SELECTOR can find near-best models even before exhausting the budget needed to reach the best model, indicating that LLM SELECTOR maintains robust performance under extreme budget constraints.

Once the best LLM is selected based on b annotated queries, we use it to generate outputs for the remaining n-b queries where $n-b\gg b$. Our method is fully model-agnostic: it requires no access to internal parameters and imposes no restrictions on output format, making it directly applicable in black-box or API-only settings. An overview of LLM SELECTOR is shown in Figure 1.

2 RELATED WORK

Several methodologies exist for **LLM evaluation**. Traditional multiple-choice (Srivastava et al., 2022; Suzgun et al., 2022), or short-answer benchmarks (Cobbe et al., 2021) provide a standardized way to evaluate model performance, though they do not assess the generative abilities of LLMs. For

tasks such as summarization (See et al., 2017; Narayan et al., 2018) and translation (Goyal et al., 2022), reference-based benchmarks are commonly used, where model outputs are compared against human-written ground truth using metrics like BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and BERTScore (Zhang et al., 2020). More recently, judge-based evaluation has seen growing adoption. LMArena (Zheng et al., 2023) is a live leaderboard using human annotators. Static benchmarks like Arena-Hard (Li et al., 2024c), AlpacaEval (Li et al., 2023) and MT-Bench (Zheng et al., 2023) rely on LLM-as-a-Judge for automated evaluation. At a higher level, leaderboards such as HELM (Liang et al., 2023), OpenCompass (OpenCompass, 2023), and OpenLLM (Fourrier et al., 2024) aggregate benchmarks measuring models on different capabilities in order to give a full view of LLM capabilities. However, these evaluation methodologies require relying on full access to human annotators or LLM-as-a-Judge, and due to the large scale of modern benchmarks, such evaluations are often not feasible with limited resources.

Most prior work on **active model selection** focus on classification tasks (Zhao et al., 2008; Liang et al., 2020; Gardner et al., 2015; Okanovic et al., 2025; Kay et al., 2025). Some studies consider an online setting, where data arrive sequentially from a stream (Madani et al., 2012; Karimi et al., 2021; Piratla et al., 2021; Liu et al., 2022; Kassraie et al., 2023; Xia et al., 2024a; Li et al., 2024a;b; Xia et al., 2024b). Active model selection has also been studied for LLMs, but limited to scenarios with two candidate models (Tahan et al., 2024) or a single model under active testing (Berrada et al., 2025; Huang et al., 2025). In contrast, our method, LLM SELECTOR, can handle an arbitrary number of candidate LLMs.

Finally, while some prior work explores efficient active ranking based on comparisons (Jamieson & Nowak, 2011; Caron & Doucet, 2012), they primarily select pairs of models for evaluation. By contrast, our setup compares models on LLM queries spanning diverse levels of difficulty, where the outcome of the evaluation depends on the query itself. This motivates a data-centric perspective in which we prioritize selecting examples for annotation rather than model pairs.

3 LLM SELECTOR

In this section, we introduce LLM SELECTOR. We first define the problem setting in Section 3.1, and describe our annotation framework based on preference judgments in Section 3.2. In Section 3.3, we present LLM SELECTOR algorithm for annotation-efficient LLM selection. Finally, Section 3.4 details our hyperparameter selection strategy, which requires no oracle annotations.

3.1 PROBLEM SETTING

Consider the inference-time scenario in which we are provided with a set of n unannotated queries $Q = \{q_i \in \mathcal{Q} \mid i \in [n]\}$. Each query q_i represents a user-issued prompt or request to an oracle. We denote the oracle-annotated ground-truth response to q_i by $r_i \in \mathcal{R}$. Since these annotations are not observed, we use R_i to denote the unknown response r_i .

Given a collection of m pretrained language models $\mathcal{M}=\{f_j:\mathcal{Q}\to\mathcal{R}\mid j\in[m]\}$, our objective is to identify the best language model in \mathcal{M} for producing high-quality responses to the queries Q. Because oracle-provided annotations are costly, we assume access to only a limited number of at most $b\ll n$ annotations. The problem therefore reduces to selecting b queries whose annotations provide maximal information about the identity of the best model. We define the best model, denoted by f^* , as the model with the highest utility among M if all annotations $\{r_i\mid i\in[n]\}$ were observed. Once identified, we deploy this model to generate responses for the remaining n-b unannotated queries.

Formally, we cast the selection problem as one of maximizing mutual information. That is, we aim to identify a subset $\mathcal{A} \subseteq \{(q_i, r_i) \mid i \in [n]\}$ of at most b annotated examples that maximizes the mutual information between F and the selected annotations:

$$\mathcal{A}_{\text{opt}[b]} = \underset{\substack{\mathcal{A} \subseteq \{(q_i, r_i) | i \in [n]\}\\ |\mathcal{A}| \le b}}{\arg \max} \mathbb{I}(F; \mathcal{A}). \tag{1}$$

3.2 Annotation via Direct Preference Judgments

The evaluation of long-form candidate responses cannot rely on exact string matching, and therefore requires more sophisticated methods. Beyond correctness, factors such as relevance, helpfulness, complexity, and level of detail influence the desirability of an answer. Because reference-based metrics often produce noisy scores (Novikova et al., 2017; Callison-Burch et al., 2006), we instead evaluate models using direct preference judgments (Zheng et al., 2023; Rafailov et al., 2023), which compare model responses pairwise and is shown to be more stable than individual model ratings (Jones et al., 2011; Zopf, 2018). As for LLMs, the preference-based is already being adopted as the evaluation method in many open-ended contemporary LLM benchmarks (Zheng et al., 2023; Li et al., 2024c; 2023).

