
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LAGEM v : A LARGE GEOMETRY MODEL FOR 3D
REPRESENTATION LEARNING AND DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a novel hierarchical autoencoder that maps 3D models into
a highly compressed latent space. The hierarchical autoencoder is specifically de-
signed to tackle the challenges arising from large-scale datasets and generative
modeling using diffusion. Different from previous approaches that only work on a
regular image or volume grid, our hierarchical autoencoder operates on unordered
sets of vectors. Each level of the autoencoder controls different geometric levels
of detail. We show that the model can be used to represent a wide range of 3D
models while faithfully representing high-resolution geometry details. The train-
ing of the new architecture takes 0.70x time and 0.58x memory compared to the
baseline. We also explore how the new representation can be used for generative
modeling. Specifically, we propose a cascaded diffusion framework where each
stage is conditioned on the previous stage. Our design extends existing cascaded
designs for image and volume grids to vector sets.

1 INTRODUCTION

Diffusion models are currently the best-performing models for image, video, and 3D object genera-
tion. For 3D object generation, there are two main branches of research. The first branch, pioneered
by Dreamfusion (Poole et al., 2022), aims to lift 2D diffusion models to 3D model generation. The
advantage of this method is that it can benefit from the large-scale 2D datasets used for training
2D diffusion models and it sparked a lot of follow-up work (Poole et al., 2022; Wang et al., 2023;
Lin et al., 2023; Chen et al., 2023; Wang et al., 2024; Qian et al., 2023; Tang et al., 2023; Yi et al.,
2023; Wang & Shi, 2023; Liu et al., 2024; Long et al., 2024; Zheng et al., 2024; Li et al., 2023; Ho
et al., 2022; Xu et al., 2023). The second branch tackles the training on 3D datasets directly. The
advantage of this method is that it is more direct and leads to faster inference times (Mittal et al.,
2022; Yan et al., 2022; Zhang et al., 2022; Zeng et al., 2022; Zheng et al., 2023; Hui et al., 2022;
Zhang et al., 2023; Siddiqui et al., 2024; Chen et al., 2024a;b). Our work sets out to contribute to
this second branch of methods.

Among these 3D native generation methods, 3DShape2VecSet (Zhang et al., 2023) (or VecSet for
short) has been proven to be an effective method to encode 3D geometry. It proposed an autoencoder
to find an efficient representation for 3D models as a set of vectors. Because of the high reconstruc-
tion quality and compactness of the latent space, the method alleviates the difficulty of training 3D
generative models. Some other works (Zhao et al., 2024; Cao et al., 2024; Dong et al., 2024; Petrov
et al., 2024; Zhang et al., 2024b; Zhang & Wonka, 2024) follow the VecSet representation. We
noticed that VecSet’s expressiveness is limited by the number of latent vectors. It is overfitting on
smaller datasets like ShapeNet and is unable to scale to larger datasets. To improve the expressive-
ness, we need to scale up the latent size and the training dataset. The straightforward way is to
employ hundreds of GPUs for training which is expensive (Zhang et al., 2024b). Thus, our goal is to
reduce the training cost in terms of time and memory consumption while achieving similar or even
better autoencoding quality.

In the image domain, NVAE (Vahdat & Kautz, 2020) extended the design of the variational autoen-
coder (VAE) (Kingma, 2013) to a hierarchical VAE based on the design of the U-Net. The latent
space of the NVAE is a multi-scale latent grid and the reconstruction quality of the images from the
NVAE improves a lot over the VAE. An illustration of the architectures can be found in Fig. 1. We
draw inspiration from the design of the NVAE and design a multi-scale latent VecSet representation,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

U-NET NVAE

VAE VECSET

LAGEM v

AE

Encoder DecoderLatentEncoder Decoder Encoder DecoderLatent

FtoL LtoF

FtoL

FtoL

LtoF

LtoF

⋆ FtoL LtoF ⋆

v

FtoL

FtoL

LtoF

LtoF

v

Figure 1: Autoencoders. We show different autoencoder architectures here, including AE (AutoEn-
coder), U-Net, VAE (Kingma, 2013), NVAE (Vahdat & Kautz, 2020), VecSet (Zhang et al., 2023)
and the proposed LaGeM. VAE and NVAE are for image data, while VecSet and LaGeM are for
geometry (distance function) data. In the top row, VAE and VecSet are using a single scale latent
to represent the data. Both NVAE and LaGeM use multi-scale latents to represent data. All the
previous works VAE, NVAE, and VecSet apply KL divergence in the bottleneck to regularize the
latent space, while in this work, we apply standardization in the bottleneck.

