
ORION-MSP: Multi-Scale Sparse Attention for
Tabular In-Context Learning

Mohamed Bouadi
Lexsi Labs

Paris, France
mohamed.bouadi@lexsi.ai

Pratinav Seth
Lexsi Labs

Mumbai, India
pratinav.seth@lexsi.ai

Aditya Tanna
Lexsi Labs

Mumbai, India
aditya.tanna@lexsi.ai

Vinay K. Sankarapu
Lexsi Labs

London, UK
v.k@lexsi.ai

Abstract

Tabular data remain the predominant format for real-world applications. Yet,
developing effective neural models for tabular data remains challenging due to
heterogeneous feature types and complex interactions occurring at multiple scales.
Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL,
have achieved state-of-the-art performance comparable to gradient-boosted trees
(GBTs) without task-specific fine-tuning. However, current architectures exhibit
key limitations: (1) single-scale feature processing that overlooks hierarchical de-
pendencies, (2) dense attention with quadratic scaling in table width, and (3) strictly
sequential processing that prevents iterative refinement and cross-component com-
munication. To address these challenges, we introduce ORION-MSP, a tabular ICL
architecture featuring three key innovations: multi-scale processing to capture hier-
archical feature interactions, block-sparse attention combining windowed, global,
and random patterns for scalable efficiency, and a Perceiver-style memory enabling
safe bidirectional information flow across components. Across diverse benchmarks,
ORION-MSP matches or surpasses state-of-the-art performance while scaling
effectively to high-dimensional tables, establishing a new standard for efficient
tabular in-context learning.

1 Introduction

Tabular data remain the most common form of real-world data, spanning critical domains such as
healthcare, finance, and scientific research. Despite major advances in deep learning for natural
language [17, 28] and vision [5], GBTs remain the state-of-the-art for tabular prediction. Re-
cently, tabular in-context learning (ICL) has emerged as a promising approach that adapts the ICL
paradigm—central to large language models—to tabular data. This enables pretraining across diverse
tables and rapid task adaptation without gradient updates. TabPFN [9] pioneered this direction
by meta-training a transformer on synthetic datasets generated via structural causal models. Its
encoder–decoder design lets test samples attend to training examples for zero-shot prediction, but its
alternating column- and row-wise attentions make large training sets computationally prohibitive.

A recent variant, TabDPT [18], showed that comparable performance can be achieved on real-world
datasets by using similarity-based retrieval to construct contextual examples—an idea first explored
in TabR [6]. However, its diffusion process introduces substantial computational overhead, limiting
scalability. Building on this, TabPFN-v2 [10] proposed cell-based ICL, extending row-based encoding

AI for Tabular Data workshop at EurIPS 2025.

to datasets exceeding 10,000 samples. This paradigm was further refined by TabICL [21], which
designed a table-native transformer with column embedding, row interaction, and ICL prediction
modules. While achieving SOTA results across diverse benchmarks, it retained dense attention in
row interactions and a strictly sequential pipeline, limiting iterative refinement and cross-module
communication. ContextTab [23] later enhanced performance on heterogeneous datasets through
contextualized feature embeddings and tabular-specific attention mechanisms.

Collectively, existing tabular ICL models demonstrate strong performance yet share core limitations:
dense quadratic attention, uniform single-scale processing, and lack of cross-component feedback.

To overcome these challenges, we propose ORION-MSP, a unified architecture combining multi-scale
sparse attention with a Perceiver-style latent memory for efficient and expressive tabular reasoning.

2 Proposed Approach: ORION-MSP

ORION-MSP framework consists of four core components that collectively enable efficient and
generalizable tabular in-context learning: (1) Column Embedding: transforms raw tabular features into
dense, semantically meaningful representations; (2) Multi-Scale Sparse Row Interaction: captures
dependencies at multiple granularities via a hierarchy of attention scales, combining CLS and
GLOBAL tokens for local and long-range connectivity; (3) Cross-Component Perceiver Memory:
introduces a latent memory bottleneck that enables safe bidirectional communication between
modules, promoting iterative refinement without information leakage; (4) Dataset-wise In-Context
Learning Predictor: leverages the enriched representations to perform zero-shot prediction across
new tasks without gradient updates. An overview of the complete architecture is shown in Figure 1.

Figure 1: An overview of Orion-MSP architecture. First, column-wise embedding transforms input
table into embedding vectors E. Next, multi-scale sparse row interaction prepends learnable [CLS]
and [GLOBAL] tokens to E, processes features at multiple granularities (scales 1, 4, and 16) with
sparse attention transformers, and aggregates [CLS] outputs across scales to yield row embeddings
H . Cross-component Perceiver memory enables bidirectional communication: training rows write to
latent memory, which all rows read for enhanced representations R. Finally, ICL predicts test labels
from R in a single forward pass.

2.1 Column-wise Embedding

We adopt the original TabICL [21] column-wise embedder to map each cell in a column cj ∈ Rn to a
d-dimensional representation using a shareable Set Transformer, TFcol, that treats the column as a
permutation-invariant set of values. Concretely, TFcol predicts a per-cell affine map, assigning each
cell its own weight and bias: W,B = TFcol(cj) ∈ Rn×d, ej = W ⊙ cj +B ∈ Rn×d.

This frames feature embedding as a set-input hypernetwork problem, producing distribution-aware
embeddings without feature-specific layers and enabling parameter sharing across columns [21].

2

2.2 Multi-Scale Feature Processing

Uniform self-attention over all features ignores natural hierarchies common in tabular data. To
capture both local and global dependencies at low cost, ORION-MSP processes features at multiple
granularities in parallel.

We use powers-of-four granularities (S = {1, 4, 16}). For a row-level feature set F = {f1, . . . , fm},
each scale s ∈ S produces a shorter sequence of groups G(s) = {g(s)1 , . . . , g

(s)
Ks
} with Ks = ⌈m/s⌉.

Each g
(s)
i is formed using Pooling by Multihead Attention (PMA) [15] with Ks learnable queries

attending to F , as detailed in Appendix. A.4.

Special tokens and encoding. To enable supervision and cross-row communication, each scale
prepends 4 CLS tokens and 4 GLOBAL tokens: Xs =

[
CLS1:4, GLOBAL1:4, G

(s)
]
.

A lightweight transformer with efficient (block/sparse) attention encodes S(s) independently per scale.
Then scale-specific CLS summaries are merged into a single row representation for downstream ICL:
CLSfinal =

1
|S|

∑
s∈S CLS(s). We default to mean fusion for simplicity and robustness.

This design preserves fine-grained signals (scale 1) while exposing higher-order patterns, yielding
stronger hierarchical feature interaction within a tight parameter budget—see Appendix. A.4

2.3 Block-Sparse Attention Mechanism

Dense self-attention scales quadratically in sequence length, which is prohibitive once multi-scale
sequences are introduced. We therefore adopt a block-sparse pattern that preserves local detail,
long-range routing, and limited randomness for expressivity—at near-linear cost.

Let N be the sequence length andA(i, j) the attention mask entry for query i and key j. We compose
three complementary sparsity patterns (details and ablations in Appendix. A.4):

(i) Windowed (local) attention. Each token sees a symmetric window of width w = 8, so that
Awin(i, j) = 0 if |i− j| ≤ w, and Awin(i, j) = −∞ otherwise.

(ii) Global tokens. The first 8 special tokens (CLS/GLOBAL) are fully connected: Aglob(i, j) =
0 if i<8 or j<8, and Aglob(i, j) = Awin(i, j) otherwise.

(iii) Random links. Each non-special token adds r = 2 uniformly sampled keys to avoid frag-
mentation and improve mixing: Arand(i, j) = 0 if j ∈ Rnd(i), |Rnd(i)| = r, and Arand(i, j) =
Aglob(i, j) otherwise.

The final mask is A = Arand, i.e., windowed local neighborhoods, globally connected special tokens,
plus sparse random shortcuts as depicted in Figure 2.

2.4 Cross-Component Communication via Perceiver Memory

A purely sequential pipeline (TFcol→TFrow→TFICL) prevents later components from informing
earlier representations. We introduce a lightweight Perceiver-style latent memory that aggregates
dataset-level regularities from training rows and broadcasts them to all components.

The memory is a set of L learnable slots M = {mℓ}Lℓ=1, mℓ ∈ Rd. We use cross-attention for
write and read: M⋆︸︷︷︸

write

= XAttn
(
M, Rtrain

)
, Renh︸︷︷︸

read

= XAttn
(
Rall, M

⋆
)

where Rtrain / Rall are row

representations from training-only / all rows, respectively. (Variants with multi-head cross-attention,
residuals, and slot gating are in Appendix. A.5.)

Write uses only training rows; read is a deterministic function of M⋆. Hence test rows never influence
M⋆ and cannot affect training representations.

2.5 Enhanced In-Context Learning

Following the cross-component communication, we inject labels into the training portion of the
enhanced representations: Renhanced[:, : ntrain]← Renhanced[:, : ntrain] + Embed(ytrain)

3

The ICL predictor applies split attention to maintain the in-context learning paradigm. This ensures
that test tokens can only attend to training tokens, maintaining the causal structure required for ICL.

3 Experimental Evaluation

3.1 Experimental Setup

Our evaluation spans three benchmark suites—TALENT [26] (181 datasets), OPENML-CC18 [2]
(72 datasets), and TABZILLA [19] (36 tasks)—providing a broad assessment of tabular learning
performance. Experiments were run with the TabTune Library [25], a unified framework that
standardizes the full workflow for TFMs. To ensure fairness and reproducibility, we use official
dataset splits and report results only for datasets shared across all models. After filtering, the final
evaluation includes 154 TALENT, 63 OPENML-CC18, and 27 TABZILLA datasets, with minor
exclusions due to OOM or CUDA errors. Higher mean ranks indicate consistency across datasets
rather than task-specific peaks in accuracy or F1. Dataset statistics are described in Appendix C.4.

Table 1: Overall performance of tabular classification models on the TALENT, OpenML-CC18, and
TabZilla benchmark suites. For each model, we report accuracy-based mean rank (lower is better),
accuracy (ACC), and weighted F1 (F1) on each suite, as well as aggregated ranks on all datasets and
on the balanced and imbalanced subsets. Formatting: 1st place; 2nd place.

