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ABSTRACT

Temporal Graph Neural Networks (TGNNs) lay emphasis on capturing node in-
teractions over time but often overlook evolution in node classes and dynamic data
distributions triggered by the continuous emergence of new class labels, known as
the open-set problem. This problem poses challenges for existing TGNNs in pre-
serving learned classes while rapidly adapting to new, unseen classes. To address
this, this paper identifies two primary factors affecting model performance on the
open temporal graph, backed by a theoretical guarantee: (1) the forgetting of prior
knowledge and (2) distribution discrepancies between successive tasks. Building
on theoretical insights, we propose N-ForGOT, which incorporates two plug-in
modules into TGNNs to preserve prior knowledge and enhance model general-
izability for new classes simultaneously. The first module preserves previously
established inter-class connectivity and decision boundaries during the training
of new classes to mitigate the forgetting caused by temporal evolutions of class
characteristics. The second module introduces an efficient method for measur-
ing distribution discrepancies with designed temporal Weisfeiler-Lehman subtree
patterns, effectively addressing both structural and temporal shifts while reducing
time complexity. Experimental results on four public datasets demonstrate that
our method significantly outperforms state-of-the-art approaches in prediction ac-
curacy, prevention of forgetting, and generalizability.

1 INTRODUCTION
Temporal graph neural networks (TGNNs) are increasingly recognized for their ability to encapsu-
late temporal interactions among nodes in temporal graphs (Shi et al., 2018; Kumar et al., 2019b;
Wang et al., 2023). Despite their substantial contributions, many current TGNNs (Rossi et al., 2020;
Cong et al., 2023) assume static data distribution and unchanging class sets, neglecting the reality
that new categories frequently emerge in real-world scenarios. For instance, new topics continu-
ally emerge into the topic community graph (Feng et al., 2023; Hamilton et al., 2017), where nodes
represent post and are labeled by their topics. This necessitates the development of TGNN models
that accommodate open temporal graphs (OTGs), adapting to continuously expanding class sets and
evolving interactions. As illustrated in Fig. 1, Open Temporal Graph Learning (OTGL) is concep-
tualized as a series of chronological tasks, each introducing previously unseen classes that can lead
to shifts of existing data distribution (Feng et al., 2023). However, existing methods treat emerging
unseen data as potential disruption, focusing solely on preserving previously learned knowledge,
which undermines the model’s performance in generalizing both historical and incoming data.
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Figure 1: Open Temporal Graph Learning (OTGL):
class evolution and distribution shifts

Motivated by the need to balance knowl-
edge preservation from existing data with
the swift adaptation to incoming unseen
classes. We theoretically analyzed the
generalization error of the OTGL and in-
vestigated two primary factors: 1) forget-
ting of prior knowledge and 2) distribution
discrepancies between successive tasks.

Forgetting of prior knowledge. Catas-
trophic forgetting poses a significant chal-
lenge in OTGs, which continuously evolve
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with new elements and structures (Feng et al., 2023). In OTGs, the irregularity of node neighbor-
hoods and the ongoing introduction of new edges disrupt existing node correlations, complicat-
ing continual learning (Lu et al., 2022; Yuan et al., 2023). Recent research has tried to address
catastrophic forgetting within graph-structured data, yet most studies focus on static graph snap-
shots (Wang et al., 2022a; Zhang et al., 2022a), missing temporal topological information crucial
for effectively managing forgetting in OTGs. Some works (Feng et al., 2023) aimed to preserve
temporal topological information by sampling triad motifs from temporal graphs and replaying them
for continual learning. However, the invariant structure of triad motifs struggles to represent class
characteristics that dynamically change over time. For instance, the evolution of cell phones in
e-commerce networks from single to dual-screen and foldable models illustrates the temporal in-
consistencies. This evolution highlights that class characteristics change over time, exacerbating the
preservation of previously learned information and intensifying catastrophic forgetting in OTGs.

Distribution discrepancies between tasks. To achieve broad generalization across both historical
and emerging data distributions, it is essential for OTGL to adeptly navigate the parameter space by
measuring the discrepancy between task distributions. Quantifying task discrepancies in OTGs can
arise from multiple domains, such as structure shifts, which arise from the differences in graph struc-
tures between old and new data and time shifts, caused by the continuous evolution of the OTG over
time (Zhang et al., 2022b). Fig. 1(b) highlights high distribution shifts (blue grid) between the graph
introduced by different tasks. Prior studies have utilized integral Maximum Mean Discrepancy-
based approaches (MMD) (Gretton et al., 2012; Zellinger et al., 2017) to measure structure shifts at
the graph representation-level (Zhu et al., 2021; Zheng et al., 2024). However, the computational
demands of these approaches, which scale at leastO(n2) (Bernton et al., 2019; Gretton et al., 2012)
relative to the graph size, pose significant challenges for TGNNs. These networks, known for their
limited efficiency, heavily rely on batch training to enhance processing (Rossi et al., 2020; Li et al.,
2023). Although batch processing facilitates parallel processing within batches, it often neglects the
temporal dependencies across different batches (Su et al., 2024), leading to inaccuracies in measur-
ing distribution shifts compared to methods that assess the entire graph. This oversight leads to two
issues: measuring discrepancies between entire graphs becomes infeasible, decelerating the training
process; batch-wise training can reduce the accuracy of the discrepancy measurements due to the
isolated nature of each batch.

Motivated by these challenges in OTGL, we explore the OTGL from a new perspective by going be-
yond merely addressing forgetting. We propose a novel OTGL approach, Towards Not-Forgetting
and Generalization of Open Temporal Graph (N-ForGOT), including two plug-in modules for
TGNNs: a temporal interclass connectivity regularization module (TICR) to minimize forgetting
of prior knowledge and a localized temporal graph discrepancy optimization module (LTDO) to
address task discrepancies. To mitigate catastrophic forgetting, the TICR module renormalizes pa-
rameters to align new data with previous tasks, preserving inter-class connectivity and decision
boundaries. Through this, TICR maintains essential class features to prevent overfitting. To en-
hance the generalizability, the LTDO module offers an efficient strategy for measuring multi-domain
distribution shifts using a designed local structure alongside a linear approximation of MMD. We
develop a temporal Weisfeiler-Lehman (WL) subtree pattern, which is capable of capturing struc-
tural and temporal information across different batches. This capability can effectively measure
distribution shifts during batch training while reducing the information loss associated with batch
data isolation. LTDO module significantly reduces the computational complexity from O(n2) to
O(n) and lowers the storage complexity from O(n) to O(1) (as elucidated in Sec. 4.2).

Our main contributions can be summarized as: 1) We extend beyond the conventional focus on
mitigating forgetting, advancing towards a balance between forgetting and generalizability in the
OTGL. To achieve this, we propose two plug-in modules for TGNNs; 2) We introduce the TICR
module to mitigate the forgetting of prior knowledge by leveraging the interconnectivity of the
graph; 3) We introduce the LTDO module with a novel temporal WL subtree patterns representation,
reducing computational complexities while enhancing model generalizability.