Table 1: Geometric Latent Representation and Generation.
Method Learning Method Latent Rep Hierarchies

ShapeFormer (Yan et al., 2022) AutoEncoder Sparse Volume Single
3DILG (Zhang et al., 2022) AutoEncoder Irregular Grid Single

LION (Zeng et al., 2022) AutoEncoder Latent Points Multi
TriplaneDiffusion (Shue et al., 2023) AutoDeocder Planes Single

SDFusion (Cheng et al., 2023) AutoEncoder Volume Single
3DShape2VecSet (Zhang et al., 2023) AutoEncoder VecSet Single
HyperDiffusion (Erkoç et al., 2023) Per-Object Optimization Network Weight Single

XCube (Ren et al., 2024) AutoEncoder Sparse Volume Multi
Mosaic-SDF (Yariv et al., 2024) Per-Object Optimization Irregular Grid Single
3DTopia-XL(Chen et al., 2024c) Per-Object Optimization Irregular Grid Single
OctFusion (Xiong et al., 2024) AutoEncoder Sparse Volume Multi

LaGeM v (Ours) AutoEncoder VecSet Multi

called LaGeM. We train our architecture on a large-scale geometry dataset Objaverse (Deitke et al.,
2023) and improve training time by 0.7 and memory consumption by 0.58 compared to VecSet.

Latents Controlling

Level 3 Main Structure
Level 2 Major Details
Level 1 Minor Details

Additionally, we also propose a cascaded generative model for the hier-
archical latent space. We generate the latent VecSet from the lower reso-
lution level to the highest resolution level stage-by-stage. In each stage,
we use the previously generated latents as conditioning information. As
a result, this enables control over the level of detail of the generated ge-
ometry.

We summarize our contributions as follows:

• We propose a hierarchical autoencoder architecture with faster training time and low mem-
ory consumption. The latent space is composed of several levels.

• The model is capable of training on large-scale datasets like objaverse.
• We propose a cascaded diffusion model to generate 3D geometry in the hierarchical latent

space. This enables control of the level of detail of the generated model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

STAGE 1: AUTOENCODER STAGE 2: LATENT DIFFUSION

Encoder Decoder Decoder �Point Cloud Output

Init
Diffusion
Level 2

Diffusion
Level 1

Diffusion
Level 3

C

Figure 2: Pipeline. We proposed a U-Net-style transformer for the autoencoding. In this way, we
obtain a hierarchical latent space, which contains several levels of latents. To train the generative
diffusion models in the latent space, we propose the cascaded latent diffusion models.

2 RELATED WORKS

We show an overview of latent 3D generative models in Table 1, particularly focusing on the type
of latent space used.

2.1 LEARNING METHODS

Usually, a learning method is required to convert 3D geometry to latent space. 1) One way to do this
is to convert 3d geometry to latent space with a per-object optimization method, e.g. (Erkoç et al.,
2023; Yariv et al., 2024). For larger datasets, this approach is very time-consuming. 2) Alternatively,
auto-decoder, e.g., DeepSDF (Park et al., 2019), jointly optimize the latent space for all objects in
the dataset. However, as there is no encoder, new objects cannot be mapped to latent space easily. 3)
Therefore, a commonly used framework is the auto-encoder. The optimization is efficient because
it is performed jointly for all objects in the dataset, and new objects not in the training set can be
quickly encoded using the encoder. Thus, we also build on this approach.

2.2 LATENT REPRESENTATIONS

Early methods used regular grids (Yan et al., 2022; Cheng et al., 2023) as the latent representation
because of their simple structure. We can easily use convolutional layers to process volume data. To
represent high-quality geometric details, we need large-resolution volumes. This makes the training
even more difficult because of the O(n3) complexity. A way to solve this problem is to introduce
sparsity (Ren et al., 2024) to the representation like octrees (Xiong et al., 2024) or sparse irregular
grids (Zhang et al., 2022; Yariv et al., 2024). Both structures have the potential to represent high-
quality 3D models, but generating irregular structures explicitly is difficult for diffusion models.
Different from the above mentioned approaches, 3DShape2VecSet (Zhang et al., 2023) is proposed
to solve the reconstruction problem without using any sparse structures. The representation is easy
to use. In this paper, we investigate how to improve the VecSet representation. Compared to Zhang
et al. (2023), our goal is to obtain an even higher-quality latent space by introducing Level of Latents
(LoL).

2.3 CASCADED GENERATION

In the field of image generation, there are multiple cascaded diffusion models,e.g., (Ho et al., 2022;
Saharia et al., 2022). In the 3D domain, some works (Zeng et al., 2022; Ren et al., 2024) also
modeled geometries with hierarchical latents and proposed 3D generative models using cascaded
diffusion models. Our work encodes 3D geometry into hierarchical VecSets. Thus, it is straightfor-
ward to consider cascaded latent diffusion to train generative models in our latent space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Encoder DecoderBottleneck

P0 P Input

CAP X FtoL Z LtoF X ′ SAs F

FPS

Figure 3: Geometry Autoencoder. The design from VecSet (Zhang et al., 2023) can be seen as a
special case of the proposed LaGeM network with only one level.

