
Under review as a conference paper at ICLR 2023

OPTIMIZING THE PERFORMANCE OF TEXT CLASSIFI-
CATION MODELS BY IMPROVING THE ISOTROPY OF
THE EMBEDDINGS USING A JOINT LOSS FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies show that the spatial distribution of the sentence representations
generated from pre-trained language models is highly anisotropic, meaning that
the representations are not uniformly distributed among the directions of the em-
bedding space. Thus, the expressiveness of the embedding space is limited, as the
embeddings are less distinguishable and less diverse. This results in a degradation
in the performance of the models on the downstream task. Most methods that
define the state-of-the-art in this area proceed by improving the isotropy of the
sentence embeddings by refining the corresponding contextual word representa-
tions, then deriving the sentence embeddings from these refined representations.
In this study, we propose to improve the quality and distribution of the sentence
embeddings extracted from the [CLS] token of the pre-trained language models
by improving the isotropy of the embeddings. We add one feed-forward layer,
referred to as the Isotropy Layer, between the model and the downstream task lay-
ers. We train this layer using a novel joint loss function that optimizes an isotropy
quality measure and the downstream task loss. This joint loss pushes the embed-
dings outputted by the Isotropy Layer to be more isotropic, and it also retains the
semantics needed to perform the downstream task.
The proposed approach results in transformed embeddings with better isotropy,
that generalize better on the downstream task. Furthermore, the approach re-
quires training one feed-forward layer, instead of retraining the whole network.
We quantify and evaluate the isotropy through multiple metrics, mainly the Ex-
plained Variance and the IsoScore. Experimental results on 3 GLUE datasets with
classification as the downstream task show that our proposed method is on par
with the state-of-the-art, as it achieves performance gains of around 2-3% on the
downstream tasks compared to the baseline.

1 INTRODUCTION

Recent Transformer-based models have achieved significant success on various natural language
processing tasks (Kalyan et al., 2021). However, Ethayarajh (2019) observes that some language
models including Bidirectional Encoder Representations from Transformers (BERT) produce con-
textualized word representations that are not isotropic. In other words, the information in the em-
beddings is not uniformly distributed in all directions in the space. This is not desirable as these
representations vary the most in top directions, which limits the expressiveness of the space. Gao
et al. (2019) referred to this problem as the representation degeneration problem. Even though re-
searchers did not agree on the source of anisotropy, having an isotropic space is very desirable as the
more isotropic the space is, the more diverse the embeddings are. Furthermore, having an isotropic
space affects the optimization of the model (i.e., convergence and accuracy), and leads to improve-
ment in the performance of the model(Wang et al., 2020).
As mentioned previously, BERT-based models suffer from the problem of having an anisotropic
space. This affects the representation capacity of the embedding space and affects the accuracy of the
downstream task. More specifically, Rajaee & Pilehvar (2021b) highlighted that the Classification
([CLS]) token representations are much more anisotropic than all representations in the fine-tuned
space. The authors highlighted that this problem becomes even more dramatic after fine-tuning, as
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this process tends to concentrate information about the target task in the dominant directions (i.e.,
the top principal components). Furthermore, Rajaee & Pilehvar (2021b) showed that improving the
isotropy, in general, does not immediately result in a better performance for the model. Therefore,
we propose to learn an embedding transformation that renders the [CLS] embeddings more isotropic
without losing the information of the target task; once improved, the embedding space should ex-
hibit better statistical properties, which should result in a better performance on the downstream
task (i.e., increase in the model performance). Thus, we proceed by freezing the parameters of the
fine-tuned model and the downstream task layer, and adding an Isotropy Layer between these two
models. This Isotropy Layer is one feed-forward layer, which goal is to output embeddings of bet-
ter isotropy. The parameters of this layer are learned using a joint loss function that combines an
isotropic loss function and the downstream task loss function.