Models TALENT OpenML-CC18 TabZilla Balanced Imbalanced

Rank ACC F1 Rank ACC F1 Rank ACC F1 Rank ACC F1 Rank ACC F1

XGBoost 6.02 0.8403 0.8360 5.89 0.8558 0.8537 0.8612 0.8326 – 7.00 0.8175 0.8110 6.23 0.8859 0.8785
CatBoost 5.57 0.8336 0.8259 6.25 0.8588 0.8520 7.13 0.8579 0.8384 7.15 0.8076 0.8020 5.65 0.8785 0.8665
Random Forest 6.15 0.8285 0.8209 6.36 0.8547 0.8497 8.42 0.8358 0.8399 7.92 0.7983 0.7955 6.77 0.8741 0.8646
LightGBM 6.11 0.8331 0.8245 6.18 0.8581 0.8493 5.25 0.8618 0.8211 7.32 0.8071 0.7977 6.19 0.8775 0.8633
TabICL 4.09 0.8471 0.8379 4.69 0.8667 0.8623 5.89 0.8734 0.8698 4.72 0.8279 0.8233 5.08 0.8806 0.8698
OrionBiX 4.59 0.8346 0.8260 4.98 0.8653 0.8596 4.89 0.8728 0.8628 5.65 0.8096 0.8040 5.04 0.8787 0.8683
OrionMSP 3.26 0.8461 0.8360 4.12 0.8722 0.8676 3.84 0.8821 0.8786 4.22 0.8265 0.8202 3.38 0.8840 0.8731
TabPFN 3.72 0.8514 0.8412 4.76 0.8714 0.8663 4.86 0.8752 0.8716 3.85 0.8367 0.8309 5.37 0.8808 0.8697
Mitra 10.38 0.3921 0.2868 10.52 0.3614 0.2522 11.21 0.3152 0.1830 12.26 0.2763 0.1540 11.24 0.4794 0.3858
ContextTab 9.84 0.5474 0.4596 6.28 0.8639 0.8581 7.13 0.8389 0.8334 9.66 0.5079 0.4487 9.72 0.7850 0.7192
TabDPT 5.19 0.8408 0.8318 4.64 0.8672 0.8625 3.94 0.8814 0.8775 5.16 0.8233 0.8189 5.65 0.8798 0.8690

3.2 Results

Table 1 compares all models across TALENT, OPENML-CC18, and TABZILLA, covering both
balanced and imbalanced datasets. Classical baselines remain competitive (ACC ≈ 0.83–0.86, mean
rank ≈ 6), yet pretrained tabular TFMs consistently surpass them, demonstrating strong zero-shot
generalization. ORION-MSP achieves the best overall performance (mean rank 3.58) with ACC/F1
of 0.846/0.836 on TALENT, 0.872/0.868 on OPENML-CC18, and 0.882/0.879 on TABZILLA.
TABPFN ranks second (4.61), showing stable cross-benchmark performance.

Partitioning by dataset balance shows ORION-MSP gains most on imbalanced datasets (ACC =
0.884, F1 = 0.873), reflecting its ability to model minority classes via multi-scale sparse attention.
On balanced data, gains narrow, suggesting its hierarchical design benefits skewed or complex
distributions. TABPFN remains robust across both but lags behind on minority-class recognition.

Extended analyses (Appendix C) show that ORION-MSP performs robustly across dataset sizes
and feature dimensionalities, excelling on small, narrow datasets while scaling effectively to large,
high-dimensional tables. Domain-specific results highlight top performance in finance and strong
outcomes in medical tasks, reflecting its ability to model hierarchical and cross-feature dependencies.
Overall, ORION-MSP proves especially effective for imbalanced, high-dimensional, and context-rich
tabular tasks.

Fine-grained scales capture subtle minority-class signals, while coarser scales aggregate global con-
text, yielding balanced local–global representations. Sparse attention enhances efficiency and regular-
ization, mitigating overfitting in high-dimensional or correlated-feature settings. The Perceiver mem-
ory further supports cross-scale reasoning by storing and retrieving non-local patterns—particularly
valuable in context-dependent domains. However, its added complexity offers limited benefit on
simpler, low-dimensional data, suggesting future work on adaptive scale selection and dynamic
sparsity control.

4

Acknowledgments and Disclosure of Funding

We thank the authors of TabICL [21] for publicly releasing their code, which served as the basis for
the first component of our proposed architecture.

References
[1] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.

CoRR, abs/2004.05150, 2020.

[2] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel
Lang, Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking
suites. arXiv preprint arXiv:1708.03731, 2017.

[3] Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M Mooij. Foundations of structural
causal models with cycles and latent variables. The Annals of Statistics, 49(5):2885–2915, 2021.

[4] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505, 2020.

[5] Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli,
Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, et al. Battle of the
backbones: A large-scale comparison of pretrained models across computer vision tasks.
Advances in Neural Information Processing Systems, 36:29343–29371, 2023.

[6] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and
Artem Babenko. Tabr: Tabular deep learning meets nearest neighbors. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

[7] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? Advances in Neural Information Processing
Systems (NeurIPS), 35:507–520, 2022.

[8] D Hendrycks. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[9] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[10] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
tabular foundation model. Nat., 637(8044):319–326, 2025.

[11] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao
Carreira. Perceiver: General perception with iterative attention. In International conference on
machine learning, pages 4651–4664. PMLR, 2021.

[12] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

[14] Alex Krizhevsky, Geoff Hinton, et al. Convolutional deep belief networks on cifar-10. Unpub-
lished manuscript, 40(7):1–9, 2010.

[15] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International conference on machine learning, pages 3744–3753. PMLR, 2019.

5

[16] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 3744–3753. PMLR, 2019.

[17] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

[18] Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C.
Cresswell, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony L. Caterini. Tabdpt:
Scaling tabular foundation models. CoRR, abs/2410.18164, 2024.

[19] Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Ganesh Ramakrishnan, Vishak
Prasad, Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on
tabular data? In Advances in Neural Information Processing Systems, 2023.

[20] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representa-
tions (ICLR), 2022.

[21] Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular
foundation model for in-context learning on large data. CoRR, abs/2502.05564, 2025.

[22] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[23] Marco Spinaci, Marek Polewczyk, Maximilian Schambach, and Sam Thelin. Contexttab: A
semantics-aware tabular in-context learner. CoRR, abs/2506.10707, 2025.

[24] Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Ro-
former: Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063,
2024.

[25] Aditya Tanna, Pratinav Seth, Mohamed Bouadi, Utsav Avaiya, and Vinay Kumar Sankarapu.
Tabtune: A unified library for inference and fine-tuning tabular foundation models. arXiv
preprint arXiv:2511.02802, 2025.

[26] Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at
deep learning methods on tabular datasets. arXiv preprint arXiv:2407.00956, 2024.

[27] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31, 2018.

[28] Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39, 2024.

[29] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big
bird: Transformers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[30] Neil Zeghidour and David Grangier. Wavesplit: End-to-end speech separation by speaker
clustering. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:2840–
2849, 2021.

6

A Technical Details - ORION-MSP

A.1 Problem Formulation

Consider a tabular dataset D = {(xi, yi)}ni=1 with n samples and m features. Let X ∈ Rn×m denote
the feature matrix, where each column cj ∈ Rn (j ∈ {1, . . . ,m}) represents the values of the j-th
feature across all samples.

In the in-context learning setting, we are given a context set of ntrain labeled examples:

C = {(xi, yi)}ntrain
i=1

and a set of ntest query samples:
Q = {xi}ntest

i=1

Our goal is to predict the conditional distribution of the target for each query sample given the context
set:

p(y|x, C), ∀x ∈ Q

A.2 High-level Structure: From Data to ICL

Orion-MSP consists of four core components that collectively enable efficient and generalizable
tabular in-context learning: (1) Column Embedding: transforms raw tabular features into dense,
semantically meaningful representations; (2) Multi-Scale Sparse Row Interaction: captures depen-
dencies at multiple granularities via an hierarchy of attention scales, combining CLS and GLOBAL
tokens for local and long-range connectivity; (3) Cross-Component Perceiver Memory: introduces a
latent memory bottleneck that enables safe bidirectional communication between modules, promoting
iterative refinement without information leakage; (4) Dataset-wise In-Context Learning Predictor:
leverages the enriched representations to perform zero-shot prediction across new tasks without
gradient updates. An overview of the complete architecture is shown in Figure 1.

Orion-MSP extends the original TabICL [21] architecture with three complementary innovations
designed to address the fundamental challenges of tabular data processing: computational inefficiency,
limited feature interaction modeling, and the need for hierarchical pattern recognition. Our approach
maintains the core in-context learning paradigm while introducing architectural enhancements that
significantly improve both efficiency and performance.

A.3 Column-wise Embedding

In this subsection, we briefly review the column-wise embedding module originally proposed in
TabICL [21], which we adopt as the first component of our architecture.

Tabular data exhibits unique characteristics compared to other modalities: each column represents
a distinct feature with its own distribution, scale, and statistical properties (e.g., mean, variance,
skewness, kurtosis). To capture these distributional characteristics, we adopt the original TabICL
column-wise embedder to map each scalar cell in a column cj ∈ Rn to a d-dimensional representation
using a shareable Set Transformer, TFcol, that treats the column as a permutation-invariant set of
values. Our goal is to transform each cell value Xij into a d-dimensional embedding Eij ∈ Rd that
encodes both:

1. The value of the cell (Xij)

2. The distributional context of the column (cj)

This differs fundamentally from standard embedding approaches (e.g., word embeddings) where
each discrete token has a fixed embedding regardless of context. In tabular data, the meaning of a
value depends heavily on the column’s distribution: a value of 50 may be typical in one feature but an
outlier in another.

Concretely, TFcol predicts a per-cell affine map, assigning each cell its own weight and bias. The
process consists of three main steps:

7

A.3.1 Initial Projection:

Project the column values into a d-dimensional embedding space:

Uj = Linearproj(cj) ∈ Rn×d (1)

where Linearproj : R→ Rd is a learned linear transformation. This creates initial token embeddings
for each cell in the column.

A.3.2 Induced Set Attention Blocks (ISAB):

To efficiently capture global distributional information while maintaining computational tractability,
we employ ISAB [16] with k learnable inducing points. It consists of two sequential Multi-Head
Attention Blocks (MAB1,MAB2):

Mj = MAB1(I,U
train
j ,Utrain

j) ∈ Rk×d (2)

Vj = MAB2(Uj ,Mj ,Mj) ∈ Rn×d (3)

where I ∈ Rk×d denote k trainable inducing point embeddings (k ≪ n), which serve as a compressed
representation of the column distribution.

We define a Multi-Head Attention Block as:

MAB(Q,K,V) = LayerNorm(H+ MultiHead(Q,K,V)) (4)

where H is a residual connection (set to Q if dimensions match, otherwise passed through a projec-
tion), and:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (5)

with each head defined as:

headi = Attention(QWi
Q,KWi

K ,VWi
V) (6)

Following TabICL [21], we use d=128, k=128, 4 heads, and 3 ISAB blocks. Crucially, in Equation 2,
we use only training samples Utrain

j ∈ Rntrain×d as keys and values. This ensures that the inducing
points Mj capture the distribution of the training data only, preventing information leakage from test
samples during embedding. This is crucial for maintaining the in-context learning paradigm.

In Equation 3, all samples (training and test) query the inducing points to obtain their contextualized
embeddings. The inducing points act as a distributional summary: they encode statistical properties
(e.g., mean, variance, skewness) of the training column values, and each cell embedding is adjusted
based on where it lies within this learned distribution.

A.3.3 Weight and Bias Generation:

The ISAB output Vj is passed through a feedforward network to generate cell-specific weights and
biases:

Wj ,Bj = FFN(Vj),Wj ,Bj ∈ Rn×d (7)

where:

FFN(Vj) = Linearout(GELU(Linearhidden(Vj))) (8)

The final embeddings are then computed as:

E:,j,: = Wj ⊙ cj +Bj ∈ Rn×d (9)

where ⊙ denotes element-wise (Hadamard) product, and cj is broadcasted to shape (n, d).

8

This formulation allows each cell’s embedding to be a function of both its raw value (cj) and the
column’s learned distributional properties (Wj ,Bj).

Note that, in our architecture, row-wise interaction requires prepending special tokens (e.g., [CLS],
[GLOBAL]) to each row. To accommodate these, the column embedding reserves C positions at the
beginning of each column:

E ∈ Rn×(m+C)×d (10)

For the reserved positions (indices 1 to C), we use a skippable linear layer that outputs zeros or small
random values:

E:,j,: =

{
SkipLinear(cj) if j ≤ C (reserved)
Wj ⊙ cj +Bj if j > C (features)

(11)

where SkipLinear is a linear layer with very small initialization, allowing the model to learn appropri-
ate embeddings for reserved positions during training.