Formally, for a given query $q_i \in Q$, an *oracle judge* performs a pairwise comparison between the responses of the models f_j and f_k . We write >, <, and = to denote the oracle judge's preference relation, with the following outcomes:

- $f_i(q_i) > f_k(q_i)$: the response of f_i is preferred,
- $f_j(q_i) < f_k(q_i)$: the response of f_k is preferred,
- $f_i(q_i) = f_k(q_i)$: the responses are judged equally good (or equally poor).

We express the pairwise judgment of the oracle as

OracleJudge
$$(q_i, f_j(\cdot), f_k(\cdot)) = \mathbb{1}[f_j(q_i) > f_k(q_i)] + \frac{1}{2} \cdot \mathbb{1}[f_j(q_i) = f_k(q_i)],$$

where $\mathbb{1}[\cdot]$ denotes the indicator function.

To compare two models across a collection of queries, we adopt the win rate metric (Li et al., 2023). For the query set Q, the win rate of f_i over f_k is defined as

$$WR_Q(f_j, f_k) = \frac{1}{n} \sum_{i=1}^n OracleJudge(q_i, f_j(\cdot), f_k(\cdot))$$

with
$$WR_Q(f_i, f_k) + WR_Q(f_k, f_i) = 1$$
 for $j, k \in [m]$.

Since identifying the best model through full pairwise ranking requires $\mathcal{O}(m^2)$ oracle annotations, we instead adopt a simplified strategy based on comparisons against a single baseline. Specifically, we designate one of the language models in \mathcal{M} as baseline model to reduce the annotation cost further. We denote the baseline model by \bar{f} . We select a candidate LLM expected to perform strongly as the baseline, aiming to produce a more informative ranking. We provide details of baseline model selection in Section 4.1. Each remaining model is then evaluated according to its win rate relative to \bar{f} , and LLM SELECTOR returns the model the model with the highest win rate based on the annotated queries.

To formally characterize the mutual information between the unknown best model and the annotations, we propose a two-parameter model that describes the behavior of the unknown best language model relative to the baseline, with respect to the oracle preference relation introduced earlier:

$$\mathbb{P}(F(q) < \bar{f}(q)|F = f^*) = \epsilon_{\text{loss}}$$

$$\mathbb{P}(F(q) = \bar{f}(q)|F = f^*) = \epsilon_{\text{draw}}$$

$$\mathbb{P}(F(q) > \bar{f}(q)|F = f^*) = 1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}}$$
(2)

where $\epsilon_{\rm loss}$, $\epsilon_{\rm draw} \in [0,1]$ and $\epsilon_{\rm loss} + \epsilon_{\rm draw} \leq 1$. The values of $\epsilon_{\rm loss}$ and $\epsilon_{\rm draw}$ are determined in advance, following the procedure described in Section 3.4.

3.3 THE ALGORITHM

Given the query set Q, our objective is to select at most b queries such that, once annotated, they maximize our information about the best language model as defined in Equation 1. To this end, we adopt a sequential information maximization strategy (Chen et al., 2015; Okanovic et al., 2025) for selecting queries one at a time until the budget b is exhausted.

In our sequential framework, let U_t denote the pool of unannotated queries, and A_t the set of annotated queries accumulated up to the sequential step t with $U_0 = Q$ and $A_0 = \emptyset$. At each t, we select the next query q_t to annotate as follows:

$$q_{t} = \underset{q \in U_{t}}{\operatorname{arg \, max}} \mathbb{I}(F; R \mid A_{t}, q)$$

$$= \underset{q \in U_{t}}{\operatorname{arg \, max}} \mathbb{H}(F \mid A_{t}) - \mathbb{E}_{R}[\mathbb{H}(F \mid A_{t} \cup \{(q, R)\})]$$

$$= \underset{q \in U_{t}}{\operatorname{arg \, min}} \mathbb{E}_{R}[\mathbb{H}(F \mid A_{t} \cup \{(q, R)\})], \qquad (3)$$

where $\mathbb{H}(F \mid A_t)$ denotes the conditional entropy of F given the annotations observed up to step t.

Selecting the next query reduces to finding the query that minimizes the expected conditional entropy of F given the current annotations as in Equation 3. As oracle responses for unannotated queries are unavailable, we compute this expectation through noisy annotation of the responses to each $q \in \mathcal{U}_t$ using weak judges.

3.3.1 Noisy Annotations via Weak Judges

The intuition behind the noisy annotation approach is to evaluate a candidate response by comparing it against the set of possible model responses, assigning higher preference to those that has greater similarity to other candidates.

