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ABSTRACT

Vision-language models (VLMs) face significant computational inefficiencies
caused by excessive generation of visual tokens. While prior work shows that
a large fraction of visual tokens are redundant, existing compression methods
struggle to balance importance preservation and information diversity. To address
this, we propose PRUNESID, a training-free Synergistic Importance-Diversity ap-
proach featuring a two-stage pipeline: (1) Principal Semantic Components Analysis
(PSCA) for clustering tokens into semantically coherent groups, ensuring compre-
hensive concept coverage, and (2) Intra-group Non-Maximum Suppression (NMS)
for pruning redundant tokens while preserving key representative tokens within
each group. Additionally, PRUNESID incorporates an information-aware dynamic
compression ratio mechanism that optimizes token compression rates based on
image complexity, enabling more effective average information preservation across
diverse scenes. Extensive experiments demonstrate state-of-the-art performance,
achieving 96.3% accuracy on LLaVA-1.5 with only 11.1% token retention, and
92.8% accuracy at extreme compression rates (5.6%) on LLaVA-NeXT, outper-
forming prior methods by 2.5% with 7.8× faster prefilling speed compared to the
original model. Our framework generalizes across diverse VLMs and both image
and video modalities, showcasing strong cross-modal versatility.

1 INTRODUCTION

: Selected Visual Tokens from Groups  (d) Ours Group-Guided 

(a) Input Image (b) Attention-Guided

(c) Duplication-Guided

Semantically 
Coherent Groups... 

Figure 1: Comparison of visual token reduction paradigms in VLMs. (a) Original input image.
(b) Attention-guided methods preserve high-attention tokens but discard contextual background.
(c) Duplication-aware methods remove redundant tokens via similarity pruning, yet may discard
semantically important regions with high attention. (d) Our proposed semantically group-guided
method balances semantic importance and information diversity.
Building upon the success of large language models (LLMs) Brown et al. (2020); Achiam et al.
(2023); Touvron et al. (2023), vision-language models (VLMs) Bai et al. (2023); Wang et al. (2024);
Wu et al. (2024); Yao et al. (2024); Li et al. (2024) have emerged as a powerful paradigm for
multimodal reasoning by encoding images into sequences of visual tokens, thereby enabling joint
linguistic and visual understanding. However, this approach introduces substantial computational
inefficiencies: contemporary VLMs such as LLaVA-1.5 Liu et al. (2023) and LLaVA-NeXT Liu et al.
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(2024b) typically generate 576 and 2880 visual tokens per image, far exceeding what is necessary
to capture the essential semantic content of the image. While empirical study Chen et al. (2024a)
demonstrates that approximately 70% of visual tokens can be discarded with negligible accuracy
degradation, existing compression methodologies fail to optimally reconcile the dual objectives of
importance-aware selection and information diversity at high compression ratios (e.g., retaining
only about 5%-10% of tokens), significantly limiting their practical utility for general-purpose VLM
applications.

Current visual token reduction techniques can be broadly classified into two paradigms, each ex-
hibiting distinct limitations: Attention-guided selection methods retain visual tokens based on their
attention scores Arif et al. (2025); Yang et al. (2024); Zhang et al. (2024b). While effective at
preserving semantically salient regions, these approaches systematically neglect contextual back-
ground information, thereby compromising scene comprehension. This paradigm suffers from two
critical shortcomings: (i) redundant token retention, wherein multiple high-attention patches capture
visually similar object segments, inefficiently allocating model capacity to duplicated content; and (ii)
contextual degradation, as illustrated in Fig. 1 (b), where the lack of attention to background regions
leads to incomplete scene information and weaker overall understanding.

Duplication-aware approaches, exemplified by DART Wen et al. (2025) and DivPrune Alvar et al.
(2025), address redundancy through similarity-based pruning. However, these methods exhibit a
fundamental limitation: the pruning process inadequately considers token-level semantic importance.
Consequently, they may fail to retain tokens with high attention scores that are semantically critical,
potentially resulting in incomplete or distorted feature representations, as shown in Fig. 1 (c). These
observations reveal an inherent trade-off in token compression: attention-guided methods preserve
local salience at the expense of information diversity, while duplication-aware approaches improve
diversity while sacrificing salience preservation.

GQA MME POPE VQAv2 VizWiz

HiREDAAAI25

100%

80%

90%

VisionZipCVPR25 Ours

64
128
192

 (upper bound 576)
retain tokens

Figure 2: Performance comparison of token re-
duction methods across multiple vision-language
benchmarks on LLaVA-1.5.