The Set Transformer architecture ensures that TFcol is permutation-invariant with respect to the order
of samples within a column. Formally, let π : [T] → [T] be any permutation, and let c′j = Pπcj
where Pπ is the corresponding permutation matrix. Then:

TFcol(c
′
j) = Pπ TFcol(cj) (12)

This property is inherited from the attention mechanism in ISAB, where the softmax normalization
and weighted aggregation are invariant to input order.

The inducing points Mj ∈ Rk×d learned by the first MAB serve as a distributional summary of
column j. Empirically, we observe that:

• Columns with similar statistical moments (mean, variance, skewness, kurtosis) have similar
inducing point representations (measured by cosine similarity).

• The inducing points capture multi-modal distributions: for categorical features encoded
numerically, different modes correspond to different cluster centers in the inducing point
space.

• Outliers in cj receive distinct embeddings, as their attention weights to Mj differ signifi-
cantly from typical values.

A.4 Multi-Scale Sparse Row-Wise Interaction

While column-wise embedding captures distributional properties of individual features, row-wise
interaction must model complex dependencies across features to extract meaningful sample repre-
sentations. However, directly applying dense self-attention to all feature tokens incurs quadratic
complexity O(m2) and may overfit when the number of features varies significantly across datasets.
To address these challenges, we introduce a hierarchical multi-scale sparse attention mechanism
that processes features at multiple granularities with efficient block-sparse patterns.

A.4.1 Motivation and Design Principles

Tabular datasets exhibit several unique characteristics that complicate feature interaction modeling:

1. Variable feature counts: The number of features m varies dramatically across datasets,
making fixed-scale architectures suboptimal.

2. Heterogeneous feature relationships: Some features interact locally (e.g., age and age-
related health metrics), while others have global dependencies (e.g., categorical indicators).

3. Computational constraints: Dense attention over m features has complexity O(m2),
becoming prohibitive for wide tables or long context windows.

9

4. Overfitting risks: Full attention can memorize training-specific feature correlations that do
not generalize to new datasets.

Inspired by hierarchical representations in vision [27] and multi-resolution modeling in speech [30],
Orion-MSP decomposes feature interactions into multiple resolution levels:

• Fine scale (s = 1): Captures detailed pairwise dependencies between individual features.

• Coarse scales (s > 1): Aggregates semantically related features into groups, reducing
sequence length and enabling broader contextual reasoning.

• Scale aggregation: Combines representations across scales to balance local precision and
global context.

Figure 2: Building blocks of the attention mechanism used in Orion-MSP. White color indicates
absence of attention. (a) special attention includes CLS = 4 and global attention with GB = 4,
(b) sliding window attention with w = 8, (c) random attention with r = 2, (d) the combined row
representation of Orion-MSP model.

To further improve efficiency and generalization, we adopt a block-sparse attention pattern inspired
by Longformer [1] and BigBird [29], as depicted in Figure 2:

• Sliding window attention: Local connectivity within a fixed radius w, preserving fine-
grained structure.

• Global tokens: Specialized tokens with full connectivity, ensuring stable long-range infor-
mation flow.

• Random links: Optional sparse stochastic connections that enhance expressivity and global
reachability..

This design reduces attention complexity from O(m2) to O(m · (w + g + r)) where w, g and r are
the window size, the number of global tokens, and the number of random links respectively.

Formally, the multi-scale sparse row-wise transformer, TFMS
row, processes column-embedded features

E ∈ RB×n×(m+C)×d to generate row-wise embeddings H ∈ RB×n×(Ncls·d):

H = TFMS
row(E, dvalid) ∈ RB×n×(Ncls·d) (13)

where B is the number of datasets, n the number of samples per dataset, m the number of features,
and d the embedding dimension. The constant C = Ncls + Nglobal accounts for special token
slots, anddvalid ∈ RB optionally indicates the number of valid features per dataset for handling
variable-length inputs.

The transformation proceeds through the following steps:

A.4.2 Multi-Scale Feature Grouping:

First, for each scale s ∈ S = {s1, s2, . . . , sM} (e.g., S = {1, 4, 16}), we group the m feature tokens
into Ks = ⌈m/s⌉ groups of size s.

10

The default grouping strategy uses a learnable soft grouping via Pooling by Multihead Attention
(PMA) [15] to adaptively attend to features:

Qs = Seeds + PE(Ks) ∈ RKs×d

Ks = LinearK(E:,:,C:,:) ∈ RB·n×m×d

Vs = LinearV (E:,:,C:,:) ∈ RB·n×m×d

As = softmax
(
QsK

⊤
s√

d

)
∈ RKs×n

Fs = AsVs ∈ RB×n×Ks×d

where Seeds ∈ RKs×d is a learnable seed embedding, and PE(Ks) adds sinusoidal positional
encodings. PMA allows the model to learn which features to group together, adapting to dataset-
specific correlation structures.

A.4.3 Special Tokens Injection:

For each row at each scale, we prepend special tokens:

1. CLS ∈ RNcls×d (learnable, per-row summary)
2. GLOBAL ∈ RNglobal×d (learnable, long-range connectivity)

The full sequence at scale s becomes:

Xs = [CLS,GLOBAL,G(s)] ∈ RB×n×(Nspecial+Ks)×d (14)
where Nspecial = Ncls +Nglobal.

A.4.4 Block-Sparse Attention Mask:

As depicted in Figure 2, for each scale, we construct a sparse attention mask Ms ∈ RLs×Ls where
Ls = Nspecial +Ks. The mask follows these rules:

1. Fully Connected Special Tokens: The first Nspecial tokens (CLS and GLOBAL) are fully
connected to all other tokens and to each other (Figure 2.a):

Ms[i, j] = 0 ∀i ∈ [1, Nspecial] or j ∈ [1, Nspecial] (15)

2. Sliding Window Attention: Feature tokens (indices > Nspecial) attend to neighbors within
a window of radius w = 8 (Figure 2.b):

Ms[i, j] =

{
0 if |i− j| ≤ w and i, j > Nspecial

−∞ otherwise
(16)

3. Random Links (Optional): For each feature token i > Nspecial, we randomly select r
additional tokens to attend to (Figure 2.c):

Ms[i, jk] = 0 for k ∈ [1, r], jk ∼ Uniform({Nspecial + 1, . . . , Ls} \ {i}) (17)

The final mask is (Figure 2.d):

Ms[i, i] = 0 ∀i ∈ [1, Ls] (self-attention always allowed) (18)

A.4.5 Transformer Encoder per Scale:

For each scale s ∈ S, we apply a dedicated Transformer encoder:

Zs = Encoders(Xs,Ms) ∈ RB×n×Ls×d (19)

where Encoders consists of N row
blocks/|S| stacked Transformer blocks with:

11

• Multi-head self-attention: MHA(Q,K,V,Ms) with sparse mask Ms

• Rotary positional encoding (RoPE): Applied to queries and keys before attention [24]
• Feed-forward network: Two-layer MLP with GELU activation
• Pre-norm architecture: Layer normalization before each sub-layer

The multi-head attention with sparse masking is computed as:

headi = Attention(Qi,Ki,Vi,Ms) (20)

= softmax
(
QiK

⊤
i√

dk
+Ms

)
Vi (21)

where Ms contains 0 for allowed positions and −∞ for disallowed positions (additive masking).

After processing through Encoders, we extract the CLS token representations:

Hs = Zs[:, :, 1 : Ncls, :] ∈ RB×n×Ncls×d (22)

These represent the row-wise features at scale s. We then aggregate these representations across all
scales by averaging:

Hagg =
1

|S|
∑
s∈S

Hs ∈ RB×n×Ncls×d (23)

This simple averaging strategy ensures that each scale contributes equally, balancing fine-grained and
coarse-grained information. Next, the CLS tokens are flattened and normalized to produce the final
row embeddings:

H = LayerNorm(Flatten(Hagg)) ∈ RB×n×(Ncls·d) (24)

where Flatten concatenates the Ncls token embeddings.

Algorithm 1 summarizes the complete multi-scale sparse row-wise interaction process.

A.4.6 Computational Complexity

For a given scale s with Ks = ⌈m/s⌉ grouped feature tokens, the per-layer computational complexity
of the sparse attention mechanism is:

O(B · n · Ls · (w +Nglobal + r) · d) (25)
where B is the batch size, n the number of samples per dataset, m the number of features, d the
embedding dimension, and w, Nglobal, and r denote the sliding-window size, number of global tokens,
and number of random links, respectively.

For M scales and a total of N row
blocks Transformer layers distributed evenly across scales, the overall

complexity becomes:

Ototal =
∑
s∈S

O(B · n ·Ks · (w +Nglobal + r) · d · N
row
blocks

M
) (26)

Since
∑

s∈S Ks ≈ m ·
(
1 + 1

s2
+ . . .+ 1

sM

)
and typically w,Nglobal, r ≪ m, this simplifies to:

Ototal ≈ O(B · n ·m · (w +Nglobal + r) · d ·N row
blocks) (27)

compared to the dense attention cost of O(B · n ·m2 · d ·N row
blocks).

For typical hyperparameters (m ∈ [10, 100], w = 8, Nglobal = 4, r = 2), this results in a reduction
from quadratic O(m2) to near-linear O(m·14) complexity—achieving linear scaling while preserving
both local and global feature dependencies.

12

Algorithm 1 Multi-Scale Sparse Row-Wise Interaction (TFMS
row)

Require: Embeddings E ∈ RB×n×(m+C)×d, valid features dvalid ∈ RB

Require: Scales S = {s1, s2, . . . , sM}, window w, random links r
Ensure: Row embeddings H ∈ Rn×m×(Ncls·d)

1: Initialize learnable tokens CLS ∈ RNcls×d, GLOBAL ∈ RNglobal×d

2: Hall ← [] {Store CLS outputs from all scales}
3: for each scale s ∈ S do
4: Ks ← ⌈m/s⌉ {Number of groups at scale s}
5: // Feature Grouping
6: G(s) ← PMA(E[:, :, C :, :],Ks)
7: // Construct Sequence
8: Xs ← [CLS,GLOBAL,G(s)] {Shape: (B,n, Ls, d) where Ls = Nspecial +Ks}
9: // Build Sparse Mask

10: Ms ← BuildBlockSparseMask(Ls, Nspecial, w, r)
11: // Process Through Transformer
12: Zs ← Encoders(Xs,Ms) {Transformer with RoPE and sparse attention}
13: // Extract CLS Tokens
14: Hs ← Zs[:, :, 1 : Ncls, :]
15: Hall.append(Hs)
16: end for
17: // Aggregate Across Scales
18: Hagg ← 1

|S|
∑|S|

s=1 Hall[s]

19: // Flatten and Normalize
20: H← LayerNorm(Flatten(Hagg))
21: return H

A.5 Cross-Component Memory with Perceiver Architecture

While the column-wise embedding and row-wise interaction components of tabular transformers
independently model feature- and sample-level dependencies, richer contextual understanding can
emerge if information is shared across these components. However, direct cross-component com-
munication poses a major risk to the in-context learning (ICL) paradigm: naive attention between
components can leak test-set information, violating the principle that predictions for test samples
must depend solely on training examples and the test input itself.

To overcome this limitation, we introduce a Perceiver-style latent memory module [11] that enables
safe, leak-free communication between architectural components. This latent memory acts as a shared
representation space that can be written to by training samples and read from by both training and
test samples, ensuring compliance with ICL constraints while promoting global knowledge sharing.