Formally, we tokenize each response as a sequence of words: (w_1, w_2, \ldots, w_L) . For a given $k \in \mathbb{N}$, we construct a language model based on k-grams. The estimated probability of a word w_l in this language model is determined by the previous k-1 words where $\mathbb{P}(w_l|w_{1:L}) \coloneqq \mathbb{P}(w_l|w_{l-k+1:l-1})$. We fit the k-gram model on the responses of the candidate models \mathcal{M} , independently for each query q. For computing the average sequence likelihood of a sequence, we average the word probabilities:

$$\mathbb{P}(w_1, w_2, \dots, w_L) = \frac{1}{L} \sum_{l=1}^{L} \mathbb{P}(w_l | w_{l-k+1:l-1}).$$

Comparison of models f and \bar{f} by a weak judge is done by choosing the response with the higher average likelihood, $\mathbb{P}(f_j(q))$ or $\mathbb{P}(\bar{f}(q))$. The weak judge decision with k-gram model is denoted as $f(q)>_{(k)}\bar{f}(q)$, $f(q)=_{(k)}\bar{f}(q)$ or $f(q)<_{(k)}\bar{f}(q)$. We use $r_{(k)}$ to represent the noisy annotation made by weak judge k. Based on the weak judge decision and parameter model in Equation 2, we can compute the estimated information gain through the following probability:

$$\begin{split} \mathbb{P}(F = f_j | A_t \cup \{(q, r_{(k)})\}) &\propto \epsilon_{\text{loss}}^{\mathbb{1}[f_j(q) <_{(k)} \bar{f}(q)]} \cdot \epsilon_{\text{draw}}^{\mathbb{1}[f_j(q) =_{(k)} \bar{f}(q)]} \\ & \cdot (1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}})^{\mathbb{1}[f_j(q) >_{(k)} \bar{f}(q)]} \mathbb{P}(F = f_j | A_t) \end{split}$$

In total, we have $z \ge 1$ weak judges, each using the k-gram model with $k \in [z]$. Given $\mathbb{H}(F|\mathcal{A}_t \cup \{(q, r_{(k)})\})$, the estimated entropy by a weak judge, we compute the expected entropy by averaging over all weak judges:

$$q_t = \operatorname*{arg\,min}_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^{z} \mathbb{H}(F|\mathcal{A} \cup \{(q, r_{(k)})\})$$

where we use a uniform distribution over weak judges for computing the expectation.

3.3.2 Updating Model Posterior Belief

After annotating the selected query at step t, we update the posterior belief over the best language model conditioned on all annotations observed up to time t:

$$\mathbb{P}(F = f_j | A_t \cup \{(q, R = r)\}) \propto \mathbb{P}(A_t \cup \{(q, R = r)\} | F = f_j) \cdot \mathbb{P}(F = f_j).$$

With the two-parameter annotation model in Equation 2, the posterior belief is updated as:

```
\mathbb{P}(F = f_j | A_{t+1}) \propto \mathbb{P}(F(q_t) = r_t | F = f_j) \cdot \mathbb{P}(F = f_j | A_t)
\propto \epsilon_{\text{loss}}^{\mathbb{I}[f_j(q_t) < \bar{f}(q_t)]} \epsilon_{\text{draw}}^{\mathbb{I}[f_j(q_t) = \bar{f}(q_t)]} (1 - \epsilon_{\text{loss}} - \epsilon_{\text{draw}})^{\mathbb{I}[f_j(q_t) > \bar{f}(q_t)]} \mathbb{P}(F = f_j | A_t)
```

The pseudocode of the algorithm is provided in Algorithm 1.

Algorithm 1 LLM Selector Algorithm

270

271272

273274275

276277278

279

281

284

287

289

290 291

292

293

295

296297298

299

300 301 302

303

306

307 308

310 311 312

313 314

315

316

317318

319 320

321

322

323

```
Require: models \mathcal{M}, test queries \mathcal{Q}, parameters \epsilon_{\text{loss}}, \epsilon_{\text{draw}}, \epsilon_3, labeling budget b
    \mathcal{A}_0 \leftarrow \{\}, \mathcal{U}_0 \leftarrow \mathcal{Q}
     //Uniform model prior
    \mathbb{P}(F = f^j | \mathcal{A}_0) \leftarrow 1/M
    for t = 0 to b - 1 do
            for k = 1 to z do
                    //Estimate model posterior with weak judge decisions
                   \mathbb{P}(F = f_j | \mathcal{A}_t \cup \{(q, r_{(k)})\} \leftarrow \frac{1}{Z} \mathbb{P}(F = f_j | \mathcal{A}_t) \cdot \underbrace{\epsilon_{\text{loss}}^{\mathbb{I}[f_j(q) <_{(k)} \bar{f}(q)]} \epsilon_{\text{draw}}^{\mathbb{I}[f_j(q) =_{(k)} \bar{f}(q)]} \epsilon_3^{\mathbb{I}[f_j(q) >_{(k)} \bar{f}(q)]}}_{}
            //Choose the sample with minimum expected entropy
            q_t \leftarrow \arg\min_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^z \mathbb{H}(F|\mathcal{A}_t \cup \{(q, r_{(k)})\})
            //Get oracle decision
            r_t \leftarrow \text{OracleJudge}(q_t, f_j(\cdot), f(\cdot))
            \mathcal{A}_{t+1} \leftarrow \mathcal{A}_t \cup \{(q_t, r_t)\}
            \mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \{q_t\}
           //Update model posterior \mathbb{P}(F = f_j | \mathcal{A}_{t+1}) \leftarrow \frac{1}{Z} \mathbb{P}(F = f_j | \mathcal{A}_t) \cdot \epsilon_{\mathrm{loss}}^{\mathbb{1}[f_j(q) < \bar{f}(q)]} \epsilon_{\mathrm{draw}}^{\mathbb{1}[f_j(q) = \bar{f}(q)]} \epsilon_3^{\mathbb{1}[f_j(q) > \bar{f}(q)]}
     end for
    return \operatorname{arg} \operatorname{max}_{h \in \mathcal{M}} \operatorname{WR}_{\mathcal{A}_b}(h, \bar{f})
```