To address these limitations, we introduce
group-guided PRUNESID, an efficient, generic,
and training-free framework that achieves task-
agnostic token compression while simultane-
ously optimizing for both importance preserva-
tion and information diversity. Our solution em-
ploys a novel two-stage pipeline: (1) Principal
Semantic Components Analysis (PSCA), which
leverages PCA-driven decomposition Abdi &
Williams (2010) to automatically cluster tokens
into multiple semantically coherent groups, en-
suring comprehensive coverage of critical visual
concepts; and (2) Intra-group Non-Maximum
Suppression (NMS), which adaptively prunes redundant tokens within each group using dynamic
pairwise similarity thresholds (inspired by object detection NMS Neubeck & Van Gool (2006))
while preserving the most semantically significant representatives, as illustrated in Fig. 1 (d). This
dual-stage mechanism fundamentally resolves the core trade-off between concept coverage and
information density that plagues existing approaches.

Furthermore, PRUNESID incorporates an information-aware dynamic compression ratio mechanism
that optimally distributes the token budget per image based on content complexity. This innovation
addresses a key limitation of static compression methods by automatically adapting to varying visual
semantics, from dense, cluttered scenes to sparse, uniform backgrounds. Our method computes an
image-level information score from global token similarity distributions, allocating more tokens
to semantically rich images while applying stronger compression to simpler ones. Crucially, this
adaptive strategy significantly enhances average information preservation for datasets with high
inter-image variability, thereby improving overall model performance.

As demonstrated in Fig. 2, PRUNESID establishes new state-of-the-art performance across multiple
vision-language architectures and tasks. The framework achieves 96.3% accuracy on LLaVA-1.5 Liu
et al. (2023) while using only 64 tokens (11.1% retention), surpassing VisionZip (92.5%) and HiRED
(87.9%) by significant margins. Remarkably, at extreme compression rates (5.6% tokens), it maintains
92.8% accuracy on LLaVA-NeXT Liu et al. (2024b), representing a 2.5 percentage point improvement
over prior approaches. Furthermore, PRUNESID demonstrates exceptional scalability by achieving
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new SOTA results on Video-LLaVA Lin et al. (2023) with merely 6.6% token retention, confirming
its efficacy for both image and video modalities.

In summary, our work makes three principal contributions:

• We propose a training-free visual token compression framework in VLMs that resolves the
importance–diversity trade-off via a two-stage pipeline: PSCA for semantic clustering and
intra-group NMS for redundancy pruning.

• We introduce an information-aware dynamic compression ratio mechanism that computes a
global image-level information score to dynamically assign token budgets across images,
enabling effective information preservation in both cluttered and simple scenes.

• Extensive experiments show that our method outperforms prior state-of-the-art across
multiple VLMs and tasks, achieving up to 2.5% accuracy gains at extreme compression
rates (e.g., 5.6% retention), with strong generalization to image and video modalities.

2 VISUAL TOKEN REDUCTION IN VLMS

Recent works have identified significant redundancy among visual tokens in VLMs, motivating
a line of research focused on training-free methods to improve inference efficiency. A group of
approaches Zhang et al. (2024b); Chen et al. (2024b); Wen et al. (2025); Liu et al. (2024c); Dhouib
et al. (2025); Yang et al. (2025) conducts token pruning in the early layers of LLMs by leveraging
attention-based heuristics. For example, SparseVLM Zhang et al. (2024b) retains visual tokens
that receive high average attention scores from textual tokens, indicating stronger textual relevance.
Similarly, FastV Chen et al. (2024b) keeps tokens that receive high attention from other tokens,
assuming they carry critical information. DART Wen et al. (2025) computes pairwise similarities
among tokens and prunes highly similar ones, aiming to retain a less redundant token set. While
effective to some extent, these methods still require full token processing in the early LLM layers,
incurring non-negligible computational overhead.

To further enhance efficiency, some methods apply token compression in the vision encoder stage,
performing early compression before interfacing with the LLM. LLaVa-PruMerge Shang et al. (2024)
proposes an adaptive selection strategy that leverages the sparsity of attention between the CLS token
and visual tokens. It selects tokens with high attention, clusters them based on key similarity, and
merges them to enhance information density. HiRED Arif et al. (2025) introduces a hierarchical
strategy that partitions the image and allocates a token budget to each region based on CLS attention,
enabling a more spatially balanced selection of informative tokens. VisionZip Yang et al. (2024) first
identifies dominant tokens with strong attention signals and further merges them based on similarity,
ensuring the retention of both salient and contextually rich tokens. These methods significantly
reduce the input size to the LLM while maintaining competitive performance.

3 OUR METHOD

3.1 OVERVIEW

Given an input image, a pre-trained vision encoder in VLMs first generates a sequence of visual
token embeddings, denoted as X = {x1, . . . ,xT } ∈ RT×D, where T represents the number of
tokens and D denotes the embedding dimension. We aim to reduce this token sequence to a compact
representation X̃ ∈ RN×D with N ≪ T , while ensuring: (1) maximal preservation of semantically
salient visual patterns and (2) maintaining near-complete information integrity for downstream
language modeling tasks.