In standard transformer-based tabular architectures such as TabICL [21], model components operate
in a strictly sequential and isolated fashion:

1. Column Embedding (TFcol): Encodes feature-wise statistics across samples to capture
column-level distributions.

2. Row Interaction (TFrow): Models dependencies across features within each sample.

3. ICL Prediction (TFicl): Performs in-context learning to infer test labels from training
examples.

This separation simplifies optimization and ensures ICL safety, but also introduces significant
limitations:

• No backward adaptation: Column embeddings cannot adjust based on row-level feature
interactions.

• Limited contextual refinement: Row-level interactions lack access to global, dataset-level
statistics beyond static column embeddings.

13

• Dataset isolation: Each dataset is processed independently, preventing cross-dataset general-
ization within a batch.

A fundamental ICL constraint is that test samples must not influence the model’s internal state in a
way that affects training representations. Formally, letting

Dtrain = {(xi, yi)}ntrain
i=1 ,Dtest = {xj}nj=ntrain+1 (28)

the prediction for a test sample xj must satisfy:

P(ŷj | Dtrain,Dtest) = P(ŷj | Dtrain,xj) (29)

That is, the prediction depends only on the training set and the test features, never on other test
representations or their labels.

Inspired by the Perceiver architecture [11], we introduce a learnable latent memory L ∈ RP×d with
P memory slots. The key idea is:

1. Write Phase (train-only): Memory attends to training representations to extract relevant
global patterns.

2. Read Phase (all samples): Both training and test samples attend to the memory to retrieve
learned context, but cannot modify it.

This asymmetry guarantees ICL safety, since only training data influence the memory’s contents. The
memory serves as a compressed, permutation-invariant summary of the training context that enables
consistent feature refinement across samples.

The memory module is incorporated inside the ICL transformer (TFicl), refining the row embeddings
before label injection and prediction. Given row embeddings H ∈ RB×n×dh (where B is the batch
size and n the number of samples per dataset), the Perceiver memory transformation produces refined
representations:

R = PerceiverMemory(H, ntrain) ∈ RB×n×dH (30)

with:

• dH = Ncls · d the hidden dimension after multi-head projection,
• P the number of latent memory slots (a hyperparameter),
• and ntrain the number of labeled training examples.

The Perceiver memory consists of three key stages, each composed of multiple cross-attention layers
with residual connections and feed-forward transformations.

1. Latent Memory Initialization: We initialize a set of P learnable latent vectors:

L0 ∈ HP×dH (31)

drawn from a truncated normal distribution N (0, 0.022). These latents act as a universal
memory bank, shared across all datasets in the batch and reused across forward passes,
providing a stable foundation for information aggregation.

2. Cross-Attention Block: At the core of the memory is a cross-attention mechanism allowing
one representation to attend to another. Given query set Q and key–value set KV, we
define:

CrossAttn(Q,KV) = softmax
(
QWQ(KVWK)⊤√

dk

)
(KVWV) (32)

where WQ,WK ,WV ∈ RdR×dk are projection matrices and dk = dR/h is the per-head
dimension.

14

Each cross-attention block is followed by layer normalization, residual connections, and a
feed-forward layer:

Q′ = LayerNorm(Q) (33)

KV′ = LayerNorm(KV) (34)

Z = Q+ MultiHeadCrossAttn(Q′,KV′) (35)

Z′ = Z+ FFN(LayerNorm(Z)). (36)

This block structure ensures stable training and supports multi-head feature integration.

3. Write Phase: Memory Encoding: In the write phase, the memory attends to training
samples only to extract and store relevant patterns. For each dataset b in the batch:

H
(b)
train = H(b)[: Ttrain, :] ∈ Rntrain×dH (37)

and initialize the dataset-specific memory as L(b)
0 = L0.

We then apply Nwrite cross-attention blocks where memory latents query the training repre-
sentations:

L
(b)
i+1 = CrossAttnBlock(Q = L

(b)
i ,KV = H

(b)
train) for i = 0, . . . , Nwrite − 1 (38)

The final encoded memory is:

L(b) = L
(b)
Nwrite

∈ RP×dH (39)

Importantly, L(b) depends only on training representations, ensuring no test leakage.

4. Read Phase: Sample Refinement: In the read phase, all samples (training and test) attend
to the memory to retrieve stored context. For dataset b:

H
(b)
0 = H(b) ∈ Rn×dH (40)

We apply Nread cross-attention blocks where sample queries attend to the memory:

R
(b)
i+1 = CrossAttnBlock(Q = R

(b)
i ,KV = L(b)) for i = 0, . . . , Nread − 1 (41)

The final refined embeddings are:

R(b) = R
(b)
Nread
∈ Rn×dR (42)

This asymmetric read–write design preserves the integrity of in-context learning:

• Only training samples write to the memory.

• Both training and test samples read from it.

• The memory functions as a shared, compressed abstraction of the training data that can be
safely leveraged for inference.

The complete ICL forward pass with Perceiver memory is described in Algorithm 2:

A.6 Dataset-wise In-Context Learning

After column-wise embedding, multi-scale sparse row-wise interaction, and optional cross-component
memory refinement, each sample is represented by a fixed-dimensional row embedding:

R ∈ RB×n×dR (43)

15

Algorithm 2 ICL with Perceiver Memory

Require: Row embeddings H ∈ RB×n×dH , training labels ytrain ∈ RB×ntrain

Ensure: Predictions ŷ ∈ RB×(n−ntrain)×C for C classes
1: // Perceiver Memory (optional)
2: if P > 0 then
3: for each dataset b = 1 to B do
4: H

(b)
train ← H(b)[: Ttrain, :] {Extract training samples}

5: L(b) ← L0 {Initialize memory}
6: // Write: Memory attends to training samples
7: for i = 1 to Nwrite do
8: L(b) ← CrossAttnBlock(L(b),H

(b)
train)

9: end for
10: // Read: All samples attend to memory
11: R(b) ← H(b)

12: for i = 1 to Nread do
13: R(b) ← CrossAttnBlock(R(b),L(b))
14: end for
15: end for
16: R← R {Use refined embeddings}
17: end if
18: // Label Injection (training samples only)
19: R[:, : ntrain, :]← H[:, : ntrain, :] + OneHot(ytrain)Wlabel
20: // ICL Transformer with Split Mask
21: H← TFicl(H, attn_mask = ntrain) {Prevent test-to-train leakage}
22: // Prediction Head
23: R← LayerNorm(R)
24: logits← FFNdecoder(R[:, ntrain :, :]) {Predict test labels only}
25: return logits

where B is the number of datasets in the batch, n the total number of samples per dataset, and dR the
embedding dimension.

The final component, dataset-wise in-context learning (TFicl), leverages these embeddings to predict
test labels by conditioning on labeled training examples—all within a single forward pass and without
any gradient-based parameter updates..

Formally, for each dataset b in the batch:

D(b)
train = {(R(b)

i , y
(b)
i)}ntrain

i=1 (44)

D(b)
test = {R

(b)
j }

n
j=ntrain+1 (45)

The objective is to predict test labels ŷ
(b)
j for j > ntrain using in-context reasoning from training

examples only.

ŷtest = TFicl(R,ytrain) (46)

The ICL module consists of three main stages:

1. Label Encoding and Injection: To ensure consistency across datasets with potentially
different label spaces, training labels ytrain ∈ RB×ntrain are first normalized to contiguous
indices:

ỹi = argsort(unique(ytrain))[ytrain[i]] (47)

mapping any label set {2, 5, 9} → {0, 1, 2}.

16

Normalized labels are embedded using one-hot encoding followed by a linear projection:

ey = OneHot(ỹ, Cmax) ·Wy ∈ RdR (48)

where Cmax is the maximum number of classes (e.g., Cmax = 10), and Wy ∈ RCmax×dR is a
learned projection matrix.
Label embeddings are injected only into training samples via additive combination:

R[:, : ntrain, :]← R[:, : ntrain, :] + ey(ytrain) (49)
ensuring test samples remain unaffected and ICL constraints are preserved.

2. Split-Masked Transformer: The augmented embeddings R are processed by a split-masked
Transformer, enforcing ICL-safe attention between training and test samples. The attention
mask Msplit is defined as:

Msplit[i, j] =


0 if i ≤ ntrain and j ≤ ntrain (train-to-train)
0 if i > ntrain and j ≤ ntrain (test-to-train)
−∞ if i ≤ ntrain and j > ntrain (train-to-test: blocked)
0 if i > ntrain and j > ntrain (test-to-test)

(50)

No leakage from test to train samples.
• Training samples attend only to other training samples (learn from labeled context).
• Test samples attend to training samples and other test samples (contextual reasoning).
• No leakage from test to train samples.

The Transformer applies Nicl blocks of multi-head self-attention and feed-forward layers:

H(0) = R (51)

H(ℓ+1) = TransformerBlock(H(ℓ),Msplit) for ℓ = 0, . . . , Nicl − 1 (52)

with the final output normalized via:

H = LayerNorm(H(Nicl)) (53)

3. Prediction head: Test sample representations H[:, ntrain :, :] are passed through a two-layer
MLP decoder:

z = GELU(H[:, ntrain :, :]W1 + b1) ∈ RB×ntest×2dR (54)

logits = zW2 + b2 ∈ RB×ntest×Cmax (55)

Predictions are obtained via softmax with temperature τ :

ŷtest = softmax(logits[:, :, : K]/τ) (56)

where K is the number of classes in the current dataset (inferred from training labels), and
τ = 0.9 by default.

When the number of classes K > Cmax (e.g., K > 10), we employ a hierarchical classifi-
cation strategy: Grouping: Partition
(a) Grouping: Partition K classes into G = ⌈K/Cmax⌉ balanced groups.
(b) First-level prediction: Predict which group a test sample belongs to.
(c) Second-level prediction: For each group, train a classifier on the subset of classes

within that group.
(d) Combination: Multiply group probability with intra-group probability to obtain final

prediction.
This hierarchical mechanism preserves the ICL paradigm while scaling to hundreds of
classes.

17

Algorithm 3 Dataset-wise In-Context Learning

Require: Row embeddings R ∈ RB×n×dR , training labels ytrain ∈ RB×ntrain

Ensure: Predictions ŷtest ∈ RB×(n−ntrain)×K

1: // Optional: Perceiver Memory
2: if memory enabled then
3: R← PerceiverMemory(R, ntrain)
4: end if
5: // Label Encoding and Injection
6: ỹtrain ← NormalizeLabels(ytrain) {Map to {0, 1, . . . ,K − 1}}
7: ey ← OneHotLinear(ỹtrain) {Shape: (B,ntrain, dR)}
8: R[:, : ntrain, :]← R[:, : ntrain, :] + ey
9: // Split-Masked Transformer

10: Msplit ← BuildSplitMask(n, ntrain)
11: H← TFicl(R,Msplit)
12: H← LayerNorm(H)
13: // Prediction Head
14: Htest ← H[:, ntrain :, :] {Extract test representations}
15: logits← MLPdecoder(Htest) {Shape: (B, Ttest, Cmax)}
16: logits← logits[:, :, : K] {Select active classes}
17: ŷtest ← softmax(logits/τ)
18: return ŷtest

During pretraining, the model is trained with cross-entropy loss on test samples:

L = − 1

B · ntest

B∑
b=1

n∑
j=ntrain+1

log p(y
(b)
j | R(b),y

(b)
train) (57)

Critically, gradients flow through the entire architecture (column embedding, row interaction, memory,
ICL transformer, decoder) in an end-to-end manner, enabling the model to learn representations
optimized for in-context learning.