Encoder DecoderBottleneck

P0 P0

CAP1 X1

CAP2 X2

CAP3 X3 FtoL Z3 LtoF X ′
3

FtoL Z2 LtoF X ′
2

FtoL Z1 LtoF X ′
1

SAs F3

CA SAs F2

CA SAs F1

FPS
FPS

FPS

Figure 4: LaGeM architecture. We show an illustration with 3 levels of latents.

3 METHODOLOGY

3.1 BACKGROUND OF VECSET REPRESENTATIONS

The VecSet (Zhang et al., 2023) representation converts a dense point cloud to a latent vector set
Z = {z1, z2, . . . , zM} with z ∈ RD so that an occupancy/distance function O(p) can be recovered
from the vector set. The simplified network is illustrated in Fig. 3.

Encoding. The process first downsamples the 3D input point cloud P Input = {pi}i=1,...,N with
furthest point sampling (FPS), P = FPS(P Input, r), where r is the down-sampling ratio, and P is a
low-resolution version of P Input. Then P Input is converted to an unordered set with cross-attention

CA(Q = PE(P),K = PE(P Input), V = PE(P Input)) = X = {x ∈ RC}i=1,2,...,M , (1)

where PE is a positional embedding function (Zhang et al., 2023) and CA(·, ·, ·) is a cross-attention
module. We also write CA(P,P Input) for short. Here, the positional embedding used to project a 3D
coordinate p ∈ R3 to the high dimensional space RC is omitted for simplicity. To obtain a highly
compressed latent space, the vectors in X are further compressed to a lower-dimensional space RD

where D ≤ C (Feature to Latent, or FtoL in short),

FtoL(X) = Z = {z ∈ RD}i=1,2,...,M . (2)

This compression step is also regularized by KL divergence.

Decoding. Each latent vector in Z is first converted back to feature space RC (Latent to Feature,
or LtoF in short),

LtoF(Z) = X ′ = {x′ ∈ RC}i=1,2,...,M . (3)
The features X ′ are fed into a series self-attention layers to obtain final occupancy/distance function
representations F ,

SAs(X ′) = F = {f ∈ RC}i=1,2,...,M , (4)
where SAs(·) is implemented using several self-attention layers. Now we can decode a continuous
function. For a continuous coordinate in the space R3, we have

O(p) = FC (CA(p,F)) ∈ R. (5)

See Table 2 for more details on FtoL(·) and LtoF(·).

3.2 HIERARCHICAL VECSET

The complexity of the self-attention layers in Eq. (4) is O(M2), i.e., quadratic in the number of
input vectors. This severely affects the training time when M is large. However, to represent high-
quality geometry details, we usually need a large M . This is making training a large VecSet network

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Regularization in the Bottleneck. We compare the proposed regularization and VAE. We
do not need an explicit loss to regularize the latent space.

Features to Latents (FtoL) Latent Loss Latents to Features (LtoF)

VAE µ = FCµ(x) z = µ+ σ ⊙ ϵ KL Divergence x′ = FCup(z)σ = FCσ(x)

Ours z̄ = FCdown(x) z =
z̄− E[z̄]√
Var[z̄]

- x′ = FCup(z⊙ γ + β)

more challenging (for example M = 2048 in CLAY (Zhang et al., 2024a)). Motivated by the de-
sign of the U-Net and NVAE (Vahdat & Kautz, 2020), we propose a new network. Specifically,
in the design of the U-Net (see an illustration in Fig. 1), image feature grids are downsampled to
lower resolutions where some convolution blocks are applied, and then upsampled to the original
resolution. In this way, we can avoid performing convolutional layers in high resolution images
(which can be time-consuming). We transferred this idea to the VecSet representations. Two neces-
sary building blocks are operations to down-sample and up-sample a VecSet. Inspired by the design
of 3DShape2VecSet (Zhang et al., 2023) (an illustration can be found in Fig. 3), we interpret the
cross attention in the encoder part as a down-sampling operator. Similarly, we can also use it for
up-sampling. The resulting network is shown in Fig. 4.