As illustrated in Fig. 3, we present a novel training-free framework for visual token compression
in VLMs. Our methodology employs a two-stage processing pipeline: (1) semantic-aware token
grouping via Principal Semantic Component Analysis (PSCA), followed by (2) intra-group redun-
dancy elimination through Non-Maximum Suppression (NMS). The PSCA mechanism clusters tokens
by their contribution to semantic principal component directions, generating groups that maintain
both semantic coherence and structural diversity. When integrated with adaptive intra-group pruning,
this architecture retains compact yet expressive token representation sets that effectively balance
information preservation and diversity.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

��

��

��Semantically Coherent Groups

❄   Projector
❄      LLM

�1 ��

�(�) = arg max
�∈{1,⋯,�}

|��(�)|  
Vision Encoder❄  

...

Principal Semantic Components Directions

...
�1 ��

� ∈ ℝ �×�

NMS:

�2�1

zero-mean

intra-group
similarity

> �

�2

�� ∈ ��(�) 

�ctr
T ���

��[�1, ⋯, ��]T≈
�2

Figure 3: Overview of our two-stage compression framework. PSCA first clusters visual tokens
into semantically coherent groups via low-rank PCA decomposition. Then, intra-group NMS removes
redundant tokens within each group using adaptive similarity thresholds τ , retaining the most
informative representatives.

3.2 SEMANTIC-AWARE TOKEN GROUPING VIA PSCA

Unlike conventional PCA Abdi & Williams (2010), which operates in the feature dimension to
capture variance-driven directions, Principal Semantic Components Analysis (PSCA) redefines the
decomposition objective: it models the token dimension itself as the semantic axis of interest. By
analyzing cross-token variation, PSCA identifies global semantic directions that reflect coherent
visual concepts rather than raw statistical variance. This reframing allows PSCA to uncover latent
conceptual structures—such as objects, backgrounds, or texture patterns—embedded in the token
space.

Specifically, given the token embedding matrix X, we first rescale each element via a sigmoid
activation σ to ensure bounded and comparable feature scales. We then center the features across the
token dimension to remove global bias. The resulting mean-centered feature matrix is defined as:

Xctr = σ(X)− µ, where µ =
1

T

T∑
i=1

σ(xi) (1)

so that Xctr ∈ RT×D is the zero-mean token matrix, where each row corresponds to one token. We
then apply low-rank PCA decomposition to its transpose matrix X⊤

ctr:

X⊤
ctr ≈ USV⊤, (2)

where V ∈ RT×K contains the top-K right singular vectors that define an orthonormal basis over
the token dimension. The columns of V as {v1, . . . ,vK} represent the principal directions of the
components. Each row |Vi,:| indicates how much the i-th token contributes to each of the K principal
components. A larger value means the token is more strongly related to that component’s direction.
To form discrete token groups, we assign each token xi to the principal direction with the largest
absolute value:

g(i) = argmax
j

|Vi,j | . (3)

This procedure partitions the original T tokens into K semantically coherent groups {G1, . . . , GK},
each capturing shared semantic information across the image.

3.3 INTRA-GROUP REDUNDANCY REMOVAL VIA NMS

The tokens within each group frequently exhibit significant spatial or semantic overlap, particularly
in regions containing dense textures or salient objects. To mitigate this redundancy, we employ a
non-maximum suppression (NMS) strategy for each group Gk, which selectively preserves the most
informative tokens while eliminating those demonstrating spatial or semantic redundancy.

Following Eq. 3, each token xi ∈ X is assigned a selection score si = |Vi,g(i)|, which quantifies its
contribution to the principal direction of its assigned group Gg(i). We then implement greedy NMS
within each group as follows: (1) tokens are ranked by their si values, and (2) a token is preserved
only if its maximum similarity to all previously selected tokens in Gk falls below a threshold τ .

4
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This process generates a refined subset G̃k ⊆ Gk that effectively eliminates redundant tokens while
maintaining the original semantic diversity of the group.

To adaptively tune the suppression threshold to varying levels of global redundancy, we introduce a
redundancy score ρ defined as the average pairwise similarity among all tokens in the image:

ρ =
2

T (T − 1)

T∑
i=1

T∑
j=i+1

sim(xi,xj) (4)

where the similarity is computed between ℓ2-normalized tokens:

sim(xi,xj) =
x⊤
i xj

∥xi∥ · ∥xj∥
, ∀xi,xj ∈ X. (5)

We then set the NMS threshold as τ = λ · ρ, where λ is a scaling factor determined by the global
token budget N . In our experiments, we empirically set λ = N

32 , which consistently worked well
across different compression settings. This adaptive threshold encourages stronger suppression for
more redundant images.

After performing NMS for all groups, we obtain a collection of filtered groups {G̃1, . . . , G̃K}. To
match a global token budget N , we allocate group-wise quotas {n1, . . . , nK} such that

∑K
k=1 nk =

N , where nk is calculated by rounding |G̃k|∑
j |G̃j |

·N to the nearest integer.