3.4 PARAMETER SELECTION

We choose the parameters ϵ_{loss} and ϵ_{draw} prior to LLM selection, therefore the oracle annotations are not available during parameter optimization. As a replacement, we use ensemble of all weak judges as a noisy oracle. More specifically, the noisy oracle behaves as follows:

$$\label{eq:WeakJudges} \operatorname{WeakJudges}(q,f(q),\bar{f}(q)) = \begin{cases} 1 & \text{if } \nu \geq 2/3 & \text{// win} \\ 0.5 & \text{if } 2/3 > \nu \geq 1/3 & \text{// draw} \\ 0 & \text{otherwise} & \text{// loss} \end{cases}$$

```
where \nu = \frac{1}{z} \sum_{k=1}^{z} \mathbbm{1}[f(q) >_{(k)} \bar{f}(q)] + \frac{1}{2} \cdot \mathbbm{1}[f(q) =_{(k)} \bar{f}(q)].
```

We perform a grid search over ϵ_{loss} and ϵ_{draw} using the weak judge decisions as the ground-truth annotations. We select the parameter set that maximizes the identification probability, defined as the probability of correctly recognizing the best LLM under the budget b.

4 EXPERIMENTS

In our experiments, we evaluate the effectiveness of strategies using LLM-as-a-Judge as the oracle. LLM-based evaluation serves as a reliable oracle, demonstrating strong correlation with human judgment. Moreover, LLM annotations maintain high efficiency while providing consistent and trustworthy feedback, making them a scalable and practical choice for our evaluation setting.

4.1 Dataset and Model Collections

We conduct experiments on several datasets including AlpacaEval (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al., 2023), which contain general user dialogues; Flickr30k (Young et al., 2014) and Bingo (Cui et al., 2023), which are vision–language datasets; and MediQA (Ben Abacha et al., 2019), which focuses on medical question answering. AlpacaEval consists of 805 queries, on which we evaluate 53 LLMs. Arena-Hard contains 500 queries, with evaluations conducted on 68 LLMs. MT-Bench comprises 80 multi-turn dialogues, and we assess 6 LLMs. For Flickr30k, we use 1,000 test samples and evaluate 51 LLMs. Bingo includes 762 samples, with evaluations over 31 LLMs. Finally, MediQA contains 150 samples, on which we evaluate 9 LLMs.

Candidate models include LLMs from diverse families, including proprietary systems such as GPT-3.5 and GPT-4 (Ouyang et al., 2022b; OpenAI, 2023a), Claude 2/3 (Anthropic, 2023; 2024), and Gemini (Google, 2023), as well as open-weight architectures like LLaMA-2/3 (Touvron et al., 2023; Meta AI, 2024), Mistral and Mixtral (Jiang et al., 2023; 2024), Falcon (Almazrouei et al., 2023), Yi (Young et al., 2024), Qwen (Bai et al., 2023), Gemma (Google, 2024), InternLM (InternLM, 2023), GLM (Du et al., 2022), and DBRX (Databricks, 2024). We further consider several widely adopted instruction-tuned derivatives, including Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), Guanaco (Dettmers et al., 2023), Tulu-2 (Ivison et al., 2023), WizardLM (Xu et al., 2024), Zephyr (Tunstall et al., 2024), and Starling (Zhu et al., 2024). The chosen LLMs differ in both number of parameters and training methodology.

For text-only benchmarks, we employ GPT-4 (OpenAI, 2023b) as the oracle judge. For vision-language benchmarks, we rely on Prometheus-Vision (Lee et al., 2024a) as the oracle judge. For each dataset, we adopt the following baseline LLMs. AlpacaEval, Arena-Hard, and MT-Bench follow the baselines specified by their respective benchmarks: text_davinci-003, gpt-4-0314, and gpt-3.5-turbo, respectively. For the remaining datasets, we select as the baseline the LLM that achieves the highest performance under noisy annotations from WeakJudges. Specifically, we use gemini-1.5-pro-preview-0514 for Flickr30k, and gpt-4o-2024-05-13 for both Bingo and MediQA.

We choose the parameters $\epsilon_{\rm loss}$ and $\epsilon_{\rm draw}$ independently for each dataset, based on the procedure described in Section 3.4. Based on preliminary analysis, we set the number of weak judges z to 10 in all experiments, as additional weak judges beyond this number are highly correlated with the existing ones and provide little new information.

4.2 BASELINES

We evaluate LLM SELECTOR against a set of baseline strategies we adapt for the active model selection task.

Random. At time t, the query q_t is selected uniformly from the unannotated set \mathcal{U}_t : $q_t \sim \mathrm{Uniform}(\mathcal{U}_t)$.

Bradley-Terry. Bradley-Terry coefficients (Bradley & Terry, 1952) are computed using annotated queries \mathcal{A}_t to model LLM performances, which defines a posterior distribution over the best model. In our setting, we leverage this posterior together with entropy minimization strategy. The next query is selected by greedily minimizing the posterior entropy: $q_t = \arg\min_{q \in \mathcal{U}_t} \frac{1}{z} \sum_{k=1}^z \mathbb{H}(F|\mathcal{A}_t \cup \{(q, r_{(k)})\})$

Most Draws. For each $q \in \mathcal{U}_t$, let d(q) denote the number of responses that result in a draw with the baseline response according to the ensemble WeakJudges. The next query is selected as $q_t = \arg\max_{q \in \mathcal{U}_t} d(q)$.

