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ABSTRACT

We present Exponentially-Weighted Group Sparse Autoencoders (EWG-SAE)
that aims to balance reconstruction quality and feature sparsity whilst resolving
emerging problem such as feature absorption in interpretable language model
analysis in a linguistically principled way through geometrically decaying group
sparsity. Current sparse autoencoders struggle with merged hierarchical features
due to uniform regularization encouraging absorption of broader features into more
specific ones (e.g., "starts with S" being absorbed into "short"). Our architecture
introduces hierarchical sparsity via K = 9 dimension groups with exponential
regularization decay (λk = λbase × 0.5k), reducing absorption while maintaining
state-of-the-art reconstruction fidelity, sparse probing score, and decent ℓ1 loss.
The geometric structure enables precise feature isolation with negative inter-group
correlations confirming hierarchical organization.

1 INTRODUCTION

Feature absorption in sparse autoencoders - where broader features are merged into more specific
ones to increase sparsity - remains the fundamental barrier to reliable model interpretability (Chanin
et al., 2024). For example, when an SAE learns both "starts with S" and "short" features, sparsity
regularization incentivizes absorbing the "starts with S" feature into the "short" feature since "short"
always implies "starts with S". Current architectures achieve 0.14 absorption rates (Bussmann et al.,
2024), dangerously high for safety-critical applications like AI alignment (Farrell et al., 2024).

Three architectural limitations drive this absorption-sparsity tradeoff:

• Isotropic Regularization: Uniform ℓ1 constraints discourages features with high generality

• Fixed Specialization: Monolithic latent spaces fail to separate general vs specific features

We resolve these through geometric group sparsity, introducing Exponentially-Weighted Group SAEs
(EWG-SAE) with:

• Dimension groups dk = ⌊0.5dk−1⌋ (8192, 4096, 2048, 1024, 512, 256, 128, 64, 32)

• Regularization decay λk = λbase × 0.5k

• Gradient projection preventing feature merging

The architecture’s negative inter-group correlations (r = −0.18± 0.03) reveal successful separation
of features at different abstraction levels. This geometric regularization paradigm enables:

• Protection of broad features from absorption

• Built-in safety through hierarchical activation

• Automated abstraction level control
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Figure 1: Feature Absorption. Panel A depicts the ideal scenario where a Sparse Autoencoder (SAE)
learns two distinct features: “starts with S” (blue) and “short” (red). When the underlying token is
<short>, both neurons should light up since "short" implies "starts with S", resulting in an overall
purple activation vector for token <short> . Panel B demonstrates the actual learning behavior of the
SAE under l0 regularization: the "short" feature absorbs the "starts with S" feature to reduce active
latent variables (lower l0 regularization cost). While this enhances sparsity, the broader "starts with
S" feature loses autonomous activation for tokens like "short", making the model less interpretable.
Adapted from McDougall (2024).

2 EXPONENTIALLY-WEIGHTED GROUP SPARSE AUTOENCODERS

2.1 CLASSICAL SAE

Sparse autoencoders (SAEs) learn dictionaries of features ϕi ∈ Rd that reconstruct model activa-
tions x ∈ Rd through f = ReLU(W⊤

encx + benc) and x̂ = Wdecf + bdec. Traditional objectives
(Cunningham et al., 2023):

L = ∥x− x̂∥22 + λ

m∑
i=1

|fi| (1)

induce uniform sparsity across m features. This incentivizes absorption: when feature A implies
feature B (e.g., "short" implies "starts with S"), the model can reduce active features by absorbing B
into A (Chanin et al., 2024).

2.2 LOSS FUNCTION MODIFICATION

We reformulate SAE training with group-wise exponential decay to maintain distinct features across
abstraction levels:

• Partition m dimensions into K = 9 groups Gk with dk = ⌊0.5dk−1⌋
• Regularization weights λk = λbase × 0.5k−1 (λbase is customized to marginally trade

between sparisity and reconstruction quality)
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• Objective L = ∥x− x̂∥22 +
∑5

k=1 λk∥fGk
∥1, fGk

collects feature activations for those in
group k.

Key assumptions:

• Geometric group sizing (dk+1/dk ≈ 0.5) separates abstraction levels

• Exponential decay (γ = 0.5) protects broader features from absorption

• Group correlations measure feature independence

This structure creates complementary feature patterns - late groups (small dk, low λk) preserve
general features (hypernyms) while later groups (large dk, high λk) learn specific features which
cannot be readily expressed in terms of more general features.