2 RELATED WORK
TGNNs. Temporal graphs represent sequences of time-stamped events. According to the sampling
scheme for aggregation process, TGNNs can be categorized into two categories: neighborhood-
based message-passing TGNNs (MP-TGNNs) (Xu et al.; Rossi et al., 2020; Kumar et al., 2019a;
Trivedi et al., 2019), which aggregate the node’s temporal neighborhoods information, and walk-
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aggregating TGNNs (Souza et al., 2022; Wang et al., 2021), which encode temporal walks from the
target node. Additionally, memory-updated TGNNs (Rossi et al., 2020; Li & Chen, 2023) build on
the MP-TGNN framework to incorporate a memory state vector that stores historical node features,
updating embeddings as relevant events occur. However, these models overlook information loss
during updates and struggle with new, unseen node classes.

Graph Continual Learning. OTGL stems from Graph Continual Learning (GCL) but is specifi-
cally designed to tackle the unique challenges of temporal graphs. Recent studies in graph continual
learning have aimed to address catastrophic forgetting in graph-structured data, which can be cate-
gorized into two types: regularization-based and replay-based methods. Regulation-based methods
focus on maintaining old data distributions by selectively constraining updates to parameters that
are crucial for previous task performances. Liu et al. (2021) evaluated both parameter gradients
and topological feature gradients to identify and preserve parameters vital for maintaining key topo-
logical information. Replay-based methods (Zhou & Cao, 2021; Wang et al., 2022a; Feng et al.,
2023), stored portions of historical data in a memory buffer to help preserve previously learned
knowledge. They utilized various sampling strategies or data generation techniques (Wang et al.,
2022a) to replay historical graph structures, including walk sequences (Wang et al., 2022a), node
sets (Zhou & Cao, 2021), neighborhood sets, and different motif structures (Feng et al., 2023), to
maintain learned knowledge. Innovatively, DeLoMe (Niu et al., 2024) and CaT (Liu et al., 2023)
employ condensed graphs as replay data. These condensed graphs are significantly smaller than the
original, yet they consist of synthetic node representations that preserve the complete informational
content of the original structures. OTGNet (Feng et al., 2023), the only work addressing forgetting
in OTGs, employed triad sampling to preserve key structural evolution information from historical
data. However, the effectiveness of OTGNet is heavily dependent on the volume of replayed data.
Insufficient data buffers can lead to suboptimal results, while increased sampling could significantly
prolong the overall training time. In contrast to these methods, which view updates from new tasks
as potential disruptions to previously learned knowledge, our approach seeks a balance between
retaining knowledge from past data and effectively adapting to new, evolving data distributions.

3 PRELIMINARY
In this section, we illustrate preliminary definitions of OTG and the discrepancy metric and provide
a theoretical analysis of the generalization error bound within the OTGL.

Problem Definition. In the open temporal graph setting (Feng et al., 2023), the graph dynamically
evolves with the continuous addition of new nodes, leading to the emergence of new classes and,
correspondingly, new node classification tasks. Consider a temporal graph G = (V, T, E), where V
is a set of nodes, T ⊆ N0 is a finite set of timestamps, and E comprises temporal edges. These edges
are defined as the set (u, v, t) for all node pairs u, v ∈ V and timestamps t ∈ T where an edge exists
between nodes u and v at time t. The open temporal graph is conceptualized as a sequence of tasks
K = {K1, ...,Kk}, arranged in chronological order, where k represent the current task. The task can
be represented as Ki = {(Gi,Yi)}, containing a temporal graph Gi and a corresponding class set
Yi. Each task Ki introduces new classes that were not present in earlier tasks, and Gi contains data
specific to the timeslice of task Ki.

Performance Bound Analysis of OTGL. The objective of OTGL is to develop a TGNN, f , pa-
rameterized by θ, that incrementally learns across a sequence of k tasks. We decompose the trained
TGNN f = g ◦ h 1 into the feature extractor g : G→ Rd′

(Z = g(G)) and discriminator h : Rd′ →
Y (Y = h(Z)). Node embeddings are produced by Z(i) = g(xi|xi ∈ V ). These embeddings are
subsequently processed by the discriminator. To formulate the expected loss of the model f , over the
entire distribution of data, termed the population risk, we first defined the distribution for the current
task as Gk and the aggregate historical data distribution as G1:k−1 := {Gi}k−1

i=1 . Formally, with a
given loss function, ℓ(., .) → R, the population risk of the current task (Wang et al., 2022c) can be
defined as RGk

= E(G|V,Y )∼Gk
[ℓ(fk(θ,G), y)]. Likewise, the population risk over the distribution

of previous tasks can be defined asRG1:k−1
= 1

k−1

∑k−1
i=1 E(G|V,Y )∼Gi

[ℓ(fi(θ,G), y)].

To achieve a balance between forgetting and generalizability, our method aims to minimize the
population risk for the current task, RGk

, while also reducing the generalization error, defined as

1For simplicity, we use θ to represent the parameters of functions g, h and f
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|RGk
−RG1:k−1

|. We analyze this generalization error based on PAC-Bayesian theory Li & Bilmes
(2007) and establish a bound forRGk

.
Theorem 1 (You et al., 2023; Li et al., 2021; Wang et al., 2022b) Let H be a hypothesis space
of Vapnik-Chervonenkis dimension dc, with probability at least 1 − δ for any δ ∈ (0, 1). For the
hypothesis function f , the population risk of the current task is bounded as follows (please see a
complete proof in Appendix A):

RGk
(fk(θk)) ≤ R̂G1:k−1

(fk(θk)) + divH (G1:k−1,Gk) +

√
2d

m
log(

em

d
) +

√
1

2m
log

(
1

δ

)
+ ξ,

where ξ = min{EGk
[|f1:k−1(x)− fk(x)|] ,EG1:k−1

[|f1:k−1(x)− fk(x)]} is the difference in label-
ing functions across the new and old tasks, which we expect to be small. div(·) is a distance metric
that formulates the old and new task distributions in a Reproducing Kernel Hilbert Space (RKHS).
Motivated by Theorem 1, which is extended from the domain adaptation bound analysis (Li
et al., 2021), we identify two components that bound the performance of OTGL: 1) The term
R̂G1:k−1

(fk(θk)) indicates the model’s performance on historical data distribution G1:k−1, which
is determined by the model’s ability in managing forgetting; 2) divH(G1:k−1,Gk) represents the
discrepancy between task distributions, which can be quantified using the MMD. Accordingly, this
work target on minimizing R̂G1:k−1

(fk(θk)) and the divergence divH(G1:k−1,Gk), leading to the
corresponding proposal of two specific plug-in modules: TICR and LTDO.