Uncertainty. We adapt the uncertainty-based sampling method of Dagan & Engelson (1995) to our setting. For each $q \in \mathcal{U}_t$, let w(q), $\ell(q)$, and d(q) denote the expected number of wins, losses, and draws against the baseline, as estimated by the ensemble WeakJudges. Normalizing by the total number of responses n_q , we obtain the empirical outcome distribution $\pi_q = (\frac{w(q)}{n_q}, \frac{\ell(q)}{n_q}, \frac{d(q)}{n_q})$. The next query is selected as the one with the highest entropy: $q_t = \arg\max_{q \in \mathcal{U}_t} \mathbb{H}(\pi_q)$.

Confidence. Using the same distribution π_q , the next query is selected as the one with the lowest entropy: $q_t = \arg\min_{q \in \mathcal{U}_t} \mathbb{H}(\pi_q)$.

Among the baseline strategies, only Bradley-Terry is adaptive, as its selection rule depends on the observed annotations. The remaining strategies are non-adaptive.

4.3 EXPERIMENTAL SETUP

In our experiments, we uniformly sample a pool of n examples from the test set. We run model selection strategies on the sampled pool to select b queries to annotate, and choose the LLM with the highest average utility on the annotated queries. We call this process a *realization*, and we evaluate selection strategies on multiple realizations to obtain a performance estimate.

We compare strategies by three metrics. *Identification probability* is defined as the ratio of experiments that correctly find the best model for a given budget b. We present results for $b=1,\ldots,n$. *Annotation efficiency* refers to the percentage reduction in the number of labels needed to identify the best or reach within a δ vicinity of the best model across all realizations. *95th Percentile Win Rate Gap* is the 95th percentile of the win rate difference of the chosen LLMs, compared to the absolute best LLM.

4.4 RESULTS

4.4.1 IDENTIFICATION PROBABILITY

Figure 2: Best model identification probability of LLM SELECTOR and the baselines.

We present the best model identification probability of LLM SELECTOR and baseline methods in Figure 2. On Arena-Hard, MediQA, and MT-Bench, LLM SELECTOR achieves 100% identification probability with 58.33%, 50.40%, and 40.00% fewer annotated queries compared to the best competing baseline, respectively. On the remaining benchmarks, LLM SELECTOR requires a similar number of labels as the strongest baseline method. Across most values of *b*, LLM SELECTOR attains higher or comparable identification probability relative to the baselines. In contrast, baseline methods exhibit inconsistent performance: for example, Bradley–Terry performs well on AlpacaE-val but is not competitive on other datasets, while Confidence performs strongly on Bingo but poorly elsewhere. By comparison, LLM SELECTOR demonstrates consistently competitive performance across all benchmarks.

4.4.2 Annotation Efficiency for Near-Best Models

Table 1 shows the annotation efficiency of LLM Selector to recover the near-best models on all datasets. We compute annotation efficiency as the relative reduction in the percentage of required annotations compared to the best competing baseline, when selecting a model within δ vicinity of

Dataset	$\delta = 1\%$	$\delta = 2.5\%$	$\delta = 5\%$
Arena-Hard	$\downarrow 59.62\%$	$\downarrow 59.62\%$	$\downarrow 58.42\%$
AlpacaEval	$\uparrow 7.06\%$	$\downarrow 30.99\%$	$\downarrow 35.85\%$
MT-Bench	$\downarrow 40.00\%$	$\downarrow 40.00\%$	$\downarrow 42.68\%$
Flickr30k	$\downarrow 3.39\%$	$\downarrow 6.25\%$	$\downarrow 36.47\%$
Bingo	$\downarrow 7.69\%$	$\downarrow 10.10\%$	$\uparrow 6.00\%$
MEDIQA	$\downarrow 13.70\%$	$\downarrow 6.00\%$	= 0.00%

Table 1: Annotation efficiency for near-best models across datasets: bolded numbers with \downarrow indicate decreases.

the best LLM. Specifically, we measure the annotation cost saved by LLM SELECTOR to return a model within 1%, 2.5%, and 5% win rate of the best model.

We observe that LLM SELECTOR is highly annotation efficient, reaching high-performing models faster than best competing baseline. On Arena-Hard and MT-Bench, LLM SELECTOR is able to reach the top 1% and 2.5% vicinity of the best model with relatively few annotations, showing that it can reliably identify near-optimal models with limited annotation effort. On Flickr30k, Bingo, and MEDIQA LLM SELECTOR still manages to reduce the number of required annotations compared to alternative strategies, even though the improvement is smaller. LLM SELECTOR also maintains robustness under $\delta=5\%$, using up to 58.42% fewer annotations.