2.3 THEORETICAL MOTIVATION

The hierarchical group structure of EWG-SAE specifically addresses feature absorption through
frequency-based regularization alignment. The inspiration comes from linguistics (e.g., (Miller,
1995)). In natural language, hypernymic (more general) concepts inherently appear more frequently
than their hyponyms, as each specific instance (e.g., "elephant") necessarily implies its broader
categories (e.g., "begins with e", "is noun"). However, these general concepts are fewer in number -
there are far fewer grammatical categories or first-letter patterns than specific words. By assigning
broader concepts to later groups with lower λk regularization weights, we create an activation
preference for these frequently-occurring general features. This directly counters the standard SAE’s
tendency to absorb general features into specific ones. For instance, without hierarchical grouping,
the feature "begins with e" might be absorbed into "elephant" to reduce ℓ1 penalty, resulting in the
general feature failing to activate independently when "eagle" or "echo" appear. Our structure instead
ensures that the ℓ1 penalty for activating general concept features (which correlate strongly with
high-frequency features) remains lower than the penalty for specific concepts, creating a systematic
preference for maintaining distinct general feature representations. As another application, specific
features with low frequency will not be learned as stand alone features if they can be completely
described by a few general features. For the geometric scaling of ℓ1 penalty ensures combination of up
exponentially many general features have comparable cost to activating a single specific feature. This
frequency-guided regularization effectively preserves the natural hierarchical structure of language
concepts.

3 METHOD

In addition to the modified loss presented above, EWG-SAE implements three mechanisms that
maintain distinct representations across abstraction levels:

1. Hierarchical Feature Protection: To preserve broader features like grammatical patterns or
character-level properties that might otherwise be absorbed into more specific token-level features,
we initialize decoder bias bdec to the geometric median of activations:

bdec = argmin
y∈Rd

N∑
i=1

∥xi − y∥2 (2)

This initialization anchors general features in earlier groups through consistent activation baselines.

2. Feature Independence Preservation: To prevent broader features from being absorbed into more
specific ones during training, we decouple gradient updates by removing components parallel to
existing feature directions:

∂L
∂Wdec

← ∂L
∂Wdec

−
(

∂L
∂Wdec

· Wdec

∥Wdec∥

)
Wdec

∥Wdec∥
(3)

This ensures that features like "starts with S" maintain independent representations even when they
frequently co-occur with more specific features like "short" that imply them.
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3. Adaptive Group Constraints: Warmup scheduling

λ
(t)
k = λbase × 0.5k ×min(1, t/1000) (4)

combined with activation rate monitoring prevents group collapse while maintaining feature hierarchy.

4 EXPERIMENTAL SETUP

We evaluate EWG-SAE on Gemma-2-2B (Team et al., 2024) using 5M tokens from layer 12 activa-
tions. Our implementation features:

• 5 dimension groups: [8192, 4096, 2048, 1024, 512, 256, 128, 64, 32] with λk = λbase×0.5k

• Linear warmup over 1k steps to final λ values

• Batch size 2048, context length 128, AdamW optimizer (Loshchilov & Hutter, 2017)

Other than feature absorption, we also evaluate the SAEs using the following benchmarks:

Unsupervised Metrics Following Karvonen et al. (2024), we adopt a suite of unsupervised metrics
to assess Sparse Autoencoders (SAEs):

• L0 Sparsity. We record the average number of non-zero latent activations across the model,
where a lower value indicates greater sparsity.

• Cross-Entropy Loss Score. This is defined as

H∗ −H0

Horig −H0
,

where Horig is the cross-entropy loss of the original network under next-token prediction, H∗

is the loss obtained after replacing the latent representation x with its SAE reconstruction,
and H0 is the loss when x is zero-ablated. Higher scores (approaching 1) suggest stronger
preservation of predictive information.

• Feature Density Statistics. By examining how frequently each latent unit in the SAE
activates, we observe the proportion of “dead” units (never firing) and “overly active”
units (firing very often). These activation frequencies may also be illustrated via log-scale
histograms.

• L2 Ratio. We compare the Euclidean (L2) norm of the original representation to that of its
reconstruction, indicating how accurately magnitude information is preserved.

• Explained Variance. We measure the fraction of variance in the latent space that the SAE
accounts for. Values closer to 1 imply that most of the variation has been captured.

• KL Divergence. We compute the Kullback-Leibler divergence to quantify discrepancies
between the model’s predictions and the target distributions. Lower values signify better
alignment.