We have L levels in the U-Net-style transformer, where we number the levels from one (highest
resolution) to L (lowest resolution). For notational convenience, we denote the input point cloud
as level 0. In the i-th level, we first obtain a lower resolution of the point clouds in the (i − 1)-th
level, FPS(Pi−1, ri−1) = Pi where P0 is the input point cloud. We use cross attention to compress
the feature set CA(Pi,Pi−1) = Xi. Different from previous approaches, we propose a new to way
regularize the latent space,

FtoL(Xi) = ZeroMeanAndUnitVariance(FCdown(Xi)) = Zi, (6)

where we normalize each vector in the set to have zero mean and unit variance (z−E[z])/
√

Var[z]
(It is often called standardization in machine learning which is used to standardize the features
present in the data in a fixed range.). The motivation behind this design is that diffusion starts with
Gaussian noise which also has zero mean and unit variance. In this way, we enforce both our latent
space and the initial Gaussian noise to have similar properties. To map the latents back to features,
we first scale and shift latents back z⊙ γ + β (both γ and β are learnable parameters like in Layer
Normalization (Lei Ba et al., 2016)),

LtoF(Zi) = FCup(ScaleAndShift(Zi)) = X ′
i . (7)

Unlike KL divergence in a VAE, we do not need an explicit loss term for the latent space. See Table 2
for a comparison between the proposed regularization and commonly used KL divergence in VAEs.

p CA

F2

CA

F1

CA

F3

f1

f2

f3

FC O(p)

Figure 5: Multiresolution Fea-
tures

Inspired by the down-sampling usage of cross attention in Zhang
et al. (2023), we generalize it to resampling. Here we use it as
upsampling for unordered set Fi. Before feeding the features to
self attention layers, we first upsample features Fi+1 from lower
resolution levels and apply self attentions,

SAs(CA(X ′
i ,Fi+1)) = Fi. (8)

The query function in Eq. (5) is changed to
O(p) = FC ([CA(p,F1)| · · · |CA(p,FL)]) ∈ R, (9)

where [·| · | · · · |·] is the symbol for concatenation. This means we
are using features from all levels to build the final (occupancy)
function representation (Fig. 5).

3.3 DIFFUSION

Cascaded Diffusion (Ho et al., 2022) proposed a method for generating high-resolution images. The
method is composed of several stages, where each stage is a conditioned diffusion model. Moti-
vated by this, we propose a cascaded latent diffusion model. In Cascaded Diffusion, images gener-
ated from the previous stage are used as a condition in the next stage. We build a cascaded latent

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Level 3 Level 2 Level 1

Denoising
Network

t, C

CA Denoising
Network

t, C

CA CA Denoising
Network

t, C

Figure 6: Cascaded Latent Diffusion.

Table 3: Running Statistics of LaGeM. When using a small number (512) of latent vectors, our
model uses 0.87x time and 0.66x memory during training. For larger models (2k latent vectors), the
advantage is even more significant (0.7x time and 0.58x memory).

VecSet LaGeM VecSet LaGeM VecSet LaGeM

Batch Size 64 8 4
Self Attn Layers 24 8/8/8 24 8/8/8 24 8/8/8
Attn Channels 512 512/512/512 1k 1k/1k/1k 1k 1k/1k/1k

Parameters (M) 106.13 125.15 424.24 499.85 424.24 499.85

Latent Vectors 512 32/128/512 2k 128/512/2k 2k 128/512/2k
Latent Channels 8 32/16/8 64 64/32/16 64 64/32/16

Training Memory (M) 56,125 37,055 (0.66×) OOM 53,791 (-) 54,543 31,662 (0.58×)

Training Iteration (sec) 0.6481 0.5658 (0.87×) - 0.7714 (-) 0.6902 0.4853 (0.70×)

diffusion model based on Cascaded Diffusion. Formally, the optimization goal (for our three-level
implementation) is as follows,

min
D3

∥∥∥D3(Z̃3(t), t, C)−Z3

∥∥∥ ,
min
D2

∥∥∥D2(Z̃2(t), t, C,Z3)−Z2

∥∥∥ ,
min
D1

∥∥∥D1(Z̃1(t), t, C,Z3,Z2)−Z1

∥∥∥ ,
(10)

where Di is a denoising network, t represents timestep or noise level, Z̃i(t) is the noised version
(at timestep t) of the latent, C is optional condition information (e.g., text, images, or categories).
The network design is based on DiT (Peebles & Xie, 2022). To generate latents Zi, we need latents
from previous stages Z>i. For diffusion-based image super-resolution methods, this is often done
by bilinearly interpolating small images and concatenating them with denoising networks’ inputs.
As shown in the previous section, we use cross attention for resampling (both down-sampling and
upsampling). Here we also utilize cross attention to upsample a latent set. Specifically, assuming
we are training a denoising network for Z2, the input of the network is Z̃2(t),

CA(Z̃2(t),Z3). (11)

Similarly, for Z1,
CA(CA(Z̃1(t),Z3),Z2). (12)

In this way, we are gathering information from previous stages. See Fig. 6 for an illustration about
the pipeline.