We apply empirical methods to quantitatively measure the improvement of the models in terms of
isotropy and performance on the downstream task. The improvement in isotropy is evaluated by
computing two measures of isotropy, mainly the isoscore and the explained variance, while the im-
provement in the model performance is evaluated by computing a dataset-specific metric. Two main
experiments are carried out. The first experiment compares the proposed method to the baseline (i.e.,
finetuned model with no Isotropy Layer), while the second experiment compares the method to the
Isotropic Batch Normalization (IsoBN) method (Zhou et al., 2021). To the best of our knowledge,
our work is the second study besides IsoBN Zhou et al. (2021) that aims to improve the isotropy of
the [CLS] token representations. The main contributions of this work are as follows:

1. We provide a method to improve the isotropy of the embeddings by adding an Isotropy
Layer at the output of the finetuned language model, and only training this layer using a
joint loss function.

2. As shown by Rajaee & Pilehvar (2021b), it is not sufficient to only improve the isotropy
of the embeddings, as the embeddings need to maintain the semantics required for the
downstream task. Therefore, we propose a novel joint loss function that optimizes both an
isotropic loss measure as well as a downstream task loss, and results in embeddings that are
more isotropic and that perform better on the downstream task. The isotropic loss is based
on the IsoScore. This joint loss function should encourage to include unsupervised quality
measures inside the loss function to enforce some statistical properties on the model.

3. We evaluate our method of improving the isotropy of embeddings on multiple datasets from
the General Language Understanding Evaluation (GLUE) benchmark for several down-
stream tasks and compare its performance with the IsoBN method. Experimental results on
3 GLUE datasets demonstrate that our method can improve isotropy significantly, as well
as improve the model performance.

This paper is structured as follows: Section 2 introduces the concept of Isotropy as well as the
related work that is relevant to the study. Section 3 presents the proposed method and describes
the implementation of this method. Section 4 describes the experimental evaluation as well as the
results obtained from these experiments. Finally, Section 5 provides the summary of the findings
and conclusions as well as the future scope of this study.

2 ISOTROPY

Isotropy is a geometric property that assesses the distribution of the points in space Biś et al. (2021).
In an ideally isotropic space, the embeddings are uniformly distributed in all directions of the space,
i.e., the embeddings are not biased in a specific direction.

2.1 PROPERTIES

Isotropy has been linked to multiple properties in space. For instance, in an anisotropic space,
randomly sampled words tend to be highly similar to one another when measured by cosine
similarity (Ethayarajh, 2019). Furthermore, the representations exhibit word-frequency bias, as
the high-frequency words concentrate densely in the embedding space while low-frequency words
disperse sparsely in the space (Li et al., 2020).
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Multiple studies tried to explain the source of the anisotropy. Timkey & van Schijndel (2021) showed
that the anisotropy in contextual models is a product of rogue dimensions of the entire embedding
space. These rogue dimensions drive the similarity metrics, explaining the high similarity property
between random embeddings of these spaces. However, the authors mentioned that these models
still perform well as their behavior is not greatly affected by these rogue dimensions. Their analysis
showed that these dimensions handle a small subset of the model’s linguistic abilities (i.e., punctu-
ation and positional information). Furthermore, Biś et al. (2021) showed that embeddings do not
occupy a narrow cone, but rather only appear as a cone when projected to a lower-dimensional
space. The authors showed that during training, word embeddings share the same direction gradi-
ents, therefore are shifted in one dominant direction in the vector space.

2.2 MEASURES

There is a need to approximate the degree of isotropy of the space, i.e., the spatial utilization of
the embeddings. As mentioned previously, an isotropic space has embeddings that are distributed
uniformly in all dimensions. In other words, the embeddings have elongations that are similar across
different directions of the space. Therefore, methods that are based on the Principle Component
Analysis are the most appropriate to find and study the most elongated directions of the space.
We present the two most robust PCA-based methods to quantify the isotropy, mainly the explained
variance ratio and the IsoScore as highlighted by Rudman et al. (2022).