Finally, we take the top-nk tokens from each G̃k according to their selection scores si and concatenate
them to form the final compact token set:

X̃ =

K⋃
k=1

Topnk
(G̃k). (6)

3.4 INFORMATION-AWARE DYNAMIC COMPRESSION RATIO ACROSS IMAGES

Conventional token compression methods employ a fixed token compression ratio r = N
T for

all images. This uniform approach leads to suboptimal compression: for complex scenes, the
predetermined N proves insufficient, causing excessive information loss; whereas for simple scenes,
the same N becomes unnecessarily large, resulting in substantial redundancy.

To address this limitation, we propose an information-aware dynamic compression ratio strategy that
automatically adjusts the retained token budget N according to each image’s information content.
Building upon the global redundancy measure ρ from Eq. 4, we first compute an image information
score:

ϕ = 1− ρ, (7)
where higher ϕ indicates greater semantic diversity and less redundancy. We then allocate the retained
token count N ′ for each image in proportion to its information score: N ′ =∝ ϕ. This ensures that
more informative images are allocated more tokens, while simpler images are compressed more
aggressively, thereby improving compression adaptiveness across diverse scenes.

4 EXPERIMENTS

Following the experimental protocol of Yang et al. (2024), we assess the effectiveness of our approach
on LLaVA-1.5 Liu et al. (2023). To evaluate generalization, we extend our study to high-resolution
vision-language models, including LLaVA-NeXT Liu et al. (2024b) and Mini-Gemini Li et al. (2024).
We also conduct experiments on Qwen2-VL Wang et al. (2024) in the supplementary material.
Evaluations are conducted using LMMs-Eval Zhang et al. (2024a) on a comprehensive suite of widely
used visual understanding benchmarks, including GQA Hudson & Manning (2019), MMBench Liu
et al. (2024d), MME Fu et al. (2023), POPE Li et al. (2023b), ScienceQA Lu et al. (2022), VQA-
v2 Goyal et al. (2017), TextVQA Singh et al. (2019), MMMU Yue et al. (2024), SEED-Bench Li
et al. (2023a), VizWiz Gurari et al. (2018), and LLaVA-Bench Liu et al. (2024a). We further evaluate
the applicability of our method to video understanding tasks using Video-LLaVA Lin et al. (2023).
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Table 1: Performance of PRUNESID on LLaVA-1.5. Vanilla refers to the uncompressed baseline
model using all 576 visual tokens, serving as the upper performance bound. Early Cmp. indicates
whether the compression is applied prior to the LLM for improved efficiency. PRUNESID-Dyn
denotes the variant of out method augmented with the Dynamic Compression Ratio mechanism.

Method Early Cmp. GQA MMB MME POPE SQA VQAv2 VQAText MMMU SEED VizWiz LLaVa-B Avg.

Upper Bound, 576 Tokens (100%)
Vanilla CVPR24 − 61.9 64.7 1862 85.9 69.5 78.5 58.2 36.3 60.5 54.3 66.8 100%

Retain 192 Tokens ( ↓ 66.7%)
FastV ECCV24 × 52.7 61.2 1612 64.8 67.3 67.1 52.5 34.3 57.1 50.8 49.4 88.2%
SparseVLM 24.10 × 57.6 62.5 1721 83.6 69.1 75.6 56.1 33.8 55.8 50.5 66.1 95.3%
MustDrop 24.11 × 58.2 62.3 1787 82.6 69.2 76.0 56.5 − − 51.4 − 96.3%
DART 25.02 × 60.0 63.6 1856 82.8 69.8 76.7 57.4 36.4 51.5 54.9 64.2 97.3%

ToMe ICLR23 ✓ 54.3 60.5 1563 72.4 65.2 68.0 52.1 − − − − 88.5%
LLaVa-PruMerge 24.05 ✓ 54.3 59.6 1632 71.3 67.9 70.6 54.3 − − 50.1 − 90.5%
HiRED AAAI25 ✓ 58.7 62.8 1737 82.8 68.4 74.9 47.4 − − 50.1 − 93.6%
DivPrune CVPR25 ✓ 60.0 62.3 1752 87.0 68.7 75.5 56.4 35.8 58.6 55.6 64.8 96.9%
VisionZip CVPR25 ✓ 59.3 63.0 1783 85.3 68.9 76.8 57.3 36.3 58.5 54.1 67.7 98.4%
VisionZip -Dyn ✓ 59.4 63.3 1797 85.5 68.7 76.9 57.4 36.8 58.6 54.4 67.7 98.6%
PRUNESID ✓ 60.1 63.7 1791 86.9 68.5 76.8 56.7 36.1 59.0 55.4 65.1 98.5%
PRUNESID-Dyn ✓ 60.2 63.8 1797 87.1 69.1 76.8 56.9 36.8 59.0 55.5 65.1 98.6%