4 EXPERIMENTS

4.1 AUTOENCODING MODEL

The main autoencoding experiment is trained on Objaverse (Deitke et al., 2023). Models are zero-
centered and normalized into the unit sphere. Since most 3D models in this dataset are not watertight,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Evaluation on ShapeNet. We compare our results to VecSet (Zhang et al., 2023) trained
on ShapeNet. If we train our model on ShapeNet and evaluate on ShapeNet our model is slightly
better than VecSet. When our model is trained on Objaverse and evaluated on ShapeNet, we can see
a very large improvement. Note that it is difficult to scale VecSet to Objaverse training.

Chamfer ↓ (×100) F-Score ↑ (×100)

VS LaGeM(∆) VS LaGeM(∆)
ShapeNet Objaverse ShapeNet Objaverse

table 2.46 2.48 0.02 2.09 -0.37 99.94 99.97 0.02 99.96 0.02
car 5.99 5.89 -0.10 4.36 -1.63 89.85 90.31 0.46 92.15 2.30

chair 2.92 2.89 -0.03 2.01 -0.91 96.40 96.49 0.09 99.91 3.51
airplane 1.78 1.81 0.03 1.58 -0.21 99.50 99.48 -0.02 99.78 0.29

sofa 2.64 2.63 -0.01 2.25 -0.39 98.92 99.04 0.11 99.60 0.67
rifle 1.78 1.77 -0.01 1.44 -0.34 99.88 99.88 -0.01 99.94 0.06

lamp 4.36 4.44 0.08 2.37 -2.00 96.78 97.18 0.39 99.43 2.64

mean (selected) 3.13 3.13 0.00 2.30 -0.83 97.33 97.48 0.15 98.68 1.36
mean (all) 4.68 4.63 -0.04 2.42 -2.26 93.25 93.47 0.23 98.93 5.68

Table 5: Generalization on Various Datasets. Our trained model is capable of doing inference on
several existing datasets. It can be applied on non-watertight datasets like ABO and pix3d even the
model is trained on watertight datasets. Note that models from ShapeNet are not watertight origi-
nally. We use the watertight version processed by (Zhang et al., 2022). The metric for ShapeNet-test
is different from Table 4. It is because here we show metrics averaged over all objects instead of
categories.

Chamfer ↓ (×100) F-Score ↑ (×100)Dataset # Meshes Manifold
VS LaGeM(∆) VS LaGeM(∆)

Thingi10k (Zhou & Jacobson, 2016) 10k Yes 4.52 2.99 -1.53 92.75 97.19 4.44
ABO (Collins et al., 2022) 8k No 4.91 3.66 -1.26 92.52 94.91 2.39

ShapeNet (Chang et al., 2015)-test 2k Yes 3.25 2.33 -0.92 97.41 99.49 2.08
EGAD (Morrison et al., 2020) 2k Yes 3.27 2.82 -0.45 99.02 99.76 0.74

GSO (Downs et al., 2022) 1k Yes 3.78 2.35 -1.43 94.70 99.54 4.84
pix3d (Sun et al., 2018) 700 No 6.53 6.02 -0.50 87.25 87.96 0.71

FAUST (Bogo et al., 2014) 100 Yes 2.10 1.31 -0.79 99.58 99.90 0.32

we use ManifoldPlus (Huang et al., 2020) to make all meshes watertight. Due to failures of modeling
loading and conversion, we obtained around 600k watertight models for training. The three levels of
latents are 128×64, 512×32, and 2048×16 (where 64, 32, and 16 are channels of the latents). Some
other hyperparameters of the network can also be found in Table 3. We name the model as LaGeM-
Objaverse. We also apply the method to ShapeNet, where the train split is taken from (Zhang et al.,
2022). Since ShapeNet is a relatively small and easy dataset compared to Objaverse, we choose
smaller latents which are 32×32, 128×16, and 512×8. The model is named as LaGeM-ShapeNet.
Both models are compared against VecSet (Zhang et al., 2023). We use Chamfer distance and F-
score as the metrics. The results are shown in Table 4. Like (Zhang et al., 2023), we first compare
the results on the largest categories (which have several thousand training samples) in ShapeNet and
then all categories. We can see that, LaGeM-ShapeNet has almost the same number of parameters
as VecSet, but with much shorter training time and less training memory. The quantitative results
(averaged over all ShapeNet categories) are also better than VecSet’s. While for LaGeM-Objaverse,
there is a large improvement in both training cost and quantitative results. The quantitative results
show an improvement of almost 50 percent averaged across the complete dataset in terms of the
metric Chamfer. This demonstrates that LaGeM-Objaverse has good generalization ability. This can
also be seen in Fig. 7. The results of LaGeM-Objaverse are good on small categories of ShapeNet.
In previous works (Zhang et al., 2023), this is nearly impossible because of limited training samples.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Generalization on ShapeNet. Our results are better than VecSet in all categories. On
small categories, the results of VecSet are not stable because of limited training samples. In contrast,
our trained model also performs well in these categories.