Specifically, the first term, R̂G1:k−1
(fk(θk)), is an empirical measure that quantifies the risk associ-

ated with the model f over the training data from previous tasks. This measure reflects how well the
model performs on data from previous tasks by calculating the average loss across these historical
data distributions. It indicates the model’s performance on historical data G1:k−1, given that it was
trained using the current data Gk. Therefore, the value of the first term, R̂G1:k−1

(fk(θk)), reflecting
the model’s capacity to mitigate catastofic forgetting. Successfully evaluating this component hinges
on a deep understanding of how historical data influences and constrains the parameter space. The
second term divH(G1:k−1,Gk) quantifies the discrepancy between the distributions G1:k−1 and Gk,
which can be formulated by the MMD metric (detailed definition can found in Appendix C). MMD
can be expressed as MMD2(G1:k−1,Gk) = sup∥ϕ∥H≤1

∥∥Ex∼G1:k−1
[ψ(x)]− Ey∼Gk

[ψ(y)]
∥∥2
H,

where ψ is a kernel function that maps data from the two distributions to a RKHS.

4 METHOLODOGY

Figure 2: Overview of N-ForGOT.
The overall architecture of N-ForGOT is illustrated in Figure 2, including two plug-in modules: the
Temporal Inter-class Connectivity Regularization (TICR) module (Sec. 4.1), highlighted in red, is
designed to mitigate catastrophic forgetting; and the Localized Temporal Graph Discrepancy Opti-
mization (LTDO) module (Sec. 4.2), shown in green, focuses on optimizing distribution discrepan-
cies across successive tasks.

4.1 TEMPORAL INTERCLASS CONNECTIVITY REGULARIZATION (TICR) MODULE

As the set of classes within the graph expands, performance on previous classes often deteriorates
due to the forgetting of established class prototype knowledge. As introduced before, the temporal
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inconsistencies of class characteristics take more challenge to address the forgetting. To counteract
this, we preserve knowledge through two key components: decision boundaries and feature-based
inter-class connectivity among different classes. Decision boundaries and inter-class connectivity
typically represent consistent knowledge. For example, despite the characteristics of the class ‘cell
phone’ evolving with technological development, the difference between it and ‘earphones’ remains
obvious and consistent over time. The model learns task-specific parameters according to these two
components and renormalizes current ones to align with those from previous tasks.

Decision Boundaries. To preserve task-specific decision boundaries, we ensure that the network
retains the essential properties of each class and contrasts features from the past with the current.
Inspired by the modified cross-entropy loss function (Hinton et al., 2015), we apply logistic outputs
from the old network serving as soft targets in the loss function for approximating the predicted
class probabilities of the current network.

LDB(ŷk, ŷ
′
k) = −

|Yk|∑
i=1

(ŷ
′(i)
k )1/τ∑

j(ŷ
′(j)
k )1/τ

log

(
(ŷ

(i)
k )1/τ∑

j(ŷ
(j)
k )1/τ

)
(1)

where ŷ′
k ≡ fk−1(θk−1,Gk) and ŷk ≡ fk(θk,Gk) represent the logits from both previous and cur-

rent parameter configurations of the class set Yc in the ongoing task. The loss function incorporates
a temporal scaling function to adjust the logits, enhancing the model’s discriminatory capabilities
across temporal transitions, where τ is the temperature factor. The temperature parameter is set as
τ > 1 to amplify the influence of smaller logit values. This adjustment accounts for potential label
imbalance by giving more weight to less frequent categories.

Inter-class Connectivity. To capitalize on interclass connectivity, we assess the distances between
class relational matrices from networks trained on previous and current tasks. Prototypes for the
class i are denoted by p(i) =

∑
j∈Si

g(xj), where Si denotes temporal WL subtree patterns related
to nodes i. After fully training the current task, prototypes for the newly involved classes are updated
in the class prototype matrix, Pk =

[
p
(1)
k ,p

(2)
k , . . . ,p

(Nc)
k

]
, p

(i)
k =

∑k−1
j=1 I(i, j)·p

(i)
j , ∀n ∈ Y1:k,

where Nc = |Y1:k| denotes the number of classes in the class set, encompassing all previous tasks,
and I(i, j) is an indicator function used to represent whether a category i appears in a task j. This
formulation establishes a dynamic and evolving class prototype matrix incorporating historical data
to preserve and utilize the interclass relationships effectively as the class set expands.

Interclass connectivity of previous and current tasks can be formulated by class relational matrices,
which are defined as:

R =
[
d(p

(j)
k−1, p̂

(i))
]c
i,j=1

, R′ =
[
d(p

(j)
k−1, p̂

′(i))
]c
i,j=1

(2)

R and R′ are the class relational matrices of the current and previous networks respectively, where
d(·, ·) denotes the Euclidean distance to measure the distance between class prototypes. Each matrix
with dimensions c × c, where c = |Yk| represents the number of classes in the current task. p(j)

k−1
is obtained from the class prototype matrix which represents the ground truth features of previous
classes retained after fully training each previous task. p̂ and p̂′ represent the class prototypes of new
classes obtained from the current task and previous task networks, respectively. The class prototype
p̂′ of class i derived from the previous network is defined as:

p̂′(i) =
1

|Si|
∑

j∈Si∼Gk

gk−1(θk−1, xj) (3)

where Si represents the set of nodes in class i within the graph of the current task. Similarly, the
prototype set p̂ for the current network is computed using the current model parameters.

We define the interconnectivity class loss to align the class relational matrices between previous and
current tasks: LIC = ∥R−R′∥2 (4)
This loss function minimizes the distance between class prototypes across models, ensuring consis-
tent class understanding and reducing catastrophic forgetting of previous classes.

4.2 LOCALIZED TEMPORAL GRAPH DISCREPANCY OPTIMIZATION (LTDO) MODULE

This module addresses multi-domain distribution shifts and efficiency challenges in measuring dis-
crepancies between task distributions. The LTDO module quantifies both structural and temporal
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shifts within open temporal graphs, identifying task variations based on the designed local struc-
ture. Leveraging the topology of this local structure, it enables efficient batch-wise task discrepancy
measurement, while also minimizing information loss typically associated with isolated batches.

Temporal WL Subtree Patterns. Inspired by the capability of the WL subtree in addressing graph
isomorphism challenges (Leman & Weisfeiler, 1968). We introduce the temporal WL subtree with
structure and temporal patterns as the discriminative local structure, which makes it particularly
suited for capturing nuanced structural differences in dynamic graph environments.

Definition 1 Temporal WL Subtree Patterns. For a temporal graph, G = (V, T, E). The neighbor-
hood of a node v ∈ V is denoted as N (v) = {u ∈ V | (v, u, t) ∈ E}. For a node v, its temporal
subtree pattern Sd(v) = (Sd

s , S
d
t ) with depth d contains structure and temporal parts. The temporal

WL subtree can be defined recursively in the following way:

Ss(v) : S(d=0)
s (v) = {v}, S(d>0)

s (v) = Sd−1
s (v) ∪ {(u′, {N (u′)}) | u′ ∈ Ŝd−1

s };

St(v) : S
(d=0)
t (v) = {t′}, S(d>0)

t (v) = Sd−1
t (v) ∪ {|t′ − t| |(u′, u, t) ∈ E , u′ ∈ Ŝd−1

s , u ∈ Ŝd
s}

where Ŝd
v denote a set of the leaf nodes in Sd

v , and tmax is the maximum observed timestamp of the
target node v.