B Pretraining and Implementation Details

B.1 Pretraining Data Generation

Following the pretraining paradigm of TabICL [21], we train our model on synthetically generated
datasets to learn generalizable representations for in-context learning on tabular data. Unlike natural
language or vision domains where large-scale real data is available, tabular datasets exhibit extreme
heterogeneity in schemas, distributions, and task objectives. Synthetic data generation via structural
causal models (SCMs) enables us to control dataset diversity while ensuring coverage of diverse
statistical patterns.

B.1.1 Structural Causal Model (SCM) Prior

We generate synthetic datasets using SCM-based priors [3, 20], where features are related through
nonlinear causal relationships. For a dataset with m features, we define a directed acyclic graph (DAG)
G = (V, E) where each node v ∈ V represents a feature, and edges E encode causal dependencies.

Each feature Xj is computed as:

Xj = fj(Pa(Xj), ϵj) (58)

where Pa(Xj) are the parent features of Xj in G, fj is a nonlinear activation function, and ϵj ∼
N (0, σ2

j) is Gaussian noise.

18

Activation Function Diversity To ensure broad coverage of feature transformations observed in
real-world tabular data, we used the following activation functions:

• Identity,

• tanh,

• LeakyReLU,

• ELU
• Standard nonlinearities: ReLU, ReLU6 [14], SELU [13], SiLU (Swish) [8], Softplus

• Bounded functions: Hardtanh(x) = max(−1,min(1, x)), Signum function sgn(x)

• Periodic functions: sin(x) (captures cyclic patterns, e.g., time-of-day)

• Radial basis function: RBF(x) = exp(−x2) (models local interactions)

• Exponential growth/decay: exp(x) (models compounding effects, e.g., financial data)

• Power functions: f(x) =
√
|x|, f(x) = x2, f(x) = |x| (models scaling relationships)

• Indicator function: f(x) = ⊮|x|≤1 (models threshold effects)

• Random Fourier features: f(x) = ϕ(x)⊤z where z ∼ N (0, I) and the feature map
ϕ : R→ RN is defined as:

ϕi(x) :=
wi

∥w∥2
· sin(aix+ bi), i ∈ {1, . . . , N} (59)

with N = 256, bi ∼ U [0, 2π], ai ∼ U [0, N], and wi := a
− exp(u)
i where u ∼ U [0.7, 3.0].

This random function approximates complex, non-parametric relationships [22].

For each feature Xj , an activation function fj is sampled uniformly from this extended set, ensuring
diverse nonlinear transformations across the dataset.

B.1.2 Tree-Based SCM Prior

To complement the continuous SCM prior, we also generate datasets using a tree-based SCM prior
[7], where the causal mechanism fj is a decision tree or random forest. This prior is particularly
important for modeling categorical interactions and hierarchical decision boundaries commonly
observed in real-world tabular data (e.g., credit scoring, medical diagnosis).

For each feature Xj , we construct a random decision tree Tj with:

• Splitting criteria: Random thresholds on parent features Pa(Xj)

• Leaf values: Sampled from a Gaussian or uniform distribution

• Tree depth: Sampled uniformly from {1, 2, 3, 4} to vary complexity

The tree-based prior generates datasets with piecewise-constant relationships, contrasting with the
smooth transformations of the MLP-based SCM prior.

B.2 Pretraining Details

We employ a three-stage curriculum learning strategy that progressively increases dataset size (number
of samples per dataset) and refines different architectural components.

1. Stage 1 (25K steps, 2,048 datasets) trains all components end-to-end with NB = 8 micro-
batches for gradient accumulation, where each dataset contains a fixed size of 1,024 samples.
This stage establishes foundational representations across column embedding, multi-scale
sparse row interaction, Perceiver memory, and ICL prediction.

2. Stage 2 (2K steps, 512 datasets) reduces micro-batch size to NB = 1 and samples dataset
sizes from a log-uniform distribution Ulog[1024, 40000], exposing the model to variable
context lengths while maintaining architectural diversity. Within each micro-batch, all
datasets share the same sample count, but this count varies across micro-batches.

19

3. Stage 3 (50 steps, 512 datasets) focuses exclusively on long-context ICL by freezing
all components except TFicl and sampling dataset sizes uniformly from U [40000, 60000],
ensuring robust in-context learning on large datasets.

Across all stages, we use the Adam optimizer [12] with gradient norm clipping at 1.0 and a learning
rate schedule shown in Figure 3. This curriculum, progressing from small, uniform datasets to large,
variable datasets with selective fine-tuning, enables the model to generalize effectively across diverse
dataset scales while preventing overfitting to specific sample counts.

(a) Cosine decay for stage 1 (b) Polynomial decay for stage 2 (c) Constant lr for stage 3

Figure 3: Learning rate schedules for pretraining stages.

B.3 Implementation Details

This section provides comprehensive hyperparameters and training configurations for all architectural
components of ORION-MSP. Our implementation is built on PyTorch and trained on NVIDIA H200
GPUs.

B.3.1 Column-wise Embedding (TFcol)

Hyperparameters

• Embedding dimension: d = 128

• Number of inducing points: k = 128

• Attention heads: h = 4 (head dimension dk = 32)

• ISAB blocks: L = 3

• Feedforward dimension: dff = 256

• Dropout rate: p = 0.0

• Activation: GELU

• Layer norm: Pre-norm

Initialization and Training Considerations

• Inducing points initialized from N (0, 0.022)

• Linear and attention weights: Xavier/Glorot uniform

• Column dropout: pcol = 0.1

• Gradient clipping: max-norm = 1.0

B.3.2 Multi-Scale Sparse Row Interaction (TFMS
row)

Hyperparameters

• Embedding dimension: d = 128

• Transformer blocks: N row
blocks = 6 (2 per scale)

• Scales: S = {1, 4, 16}

20

• Attention heads: h = 8

• Window size: w = 8, Global tokens: Nglobal = 4, Random links: r = 2

• Dropout: p = 0.0

• Positional encoding: RoPE (θ = 100000)

Training Details

• Sparse attention via PyTorch SDPA
• Cosine learning rate schedule with 5% warmup
• Mixed precision: FP16 (forward), FP32 (softmax)

B.3.3 Cross-Component Perceiver Memory

Hyperparameters

• Memory slots: P = 32

• Write layers: Nwrite = 2, Read layers: Nread = 2

• Attention heads: h = 4

• Feedforward dimension: dff = 2dR

• Dropout: p = 0.0

• Activation: GELU, Layer norm: Pre-norm

Training Considerations

• Random initialization of memory L0 ∼ N (0, 0.022)

• Gradient clipping (max-norm = 1.0)
• Memory disabled (P = 0) for ablation

B.3.4 Dataset-wise In-Context Learning (TFicl)

Hyperparameters

• Transformer blocks: Nicl = 12

• Embedding dimension: dR = 512

• Feedforward dimension: dff = 1024

• Max classes: Cmax = 10

• Temperature: τ = 0.9

• Dropout: p = 0.0

• Activation: GELU
• Layer norm: Pre-norm

Initialization

• Label encoder, Transformer, and decoder weights: Xavier/Glorot uniform
• Layer norm: γ = 1, β = 0

C Further Experiments

C.1 Extended Results

To further investigate the sources of Orion-MSP’s performance gains, we analyze results across
key dataset characteristics. All analyses partition datasets based on inherent properties rather than
performance outcomes.

21

Dataset Size. Table 2 reports model performance aggregated by dataset size: Small (< 1K samples),
Medium (1K-10K), and Large (> 10). Performance trends reveal that Orion-MSP consistently
performs well across small, medium, and large datasets. Classical ML models such as XGBoost
excel on large datasets due to abundant training examples, achieving the highest ACC/F1 in the
> 10K sample category. Orion-MSP, however, maintains competitive performance across all size
categories, outperforming most baselines on small and medium datasets. This demonstrates the
ability of multi-scale sparse attention to generalize effectively in low-data regimes while scaling
gracefully to larger datasets. TabPFN also performs strongly, particularly on medium-sized datasets,
but Orion-MSP’s consistent performance across size scales highlights the robustness of its hierarchical
and sparse design.

Table 2: Performance variation by dataset size across all benchmark suites. Rank denotes the
accuracy-based ranking per size category (lower is better). ACC = Accuracy; F1 = Weighted F1-score,
averaged across datasets within each size category: Small (<1K samples), Medium (1K–10K), and
Large (>10K).

Models Small (<1K) Medium (1K-10K) Large (>10K)

Rank ACC F1 Rank ACC F1 Rank ACC F1

XGBoost 7.70 0.8168 0.7964 6.88 0.8363 0.8314 5.41 0.8969 0.8920
CatBoost 7.88 0.8124 0.7935 6.47 0.8340 0.8264 5.48 0.8797 0.8733
Random Forest 8.55 0.7988 0.8187 7.16 0.8285 0.8221 7.30 0.8694 0.8628
LightGBM 7.80 0.8143 0.7789 6.94 0.8314 0.8226 5.63 0.8827 0.8764
TabICL 6.04 0.8301 0.8338 4.77 0.8486 0.8398 4.61 0.8802 0.8743
OrionBiX 6.32 0.8330 0.8150 5.48 0.8348 0.8260 4.42 0.8729 0.8670
OrionMSP 5.93 0.8232 0.8194 3.70 0.8494 0.8402 3.04 0.8843 0.8768
TabPFN 6.50 0.8325 0.8131 3.81 0.8557 0.8462 5.73 0.8783 0.8713
Mitra 13.88 0.4334 0.3236 11.59 0.3600 0.2553 11.11 0.3837 0.2754
ContextTab 9.60 0.7578 0.7363 9.52 0.6210 0.5566 10.22 0.6388 0.5638
TabDPT 5.48 0.8333 0.8271 5.40 0.8424 0.8339 5.26 0.8831 0.8765

Feature Dimensionality. Table 3 presents performance trends across narrow (< 10 features), medium
(10 - 100) and wide (> 100) datasets. When evaluating dataset width, Orion-MSP shows the highest
accuracy on narrow datasets (<10 features) and strong performance on medium and wide datasets
(10–100 and >100 features). This suggests that sparse multi-scale attention enables effective learning
even in high-dimensional feature spaces, where dense models such as TabICL exhibit diminished
scalability to high-dimensional feature spaces.

Table 3: Performance variation by feature dimensionality (dataset width) across all benchmark suites.
Rank denotes the accuracy-based ranking averaged within each width category (lower is better). ACC
= Accuracy; F1 = Weighted F1-score. Values are on a 0–1 scale (higher is better). Formatting: 1st
place ; 2nd place within each group.

Models Narrow (<10) Medium (10-100) Wide (>100)

Rank ACC F1 Rank ACC F1 Rank ACC F1

XGBoost 6.77 0.8222 0.8159 6.90 0.8482 0.8410 4.79 0.9140 0.9039
CatBoost 5.63 0.8145 0.8067 6.88 0.8441 0.8344 5.50 0.9157 0.9084
Random Forest 7.15 0.8005 0.7044 7.44 0.8410 0.8235 7.52 0.9034 0.8936
LightGBM 6.15 0.8128 0.7907 6.92 0.8458 0.8326 7.47 0.8999 0.8908
TabICL 5.14 0.8208 0.8119 4.61 0.8627 0.8549 6.46 0.9101 0.8936
OrionBiX 4.64 0.8112 0.8043 5.46 0.8510 0.8417 6.73 0.8859 0.8849
OrionMSP 3.76 0.8394 0.8314 4.09 0.8572 0.8478 5.69 0.8860 0.8837
TabPFN 5.30 0.8187 0.8092 4.07 0.8676 0.8589 6.141 0.9129 0.9111
Mitra 11.25 0.3737 0.2683 11.84 0.3886 0.2781 13.03 0.2521 0.1497
ContextTab 9.52 0.6391 0.5719 9.59 0.6480 0.5843 10.97 0.6017 0.5651
TabDPT 4.66 0.8262 0.8189 5.45 0.8566 0.8483 7.23 0.8845 0.8820

Domain-specific Analysis. Domain-wise evaluation provides deeper insight into Orion-MSP’s
strengths (Table 4):

• Medical datasets: Orion-MSP achieves the highest ACC = 0.8045 and F1 = 0.7916, ranking
second overall behind Orion-BiX. These datasets often involve hierarchical biological
structures and complex interdependencies among features, which align naturally with Orion-

22

MSP’s multi-scale representation. Fine-grained scales capture local dependencies, while
coarser scales aggregate contextual information, leading to improved predictive accuracy.