Retain 128 Tokens ( ↓ 77.8%)
FastV ECCV24 × 49.6 56.1 1490 59.6 60.2 61.8 50.6 34.9 55.9 51.3 52.0 84.5%
SparseVLM 24.10 × 56.0 60.0 1696 80.5 67.1 73.8 54.9 33.8 53.4 51.4 62.7 93.0%
MustDrop 24.11 × 56.9 61.1 1745 78.7 68.5 74.6 56.3 − − 52.1 − 94.7%
DART 25.02 × 58.7 63.2 1840 80.1 69.1 75.9 56.4 36.2 50.5 55.3 62.4 96.0%

ToMe ICLR23 ✓ 52.4 53.3 1343 62.8 59.6 63.0 49.1 − − − − 80.4%
LLaVa-PruMerge 24.05 ✓ 53.3 58.1 1554 67.2 67.1 68.8 54.3 − − 50.3 − 88.9%
HiRED AAAI25 ✓ 57.2 61.5 1710 79.8 68.1 73.4 46.1 − − 51.3 − 92.2%
DivPrune CVPR25 ✓ 59.2 62.3 1752 86.9 69.0 74.7 56.0 36.2 57.1 55.6 66.2 96.1%
VisionZip CVPR25 ✓ 57.6 62.0 1762 83.2 68.9 75.6 56.8 37.9 57.1 54.5 64.8 97.2%
VisionZip -Dyn ✓ 57.6 62.2 1770 83.5 68.9 75.8 56.9 37.5 57.8 54.7 65.3 97.5%
PRUNESID ✓ 58.8 62.1 1749 86.5 68.3 75.3 54.7 35.8 57.8 55.8 68.8 97.6%
PRUNESID-Dyn ✓ 58.9 62.6 1760 86.9 68.8 75.4 55.1 36.3 57.9 56.0 68.9 98.1%

Retain 64 Tokens ( ↓ 88.9%)
FastV ECCV24 × 46.1 48.0 1256 48.0 51.1 55.0 47.8 34.0 51.9 50.8 46.1 76.3%
SparseVLM 24.10 × 52.7 56.2 1505 75.1 62.2 68.2 51.8 32.7 51.1 53.1 57.5 87.6%
MustDrop 24.11 × 53.1 60.0 1612 68.0 63.4 69.3 54.2 − − 51.2 − 88.9%
DART 25.02 × 55.9 60.6 1765 73.9 69.8 72.4 54.4 35.9 47.2 55.3 59.1 92.6%

ToMe ICLR23 ✓ 48.6 43.7 1138 52.5 50.0 57.1 45.3 − − − − 70.1%
LLaVa-PruMerge 24.05 ✓ 51.9 55.3 1549 65.3 68.1 67.4 54.0 − − 50.1 − 87.2%
HiRED AAAI25 ✓ 54.6 60.2 1599 73.6 68.2 68.7 44.2 − − 50.2 − 88.4%
DivPrune CVPR25 ✓ 57.6 59.3 1638 85.6 68.3 72.9 55.5 36.3 55.4 57.5 64.0 94.6%
VisionZip CVPR25 ✓ 55.1 60.1 1690 77.0 69.0 72.4 55.5 36.2 54.5 54.8 62.9 94.0%
VisionZip -Dyn ✓ 55.2 60.1 1694 77.1 69.2 72.8 55.8 36.7 54.7 54.9 63.1 94.4%
PRUNESID ✓ 57.1 58.8 1733 83.8 67.8 73.7 54.2 37.0 56.1 56.9 65.2 95.9%
PRUNESID-Dyn ✓ 57.2 59.7 1734 84.1 68.1 73.8 54.2 37.2 56.2 57.0 65.8 96.3%

4.1 MAIN RESULTS ON IMAGE UNDERSTANDING TASKS

Results on LLaVA-1.5. LLaVA-1.5 uniformly resizes input images to a resolution of 336×336
before passing them through a CLIP-based Radford et al. (2021) vision encoder, which produces
576 visual tokens. Following prior work Chen et al. (2024b); Zhang et al. (2024b); Yang et al.
(2024), we conduct experiments under three token retention settings: 64, 128, and 192 tokens. As
shown in Tab. 1, our method consistently achieves state-of-the-art average performance across all
configurations, outperforming both early-stage compression approaches that apply compression
during the image encoder stage and more computationally intensive methods applied during the
prefilling stage. Notably, when retaining only 64 image tokens—equivalent to merely 11.1% of
the original token count—our method achieves an average accuracy of approximately 96% across
all benchmarks, surpassing the strong prior method VisionZip by a margin of 1.9%. This result
highlights the superior information richness of the visual tokens selected by our method under extreme
compression settings.

PRUNESID-Dyn and VisionZip-Dyn denote the variant of our method and VisionZip augmented with
the information-aware dynamic compression ratio mechanism (Sec. 3.4). To ensure a fair comparison,
we constrain the average number of retained tokens per benchmark to match that of the fixed-budget
setting. Experimental results show that the dynamic strategy consistently improves performance.
Notably, its effectiveness varies across benchmarks, which we further analyze in detail in Sec. 4.3.