We further develop the representation of temporal WL subtree patterns for MMD measurement by
aligning the TGNN aggregation process with the WL algorithm (Leman & Weisfeiler, 1968). As
delineated in Definition 1, the initial pattern S0(v) represents the categorical feature for the target
node. Subsequent patterns, from S1(v) to the higher order, encapsulate the topological structure
surrounding the target node, along with evolving temporal information. The subtree structure is
defined recursively via node neighborhood, allowing us to utilize neighborhood-based message-
passing TGNNs to capture the features of temporal subtree patterns. We proposed the following
definition to formulate the structural and temporal features of our temporal WL subtree patterns.

Definition 2 With the feature extractor g : G→ Rd′
in the TGNN, which contains a time encoding

function Φ : T → Rd′
t . The depth of our temporal WL subtree refers to the number of TGNN

layers. Considering a sufficient number of TGNN layers, the structure and temporal features for the
temporal WL subtree patterns can be defined as (theoretical proof is provided in Appendix B):

a) Structure feature for dth pattern:

Cd
s (v) = g̃(d)(v) = AGG(d)

({(
g(d−1)(u), e

)
| (u, e, t) ∈ Sd

s (v)
})

, (5)

where AGG is layer-specific aggregation function. If d = 0, C
(
S0
s (v)

)
employs the raw feature of

the target node xv .

b) Temporal feature for dth pattern:

Cd
t (v) = Φ(∆t), where ∆t = S0

t (v)− ti, ti ∈ Sd
t (v)) (6)

Definition 2 is based on the theorem that message-passing TGNNs with d layers yield equivalent
outputs for nodes that share the same temporal WL subtree pattern of depth d, when the underlying
structures are non-isomorphic. This validates the compatibility of computing features for the tem-
poral WL subtree patterns across various TGNN architectures. It also demonstrates that our LTDO
module can effectively function as a plug-in module within TGNNs. For instance, the time en-
coder function in TGNNs enables the computation of temporal features in our temporal WL subtree.
TGAT (Xu et al.) employs a self-attention mechanism for message passing and incorporates a train-
able time-encoding function Φ(∆t) = cos(tw + b). Similarly, the GraphMixer (Cong et al., 2023),
another variant of TGNN, utilizes a multi-layer perceptrons-based aggregation function combined
with a simpler, untrained time encoder, Φ(∆t) = cos(tw).

Batch-wise Linear MMD Approximation. Recall that the primary goal of this module is to cul-
tivate task-invariant representations by minimizing the distribution discrepancies across all tasks.
MMD as a powerful non-parametric metric, effectively compares distributions based on two data
sets. In many practical scenarios, the distribution shift within a graph is traditionally measured using
the classical MMD approximation, MMD2

u (details in Appendix C) across the entire graph (Gret-
ton et al., 2012; Zellinger et al., 2017). However, MMD2

u involves pairwise similarity calculations,
leading to quadratic time complexity. And it is unsuitable for batch-wise training due to the incon-
sistency of batch data sampling (Yan et al., 2017).
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In contrast, our approach leverages the localized structure of the temporal WL subtree. This al-
lows us to implement an unbiased approximation of MMD that operates with linear computational
complexity (Gretton et al., 2012). Additionally, our temporal WL subtree can capture the structure
information from other batches of data with its root patterns, allowing us to measure distribution
shifts in batch training required by TGNNs, significantly reducing the information loss typically
associated with batch data isolation (refer to the experiment in Sec. 5.4).
Definition 3 Linear MMD Approximation. This linear approximation assumes that the datasets
being compared contain an equal number of instances m. The estimator is an unbiased estimate of
MMD2[Fmmd, p, q], where p and q denote targets and source data distribution.

MMD2
ℓ [Fmmd,Gk−1,Gk] :=

1

m

m∑
i=1

fmmd

(
(xk−1

2i−1, x
k−1
2i ), (xk2i−1, x

k
2i)
)

fmmd

(
xk−1
2i−1, x

k−1
2i ), (xk

2i−1, x
k
2i)
)
= ψ(xk−1

2i−1, x
k−1
2i ) + ψ(xk2i−1, x

k
2i)

−ψ(xk−1
2i−1, x

k
2i)− ψ(xk−1

2i , xk2i−1)
The LTDO module addresses the challenge of measuring distribution shifts between adjacent tasks
by focusing on local structures within each batch. By comparing batch data from successive tasks,
we ensure that the data volumes align with the assumptions required for linear MMD computation.
Additionally, batches are organized in chronological order to define the time domains, enabling
comparisons within the same temporal contexts, such as comparing data from spring to spring, to
enhance the accuracy of our discrepancy measurements. The measurement of distribution discrep-
ancies between successive tasks is defined as follows.

div(Gk−1, Gk) =
1

|B|

|B|∑
i=0

div(Bi
k−1, B

i
k); div(B

i
k−1, B

i
k) =

d∑
n=0

MMDℓ

(
Cn(Bi

k−1), C
n(Bi

k)
)
(7)

Here, |B| denotes the number of batches in the current task, Bi
k represents the ith batch in task k,

and |B| denotes the size of batch representing instances m in the MMD2
l . The function C

(
Bi

k

)
=

[Cd
s (v)∥Cd

t (v), v ∈ Bi
k] represents the features of the temporal WL subtree patterns for batch data,

where features of structural and temporal patterns are concatenated. The discrepancy loss function
is defined as follows.

LDIV = div(Gk−1, Gk) (8)
Time Complexity and Effectiveness Analysis. MMD2

l requires onlyO(1) memory, andO(n) time
complexity to compute the kernel on all interacting pairs. Conversely, the classical MMD approx-
imation, MMD2

u, demands O(n) memory and O(n2) computational time, making it less efficient
(details in Appendix C). Given the topology of the temporal WL subtree, the time complexity of
the LTDO module is O( 12 (|V| · |S̃|)) in the worst case, where the batch size equals the size of the
input graph. |S̃| denotes the average size of the subtree, depending on the neighborhood size and
depth. Since |S̃| is a small constant, the LTDO module reduces the computational complexity of
discrepancy measurement from O(|V|2) to a linear time complexity O(|V|).

According to Hoeffding (1963), the deviation bound of MMD2
l is PrGk−1,Gk

{MMD2
l (Gk−1,Gk)

−MMD2(Gk−1, Gk) > t} ≤ exp
(
− t2|B|

4K2

)
, assuming that (0 ≤ ψ(xi, xj) ≤ K). This states

the probability that the empirical MMD2
l deviates from the squared population MMD by more than

t, where t is a predefined threshold. MMD2
u has the same Hoeffding’s bound as MMD2

l . Ad-
dtionally, the asymptotic variance for MMD2

l is given by Varz,z′ [fmmd(z, z
′)] when MMD2

l con-
verges in distribution to a Gaussian. The asymptotic variance for MMD2

u is the variance of Ez′ [
fmmd(z, z

′)] (Gretton et al., 2012) in the same converges scenario.

The analysis demonstrates that the LTDO module significantly reduces computational complexity
while maintaining comparably high accuracy relative to classical quadratic time MMD estimators.
Further empirical validation of these theoretical advantages is detailed in Section 5.4.