• Finance datasets: Orion-MSP ranks first in mean rank (4.60), achieving ACC = 0.8158
and F1 = 0.8047. Financial datasets frequently involve layered dependencies between
assets, instruments, and market indicators. Orion-MSP’s cross-component memory allows
information to propagate across scales, capturing global dependencies that standard dense
transformers or classical ML models fail to exploit.

Table 4: Domain-specific performance for Medical and Finance datasets from the benchmark suites.
Rank denotes the mean rank within each domain (lower is better). ACC = Accuracy; F1 = Weighted
F1-score (0–1 scale, higher is better). Formatting: 1st place; 2nd place within each group.

Models Medical Finance

Rank ACC F1 Rank ACC F1

XGBoost 6.32 0.7834 0.7669 6.62 0.7958 0.7885
RandomForest 6.38 0.7779 0.7752 7.32 0.8052 0.8001
CatBoost 6.36 0.7784 0.7594 5.82 0.8117 0.8015
LightGBM 5.32 0.7949 0.7614 6.17 0.8095 0.7974
TabICL 5.54 0.7819 0.7696 6.60 0.8125 0.7942
OrionBiX 4.10 0.7893 0.7759 5.39 0.8206 0.8125
OrionMSP 4.50 0.8045 0.7916 4.60 0.8158 0.8047
TabPFN 5.04 0.7984 0.7857 7.17 0.8094 0.7919
Mitra 10.77 0.3935 0.2863 13.67 0.5340 0.4250
ContextTab 8.66 0.6681 0.6129 11.25 0.7430 0.6834
TabDPT 6.86 0.7764 0.7641 8.00 0.8080 0.7960

Overall, domain-specific results highlight that Orion-MSP excels in high-dimensional, context-rich
datasets, where hierarchical patterns and feature correlations are prevalent.

Deep Analysis and Interpretation

A detailed examination by dataset characteristics demonstrates why Orion-MSP’s design is most
effective under certain conditions:

• Class imbalance: Multi-scale sparse attention amplifies underrepresented patterns without
overfitting to majority classes. Minority-class recognition improves substantially on datasets
where the minority class constitutes less than 30% of the data. Balanced datasets show
smaller gains, indicating that the hierarchical complexity is most beneficial in skewed
settings.

• Hierarchical structure and cross-component memory: In domains such as healthcare and
finance, datasets involve natural hierarchies and complex inter-feature relationships. Orion-
MSP’s multi-scale design allows it to reason at both fine-grained and coarse-grained levels.
Sparse attention reduces computational cost and provides implicit regularization, mitigating
overfitting in high-dimensional or correlated-feature settings. Cross-component memory
further enables information exchange across scales without violating ICL safety, enhancing
performance on context-dependent tasks.

• Computational efficiency: Linear attention complexity with respect to feature number and
attention window size allows Orion-MSP to scale to high-dimensional tables. Memory
usage grows proportionally with input dimensions, making the model practical for large
real-world datasets, unlike dense attention alternatives with quadratic scaling.

C.2 Average Performance and Rankings

This section reports the average rank of all methods across dataset categories. Figure 4 shows the
relative accuracy improvement (%) of each method over XGBoost for individual datasets across
the three benchmarks: TALENT (Figure 4a), TabZilla (Figure 4b), and OpenML-CC18 (Figure 4c).
Each point represents the per-dataset improvement, while the boxplots summarize the distribution,
including the median, interquartile range, and whiskers. The dashed vertical line indicates parity with
XGBoost (0%).

23

Across all three benchmarks, Orion-MSP consistently improves upon the strong XGBoost baseline.
On TabZilla and OpenML-cc18, Orion-MSP achieves positive median relative accuracy with a
compact interquartile range and few negative outliers, indicating both higher accuracy and greater
reliability. On TALENT, Orion-MSP reaches parity in median performance but exhibits lower
variance than most neural baselines.

Among classical boosted trees, LightGBM, CatBoost, and Random Forest cluster tightly around
parity, showing comparable behavior. In contrast, tabular foundation models (TFMs), notably Mitra
and ContextTab, exhibit pronounced negative shifts and high variance. TabPFN and TabICL perform
competitively and occasionally outperform Orion-MSP on specific datasets, yet their broader variance
and heavier left tails reveal less consistent behavior. Overall, Orion-MSP matches or surpasses their
central performance and achieves the best mean–variance trade-off, confirming the benefits of our
model design for tabular generalization.

To further quantify cross-dataset performance, we computed per-dataset ranks across all 11 methods
(lower is better) for each benchmark, averaged them over datasets, and conducted a one-way Friedman
test to assess overall differences. When significant, Nemenyi post-hoc tests were applied, and the
resulting critical difference (CD) diagrams were plotted at α = 0.05; methods connected by the CD
bar are not significantly different.

As shown in Figure 5, Orion-MSP attains the best average rank on all three benchmarks—3.09 on
TALENT, 3.32 on TabZilla, and 3.35 on OpenML-cc18—appearing as the leftmost method in each
CD diagram. TabICL, TabPFN, and TabDPT follow closely, typically lagging by ≈ 0.5–1.5 rank
points. Tree ensembles (XGBoost, LightGBM, CatBoost, Random Forest) occupy a middle tier
with average ranks of 4.6–6.2, showing parity among themselves but a consistent gap to Orion-MSP
and the stronger TFMs. Finally, ContextTab and Mitra form the rightmost group (ranks ≈ 9–10),
confirming the underperformance seen in the improvement plots.

In summary, the CD diagrams corroborate our main finding: Orion-MSP is the top performer across
diverse tabular benchmarks, outperforming tree ensembles on average and matching or exceeding
pretrained tabular foundation models while maintaining a favorable significance profile.

C.3 Experimental Setting

C.3.1 Benchmark Suites and Datasets.

Our experimental evaluation spans three widely recognized benchmark suites: TALENT [26] (181
automatically discovered classification datasets), OPENML-CC18 [2] (72 curated datasets), and
TABZILLA [19] (36 heterogeneous tasks). Together, these benchmarks enable a comprehensive
assessment across diverse tabular learning scenarios. In addition, we perform domain-specific
evaluations in high-impact application areas such as healthcare and finance to examine the real-world
relevance of our method. All experiments strictly follow the official dataset splits provided by each
benchmark to ensure reproducibility and fairness.

For consistency across model families, results are reported only on the intersection of datasets
available to all evaluated models within each benchmark suite. This unified evaluation protocol
ensures that observed performance differences arise from methodological advances rather than
variations in dataset coverage. After filtering, our evaluation encompasses 154 of 181 datasets from
TALENT, 63 of 72 from OpenML-CC18, and 27 of 36 from TabZilla. A small number of datasets
were excluded due to out-of-memory (OOM) errors or CUDA-related issues, primarily affecting
TabPFN and ContextTab-based architectures even on H200 GPUs.

C.3.2 Models and Baselines.

We compare our model with six state-of-the-art tabular foundation models: TABPFN [9], TABICL
[21], ORIONBIX, MITRA, CONTEXTTAB [23], and TABDPT [18]. In addition, we include estab-
lished traditional baselines using autogloun [4] such as XGBOOST, LIGHTGBM, CATBOOST,
and RANDOM FOREST as strong reference models for comparison.

24

(a) Relative accuracy improvement over XGBoost on TALENT Benchmark

(b) Relative accuracy improvement over XGBoost on TabZilla Benchmark

(c) Relative accuracy improvement over XGBoost on OPENML-CC18 Benchmark

Figure 4: Relative accuracy improvement over XGBoost on three benchmarks.

25

(a) Relative accuracy improvement over XGBoost on TALENT Benchmark

(b) Relative accuracy improvement over XGBoost on TabZilla Benchmark

(c) Relative accuracy improvement over XGBoost on OPENML-CC18 Benchmark

Figure 5

C.3.3 Hardware Configuration.

Experiments are executed on NVIDIA L40S GPUs, with H200 GPUs used for memory-intensive
cases. This infrastructure ensures consistent execution across all experiments while handling the
computational demands of large transformer-based models.

C.3.4 Evaluation Metrics.

Our evaluation considers two complementary aspects:

Performance. We measure predictive capability using standard classification metrics—Accuracy
(ACC), AUC-ROC, and weighted F1-score (F1)—computed across the benchmark suites TALENT,
OpenML-CC18, and TabZilla. These benchmarks encompass datasets with diverse characteristics,
including varying sample sizes, feature dimensionalities, and class balance, allowing a comprehensive
assessment of model generalization. It is important to clarify how MEAN RANK values are derived.
Within each benchmark suite, models are ranked by accuracy on every dataset (lower rank = better
performance), and these per-dataset ranks are averaged to obtain the overall mean rank. Thus, a
lower mean rank indicates stronger and more consistent performance across datasets, rather than the
highest score on any single task. While absolute metrics (ACCURACY, F1) reflect peak task-level
performance, mean rank provides a normalized measure of cross-dataset generalization consistency.

Scalability. We further analyze model robustness as dataset complexity increases by examining
performance trends with respect to sample size, feature dimensionality, and class imbalance. This
analysis uses the same benchmark datasets, aggregated along these axes to reveal systematic scalability
behaviors and guide practical model selection.

C.4 Datasets

Full details of all datasets and benchmarks are summarized in below, with their row and column
distributions visualized in Figure 6.

26

Figure 6: Column and row distribution of the evaluated datasets.

OpenML-CC18 Benchmark Datasets

Table 5 lists all datasets from the OpenML-CC18 benchmark suite used in our evaluation.

TALENT Benchmark Datasets

Table 6 lists all datasets from the TALENT benchmark suite used in our evaluation.

TabZilla Benchmark Datasets

Table 7 lists all datasets from the TabZilla benchmark suite. TabZilla uses OpenML dataset IDs, and
these datasets are specifically selected for evaluating neural network performance on tabular data.

Table 5: OpenML-CC18 benchmark datasets (72 datasets).