Explained Variance Ratio: The explained variance ratio, which we refer to as EVk Score, measures
how much total variance is explained by the first k principal components of the data. This metric
measures the difference in variance in different directions of the space. However, computing it
requires the specification of a certain number of Principle Components (PCs). Therefore, in this
study, we will be numerically examining this score for the first three PCs, and graphically for the top
components. Given that λi is the ith largest singular value of the embeddings matrix E, the variance
explained ratio is computed as follows:

EVk(E) =

∑k
i=1 λ

2
i∑D

i=1 λ
2
i

(1)

IsoScore: The IsoScore (Rudman et al., 2022) of an embedding space can be interpreted as the
fraction of dimensions uniformly used by the embedding space. This score is derived from an
isotropy defect that is calculated by computing the distance between the identity matrix and the
normalized covariance matrix of the PCA-reoriented data. The IsoScore scales linearly with the
number of dimensions used and is stable when distributions contain highly isotropic subspaces. A
high IsoScore (i.e., close to 1.0), indicates that the principal components are uniformly distributed
across all dimensions of space, implying that the space is isotropic. However, a small IsoScore (i.e.,
close to 0.0) indicates that the first components explain almost all the variance of the data, implying
a highly anisotropic space.

2.3 RELATED WORK

In this section, we present some related work aiming to solve the representation degeneration prob-
lem and improve the isotropy of the space. We can split the studies into two: (1) studies that reg-
ularize the embeddings during the training stage and (2) studies that post-process the embeddings
after the training phase.

Regularizing the embeddings: Multiple studies applied regularization to improve the isotropy of
the learned embeddings. Firstly, Gao et al. (2019) employed cosine regularization to decrease the
similarity between the embeddings and increase the representation power of the space. However,
Zhang et al. (2020) proposed the Laplacian regularization as a better alternative to cosine regular-
ization, as it minimizes the similarities between the embeddings with similar contexts (instead of
applying it to all embeddings). Moreover, Wang et al. (2020) mitigated the fast singular value de-
cay phenomenon of anisotropic space using spectrum control. Finally, Gong et al. (2018) learned
embeddings of better isotropy by alleviating the word frequency bias of anisotropic spaces using
adversarial training.
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Postprocessing the embeddings: Other studies proposed to post-processes the learned embeddings
to improve the isotropy of the space. Firstly, Mu & Viswanath (2018) introduced the All-but-the-top
method that removes the common vector and dominant directions from the embeddings, rendering
them more isotropic. Secondly, Rajaee & Pilehvar (2021a) increased the isotropy by clustering the
embeddings and nulling the principal components of each cluster. Third, Liang et al. (2021) applied
a weighted removal of a selected number of dominant directions from the embedding. The weights
were learned through a word similarity task applied to the embeddings.

Discussion: Our method of improving the isotropy of embeddings is similar to the regularization-
based approaches as it improves the embeddings through a penalty term. However, the measure
used in our method is unsupervised and more robust, and it directly estimates isotropy instead of
computing an indicator of isotropy. Furthermore, our method is not as computationally expensive
as the regularization methods, as it only trains one feed-forward layer instead of the whole language
model. Our method is also a form of postprocessing of the embeddings, as the layer introduced
transforms the embeddings and makes them more isotropic, without compromising the modeling
power of the space.

3 IMPROVING THE ISOTROPY OF EMBEDDINGS USING AN ISOTROPIC LAYER
AND A JOINT LOSS

As mentioned previously, we limit the scope of our work to the embedding space of the [CLS] rep-
resentations. To our knowledge, the only study besides ours which improves the [CLS] embeddings
is the IsoBN Zhou et al. (2021). In their study, Zhou et al. (2021) first highlighted the anisotropic
nature of the [CLS] embeddings. Then, they proposed to improve the isotropy of these embed-
dings using an isotropic variant of the batch normalization method. Furthermore, the downstream
task considered in our study is classification. However, we could generalize the method to different
downstream tasks.