4.3 N-FORGOT
The overall optimization objective of the whole framework N-FORGOT is designed as follows:

L = LCL + α(LDB + LIC) + βLDIV (9)
Here the classification loss, LCL, represents the categorical cross-entropy loss. The hyperparameters
α and β can adjust the balance between preventing forgetting and generalization. We provide the
pseudo-code of N-ForGOT in Appendix D.
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5 EXPERIMENTS
In this section, we assess N-ForGOT in terms of its overall effectiveness, its capability to manage
forgetting, and its ability to generalize unseen data distribution.

5.1 EXPERIMENTAL SETUP
Table 1: Dataset Statistic

Yelp Reddit Taobao Amazon
# Nodes 20,992 10,845 114,232 361,965
# Edges 234,459 216,397 455,662 4,172,700
# Tasks 6 6 3 7
# Timespan / task 1 year 1 month 2 days 3 months
# Classes / task 2 3 30 2

Datasets. We assesse N-ForGOT using
four real-world datasets: Yelp (Sankar
et al., 2020), Reddit (Baumgartner et al.,
2020), Taobao (Du et al., 2019), and
Amazon (Hou et al., 2024). We summa-
rize the statistics of datasets in Table 1. We adopt the Reddit and Taobao datasets from previous
OTGL work (Feng et al., 2023) and follow their conventions for dataset construction in the other
two datasets. More information about the datasets can be found in Appendix E.1.

Evaluate Metric. For each task, we use 80% nodes for training, 10% nodes for validation, and 10%
nodes for testing. To comprehensively evaluate our method, we use three widely-used metrics (Wang
et al., 2024) in continual learning to evaluate our method: Average Performance (AP), Average
Forgetting (AF), and Backward Transfer (BWT). AP measures the mean accuracy of the model
across all tasks, calculated as AP = 1

K

∑K
i=1 ai, where ai denotes the ACC (Accuracy) on the

ith task, K is the total number of tasks. AF quantifies the loss of previously acquired knowledge,
defined by the difference between the maximum historical performance of a task and its current
performance: AF = 1

K−1

∑K−1
j=1 (maxi∈{1,...,K−1}(aK,j − ai,j), ∀j ≤ K. BWT reflects the

average influence of learning a new K-th task on the performance of all previously learned tasks.
It is defined as BWT = 1

K−1

∑K−1
j=1 (aK,j − aj,j). This metric evaluates how the introduction of

new tasks can positively impact the performance of previous tasks. These three metrics collectively
provide a comprehensive evaluation of our method in not only preventing catastrophic forgetting but
also enhancing generalizability across tasks.

Baseline Methods. We benchmark our approach against Joint training approach, Finetune training
approach, and six models across both computer vision (EWC (Kirkpatrick et al., 2016), and LwF (Li
& Hoiem, 2016)) and graph-structured data domains (TWP (Liu et al., 2021) and ER-GNN (Zhou
& Cao, 2021), OTGNet (Feng et al., 2023)). Joint training, which trains the model simultaneously
on data from all tasks, does not follow the OTGL setting. This approach provides a useful upper
bound of AP. Finetune training provides a lower bound of forgetting. Details about the baseline and
experiment setting can be found in Appendix E.2.

5.2 PERFORMANCE COMPARISON

Performance Comparison with Baselines. Table 2 summarizes the overall performance from ten
runs. Our method closely matches the AP performance of joint training and significantly outper-
forms other baselines. Specifically, N-ForGOT achieves a minimum of 3.07% and up to 18.30%
higher AP compared to other baselines. Furthermore, the results for metrics AF and BWT demon-
strate that N-ForGOT minimizes forgetting and improves performance on previous tasks during the
continual learning of task sequences, thereby demonstrating effective generalization. Key observa-
tions include:

Managing Catastrophic Forgetting: Our method has demonstrated exceptional AF performance
across all task sequences, both long and short, achieving up to 89.73% and at least 14.34% reductions
in forgetting rates compared to the closest baseline. The largest gap in AF results between N-
ForGOT and the baselines occurs in the Reddit datasets. In the experiments conducted on the Reddit
dataset, methods that preserve knowledge by replaying data from previous tasks in the current task,
such as ER-GNN (Zhou & Cao, 2021) and OTGNet (Feng et al., 2023), demonstrate poorer ability in
managing catastrophic forgetting compared to methods based on parameter regulation. This may be
due to the varied data distributions, which make it challenging for these methods to sample important
structures that can represent temporal topological information effectively for replay.

Generalizability: Higher BWT values represent positive impacts on the performance of previous
tasks as new tasks are learned. Our method consistently demonstrates higher BWT values, partic-
ularly in datasets with long task sequences. This positive impact suggests our method can swiftly

8
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adapt to unseen data distributions introduced by incoming tasks. The detailed analysis of the BWT
results across continually learned task sequences is introduced in Sec 5.3.

Module Ablation. N-ForGOT with only the TICR module (refers to N-ForGOT w/o LTDO in Ta-
ble 2) achieves the lowest AF, indicating its ability to manage forgetting issues. N-ForGOT equipped
solely with the LTDO module (refers to N-ForGOT w/o TICR in Table 2) shows better performance
compared to when using both modules, but it incurs greater forgetting. This phenomenon is likely
due to the LTDO module performing the higher performance peak of target tasks during sequential
continual learning, as AF is measured by max performance. The module ablation study demonstrates
that the TICR module effectively addresses forgetting, and the LTDO module enhances average per-
formance across all tasks. Our method combines the two modules for dynamic adaptation to new
tasks while preserving previous learning. An extensive analysis of two plug-in modules is conducted
through a hyperparameter ablation study, which assesses the roles of hyperparameters α and β as
outlined in Equation 9, with details provided in Appendix E.5. The results demonstrate the cru-
cial role of both plug-in modules in balancing the retention of previous data distributions with the
adaptation to incoming data.

Table 2: Comparisons (%) analysis and module ablation study of N-ForGOT with baselines.
Method Yelp Reddit TaoBao Amazon

AP (↑) AF (↑) BWT (↑) AP(↑) AF (↑) BWT (↑) AP (↑) AF (↑) BWT (↑) AP (↑) AF (↑) BWT (↑)
Joint 70.855 - - 76.455 - - 87.910 - - 83.753 - -

(±1.03) - - (±3.11) - - (±1.83) - - (±0.95) - -
Finetune 61.505 -27.832 -27.832 46.506 -13.050 -12.929 56.050 -44.158 -44.158 69.853 -34.532 -34.532

(±1.97) (±3.07) (±4.63) (±5.27) (±2.62) (±2.11) (±1.67) (±1.31)

EWC 52.425 -16.887 -16.445 45.983 -20.794 -19.620 70.068 -23.104 -23.103 51.983 -30.362 -30.362
(±2.74) (±4.01) (±4.79) (±4.48) (±1.18) (±3.33) (±1.48) (±1.02)

LwF 54.482 -23.462 -23.461 51.626 -18.047 -18.047 68.108 -22.294 -22.294 61.875 -25.820 -25.820
(±1.45) (±3.67) (±3.20) (±3.08) (±2.30) (±0.77) (±0.95) (±3.85)