L
aG

eM
V

ec
Se

t
G

T

Figure 8: Qualitative Results on ShapeNet. We show autoencoding results on ShapeNet. We use
VecSet as the baseline. Our model is capable of reconstructing detailed geometry, especially thin
structures.

L
aG

eM
V

ec
Se

t
G

T

Figure 9: Qualitative Results on Thingi10k. Our model can even preserve highly detailed geome-
try in CAD models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

L
aG

eM
V

ec
Se

t
G

T

FAUST GSO

Figure 10: Qualitative Results on FAUST and GSO. Results of VecSet are over-smoothed, while
our method can preserve sharp details.

To further prove the generalization ability of LaGeM-Objaverse, we also test the autoencoding
on various datasets, including Thingi10k (Zhou & Jacobson, 2016), ABO (Collins et al., 2022),
EGAD (Morrison et al., 2020), GSO (Downs et al., 2022), pix3d (Sun et al., 2018) and FAUST (Bogo
et al., 2014). The objects from these datasets vary from daily objects, CAD models, human mod-
els, and synthetic objects. The quantitative results can be found in Table 5. We again use VecSet’s
model as the baseline. From the metrics, we can see that LaGeM-Objaverse is able to represent
different kinds of objects with highly detailed geometry and sharp features. Note that, even for non-
watertight meshes, the model is still able to do reconstruction. Visual results of the method can be
found in Fig. 8, Fig. 9, Fig. 10.

4.2 GENERATIVE MODEL

We conducted two generative experiments, one is on ShapeNet with categories as the condition, and
the other one is unconditional generation on Objaverse-10k. For ShapeNet, the denoising networks
of the 3 levels have 12 self-attention blocks with 768 channels. We trained the model for around
200 hours with 4 A100 GPUs. The results are shown in Fig. 11. For Objaverse-10k, due to limited
training GPU resources, we select a subset of 10k models from Objaverse and train the unconditional
generative model. There are 24 self-attention blocks with 768 channels in all stages of the latents.
The model is trained on 16 A100 GPUs for around 100 hours. See Fig. 12 for some unconditional
generation results.

Controllability of the Latents. We verify that different levels of latents control different levels of
detail of the generated samples. During generation, we first generate higher-level latents Z3, which
determine the main structures of the 3D models. Then we use Z3 as a condition to generate Z2,
which adds major details to the models. In the end, we generate Z1 conditioned on both Z3 and Z2.
This final step adds some minor details to the samples. A visual illustration can be found in Fig. 13.

5 CONCLUSION

We proposed LaGeM (Large Geometry Model), an architecture for encoding 3D geometry. Dif-
ferent from previous approaches, the latent space is modeled as a hierarchical latent VecSets. To
make this work, our model employs a U-Net-style design and a new regularization technique for the
bottleneck. We showed that this model can be trained much faster with much lower GPU memory
costs, especially for larger networks and datasets. This enables scaling of the network for large-scale
datasets. We release our model trained on a 600k geometry dataset. Additionally, we proposed a
cascaded diffusion model to show some preliminary generative results with the hierarchical latent
space.

Limitation. Since the latent space is divided into multiple levels, training a diffusion model on all
levels still takes a lot of time. Our method does not solve the high training cost problem of diffusion
itself.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 11: Category-Conditioned Generative Results on ShapeNet.

Figure 12: Unconditional Generative Results on Objaverse-10k.

Level 1

L
ev

el
2

?

-

Figure 13: Latent Levels. Each small 4 × 4 block shares the same level 3 latents Z3. 3D models
in the same block have similar structures. In each block, every 1 × 4 line shares the same level 2
latents Z2. In each line of a block, 3D models look almost the same except for some minor details.
Thus, we argue that Z3 controls the structure, Z2 affects the major details and Z1 is responsible for
minor details.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. Faust: Dataset and evaluation
for 3d mesh registration. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3794–3801, 2014.

Wei Cao, Chang Luo, Biao Zhang, Matthias Nießner, and Jiapeng Tang. Motion2vecsets: 4d la-
tent vector set diffusion for non-rigid shape reconstruction and tracking. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20496–20506, 2024.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 22246–22256, 2023.

Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin, Yanru Wang,
Zhibin Wang, Chi Zhang, et al. Meshxl: Neural coordinate field for generative 3d foundation
models. arXiv preprint arXiv:2405.20853, 2024a.

Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen, Zhongang Cai,
Lei Yang, Gang Yu, et al. Meshanything: Artist-created mesh generation with autoregressive
transformers. arXiv preprint arXiv:2406.10163, 2024b.

Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei Wang,
Haozhe Xie, Tong Wu, Shunsuke Saito, et al. 3dtopia-xl: Scaling high-quality 3d asset generation
via primitive diffusion. arXiv preprint arXiv:2409.12957, 2024c.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. Sd-
fusion: Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4456–4465, 2023.

Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and
benchmarks for real-world 3d object understanding. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 21126–21136, 2022.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023.

Yuan Dong, Qi Zuo, Xiaodong Gu, Weihao Yuan, Zhengyi Zhao, Zilong Dong, Liefeng Bo, and
Qixing Huang. Gpld3d: Latent diffusion of 3d shape generative models by enforcing geometric
and physical priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 56–66, 2024.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 2553–2560. IEEE, 2022.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
ing implicit neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 14300–14310, 2023.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022.

Jingwei Huang, Yichao Zhou, and Leonidas Guibas. Manifoldplus: A robust and scalable watertight
manifold surface generation method for triangle soups. arXiv preprint arXiv:2005.11621, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural wavelet-domain diffusion for 3d shape
generation. In SIGGRAPH Asia 2022 Conference Papers, pp. 1–9, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv e-prints, pp.
arXiv–1607, 2016.

Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view gen-
eration and large reconstruction model. arXiv preprint arXiv:2311.06214, 2023.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d con-
tent creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 300–309, 2023.

Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-
2-3-45: Any single image to 3d mesh in 45 seconds without per-shape optimization. Advances in
Neural Information Processing Systems, 36, 2024.

Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
using cross-domain diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9970–9980, 2024.

Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors for
3d completion, reconstruction and generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 306–315, 2022.

Douglas Morrison, Peter Corke, and Jürgen Leitner. Egad! an evolved grasping analysis dataset for
diversity and reproducibility in robotic manipulation. IEEE Robotics and Automation Letters, 5
(3):4368–4375, 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Dmitry Petrov, Pradyumn Goyal, Vikas Thamizharasan, Vladimir Kim, Matheus Gadelha, Melinos
Averkiou, Siddhartha Chaudhuri, and Evangelos Kalogerakis. Gem3d: Generative medial ab-
stractions for 3d shape synthesis. In ACM SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-
Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. Magic123: One image
to high-quality 3d object generation using both 2d and 3d diffusion priors. arXiv preprint
arXiv:2306.17843, 2023.

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams.
Xcube: Large-scale 3d generative modeling using sparse voxel hierarchies. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4209–4219, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3d
neural field generation using triplane diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 20875–20886, 2023.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
only transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 19615–19625, 2024.

Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan Xue,
Joshua B Tenenbaum, and William T Freeman. Pix3d: Dataset and methods for single-image
3d shape modeling. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2974–2983, 2018.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jaco-
bian chaining: Lifting pretrained 2d diffusion models for 3d generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12619–12629, 2023.

Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
arXiv preprint arXiv:2312.02201, 2023.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

Bojun Xiong, Si-Tong Wei, Xin-Yang Zheng, Yan-Pei Cao, Zhouhui Lian, and Peng-Shuai
Wang. Octfusion: Octree-based diffusion models for 3d shape generation. arXiv preprint
arXiv:2408.14732, 2024.

Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli,
Gordon Wetzstein, Zexiang Xu, et al. Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. arXiv preprint arXiv:2311.09217, 2023.

Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
Shapeformer: Transformer-based shape completion via sparse representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6239–6249, 2022.

Lior Yariv, Omri Puny, Oran Gafni, and Yaron Lipman. Mosaic-sdf for 3d generative models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4630–4639, 2024.

Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and
Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussian splatting with point
cloud priors. arXiv preprint arXiv:2310.08529, 2023.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and
Karsten Kreis. Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978, 2022.

Biao Zhang and Peter Wonka. Functional diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4723–4732, 2024.

Biao Zhang, Matthias Nießner, and Peter Wonka. 3dilg: Irregular latent grids for 3d generative
modeling. Advances in Neural Information Processing Systems, 35:21871–21885, 2022.

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d shape repre-
sentation for neural fields and generative diffusion models. ACM Trans. Graph., 42(4), July 2023.
ISSN 0730-0301. doi: 10.1145/3592442. URL https://doi.org/10.1145/3592442.

13

https://doi.org/10.1145/3592442

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
assets. ACM Trans. Graph., 43(4), July 2024a. ISSN 0730-0301. doi: 10.1145/3658146. URL
https://doi.org/10.1145/3658146.

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
assets. ACM Transactions on Graphics (TOG), 43(4):1–20, 2024b.

Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu,
and Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text
aligned latent representation. Advances in Neural Information Processing Systems, 36, 2024.

Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-Yeung Shum. Lo-
cally attentional sdf diffusion for controllable 3d shape generation. ACM Transactions on Graph-
ics (ToG), 42(4):1–13, 2023.

Xin-Yang Zheng, Hao Pan, Yu-Xiao Guo, Xin Tong, and Yang Liu. Mvdˆ 2: Efficient multiview 3d
reconstruction for multiview diffusion. In ACM SIGGRAPH 2024 Conference Papers, pp. 1–11,
2024.

Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint arXiv:1605.04797, 2016.

A DATA PREPROCESSING

The data preprocessing is based on (Zhang et al., 2022).

A.1 VOLUME POINTS SAMPLING.

We sample volume points uniformly in the bounding sphere.

1 N_vol = 250000
2 vol_points = np.random.randn(N_vol, 3)
3 vol_points = vol_points / np.linalg.norm(vol_points, axis=1)[:, None] *

np.sqrt(3)
4 vol_points = vol_points * np.power(np.random.rand(N_vol), 1./3)[:, None]

A.2 NEAR POINTS SAMPLING

The near-surface points are obtained by sampling Gaussian-jittered surface points.

1 N_near = 125000
2 # surface_points: N_near x 3
3 near_points = [
4 surface_points + np.random.normal(scale=0.005, size=(N_near, 3)),
5 surface_points + np.random.normal(scale=0.05, size=(N_near, 3)),
6]
7 near_points = np.concatenate(near_points)

B DATA AUGMENTATIONS

Random axis scaling. The augmentation is from (Zhang et al., 2022). We randomly sample a
scaling factor for each axis which ranges from [0.75, 1.25].

14

https://doi.org/10.1145/3658146

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Unit sphere normalization. We normalize each mesh to a unit sphere, i.e., the max point norm of
the point clouds is 1.

1 # v: vertices n x 3
2 v = v - (v.max(axis=0) + v.min(axis=0)) / 2
3 distances = np.linalg.norm(v, axis=1)
4 scale = 1 / np.max(distances)
5 v *= scale

Random rotations. We apply random rotations during the training of the autoencoder,

R(α, β, γ) =

[
cosα − sinα 0
sinα cosα 0
0 0 1

][
cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

][
1 0 0
0 cos γ − sin γ
0 sin γ cos γ

]
, (13)

where α, β, and γ are yaw, pitch, and roll, respectively. Our meshes are firstly normalized into a
unit sphere. Thus after the random rotations, the models will still be inside of a unit sphere.

C REGULARIZATION

The proposed regularization (see Table 2) is implemented with layer normalization (PyTorch code).
1 # network definition
2 self.ftl_proj = nn.Linear(x_dim, z_dim)
3 self.ftl_norm = nn.LayerNorm(dims, elementwise_affine=False, eps=1e-6)
4 # network forward
5 z = self.ftl_norm(self.ftl_proj(x))

D TRAINING TIME QUERY POINTS SAMPLING

In the previous work (Zhang et al., 2022), the sampling strategy is uniformly sampling 1024 points
in the bounding volume during training. We found this is not working on Objaverse. Since lots
of meshes have very thin structures, this strategy will cause no inside points to be sampled during
training. This heavily imbalenced data classficiation severely affects the occupancy loss.

We propose the following solution. In each iteration, we make sure half of the points have positive
labels and the other half have negative labels.

E TRAINING LOSS

The loss is binary cross entropy as in previous work (Zhang et al., 2022). Formally, we have

L = Ep∈R3

[
BCE

(
Ô(p),O(p)

)]
. (14)

In practice, we use the empircal loss

Ep∈Qvol

[
BCE

(
Ô(p),O(p)

)]
+ 0.1 · Ep∈Qnear

[
BCE

(
Ô(p),O(p)

)]
. (15)

Here, Qvol is the set of volume query points, and Qnear is the set of near-surface query points.

F DIFFUSION

We use the formulation EDM (Karras et al., 2022) for the diffusion models. The inference/sampling
algorithm is also taken from the paper.

G LATENTS ANALYSIS

We analyze how latents are affecting the final reconstruction. The latents are partially replaced by
standard Gaussian noise (this is because our latents are also zero mean and unit variance). We show
the visual results in Fig. 14.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Z3,Z2,Z1 Z3,Z2,Z1 Z3,Z2,Z1 Z3,Z2,Z1

Figure 14: Latent with red color Z means it is replaced by Gaussian noise. Latent with blue color
Z means it is generated with the diffusion models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3D
Q

D
L

IO
N

Figure 15: Results from 3DQD and LION.

H MORE COMPARISONS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 16: Our generated results. Comparing to Fig. 15, we are able to generate clean, sharp and
detailed shapes.

18

	Introduction
	Related works
	Learning Methods
	Latent Representations
	Cascaded Generation

	Methodology
	Background of VecSet Representations
	Hierarchical VecSet
	Diffusion

	Experiments
	Autoencoding Model
	Generative Model

	Conclusion
	Data preprocessing
	Volume points sampling.
	Near points sampling

	Data augmentations
	Regularization
	Training time query points sampling
	Training loss
	Diffusion
	Latents analysis
	More Comparisons