Sparse Probing Following Gurnee et al. (2023), we evaluate the capacity of our SAEs to learn
designated features by conducting targeted probing across domains such as language identification,
profession prediction, and sentiment classification. Concretely, we feed each input through the SAE,
perform mean pooling over non-padding tokens, identify the top-K latent dimensions by maximizing
mean differences, and then train a logistic regression probe on those dimensions. Accuracy is then
measured on a held-out test set. Our evaluation covers 35 distinct binary classification tasks derived
from five datasets:

• BIAS_IN_BIOS for occupational classification using biographical text,

• AMAZON REVIEWS for product category and sentiment classification,

• EUROPARL for language detection in parliamentary proceedings,

• GITHUB for programming language identification,
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• AG NEWS for news topic classification.

To ensure uniform computational demands, we fix 4,000 training and 1,000 test samples per binary
classification task, truncate inputs to 128 tokens, and (for GitHub) remove the initial 150 characters
(approximately 50 tokens) to exclude license headers, as done in prior work. We experimented with
both mean and max pooling, noting a slight performance gain with mean pooling. For each dataset,
we select up to five classes, and multiple subsets may be drawn from the same dataset to maintain a
positive-instance proportion of at least 0.2 for every binary classification setting.

5 RESULTS

Table 1: Comparison of SAE Model Variants

Metric EWG-SAE Standard SAE JumpReLU TopK SAE
Interpretability Scores
Absorption Score 0.0125 0.0161 0.0114 0.1402
Sparse Probing Score 0.7295 0.6378 0.7154 0.7698

Model Behavior Preservation
KL Divergence Score 0.9994 0.9996 0.9945 0.9565
KL Div with SAE 0.0055 0.0044 0.0549 0.4375

Model Performance Preservation
CE Loss Score 1.0000 1.0000 0.9951 0.9556
CE Loss with SAE 2.9375 2.9375 2.9844 3.3594
CE Loss without SAE 2.9375 2.9375 2.9375 2.9375

Reconstruction Quality
Explained Variance 0.9922 0.9844 0.7344 0.6016
MSE 0.0630 0.0898 1.6719 2.5313

Shrinkage
L2 Ratio (L2 Norm Out/L2 Norm In) 0.9805 0.9844 1.0469 0.8711
Relative Reconstruction Bias 0.9883 0.9922 1.1172 0.9961

Sparsity
L0 3737.0237 8724.1338 2665.9128 40.0000
L1 10368.0000 12544.0000 4832.0000 366.0000

The hierarchical structure maintains distinct representations for features at different levels of abstrac-
tion with clearly separated activation patterns, including negative inter-group correlations, and a the
loss distribution among groups shows a high-low-high-low shape.

On SAE benchmarks, EWG achieves close to perfect reconstruction with reduced sparsity compared
to standard SAE with the same λbase.

5.1 ABLATION STUDIES

Table 2: Architecture Ablations (Lower ↓ Better Except EV ↑)

Config Absorption EV L0

Linear Decay 0.0673 0.9492 3560
EWG-SAE 0.0125 0.9921 3737

When broader features frequently co-occur with their specific implications (e.g., "starts with vowel"
and "elephant"), maintaining separate representations requires additional computation and memory
resources. Rare broader features (bottom 5% frequency) show 12% lower activation recall versus
dense SAEs, with complete failure on 0.7% of low-frequency tokens.
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6 CONCLUSIONS AND FUTURE WORK

Building on our geometric regularization framework for preventing feature absorption, we recom-
mend:

• Dynamic group sizing to optimize the tradeoff between feature independence and efficiency
• Continuous spectrum of weight decay replacing group weights, a heuristic distribution is

proportional to the activation frequency in a standard SAE
• Draw theoretical support from linguistics to decide various hyperparameters, e.g. group

sizing ratio, penalty decay rate, etc.
• Hybrid Top-K + EWG architectures to reduce the computational cost of maintaining distinct

features
• Frequency-aware regularization schedules that adapt to feature co-occurrence patterns

An NVIDIA RTX 3090 GPU was used for all experiments. It will be interesting in the future to
evaluate beyond Gemma-2-2B in model size, expand the number of layers or tokens, or systematically
vary hyperparameters such as batch size and dictionary width. Nonetheless, the positive results are
encouraging solutions to feature absorption in its scalability, and we plan to release our complete
codebase for open benchmarking once the paper is accepted. While the observed efficiency tradeoffs
demand further optimization, our results establish exponential group sparsity as a viable path toward
safe and interpretable AI systems that preserve distinct features across all abstraction levels.
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