TWP 60.537 -15.616 -15.185 52.985 -9.973 -9.834 80.895 -19.114 -19.114 68.785 -25.835 -25.651
(±5.01) (±2.27) (±1.24) (±4.18) (±2.09) (±2.69) (±3.05) (±1.80)

ER-GNN 63.713 -14.958 -14.724 43.756 -30.252 -30.252 72.159 -14.104 -14.104 73.941 -27.071 -27.070
(±3.24) (±3.55) (±4.45) (±2.96) (±1.99) (±2.29) (±1.98) (±1.40)

OTGNet 61.947 -4.912 -3.156 44.930 -35.540 -35.540 77.853 -28.926 -28.926 77.535 -18.095 -17.623
(±2.45) (±2.07) (±4.98) (±5.20) (±1.07) (±1.11) (±2.01) (±0.78)

N-ForGOT 69.356 -2.829 -2.050 62.681 -1.024 -0.889 83.376 -6.529 -6.529 80.300 -15.500 -12.965
(±1.07) (±1.72) (±3.85) (±0.23) (±1.55) (±1.36) (±1.98) (±1.54)

(w/o LTDO) 65.342 -1.932 -1.932 59.710 -1.021 -1.021 76.850 -5.364 -5.364 76.924 -12.318 -12.318
(±2.63) (±0.90) (±4.08) (±0.77) (±2.68) (±0.47) (±2.03) (±1.62)

(w/o TICR) 70.268 -6.765 -3.975 64.721 -6.014 -1.980 78.074 -11.093 -11.093 89.621 -21.524 -21.524
(±0.88) (±0.45) (±3.01) (±2.60) (±1.65) (±1.73) (±1.08) (±2.20)

5.3 PERFORMANCE ANALYSIS ACROSS TASKS

We further analyze the effectiveness of our model in mitigating catastrophic forgetting and enhanc-
ing generalization ability with the increased tasks.

Figure 3: Performance trends throughout the continual
learning process.

Performance Trends Across Tasks.
We plot the trends of AP values in Fig-
ure 3, illustrating the performance tra-
jectory throughout the continual learn-
ing process. The performance curve
of our method, represented by the
red line, demonstrates increased perfor-
mance compared to those of other base-
lines. This indicates that N-ForGOT not
only addresses the forgetting issue but
also improves task performance by enhancing generalizability across data distributions through task
discrepancy optimization. Specifically, the increased performance observed upon the introduction
of Task 1 and Task 4 suggests that our method effectively adapts to newly arriving tasks.

BWT Trends Across Tasks. We analyze performance changes for the target task with new tasks
continually introduced, as shown in Figure 5. The x-axis represents the ‘Target Task’, and the y-
axis shows the new tasks introduced continually. This heatmap effectively highlights how each new
task impacts the performance of previously learned tasks. Each cell in the heatmap indicates the
impact on the performance of the target task following the introduction of new tasks, as measured
by the BWT metrics. Cells colored blue signify improved performance, indicating that new tasks

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TWP ERGNN OTGNet

Ta
sk

 In
de

x 
(C

on
tin

ua
l T

ra
in

ed
)

Task Index (Target Task)

N-ForGOT Finetune EWC LwF
1
2
3
4
5

- 0.5
- 5.0

- 0.0
- -10.0
- -20.0
- -30.0

0    1    2     3    4 

Figure 4: BWT trends across tasks. Blue cells indicate performance improvements in the target task
during the continual learning of task sequences. Conversely, cells in red denote performance drop.

have positively influenced the target task’s performance. Conversely, cells in red denote significant
forgetting. Notably, for Task 0, our method demonstrates significant performance improvement after
successively learning the next five tasks (Task 1-5). Our method not only minimizes forgetting but
also occasionally shows positive backward transfer, where the introduction of new tasks enhances
the performance of earlier tasks.

5.4 DISCREPANCY MEASUREMENT STRATEGY ANALYSIS

We conduct further analysis of our proposed discrepancy measurement strategy, the LTDO module,
focusing on both its efficiency and effectiveness.

Figure 5: Discrepancy measurement strategy analysis:
efficiency analysis (left), performance analysis (right).

Efficiency Analysis. As shown in Fig-
ure 5 (left), we compare the efficiency
of our discrepancy measurement method
(LTDO module) with the classical MMD
measurement. For a fair comparison, we
use a single Gaussian kernel as the ker-
nel mapping function for both methods
due to the classical MMD’s inability to
support multiple kernels within our device’s memory limitations. Further details on kernel design
in the main experiment are available in Appendix E.2. We observe that the LTDO module becomes
significantly more efficient than classical MMD as the size of the graph increases. This comparison
demonstrates the efficiency gains achieved through our proposed discrepancy measurement method
in graph data scenarios.

Performance Analysis. We analyze the effectiveness of our temporal WL subtree and explore the
performance differences between classical and linear MMD approaches, as illustrated in Figure 5
(right). The term ‘w/o Subtree’ denotes that our method measures the discrepancy between tasks
directly using node features, without involving subtree structures. Excluding temporal WL sub-
tree patterns significantly reduces performance, demonstrating their effectiveness in capturing both
temporal and structure distribution shifts and mitigating accuracy loss due to batch data isolation.
Additionally, the term ‘Classical MMD’ refers to our experiment using classical MMD as opposed
to linear MMD for discrepancy measurement. Despite theoretical analyses suggesting that classi-
cal MMD offers greater stability (as shown in Sec.4.2), our experimental results indicate that our
method does not experience a performance drop when enhancing efficiency.

We also conduct sensitivity analysis of hyperparameters which can be found in Appendix E.4.

6 CONCLUSION

This study introduces N-ForGOT, a novel approach to Open Temporal Graph Learning (OTGL)
that tackles both forgetting and distribution shifts. To our knowledge, this is the first work to ex-
tend forgetting mitigation in OTGL by incorporating a theoretical analysis. Our method integrates
two plug-in modules for Temporal Graph Neural Networks (TGNNs): one that preserves previ-
ously learned knowledge through class decision boundaries and inter-class connections, and another
that ensures broad generalization across both historical and emerging data distributions, utilizing
an effective linear Maximum Mean Discrepancy approximation with a novel temporal Weisfeiler-
Lehman subtree representation for measuring distribution shifts. Experiments on four real-world
datasets demonstrate that N-ForGOT not only minimizes forgetting but also enhances performance
on previous tasks, showcasing its effectiveness and generalizability. Future work will focus on ex-
tending our framework to handle unseen graph data from diverse domains and developing a model
capable of generating varied graph structures.
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A PROOF OF THE THEOREM 1

Based on the preliminary definition provided in Sec 3.1, we introduce the detailed definition of the
population risk in this case.

Definition 4 For a hypothesis function f , the probability according to the data distribution that a
hypothesis disagrees with the labeling function f̂ , is defined as:

RG(f, f̂) = Ex∼G[|f(x)− f̂(x))|]

We use the shorthandRG(f) = RG(f, f̂) to refer to the risk of a hypothesis 2 .