The proposed approach can be visualized in Figure 1. In summary, the approach consists of adding a
layer, referred to as the Isotropy Layer, between the pre-trained language model and the downstream
task layers. This Isotropy Layer is responsible for transforming the [CLS] embeddings of BERT
into embeddings with a better isotropic property. Since the goal of the study is to improve the
isotropy of the space to perform better on the downstream task, we condition the learning process
by freezing the parameters of the downstream task layers as well as the language model (preserving
the knowledge acquired to solve the downstream task). Since only this layer is updated during
training, we are learning a clear transformation of the space; this transformation post-processes the
embeddings to improve the distribution of the embeddings in the space while keeping the semantics
needed to perform the downstream task. The process can be summarized in Figure 1. We present
the details of the approach in the following subsections.

Figure 1: Diagram summarizing the approach described in the study.
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3.1 FINE-TUNING THE LANGUAGE MODEL USING THE DOWNSTREAM TASK LOSS

Our proposed approach assumes that the pre-trained language model is first fine-tuned on the down-
stream task. This is done by extracting the [CLS]embeddings from the language model and feeding
these embeddings to a predefined set of downstream task layers. Then, both the pre-trained language
model and the downstream task layers will be trained to perform the downstream task. Fine-tuning
the model on a downstream task allows us to leverage the knowledge encoded in this model, and
transfer it to perform the task at hand.

3.2 FREEZING THE NETWORK AND ADDING ISOTROPY LAYER

We insert one feed-forward layer, called the Isotropy Layer, between the fine-tuned model and the
downstream task layers. The goal of the Isotropy Layer is to transform the [CLS] embeddings out-
putted by the fine-tuned model to a new space that is more isotropic. It should be noted that this
layer could be replaced by a more complex neural network, with the only limitation that the output
of this neural network should be of the same size as its input (i.e., the embedding vector outputted
by the pre-trained model), to ensure compatibility of the output of the network with the downstream
task layers.
As mentioned previously, improving the isotropy by itself is not sufficient (Rajaee & Pilehvar,
2021b). Therefore, the Isotropy Layer needs to maintain the semantics needed to perform the down-
stream task at hand. To do so, we perform the following:

• We freeze the parameters of the fine-tuned model. As we know, the fine-tuned model has
learned some part of the knowledge required to perform the downstream task. Freezing this
fine-tuned model preserves the knowledge learned.

• We freeze the parameters of the downstream task layers. As mentioned previously, the out-
put of the Isotropy Layer (i.e., the transformed embeddings) needs to maintain the seman-
tics needed to perform the downstream task. Therefore, we freeze these layers to condition
the output of the Isotropy Layer to adjust to the knowledge of this layer during the training.

3.3 TRAINING THE ISOTROPY LAYER USING A JOINT LOSS

Joint Loss: Now that the fine-tuned model and the downstream task layers are both frozen, we train
the Isotropy Layer using the proposed joint loss function:

L = α× L1 + (1− α)× L2 (2)

We define the variables in the equation as the following:

1. L1 is the loss used to fine-tune the pre-trained model. It varies with the downstream task
(i.e., CrossEntropy for the classification, Mean Squared Error for regression tasks). This
measure is computed over the output of the new network, i.e., the embeddings are fed to
the pre-trained model, transformed through the Isotropy Layer, then go through the down-
stream task layers to generate an output. This term ensures that the transformed embeddings
maintain the semantic information required for the downstream task.