Results on LLaVA-NeXT. LLaVA-NeXT Liu et al. (2024b) divides the image into multiple parts
based on its aspect ratio for vision encoding, resulting in a maximum sequence length of up to 2880
tokens. (i.e., 576 tokens × 5). Following the evaluation protocol in Yang et al. (2024), we assess

6
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Table 2: Performance on LLaVA-NeXT.

Method GQA MMB MME POPE SQA VQAv2 MMMU SEEDI Avg.

Upper Bound, 2880 Tokens (100%)
Vanilla 64.2 67.9 1842 86.4 70.2 80.1 35.1 70.2 100%

Retain 640 Tokens ( ↓ 77.8%)
VisionZip 61.3 66.3 1787 86.3 68.1 79.1 34.7 66.7 97.5%
PRUNESID 61.6 64.2 1795 86.3 68.3 78.5 37.9 67.3 98.4%

Retain 320 Tokens ( ↓ 88.9%)
VisionZip 59.3 63.1 1702 82.1 67.3 76.2 35.3 63.4 94.3%
PRUNESID 60.5 63.0 1754 83.1 67.3 76.6 36.4 65.0 95.8%

Retain 160 Tokens ( ↓ 94.4%)
VisionZip 55.5 60.1 1630 74.8 68.3 71.4 36.1 58.3 90.3%
PRUNESID 58.9 60.8 1704 76.9 67.1 73.8 36.2 62.5 92.8%

Table 3: Performance on Mini-Gemini.

Method GQA MMB MME POPE SQA VQAv2 MMMU SEEDI Avg.

Upper Bound, 576 Tokens (100%)
Vanilla 62.4 69.3 1841 85.8 70.7 80.4 36.1 69.7 100%

Retain 192 Tokens ( ↓ 66.7%)
VisionZip 60.3 68.9 1846 82.3 70.1 79.1 36.1 67.5 98.3%
PRUNESID 61.2 67.2 1842 84.4 71.1 79.1 36.1 67.8 98.7%

Retain 128 Tokens ( ↓ 77.8%)
VisionZip 58.7 68.1 1841 78.5 70.0 77.5 34.8 65.6 96.2%
PRUNESID 60.1 66.6 1821 82.4 70.7 77.8 36.0 66.5 97.4%

Retain 64 Tokens ( ↓ 88.9%)
VisionZip 55.8 65.9 1737 69.6 70.7 73.9 35.6 61.7 92.4%
PRUNESID 58.3 63.1 1735 76.0 70.6 75.2 37.2 63.6 94.4%

our method under three token retention ratios: 22.2%, 11.1%, and 5.6% of the total visual tokens.
The results are presented in Tab. 2. Compared to the strong prior method VisionZip, our approach
achieves average performance gains of 0.9%, 1.5%, and 2.5% under the above three token retention
settings, respectively. Notably, even when retaining only about 5% of the original image tokens, our
method enables the vision-language model to preserve 92.8% of its full performance, demonstrating
its ability to maximize information preservation without introducing task-specific biases—such as
overemphasizing foreground content at the expense of contextual or background information.

Results on Mini-Gemini. Following Yang et al. (2024), we also evaluate the generalizability of our
method on the Mini-Gemini model to demonstrate its effectiveness across diverse VLM architectures.
Mini-Gemini incorporates a high-resolution vision encoder based on ConvNeXt-L Liu et al. (2022) to
extract fine-grained visual features. We apply our token compression method to the final image tokens
produced by the vision encoder and evaluate the model’s inference performance under various token
retention settings across multiple benchmarks. As shown in Tab. 3, our method consistently delivers
strong performance, validating its robustness across architectures with different vision backbones.

4.2 MAIN RESULTS ON VIDEO UNDERSTANDING TASKS

Table 4: Performance on Video-LLaVA.

Method TGIF MSVD MSRVTT A-Net Avg.

Video-LLaVA 47.1 70.7 59.2 43.1 100%

FastV 23.1 38.0 19.3 30.6 52.1%
SparseVLM 44.7 68.2 31.0 42.6 86.5%
VizionZip 42.4 63.5 52.1 43.0 93.2%
PRUNESID 45.8 67.1 53.3 43.1 95.5%

To further evaluate the effectiveness of our method
on video understanding tasks, we apply PRUNESID
to Video-LLaVA Lin et al. (2023) and conduct experi-
ments on four video question answering benchmarks:
TGIF Jang et al. (2017), MSVD Xu et al. (2017),
MSRVTT Xu et al. (2017), and ActivityNet Yu et al.
(2019). Each input video consists of 8 frames, with
256 tokens per frame, resulting in 2048 tokens.

Following prior works Chen et al. (2024b); Zhang et al. (2024b); Yang et al. (2024), we compress 256
tokens of each frame into 17 tokens, retaining only 6.6%. This reduces the full 2048 video tokens to
just 136, which are then passed to the subsequent stages. As shown in Tab. 4, our method achieves
consistently better performance than strong prior approaches across all benchmarks, reaching an
average accuracy of 95.5%. These results highlight the strength of our synergistic importance-
diversity approach in preserving key semantically representative information under high compression
ratios, thereby enabling stronger generalization across diverse video understanding tasks.