4.4.3 ROBUSTNESS ANALYSIS

Dataset Identification probability	LLM Selector (80%/90%/95%/100%)	Random (80%/90%/95%/100%)	Bradley-Terry (80%/90%/95%/100%)	Confidence (80%/90%/95%/100%)	Uncertainty (80%/90%/95%/100%)	Most Draws (80%/90%/95%/100%)
Arena-Hard	11.75/8.13/0.00/0.00	13.38/13.12/11.38/8.25	13.00/13.00/13.00/7.87	13.25/13.00/14.25/9.62	14.12/14.00/12.25/6.87	12.87/13.25/12.62/7.25
AlpacaEval	4.57/3.14/0.00/0.00	8.21/7.86/6.50/2.93	3.93/3.71/2.93/0.00	3.50/3.29/3.29/2.14	8.36/3.14/3.21/2.71	11.36/8.71/5.93/2.79
MT-Bench	12.50/12.50/0.00/0.00	34.17/34.17/16.67/14.17	33.33/33.33/16.67/0.00	34.17/34.17/32.50/0.00	34.17/34.17/30.83/15.83	52.50/52.50/17.50/0.00
Flickr30k	6.20/3.30/0.00/0.00	8.40/6.10/5.30/0.00	9.60/7.30/6.70/0.00	6.60/5.00/3.90/0.00	11.00/6.40/5.70/0.00	8.40/6.00/5.40/0.00
Bingo	5.33/2.83/0.00/0.00	8.08/6.50/6.17/3.58	4.00/2.58/0.00/4.00	6.50/0.00/2.50/0.00	11.67/4.33/3.75/1.83	7.75/18.33/6.08/3.67
MEDIQA	2.14/1.07/0.00/0.00	3.21/2.86/2.86/1.07	3.21/3.21/3.21/0.36	3.21/3.21/1.07/1.07	3.93/3.21/ <u>1.07</u> / 0.00	1.07/1.07/ <u>1.07</u> /0.71

Table 2: 95th percentile win rate gap (%) at budget needed to reach identification probability 80%, 90%, 95%, and 100% on all benchmarks. Best results are in bold; second-best underlined.

To analyze the robustness, we compute the win rate gap between the selected and the true best model across all realizations. We then report the 95th percentile of these gaps, capturing the error that is larger than 95% of the observed outcomes. We perform this evaluation with varying annotation budgets, where the budgets are chosen as the amounts required for LLM Selector to reach 80%, 90%, 95%, and 100% identification probability.

Table 2 shows 95th percentile win rate gap between the chosen and the best LLMs. LLM SELECTOR achieves a smaller accuracy gap when measured against the budget required to reach 80%, 90%, 95%, and 100% identification probability across nearly all datasets. The accuracy gap of LLM SELECTOR is either the best among all strategies or, the second best. Our results show that LLM SELECTOR consistently select best or near-best models with high confidence for the majority of time.

5 DISCUSSION

We study the novel problem of active model selection for LLMs. We adapt several baselines and introduce LLM SELECTOR, the first strategy tailored to this task. To further reduce supervision, we propose a judge-based oracle annotation scheme. Our experiments show that LLM SELECTOR lowers annotation costs while reliably identifying the best LLM across tasks and datasets. Designed for settings with scarce annotations and evolving data, LLM SELECTOR enables adaptive, cost-efficient, and robust model selection for LLM deployment.

Ethics statement. This work uses only publicly available datasets and models, with all sources properly cited and used according to their licenses. We introduce the first framework for active model selection of LLMs. We believe this work poses no ethical risks.

Reproducibility statement. We prioritize making our work easy to reproduce. All datasets we used are publicly available, and we provide the code and instructions needed to recreate every result we report. We include all code and documentation in the supplementary material so that others can reproduce our results and use our work for future comparisons.

Large Language Model Usage. Large Language Models helped improve the writing quality by correcting grammar mistakes, fixing typos, and enhancing text flow. The models were used only for language improvement and had no impact on the technical content, study design, or result interpretation.

REFERENCES

- Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, et al. The falcon series of open language models. *arXiv preprint arXiv:2311.16867*, 2023.
- Anthropic. Anthropic claude api. https://console.anthropic.com.
- Anthropic. Model card and evaluations for claude models, 2023. URL https://www.anthropic.com/news/claude-2.
- Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.com/news/claude-3-family.
- Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- Suhana Bedi, Hejie Cui, Miguel Fuentes, Alyssa Unell, Michael Wornow, Juan M Banda, Nikesh Kotecha, Timothy Keyes, Yifan Mai, Mert Oez, et al. Medhelm: Holistic evaluation of large language models for medical tasks. *arXiv preprint arXiv:2505.23802*, 2025.
- Asma Ben Abacha, Chaitanya Shivade, and Dina Demner-Fushman. Overview of the MEDIQA 2019 shared task on textual inference, question entailment and question answering. In Dina Demner-Fushman, Kevin Bretonnel Cohen, Sophia Ananiadou, and Junichi Tsujii (eds.), *Proceedings of the 18th BioNLP Workshop and Shared Task*, pp. 370–379, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5039. URL https://aclanthology.org/W19-5039/.
- Gabrielle Berrada, Jannik Kossen, Muhammed Razzak, Freddie Bickford Smith, Yarin Gal, and Tom Rainforth. Scaling up active testing to large language models. *arXiv preprint arXiv:2508.09093*, 2025.
- Ralph Allan Bradley and Milton E Terry. The rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of Bleu in machine translation research. In Diana McCarthy and Shuly Wintner (eds.), 11th Conference of the European Chapter of the Association for Computational Linguistics, pp. 249–256, Trento, Italy, April 2006. Association for Computational Linguistics. URL https://aclanthology.org/E06-1032/.