Our method aims to minimize the population risk of the current task, Rk(f)
3. and reduce the

difference between the current and previous task risks, |Rk(f)−R1:k−1(f)|. Theorem 1 is derived
by first assessing |Rk(f)−R1:k−1(f)|. We have:

|Rk(f)−R1:k−1(f)|
= |Rk(f)−R1:k−1(f) +R1:k−1(f, f̂k)−R1:k−1(f, f̂k)|

(10)

Based on the triangle inequality (Def A.1 in (Mohri et al., 2018)) for classification error, which
implies that for any labeling functions f1, f2 and f3, we have R(f1, f2) ≤ R(f2, f3) +R(f2, f3).
Thus, we can reorganize Equation 11 as follows:

Rk(f) ≤ R1:k−1(f) + |R1:k−1(f, f̂k)−R1:k−1(f, f̂1:k−1)|
+ |Rk(f, f̂k)−Rk−1(f, f̂k)|
≤ R1:k−1(f) + E1:k−1[|f̂1:k−1(x)− f̂k(x)|]
+ |Rk(f, f̂k)−R1:k−1(f, f̂k)| (Definition 4)

≤ R1:k−1(f) + E1:k−1[|f̂1:k−1(x)− f̂k(x)|]
+ divH(G1:k−1,Gk) (Lemma 1)

≤ R̂1:k−1(f) + divH(G1:k−1,Gk) + E1:k−1[|f̂1:k−1(x)− f̂k(x)|]

+

√
2d

m
log(

em

d
) +

√
1

2m
log

(
1

δ

)
(Lemma 2)

We could alternatively add R1(f, f̂k) instead of Rk(f, f̂1) in the first line. This would yield the
same bound but with the expectation taken over G1 instead of Gk. The smaller bound holds, leading
to:

Rk(f) ≤R̂k−1(f) + divH(G1:k−1,Gk)

+

√
2d

m
log(

em

d
) +

√
1

2m
log

(
1

δ

)
+ ξ

where ξ = min {Ek [|f1:k−1(x)− fk(x)|] ,E1:k−1 [|f1:k−1(x)− fk(x)|]}

2Here, RGk (f) is equivalent to RGk as defined in Section 3.
3For simplicity, we use Rk to represent RGk in the following proof.
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Lemma 1 For the definition of hypothesis space H and the symmetric difference hypothesis space
H∆H (Ben-David et al., 2010) ,

|Rk(f, f̂k)−Rk−1(f, f̂k)|
= Ek[|f(x)− f̂(x))|]− E1:k−1[|f(x)− f̂(x))|]
≤ sup

∥f∥H≤1

Ek[f(x)]− E1:k−1[f(x)]

≤ 1/2 divH (G1:k−1,Gk)

Lemma 2 According to the Theorem 11.8 in (Mohri et al., 2018). Let F be a family of real-valued
functions and the family of loss functions associated withF is non-negative. Assume Pdim(F) = d.
Then ∀δ > 0, with probability at least 1 − δ over the choice of a sample size m and natural
exponential e, the following inequality holds:

R(f) ≤ R̂(f) +
√

2d

m
log(

em

d
) +

√
1

2m
log

(
1

δ

)

B THEORTICAL FOUNDATION FOR THE DEFINITION 2

The theoretical foundation for Definition 2 is established by the principles of the WL algorithm (Le-
man & Weisfeiler, 1968) and the nature of TGNNs, as applied to the isomorphism problem in tem-
poral graphs. Here is the proposed Proposition and its proof:

Theorem 2 Let Gk and Gk−1 be any two non-isomorphic temporal graphs. If a neighborhood-
based massage passing TGNNs obtains different multisets of node embedding for Gk and Gk−1.
Then, the temporal WL subtree algorithm determines that Gk and Gk−1 are not isomorphic.

Proof. Based on the foundational theory (Morris et al., 2019), we consider any two nodes from a
temporal graph G = (V, T, E). If the temporal WL returns Cd(u) = Cd(v) for nodes u and v,
it implies that their corresponding embeddings from the TGNN are identical, i.e., gd(u) = gd(v).
This assertion can be proved through induction.

d = 0: Initially, the temporal WL algorithm uses the initial node features as colors, similar to how
TGNNs use these features as embeddings. Thus, if C0

s (u) = C0
s (v), then g0(u) = g0(v) holds

trivially.

d > 0: Assume the proposition holds for depth d. The color of a node v, Cd
s , output from the WL

algorithm at iteration d depends on the multiset of colors at iteration d−1 of its neighbors. Applying
the induction hypothesis, for any two nodes u, v, such that Cd+1

s (u) = Cd+1
s (v), it follows:

(
Cd

s (u),
{
{(Cd

s (i), eiu(t), t) : (u, i, t) ∈ E}
})

=
(
Cd

s (v),
{
{(Cd

s (j), ejv(t), t) : (v, j, t) ∈ E}
}) (11)

This equivalence translates to the TGNN outputs:(
gd(u),

{
{(gd(i), eiu(t), t) : (u, i, t) ∈ E}

})
=
(
gd(v),

{
{(gd(j), ejv(t), t) : (v, j, t) ∈ E}

}) (12)

From this, we conclude that if the multisets of temporal WL subtree patterns {{Cd(u)}}u∈V =
{{Cd(v)}}v∈V , then {{gd (u)}}u∈V = {{gd(v)}}v∈V . Hence, a neighborhood-based massage
passing TGNN with d − layer will output the same result for nodes with the same depth in the
temporal WL subtree pattern.

C GENERAL MMD

Definition 5 Maximum Mean Discrepancy. Given xk independent random variables with distri-
bution Gk, and xk−1 independent random variables with distribution Gk−1. An unbiased empirical
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estimate of MMD (Gretton et al., 2012) can be defined as,

MMD2
u[Gk−1,Gk] =

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

ψ
(
xk−1
i , xk−1

j

)
+

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ψ
(
xki , x

k
j

)
− 2

mn

m∑
i=1

n∑
j=1

ψ
(
xk−1
i , xkj

)

D TRAINING PROCEDURE

We provide the pseudo-code for our training procedure in Algorithm 1.