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

OpenML OpenML-ID-3 Other 3196 37 2 binclass Yes
OpenML OpenML-ID-6 Handwriting 20000 17 26 multiclass No
OpenML OpenML-ID-11 Other 625 5 3 multiclass Yes
OpenML OpenML-ID-12 Other 2000 217 10 multiclass Yes
OpenML OpenML-ID-14 Other 2000 77 10 multiclass Yes
OpenML OpenML-ID-15 Healthcare 699 10 2 binclass Yes
OpenML OpenML-ID-16 Other 2000 65 10 multiclass Yes
OpenML OpenML-ID-18 Other 2000 7 10 multiclass Yes
OpenML OpenML-ID-22 Other 2000 48 10 multiclass Yes
OpenML OpenML-ID-23 Healthcare 1473 10 3 multiclass Yes
OpenML OpenML-ID-28 Handwriting 5620 65 10 multiclass Yes
OpenML OpenML-ID-29 Finance 690 16 2 binclass Yes
OpenML OpenML-ID-31 Finance 1000 21 2 binclass Yes
OpenML OpenML-ID-32 Handwriting 10992 17 10 multiclass Yes
OpenML OpenML-ID-37 Healthcare 768 9 2 binclass Yes
OpenML OpenML-ID-38 Healthcare 3772 30 2 binclass Yes
OpenML OpenML-ID-44 Other 4601 58 2 binclass Yes
OpenML OpenML-ID-46 Other 3190 61 3 multiclass Yes

Continued on next page

27

Table 5: Details of OpenML-CC18 benchmark datasets.

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

OpenML OpenML-ID-50 Other 958 10 2 binclass Yes
OpenML OpenML-ID-54 Other 846 19 4 multiclass Yes
OpenML OpenML-ID-151 Other 45312 9 2 binclass Yes
OpenML OpenML-ID-182 Other 6430 37 6 multiclass Yes
OpenML OpenML-ID-188 Other 736 20 5 multiclass Yes
OpenML OpenML-ID-300 Other 7797 618 26 multiclass No
OpenML OpenML-ID-307 Other 990 13 11 multiclass No
OpenML OpenML-ID-458 Other 841 71 4 multiclass Yes
OpenML OpenML-ID-469 Healthcare 797 5 6 multiclass Yes
OpenML OpenML-ID-554 Other 70000 785 10 multiclass Yes
OpenML OpenML-ID-1049 Other 1458 38 2 binclass Yes
OpenML OpenML-ID-1050 Other 1563 38 2 binclass Yes
OpenML OpenML-ID-1053 Other 10885 22 2 binclass Yes
OpenML OpenML-ID-1063 Other 522 22 2 binclass Yes
OpenML OpenML-ID-1067 Other 2109 22 2 binclass Yes
OpenML OpenML-ID-1068 Other 1109 22 2 binclass Yes
OpenML OpenML-ID-1461 Finance 45211 17 2 binclass Yes
OpenML OpenML-ID-1462 Finance 1372 5 2 binclass Yes
OpenML OpenML-ID-1464 Healthcare 748 5 2 binclass Yes
OpenML OpenML-ID-1468 Other 1080 857 9 multiclass Yes
OpenML OpenML-ID-1475 Other 6118 52 6 multiclass Yes
OpenML OpenML-ID-1478 Other 10299 562 6 multiclass Yes
OpenML OpenML-ID-1480 Healthcare 583 11 2 binclass Yes
OpenML OpenML-ID-1485 Other 2600 501 2 binclass Yes
OpenML OpenML-ID-1486 Other 34465 119 2 binclass No
OpenML OpenML-ID-1487 Other 2534 73 2 binclass Yes
OpenML OpenML-ID-1489 Other 5404 6 2 binclass Yes
OpenML OpenML-ID-1494 Other 1055 42 2 binclass Yes
OpenML OpenML-ID-1497 Other 5456 25 4 multiclass Yes
OpenML OpenML-ID-1501 Other 1593 257 10 multiclass Yes
OpenML OpenML-ID-1510 Other 569 31 2 binclass Yes
OpenML OpenML-ID-1590 Other 48842 15 2 binclass Yes
OpenML OpenML-ID-4134 Other 3751 1777 2 binclass No
OpenML OpenML-ID-4534 Other 11055 31 2 binclass Yes
OpenML OpenML-ID-4538 Other 9873 33 5 multiclass Yes
OpenML OpenML-ID-6332 Other 540 40 2 binclass Yes
OpenML OpenML-ID-23381 Retail 500 13 2 binclass Yes
OpenML OpenML-ID-23517 Other 96320 22 2 binclass No
OpenML OpenML-ID-40499 Other 5500 41 11 multiclass No
OpenML OpenML-ID-40668 Games 67557 43 3 multiclass No
OpenML OpenML-ID-40670 Other 3186 181 3 multiclass Yes
OpenML OpenML-ID-40701 Other 5000 21 2 binclass Yes
OpenML OpenML-ID-40923 Other 92000 1025 46 multiclass No
OpenML OpenML-ID-40927 Handwriting 60000 3073 10 multiclass No
OpenML OpenML-ID-40966 Other 1080 82 8 multiclass No
OpenML OpenML-ID-40975 Other 1728 7 4 multiclass Yes
OpenML OpenML-ID-40978 Other 3279 1559 2 binclass Yes
OpenML OpenML-ID-40979 Other 2000 241 10 multiclass Yes
OpenML OpenML-ID-40982 Other 1941 28 7 multiclass Yes
OpenML OpenML-ID-40983 Other 4839 6 2 binclass Yes
OpenML OpenML-ID-40984 Other 2310 20 7 multiclass Yes
OpenML OpenML-ID-40994 Other 540 21 2 binclass Yes
OpenML OpenML-ID-40996 Other 70000 785 10 multiclass No
OpenML OpenML-ID-41027 Games 44819 7 3 multiclass Yes

28

Table 6: TALENT benchmark datasets (auto-discovered, multiple domains).

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

TALENT ASP-POTASSCO-class Other 1294 141 11 multiclass Yes
TALENT Amazon_employee_access Other 32769 7 2 binclass Yes
TALENT BLE_RSSI__Indoor_localization Other 9984 3 3 multiclass Yes
TALENT BNG(breast-w) Healthcare 39366 9 2 binclass Yes
TALENT BNG(cmc) Other 55296 9 3 multiclass Yes
TALENT BNG(tic-tac-toe) Other 39366 9 2 binclass Yes
TALENT Bank_Customer_Churn Finance 10000 10 2 binclass Yes
TALENT Basketball_c Retail 1340 11 2 binclass Yes
TALENT CDC_Diabetes_Health Healthcare 253680 21 2 binclass Yes
TALENT California-Housing-Class Other 20640 8 2 binclass No
TALENT Cardiovascular-Disease Healthcare 70000 11 2 binclass Yes
TALENT Click_prediction_small Other 39948 3 2 binclass Yes
TALENT Credit_c Finance 100000 22 3 multiclass Yes
TALENT Customer_Personality_Analysis Retail 2240 24 2 binclass Yes
TALENT DataScience_Kiva_Crowdfunding Other 671205 11 4 multiclass No
TALENT Diabetic_Retinopathy_Debrecen Healthcare 1151 19 2 binclass Yes
TALENT E-CommereShippingData Other 10999 10 2 binclass Yes
TALENT Employee Other 4653 8 2 binclass Yes
TALENT FICO-HELOC-cleaned Other 9871 23 2 binclass Yes
TALENT FOREX_audcad-day-High Finance 1834 10 2 binclass No
TALENT FOREX_audcad-hour-High Finance 43825 10 2 binclass No
TALENT FOREX_audchf-day-High Finance 1833 10 2 binclass No
TALENT FOREX_audjpy-day-High Finance 1832 10 2 binclass No
TALENT FOREX_audjpy-hour-High Finance 43825 10 2 binclass No
TALENT FOREX_audsgd-hour-High Finance 43825 10 2 binclass No
TALENT FOREX_audusd-hour-High Finance 43825 10 2 binclass No
TALENT FOREX_cadjpy-day-High Finance 1834 10 2 binclass No
TALENT FOREX_cadjpy-hour-High Finance 43825 10 2 binclass No
TALENT Firm-Teacher_Clave-Direction Other 10800 16 4 multiclass Yes
TALENT Fitness_Club_c Other 1500 6 2 binclass Yes
TALENT GAMETES_Epistasis_2-Way Games 1600 20 2 binclass Yes
TALENT GAMETES_Heterogeneity Games 1600 20 2 binclass Yes
TALENT Gender_Gap_in_Spanish Other 4746 13 3 multiclass Yes
TALENT GesturePhaseSegmentation Other 9873 32 5 multiclass Yes
TALENT HR_Analytics_Job_Change Other 19158 13 2 binclass Yes
TALENT IBM_HR_Analytics Other 1470 31 2 binclass Yes
TALENT INNHotelsGroup Other 36275 17 2 binclass Yes
TALENT Indian_pines Other 9144 220 8 multiclass Yes
TALENT JapaneseVowels Other 9961 14 9 multiclass Yes
TALENT KDDCup09_upselling Other 5128 49 2 binclass Yes
TALENT MIC Other 1649 104 2 binclass Yes
TALENT MagicTelescope Other 19020 9 2 binclass Yes
TALENT Marketing_Campaign Finance 2240 27 2 binclass Yes
TALENT Mobile_Price_Classification Telcom 2000 20 4 multiclass Yes
TALENT National_Health_and_Nutrition Healthcare 2278 7 2 binclass Yes
TALENT PhishingWebsites Other 11055 30 2 binclass Yes
TALENT PieChart3 Other 1077 37 2 binclass Yes
TALENT Pima_Indians_Diabetes Healthcare 768 8 2 binclass Yes
TALENT PizzaCutter3 Other 1043 37 2 binclass Yes
TALENT Pumpkin_Seeds Other 2500 12 2 binclass Yes
TALENT QSAR_biodegradation Healthcare 1054 41 2 binclass Yes
TALENT Rain_in_Australia Other 145460 18 3 multiclass No
TALENT SDSS17 Other 100000 12 3 multiclass Yes
TALENT Satellite Other 5100 36 2 binclass Yes
TALENT Smoking_and_Drinking Other 991346 23 2 binclass No
TALENT Telecom_Churn_Dataset Telcom 3333 17 2 binclass Yes
TALENT UJI_Pen_Characters Other 1364 80 35 multiclass Yes
TALENT Water_Quality_and_Potability Manufacturing3276 8 2 binclass Yes
TALENT Wilt Other 4821 5 2 binclass Yes

Continued on next page

29

Table 6: Details of TALENT benchmark datasets.