- Francois Caron and Arnaud Doucet. Efficient Bayesian Inference for Generalized Bradley-Terry Models. *Journal of Computational and Graphical Statistics*, 21(1):174–196, 2012. URL https://inria.hal.science/inria-00533638.
 - Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. A survey on evaluation of large language models. *ACM Trans. Intell. Syst. Technol.*, 15(3), March 2024. ISSN 2157-6904. doi: 10.1145/3641289. URL https://doi.org/10.1145/3641289.
 - Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information maximization: When is greedy near-optimal? In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.), *Proceedings of The 28th Conference on Learning Theory*, volume 40 of *Proceedings of Machine Learning Research*, pp. 338–363, Paris, France, 03–06 Jul 2015. PMLR. URL https://proceedings.mlr.press/v40/Chen15b.html.
 - Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.
 - Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
 - Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu, Linjun Zhang, James Zou, and Huaxiu Yao. Holistic analysis of hallucination in gpt-4v(ision): Bias and interference challenges, 2023.
 - Ido Dagan and Sean P. Engelson. Committee-based sampling for training probabilistic classifiers. In Armand Prieditis and Stuart Russell (eds.), *Machine Learning Proceedings 1995*, pp. 150–157. Morgan Kaufmann, San Francisco (CA), 1995. ISBN 978-1-55860-377-6. doi: https://doi.org/10.1016/B978-1-55860-377-6.50027-X. URL https://www.sciencedirect.com/science/article/pii/B978155860377650027X.
 - Databricks. Introducing dbrx: A new state-of-the-art open llm. https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm, March 2024. Accessed: 2025-08-31.
 - Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *arXiv preprint arXiv:2305.14314*, 2023.
 - Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM: general language model pretraining with autoregressive blank infilling. pp. 320–335, 2022.
 - Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.
 - Jacob Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham. Bayesian active model selection with an application to automated audiometry. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/d9731321ef4e063ebbee79298fa36f56-Paper.pdf.
 - Google. Gemini: A family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Google. Gemma open models, 2024. URL https://ai.google.dev/gemma.
- Google DeepMind. Gemini api. https://ai.google.dev.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan, Marc'Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The Flores-101 evaluation benchmark for low-resource and multilingual machine translation. *Transactions of the Association for Computational Linguistics*, 10:522–538, 2022. doi: 10.1162/tacl_a_00474. URL https://aclanthology.org/2022.tacl-1.30/.

- Yuheng Huang, Jiayang Song, Qiang Hu, Felix Juefei-Xu, and Lei Ma. Actracer: Active testing of large language model via multi-stage sampling. *ACM Transactions on Software Engineering and Methodology*, 2025.
- Hugging Face. Hugging face hub. https://huggingface.co.
- InternLM. Internlm: A multilingual language model with progressively enhanced capabilities. https://github.com/InternLM/InternLM-techreport, 2023.
- Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in a changing climate: Enhancing lm adaptation with tulu 2, 2023.
- Kevin G. Jamieson and Robert D. Nowak. Active ranking using pairwise comparisons. In *Proceedings of the 25th International Conference on Neural Information Processing Systems*, NIPS'11, pp. 2240–2248, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN 9781618395993.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
- Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.
- Nicolas Jones, Armelle Brun, and Anne Boyer. Comparisons instead of ratings: Towards more stable preferences. In *2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology*, volume 1, pp. 451–456, 2011. doi: 10.1109/WI-IAT.2011.13.
- Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlaš, Johannes Rausch, Ce Zhang, and Andreas Krause. Online active model selection for pre-trained classifiers. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 307–315. PMLR, April 2021.
- Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, and Aldo Pacchiano. Anytime model selection in linear bandits. In *Proc. Neural Information Processing Systems (NeurIPS)*, December 2023.
- Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, and Sara Beery. Consensus-driven active model selection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025. ICCV 2025 Highlight.
- Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In *Advances in Neural Information Processing Systems*, volume 35, pp. 22199–22213, 2022.
- Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient model evaluation. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 5753–5763. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/kossen21a.html.
- Seongyun Lee, Seungone Kim, Sue Hyun Park, Geewook Kim, and Minjoon Seo. Prometheus-vision: Vision-language model as a judge for fine-grained evaluation, 2024a.

- Tony Lee, Haoqin Tu, Chi H Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Josselin S Roberts, Michihiro Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: A holistic evaluation of vision language models. *Advances in Neural Information Processing Systems*, 37:140632–140666, 2024b.
- Junfan Li, Zenglin Xu, Zheshun Wu, and Irwin King. On the necessity of collaboration in online model selection with decentralized data. *arXiv preprint arXiv:2404.09494*, 2024a.
- Po-han Li, Oyku Selin Toprak, Aditya Narayanan, Ufuk Topcu, and Sandeep Chinchali. Online foundation model selection in robotics. *arXiv* preprint arXiv:2402.08570, 2024b.
- Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024c. URL https://lmsys.org/blog/2024-04-19-arena-hard/.
- Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.
- Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=i04LZibEqW. Featured Certification, Expert Certification.
- Shen Liang, Yanchun Zhang, and Jiangang Ma. Active model selection for positive unlabeled time series classification. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 361–372, 2020. doi: 10.1109/ICDE48307.2020.00038.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013/.
- Xuefeng Liu, Fangfang Xia, Rick L Stevens, and Yuxin Chen. Contextual active online model selection with expert advice. In *ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World*. ICML, 2022.
- Ge Luo, Hebi Li, Youbiao He, and Forrest Sheng Bao. PrefScore: Pairwise preference learning for reference-free summarization quality assessment. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), *Proceedings of the 29th International Conference on Computational Linguistics*, pp. 5896–5903, Gyeongju, Republic of Korea, October 2022. International Committee on Computational Linguistics. URL https://aclanthology.org/2022.coling-1.515/.
- Omid Madani, Daniel J. Lizotte, and Russell Greiner. Active model selection, 2012. URL https://arxiv.org/abs/1207.4138.
- Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL https://ai.meta.com/blog/meta-llama-3.
- Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 1797–1807, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL https://aclanthology.org/D18-1206/.

- Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser. Why we need new evaluation metrics for NLG. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp. 2241–2252, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1238. URL https://aclanthology.org/D17-1238/.
- Patrik Okanovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefler, Andreas Krause, and Nezihe Merve Gürel. All models are wrong, some are useful: Model selection with limited labels. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings of The 28th International Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings of Machine Learning Research*, pp. 2035–2043. PMLR, 03–05 May 2025. URL https://proceedings.mlr.press/v258/okanovic25a.html.
- OpenAI. Openai api. https://platform.openai.com.
- OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023a.
- OpenAI. Gpt-4 technical report. https://openai.com/research/gpt-4, 2023b. Accessed: 2025-05-26.
- OpenCompass. Opencompass: A universal evaluation platform for foundation models. https://github.com/open-compass/opencompass, 2023.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022a. Curran Associates Inc. ISBN 9781713871088.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022b.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.), *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.
- Vihari Piratla, Soumen Chakrabarti, and Sunita Sarawagi. Active assessment of prediction services as accuracy surface over attribute combinations. *Advances in Neural Information Processing Systems*, 34:23140–23151, 2021.
- Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. tinybenchmarks: evaluating llms with fewer examples. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.
- Abigail See, Peter Liu, and Christopher Manning. Get to the point: Summarization with pointer-generator networks. In *Association for Computational Linguistics*, 2017. URL https://arxiv.org/abs/1704.04368.
- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint arXiv*:2206.04615, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging bigbench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022

Shir Ashury Tahan, Ariel Gera, Benjamin Sznajder, Leshem Choshen, Liat Ein Dor, and Eyal Shnarch. Label-efficient model selection for text generation. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8384–8402, 2024.

- Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M Rush, and Thomas Wolf. Zephyr: Direct distillation of LM alignment. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=aKkAwZB6JV.
- Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking models with much fewer examples. In Yvette Graham and Matthew Purver (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics* (Volume 1: Long Papers), pp. 1576–1601, St. Julian's, Malta, March 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.eacl-long.95/.
- Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International Conference on Learning Representations*.
- Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, and Shuai Li. Convergence-aware online model selection with time-increasing bandits. In *The Web Conference* 2024, 2024a. URL https://openreview.net/forum?id=2IwSOTWvXu.
- Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A Rossi, Sungchul Kim, and Shuai Li. Which Ilm to play? convergence-aware online model selection with time-increasing bandits. In *Proceedings of the ACM on Web Conference* 2024, pp. 4059–4070, 2024b.
- Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow complex instructions. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=CfXh93NDgH.
- Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint arXiv:2403.04652*, 2024.

- Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. *TACL*, 2: 67–78, 2014.
- Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.
- Bin Zhao, Fei Wang, Changshui Zhang, and Yangqiu Song. Active model selection for graph-based semi-supervised learning. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1881–1884, 2008. doi: 10.1109/ICASSP.2008.4518001.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and Jiantao Jiao. Starling-7b: Improving helpfulness and harmlessness with RLAIF. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=GqDntYTTbk.
- Markus Zopf. Estimating summary quality with pairwise preferences. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1687–1696, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1152. URL https://aclanthology.org/N18-1152/.

A DATASET AND MODEL COLLECTIONS

For Arena-Hard, AlpacaEval, and MT-Bench, we use the available model responses along with the human judgment annotations provided by the respective benchmarks. For Flickr30k and Bingo, we conduct experiments using the data published by the VHELM (Lee et al., 2024b) benchmark. For MEDIQA, we use the data released by the MedHELM (Bedi et al., 2025) benchmark.

Dataset	Best $\epsilon_{\rm loss}$ across 1,000 realizations	Best ϵ_{draw} across 1,000 realizations	Dataset size	Realization pool size	LLM win rates	Number of LLMs
Arena-Hard	0.20	0.40	500	400	5.20% - 84.70%	68
AlpacaEval	0.20	0.40	805	700	15.22% - 97.64%	53
MT-Bench	0.15	0.35	80	60	5.63% - 81.88%	6
Flickr30k	0.40	0.20	1000	500	17.25% - 64.85%	51
Bingo	0.60	0.20	1000	600	0.13% - 55.91%	31
MEDIQA	0.15	0.35	150	140	33.67% - 51.00%	9

Table 3: Summary of the six datasets used in our experiments.

Table 3 provides an overview of the six datasets used in our experiments, including the best ϵ_{loss} and ϵ_{draw} across 1,000 realizations, dataset sizes, realization pool sizes, ranges of model win rates, and the number of pretrained models. The datasets vary in size, number of available models, and ranges of model win rates, allowing us to evaluate our methods under diverse experimental scenarios.

Figure 3: Candidate LLM win rate histograms.

The performance of the candidate LLMs is plotted in Figure 3. The plots show the histogram of models which are in the different win rate ranges for each dataset. The histograms show that experiments include a diverse range of win rates against the baseline. This indicates that our experiments cover different scenarios and capture the variability present in real-world applications.