Algorithm 1 Continual Learning Algorithm
1: Input: Continual tasks K = {K1, . . .KK},
2: Output: Optimized model f(θ∗), Predicted label Y1:k,
3: Initialize θ randomly;
4: for Gk, Yk ∈ KK do
5: Split the training data into batches Bk in chronological orders
6: for Bi

k in Bk do
7: ŷ′k, ŷk ← f(θk−1, B

i
k), f(θk, B

i
k)

8: LDB ← ŷ′k, ŷk ▷ Eq. 3
9: p̂k, p̂k ← gk−1(θk−1, B

i
k), gk(θk, B

i
k) ▷ Eq. 6

10: LIC ← p̂k, p̂k ▷ Eq. 5
11: Construct temporal WL subtree set Si

k ← Bi
k ▷ Prop. 2

12: Obtain features of subtree patters Cn(v|Bi
k) ▷ Eq. 8,9

13: LDIV = div(Bi
k−1, y

i
k) ▷ Eq. 12

14: Lclassification ← CrossEntropy (y, ŷ)
15: θ ← argmin(Lclassification + α(LDB + LIC) + βLDIV )
16: end for
17: Pk ← (gk(θ

∗
k, Gk), Pk−1) ▷ Eq. 4

18: end for

E EXPERIMENT

E.1 DETAILS OF DATASETS

Specifically, in the Yelp dataset, businesses are represented as nodes. A temporal edge is established
between two businesses if a user comments on both within a one-week interval. We organize the
dataset chronologically, treating data from each year as a distinct task. To simulate the introduction
of new classes in OTG, we selectively sample two large sets of business categories that have not
appeared in previous tasks, treating these as new classes. In the Reddit dataset, posts are treated
as nodes and the community topic of the post is the node label. Connections between posts are
established in the same manner as in the Yelp dataset. For the Taobao and Amazon datasets, products
are represented as nodes, and a product-to-product graph is constructed using the same criteria as
for Yelp.

Table 3: Yelp.
Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

# Nodes 1905 1621 1488 2617 1088 12273
# Edges 15702 7352 2995 4383 2351 201676
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Table 4: Reddit.
Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

# Nodes 1706 1749 1853 1677 1691 2338
# Edges 12558 25610 23573 24950 61702 68004

Table 5: Taobao.
Task 0 Task 1 Task 2

# Nodes 15679 8318 91415
# Edges 59523 25865 370274

E.2 EXPERIMENT SETTING

We assess our proposed method, in a scenario where the model must differentiate among all classes
from the current and previous tasks without task indicators. For example, if the model is sequentially
trained on two tasks with class pairs {(0,1),(2,3)}, the model is expected to classify any of the
four class labels {0,1,2,3} collectively after training on the second task. The classifications are not
confined to separate task-specific pairs {(0,1)} or {(2,3)}. This setup can demonstrate the model’s
adaptability across an expanding class set.

The model framework consists of three parts: a feature extractor (made up of TGNN layers), a dis-
criminator (made up of MLP layers), and our proposed plug-in modules. For the implementation
detail, we utilize a multi-layer TGNN, where each layer contains a specified number of neurons in
the hidden layer. We can apply any neighborhood-based message passing TGNNs as the feature
extractor. In this experiment, we use the widely used TGNNs, TGAT (Xu et al.) for the feature
extractor. We sample 5 neighbor nodes (from the current task) for each node to aggregate the neigh-
borhood information. The input features for all datasets are processed in 300 dimensions. The
network is trained using the Adam optimizer for each dataset with learning rates set at η = 0.0001
until convergence is reached. The classification is handled by a two-layer MLP: the first layer uses
ReLU activation and Dropout, with a hidden size of 100, to transform node features into hidden
representations. The second layer consists of multiple independent linear classification heads, each
designed for a specific task. The entire network is optimized using cross-entropy loss to ensure
effective classification performance across tasks. After training, we assess the model’s performance
on the current task as well as on all previous tasks. Our experiments are conducted on a GeForce
RTX 3090 GPU.

For the MMD measurement, we apply the widely used Gaussian kernel as the kernel mapping func-
tion, defined as ψ(xi, xj) = e−∥xi−xj∥2/γ

, where the bandwidth γ is set to the median of pairwise
distances among the data points. To capture the characteristics of the data at different scales, we
utilize a family of m Gaussian kernels {ψu}mu=1, varying γu based on the distance of input data and
the number of kernels. We opt for five kernels to ensure a comprehensive analysis.

E.3 BASELINES

For computer vision continual learning methods, we adapt three well-known algorithms
(EWC (Kirkpatrick et al., 2016), and LwF (Li & Hoiem, 2016)) to a TGNN backbone. These
methods primarily prevent CF through regularization and knowledge distillation. In the graph data
domain, we compare our method with two state-of-the-art graph continual learning approaches:
TWP (Liu et al., 2021) and ER-GNN (Zhou & Cao, 2021), which focus on weight preservation and
dynamic regularization respectively. To ensure a fair comparison, we utilize the same TGNN as
the backbone for these approaches, adapting them from their original implementations with static
GNNs. Additionally, we include OTGNet (Feng et al., 2023), a replay-based class-incremental
learning method specifically designed for OTGL. For fairness in our comparisons, we standardized
the size of the candidate set and the replay buffer for the replay-based method to match the training
durations of our method.
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Table 6: Amazon.
Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

# Nodes 9097 12225 28022 39906 58930 79743 134042
# Edges 31907 63854 86814 132214 330134 1809135 1718641

E.4 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

We analyze the effects of batch size |B| and temporal WL subtree depth d. As shown in Definition
2, we use the backbone model’s number of layers to represent subtree depth. Figure 6 shows that
our method is not sensitive to batch size. Figure 7 indicates that a single layer is sufficient for cap-
turing the necessary information, demonstrating that our temporal WL subtree effectively captures
sufficient details by 0-th and 1-th patterns.

Figure 6: Sensitivity Analysis of the Batch Size

E.5 HYPERPARAMETERS STUDY

To provide clear insights into the impact of these hyperparameters, we conducted an ablation study,
with the results detailed in Table 7. The findings indicate that both plug-in modules significantly
enhance performance. The model achieves greater robustness when we assign relatively similar
weights to each plug-in module in the calculation of the final loss function.

Table 7: Hyperparameters Ablation Study
α = 1 β = 1 β = 0.8 β = 0.4 β = 0

AP AF BWT AP AF BWT AP AF BWT AP AF BWT
69.356 -2.829 -2.050 67.807 -6.441 -5.979 60.848 -12.971 -8.056 65.342 -1.932 -1.932

β = 1 α = 1 α = 0.8 α = 0.4 α = 0
AP AF BWT AP AF BWT AP AF BWT AP AF BWT

69.356 -2.829 -2.050 66.890 -2.721 -2.158 65.382 -9.236 -8.100 70.268 -6.765 -3.975
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(a) Yelp (b) Taobao

Figure 7: Sensitivity Analysis of the Number of Layers

F TASK-TO-TASK DISTRIBUTION SHIFTS

We calculate and present the task-to-task distributional shifts, computed by MMD, in the following
Table. The data presented in the following table and the heatmap (Figure 1(b)) clearly illustrate
the inherent challenges posed by structural and temporal shifts in open temporal graph learning.
These visualizations show how these shifts manifest across tasks, with MMD values highlighting
the extent of distributional changes as new tasks are introduced. In reference to the ablation study
shown in Table 2, we found that the LTDO module significantly enhances the model’s effectiveness
and robustness across four datasets, particularly in the context of the distribution shifts noted.

Table 8: Task-to-task distributional shifts (measured by MMD)

Tasks 0-1 1-2 2-3 3-4 4-5 5-6
Taobao Dataset 4.245 2.228
Yelp Dataset 1.015 0.681 0.802 1.068 1.348
Reddit Dataset 1.739 1.456 2.113 1.921 1.763
Amazon Dataset 2.148 2.005 1.833 1.785 1.698 2.790
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