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

TALENT abalone Other 4177 8 3 multiclass Yes
TALENT accelerometer Other 153004 4 4 multiclass No
TALENT ada Other 4147 48 2 binclass Yes
TALENT ada_agnostic Other 4562 48 2 binclass Yes
TALENT ada_prior Other 4562 14 2 binclass Yes
TALENT airlines_seed_0_nrows Telcom 2000 7 2 binclass Yes
TALENT allbp Other 3772 29 3 multiclass Yes
TALENT allrep Other 3772 29 4 multiclass Yes
TALENT analcatdata_authorship Other 841 69 4 multiclass Yes
TALENT artificial-characters Other 10218 7 10 multiclass Yes
TALENT autoUniv-au4-2500 Other 2500 100 3 multiclass Yes
TALENT autoUniv-au7-1100 Other 1100 12 5 multiclass Yes
TALENT bank Finance 45211 16 2 binclass Yes
TALENT banknote_authentication Finance 1372 4 2 binclass Yes
TALENT baseball Other 1340 16 3 multiclass Yes
TALENT car-evaluation Other 1728 21 4 multiclass Yes
TALENT churn Finance 5000 20 2 binclass Yes
TALENT cmc Other 1473 9 3 multiclass Yes
TALENT company_bankruptcy_prediction Finance 6819 95 2 binclass Yes
TALENT compass Other 16644 17 2 binclass Yes
TALENT contraceptive_method_choice Other 1473 9 3 multiclass Yes
TALENT credit Finance 16714 10 2 binclass Yes
TALENT customer_satisfaction_in_airline Retail 129880 21 2 binclass No
TALENT dabetes_130-us_hospitals Healthcare 101766 20 2 binclass Yes
TALENT default_of_credit_card_clients Finance 30000 23 2 binclass Yes
TALENT delta_ailerons Other 7129 5 2 binclass Yes
TALENT dis Other 3772 29 2 binclass Yes
TALENT dna Healthcare 3186 180 3 multiclass Yes
TALENT drug_consumption Healthcare 1884 12 7 multiclass Yes
TALENT dry_bean_dataset Other 13611 16 7 multiclass Yes
TALENT eeg-eye-state Other 14980 14 2 binclass Yes
TALENT electricity Manufacturing45312 8 2 binclass Yes
TALENT estimation_of_obesity_levels Other 2111 16 7 multiclass Yes
TALENT eye_movements Healthcare 10936 27 3 multiclass Yes
TALENT eye_movements_bin Healthcare 7608 20 2 binclass Yes
TALENT first-order-theorem-proving Other 6118 51 6 multiclass Yes
TALENT gas-drift Other 13910 128 6 multiclass Yes
TALENT gina_agnostic Other 3468 970 2 binclass Yes
TALENT golf_play_dataset_extended Other 1095 9 2 binclass Yes
TALENT heloc Other 10000 22 2 binclass Yes
TALENT hill-valley Other 1212 100 2 binclass No
TALENT house_16H Other 13488 16 2 binclass Yes
TALENT htru Other 17898 8 2 binclass Yes
TALENT ibm-employee-performance Other 1470 30 2 binclass Yes
TALENT in_vehicle_coupon_recos Retail 12684 21 2 binclass Yes
TALENT internet_firewall Other 65532 7 4 multiclass Yes
TALENT internet_usage Other 10108 70 46 multiclass Yes
TALENT jm1 Other 10885 21 2 binclass No
TALENT jungle_chess_2pcs_raw Other 44819 6 3 multiclass Yes
TALENT kc1 Other 2109 21 2 binclass No
TALENT kdd_ipums_la_97-small Other 5188 20 2 binclass Yes
TALENT kr-vs-k Other 28056 6 18 multiclass Yes
TALENT kropt Other 28056 6 18 multiclass Yes
TALENT led24 Other 3200 24 10 multiclass Yes
TALENT led7 Other 3200 7 10 multiclass Yes
TALENT letter Other 20000 15 26 multiclass Yes
TALENT madeline Other 3140 259 2 binclass Yes
TALENT mammography Other 11183 6 2 binclass Yes
TALENT maternal_health_risk Healthcare 1014 6 3 multiclass Yes

Continued on next page

30

Table 6: Details of TALENT benchmark datasets.

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

TALENT mfeat-factors Other 2000 216 10 multiclass Yes
TALENT mfeat-fourier Other 2000 76 10 multiclass Yes
TALENT mfeat-karhunen Other 2000 64 10 multiclass Yes
TALENT mfeat-morphological Other 2000 6 10 multiclass Yes
TALENT mfeat-pixel Other 2000 240 10 multiclass Yes
TALENT mfeat-zernike Other 2000 47 10 multiclass Yes
TALENT mice_protein_expression Other 1080 75 8 multiclass Yes
TALENT microaggregation2 Other 20000 20 5 multiclass Yes
TALENT mobile_c36_oversampling Telcom 51760 6 2 binclass Yes
TALENT mozilla4 Other 15545 4 2 binclass Yes
TALENT naticusdroid+android Healthcare 29332 86 2 binclass Yes
TALENT national-longitudinal-survey-

binary
Other 4908 16 2 binclass Yes

TALENT okcupid_stem Other 26677 13 3 multiclass Yes
TALENT one-hundred-plants-margin Other 1600 64 100 multiclass Yes
TALENT one-hundred-plants-shape Other 1600 64 100 multiclass Yes
TALENT one-hundred-plants-texture Other 1599 64 100 multiclass Yes
TALENT online_shoppers Retail 12330 14 2 binclass No
TALENT optdigits Other 5620 64 10 multiclass Yes
TALENT ozone-level-8hr Other 2534 72 2 binclass Yes
TALENT page-blocks Other 5473 10 5 multiclass Yes
TALENT pc1 Other 1109 21 2 binclass No
TALENT pc3 Other 1563 37 2 binclass No
TALENT pc4 Other 1458 37 2 binclass No
TALENT pendigits Other 10992 16 10 multiclass Yes
TALENT phoneme Other 5404 5 2 binclass Yes
TALENT pol Other 10082 26 2 binclass Yes
TALENT predict_students_dropout Other 4424 34 3 multiclass Yes
TALENT qsar Other 1055 40 2 binclass Yes
TALENT rice_cammeo_and_osmancik Other 3810 7 2 binclass Yes
TALENT ringnorm Other 7400 20 2 binclass Yes
TALENT rl Other 4970 12 2 binclass No
TALENT satimage Other 6430 36 6 multiclass Yes
TALENT segment Other 2310 17 7 multiclass Yes
TALENT seismic+bumps Other 2584 18 2 binclass Yes
TALENT semeion Other 1593 256 10 multiclass No
TALENT shuttle Other 58000 9 7 multiclass Yes
TALENT spambase Other 4601 57 2 binclass Yes
TALENT splice Other 3190 60 3 multiclass Yes
TALENT sports_articles_for_objectivity Other 1000 59 2 binclass Yes
TALENT statlog Other 1000 20 2 binclass Yes
TALENT steel_plates_faults Other 1941 27 7 multiclass Yes
TALENT sylvine Other 5124 20 2 binclass Yes
TALENT taiwanese_bankruptcy Finance 6819 95 2 binclass Yes
TALENT telco-customer-churn Telcom 7043 18 2 binclass Yes
TALENT texture Other 5500 40 11 multiclass Yes
TALENT thyroid Healthcare 7200 21 3 multiclass Yes
TALENT thyroid-ann Healthcare 3772 21 3 multiclass Yes
TALENT thyroid-dis Healthcare 2800 26 5 multiclass Yes
TALENT turiye_student_evaluation Other 5820 32 5 multiclass Yes
TALENT twonorm Other 7400 20 2 binclass Yes
TALENT vehicle Other 846 18 4 multiclass Yes
TALENT volkert Other 58310 180 10 multiclass Yes
TALENT walking-activity Other 149332 4 22 multiclass No
TALENT wall-robot-navigation Other 5456 24 4 multiclass Yes
TALENT water_quality Manufacturing7996 20 2 binclass Yes
TALENT waveform-5000 Other 5000 40 3 multiclass Yes
TALENT waveform_database_generator Other 4999 21 3 multiclass Yes
TALENT waveform_database_generator-v2 Other 5000 21 3 multiclass Yes

Continued on next page

31

Table 6: Details of TALENT benchmark datasets.

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

TALENT website_phishing Other 1353 9 3 multiclass Yes
TALENT wine Manufacturing2554 4 2 binclass No
TALENT wine-quality-red Manufacturing1599 4 6 multiclass Yes
TALENT wine-quality-white Manufacturing4898 11 7 multiclass Yes
TALENT yeast Other 1484 8 10 multiclass Yes

Table 7: TabZilla benchmark datasets (36 datasets via OpenML).

Benchmark Dataset Name Domain Samples Features Classes Task Type Used

TabZilla OpenML-ID-999 Health 226 70 2 binclass Yes
TabZilla OpenML-ID-10 Health 148 19 4 multiclass Yes
TabZilla OpenML-ID-11 Other 625 5 3 multiclass Yes
TabZilla OpenML-ID-14 Other 2000 77 10 multiclass Yes
TabZilla OpenML-ID-22 Other 2000 48 10 multiclass Yes
TabZilla OpenML-ID-29 Finance 690 16 2 binclass Yes
TabZilla OpenML-ID-27 Health 368 23 2 binclass Yes
TabZilla OpenML-ID-31 Finance 1000 21 2 binclass Yes
TabZilla OpenML-ID-46 Other 3190 61 3 multiclass Yes
TabZilla OpenML-ID-54 Other 846 19 4 multiclass Yes
TabZilla OpenML-ID-333 Other 556 7 2 binclass Yes
TabZilla OpenML-ID-1067 Other 2109 22 2 binclass Yes
TabZilla OpenML-ID-1468 Other 1080 857 9 multiclass Yes
TabZilla OpenML-ID-1494 Other 1055 42 2 binclass Yes
TabZilla OpenML-ID-43973 Other 3172 6 2 binclass Yes
TabZilla OpenML-ID-1043 Other 4562 49 2 binclass Yes
TabZilla OpenML-ID-43945 Other 38474 9 2 binclass Yes
TabZilla OpenML-ID-1486 Other 34465 119 2 binclass No
TabZilla OpenML-ID-42825 Other 8378 123 – – No
TabZilla OpenML-ID-4538 Other 9873 33 5 multiclass Yes
TabZilla OpenML-ID-23512 Other 98050 29 2 binclass No
TabZilla OpenML-ID-4134 Other 3751 1777 2 binclass Yes
TabZilla OpenML-ID-470 Other 672 10 2 binclass No
TabZilla OpenML-ID-1493 Other 1599 65 100 multiclass Yes
TabZilla OpenML-ID-1459 Other 10218 8 10 multiclass Yes
TabZilla OpenML-ID-41027 Games 44819 7 3 multiclass Yes
TabZilla OpenML-ID-40981 Other 690 15 2 binclass Yes
TabZilla OpenML-ID-934 Other 1156 6 2 binclass Yes
TabZilla OpenML-ID-1565 Health 294 14 5 multiclass Yes
TabZilla OpenML-ID-41150 Other 130064 51 2 binclass No
TabZilla OpenML-ID-41159 Other 20000 4297 2 binclass No
TabZilla OpenML-ID-846 Other 16599 19 2 binclass Yes
TabZilla OpenML-ID-1169 Other 539383 8 2 binclass No
TabZilla OpenML-ID-41147 Other 425240 79 2 binclass Yes
TabZilla OpenML-ID-41143 Other 2984 145 2 binclass Yes
TabZilla OpenML-ID-1567 Other 1025009 11 10 multiclass No

32

	Introduction
	Proposed Approach: ORION-MSP
	Column-wise Embedding
	Multi-Scale Feature Processing
	Block-Sparse Attention Mechanism
	Cross-Component Communication via Perceiver Memory
	Enhanced In-Context Learning

	Experimental Evaluation
	Experimental Setup
	Results

	Technical Details - ORION-MSP
	Problem Formulation
	High-level Structure: From Data to ICL
	Column-wise Embedding
	Initial Projection:
	Induced Set Attention Blocks (ISAB):
	Weight and Bias Generation:

	Multi-Scale Sparse Row-Wise Interaction
	Motivation and Design Principles
	Multi-Scale Feature Grouping:
	Special Tokens Injection:
	Block-Sparse Attention Mask:
	Transformer Encoder per Scale:
	Computational Complexity

	Cross-Component Memory with Perceiver Architecture
	Dataset-wise In-Context Learning

	Pretraining and Implementation Details
	Pretraining Data Generation
	Structural Causal Model (SCM) Prior
	Tree-Based SCM Prior

	Pretraining Details
	Implementation Details
	Column-wise Embedding (TFcol)
	Multi-Scale Sparse Row Interaction (TFrowMS)
	Cross-Component Perceiver Memory
	Dataset-wise In-Context Learning (TFicl)

	Further Experiments
	Extended Results
	Average Performance and Rankings
	Experimental Setting
	Benchmark Suites and Datasets.
	Models and Baselines.
	Hardware Configuration.
	Evaluation Metrics.

	Datasets