4.3 ABLATION STUDY

Ablation on Token Grouping Strategy. We evaluate the effect of different token grouping strategies
used before the intra-group NMS. Specifically, we compute our PSCA-based grouping method with
two alternatives: i) a random grouping baseline where tokens are shuffled and uniformly partitioned
into groups, and ii) a KMeans-based grouping Lloyd (1982) applied directly on the token features.
As shown in Tab. 5, PSCA consistently outperforms other methods across four benchmarks. This
demonstrates the advantage of PSCA in forming semantically coherent token groups by leveraging
the local principal subspace structure, leading to more effective redundancy reduction.
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Table 5: Ablation study of group method on LLaVA-1.5.

Method Retain 64 Retain 128 Retain 192 Avg.
GQA MME POPE SQA GQA MME POPE SQA GQA MME POPE SQA

random 56.2 1707 79.6 67.5 57.8 1723 84.0 66.0 59.4 1743 85.6 67.5 94.8%
kmeans 56.5 1630 82.8 67.8 58.7 1714 86.3 67.8 60.0 1745 86.8 68.0 95.6%
PRUNESID 57.1 1733 83.8 67.8 58.8 1749 86.5 68.3 60.1 1793 86.9 68.5 96.8%

Table 6: Ablation study of group K on LLaVA-1.5.

K Retain 64 Retain 128 Retain 192

GQA MME POPE SQA Avg. GQA MME POPE SQA Avg. GQA MME POPE SQA Avg.

8 56.2 1684 81.4 67.1 93.1% 58.2 1720 85.3 68.3 96.0% 59.2 1763 83.0 67.9 96.2%
16 57.1 1733 83.8 67.8 95.1% 58.6 1692 86.4 68.2 96.1% 59.2 1755 85.4 68.3 96.9%
32 57.1 1700 83.7 68.0 94.7% 58.8 1749 86.5 68.3 97.0% 60.1 1763 86.8 68.4 97.9%
48 56.9 1668 83.7 67.6 94.1% 58.7 1720 85.8 68.3 96.3% 60.1 1793 86.9 68.5 98.3%
60 56.7 1657 83.6 67.6 93.8% 58.6 1715 85.7 68.0 96.1% 60.0 1774 86.9 68.5 98.0%

Ablation on Token Group Counts K. We study how the number of token groups (K) affects
PRUNESID performance under different total retained token counts (N ∈ {64, 128, 192}). For each
N , we sweep the number of groups K from 8 to 64. As shown in Tab. 6, performance exhibits a bell-
shaped trend: too few groups reduce the granularity of redundancy modeling, while too many groups
lead to overly small group sizes and unstable pruning. The optimal settings align with moderate
values of K = N

4 . These results validate our heuristic choice of increasing K proportionally with N ,
balancing diversity and intra-group competition.

Ablation on ViT Layer Features for PSCA Grouping. We analyze the effect of using features
from different ViT layers for PSCA grouping. As Fig. 4 shows, middle-to-late layers (16, 22) yield
better results across multiple metrics, indicating more effective semantic clustering. Early layers (0,
2) underperform due to weaker semantic information. Notably, the final output layer (23) shows a
slight drop or plateau compared to layer 22, likely because layer 22 features are directly used for
LLM training and thus better capture the semantic information needed for token grouping, whereas
layer 23’s final output is more specialized and less balanced for this purpose. These results validate
our choice to extract intermediate-late layer features (e.g., layer 22) for PSCA, striking a balance
between semantic richness and balanced coverage.

0 2 8 16 22
Layer

58

60

Sc
or

e

GQA

Retain 192
Retain 128
Retain 64

0 2 8 16 22
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1650

1700

1750

1800
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0 2 8 16 22
Layer
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0 2 8 16 22
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Ablation Study: Different Retain Configs Across Layers

Figure 4: Ablation study on ViT layer features for PSCA Grouping.

Ablation on Dynamic Compression Ratio Mechanism. We have demonstrated the effectiveness of
the dynamic compression ratio mechanism in Tab. 1. Furthermore, we conduct an in-depth analysis of
its performance variations across diverse benchmarks and its generalization capability across multiple
model architectures. Theoretically, as the heterogeneity of information scores among test images
increases, the adaptive adjustment capacity of the dynamic compression ratio mechanism broadens,
thereby amplifying performance enhancements. This hypothesis is corroborated by the distribution
depicted in Fig. 5, where the MMMU benchmark demonstrates significantly greater information
score variability relative to GQA—a trend consistent with the enhanced performance gains observed
for MMMU in Tab. 1.

To further validate the advantages of the dynamic compression ratio strategy, we conduct com-
prehensive experiments on LLaVA-1.5, LLaVA-NeXT, and Mini-Gemini across diverse datasets
characterized by high information variance, including MME, ScienceQA, MMMU, and POPE. As
shown in Tab. 7, our dynamic strategy consistently surpasses fixed-token baselines, achieving up to
1.0 % performance improvements under identical average token budgets. These findings underscore
the efficacy of adaptive token compression in average information preserving—particularly beneficial
for benchmarks with substantial inter-image variability.
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Table 7: Ablation study of dynamic compression ratio mechanism.

Methods LLaVA-1.5 LLaVA-NeXT Mini-Gemini

MME SQA MMMU POPE Avg. ∆ MME SQA MMMU POPE Avg. ∆ MME SQA MMMU POPE Avg. ∆

baseline 1862 69.5 36.3 85.9 100% 1842 70.2 35.1 86.4 100% 1841 70.7 36.1 85.8 100%

Retain 192 Tokens ( ↓ 66.7%) Retain 128 Tokens ( ↓ 77.8%) Retain 192 Tokens ( ↓ 66.7%)
PRUNESID 1791 68.5 36.1 86.9 98.8% 1795 68.3 37.9 86.3 100.7% 1842 71.1 36.1 84.4 99.7%
PRUNESID-Dyn 1797 69.1 36.8 87.1 99.7% +0.9 1798 68.9 38.2 86.5 101.2% +0.5 1845 71.3 36.9 84.6 100.5% +0.8

Retain 128 Tokens ( ↓ 77.8%) Retain 64 Tokens ( ↓ 88.9%) Retain 128 Tokens ( ↓ 77.8%)
PRUNESID 1749 68.3 35.8 86.5 97.9% 1754 67.3 36.4 83.1 97.7% 1821 70.7 36.0 82.4 98.7%
PRUNESID-Dyn 1760 68.8 36.3 86.9 98.7% +0.8 1787 67.7 36.8 83.5 98.7% +1.0 1846 71.3 36.4 82.5 99.5% +0.8

Retain 64 Tokens ( ↓ 88.9%) Retain 32 Tokens ( ↓ 94.4%) Retain 64 Tokens ( ↓ 88.9%)
PRUNESID 1733 67.8 37.0 83.8 97.5% 1704 67.1 36.2 76.9 95.1% 1735 70.6 37.2 76.0 96.4%
PRUNESID-Dyn 1734 68.1 37.2 84.1 97.9% +0.4 1744 67.7 36.4 77.4 96.1% +1.0 1760 70.8 37.2 76.9 97.1% +0.7

Figure 5: Histogram of Information Score distributions for the MMMU and GQA benchmarks. A
higher Information Score indicates greater visual information content.

4.4 EFFICIENCY ANALYSIS.

Vision-language models (VLMs) suffer from prolonged prefilling time due to excessive visual tokens
generated by dense image encoding. As shown in Tab. 8, on the POPE benchmark, LLaVA-NeXT 7B
produces up to 2,800 visual tokens per image, where prefilling occupies 86% of the total inference
time (254 ms/sample).

Table 8: Efficiency analysis and compari-
son. Inference and prefilling times represent
the average per-sample latency.

Method Token Inference Prefilling POPE
Time ↓ Time ↓ (F1)↑

LLaVA-NeXT 2880 254ms 218ms 86.4

FastV 160 199ms 119ms 50.5%
SparseVLM 160 211ms 128ms 80.2%
VisionZip 160 84ms 27.8ms 86.6%
PRUNESID 160 89ms 27.8ms 89.0%

For consistency with prior work Yang et al. (2024),
we report inference time on a single NVIDIA A800-
80GB. At a compression rate of 5.6% (retaining
only 160 tokens), our approach reduces prefilling
time from 218ms to just 27.8ms—a 7.8× improve-
ment—while also decreasing overall inference time
to 89ms per sample. Compared to VisionZip, which
achieves similar latency (27.8ms prefilling, 84ms in-
ference), our method maintains the same level of ef-
ficiency but delivers superior performance on POPE,
improving F1 score from 86.6% to 89.0% (+2.4%).
This demonstrates that our method not only preserves
computational efficiency but also retains more seman-
tically relevant visual information during compression.

5 CONCLUSION

In this work, we present PRUNESID, a training-free and task-agnostic framework for efficient visual
token reduction in vision-language models (VLMs). By integrating Principal Semantic Component
Analysis (PSCA) for semantically coherent grouping with intra-group Non-Maximum Suppression
(NMS) for redundancy pruning, PRUNESID effectively balances importance-aware selection and
information diversity. Moreover, its dynamic compression ratio mechanism adapts retained token
counts based on image complexity, leading to improved overall performance. Extensive experiments
demonstrate state-of-the-art results across both image and video VLM benchmarks, retaining ∼5%
of visual tokens while achieving 92.8% and 95.5% accuracy on LLaVA-NeXT and Video-LLaVA,
respectively. These results highlight the potential of semantically group-guided token selection for
scaling VLMs to more demanding and resource-constrained settings.
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