2. L2 quantifies the degree of the isotropy of the space of embeddings at the output of the
Isotropy Layer. It is an unsupervised measure computed over a mini-batch of embeddings
at a time. Intuitively, the bigger the batch of embeddings, the more accurate the isotropy
measure is. This term acts as a regularizer for the new embeddings, and it pushes the
weights of the Isotropy Layer to produce more isotropic embeddings.
We propose to use the IsoScore as the measure of quality used to compute L2. We usually
desire to optimize a decreasing function. Knowing that the IsoScore increases for a better
isotropic space, we propose to use the logarithmic of the inverse of the IsoScore. This
decision was taken due to its sensitivity to the change in the measure used (i.e., IsoScore).
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Balancing both losses: Ideally, setting α to 0.5 should result in equally acceptable isotropic property
and downstream task performance. However, both losses in the joint loss operate around different
scales. Therefore, the learning process might be biased toward one of the losses and might optimize
one of the losses at the expense of the other one. Inspired by the work done by Zabihzadeh (2021),
we overcome this issue by normalizing the losses by computing a Moving Average as follows:

1. We keep track of the set of mean values of each loss L1 and L2, as well as their average L.

2. We estimate the set of normalized losses as L̂i = Li
L
Li

where i ∈ {1, 2}.

3. At iteration k of the learning process, we update the set of mean values using exponential
moving average, where s is the smoothing factor (set as 0.15, as in Zabihzadeh (2021)).

Lnew
i = Li ×

s

1 + k
+ Li × (1− s

1 + k
) (3)

4. The loss used to train the Isotropy Layer is L̂ = 1
2 (L̂1 + L̂2).

4 EXPERIMENTS

To evaluate the proposed method, we conducted two main experiments. The first experiment evalu-
ates the proposed method and compares it to our baseline (i.e., the text classification system without
the Isotropy Layer) in terms of IsoScore, Explained Variance, and performance measurement. The
second experiment compares the proposed method with the IsoBN method (Zhou et al., 2021).

4.1 EXPERIMENTAL SETUP

Datasets: To evaluate our approach, we used multiple datasets from the GLUE benchmark (Wang
et al., 2018). The GLUE benchmark is a collection of Natural Language Understanding (NLU)
tasks including question answering, sentiment analysis, and textual entailment. GLUE datasets
favor models that learned to represent linguistic knowledge for sample-efficient learning and knowl-
edge transfer across tasks (Wang et al., 2018). Each dataset has its metric to evaluate the model
performance. We selected the three specific datasets described in Table 1 because they represent the
three main tasks of the GLUE benchmark, which are Inference Tasks (RTE), Single-Sentence Tasks
(CoLA), and Similarity and Paraphrase Tasks (MRPC). We evaluate the classification on the dev
sets that were provided by these datasets 1.

Table 1: Details of the datasets used in the experimental evaluation.

Dataset
ID

Dataset Name Dataset Description Performance Metric

RTE Recognizing
Textual

Entailment

Determines whether each sentence entails
a given hypothesis or not

Accuracy

CoLA Corpus of
Linguistic

Acceptability

Determines whether each sentence is
grammatically correct or not

Mathew’s correlation
coefficient

MRPC Microsoft
Research

Paraphrasing
Corpus

Consists of a pair of sentences and
determines whether the sentences are

paraphrases from one another

Accuracy

Models2: The models were implemented using the transformers library provided by HuggingFace
(Wolf et al., 2019) using PyTorch. The optimizer used is AdamW(Loshchilov & Hutter, 2017). Early
stopping was applied according to task-specific metrics on a validation set (train/validation split of

1The labels of the test sets were not provided (they are only evaluated through the leaderboard at
https://gluebenchmark.com/leaderboard). This setup also follows the work done by IsoBN.

2More information regarding hyper-parameter tuning is available in a technical report (Not disclosed due to
the double-blind review)
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70/30). The approach is evaluated on two pre-trained language models, mainly BERT-base-cased
and RoBERTa-large, as these models perform well for the English language. Since the datasets used
are binary classification datasets, the downstream task layers consist of only one classification layer
of 2 neurons. The activation function used is the softmax function and the loss used is the binary
cross-entropy loss. The Isotropy Layer is a one-layer feed-forward neural network, with a number
of neurons of the same size as the [CLS] embedding extracted from the pre-trained language model
(768 in the case of BERT and 1024 in the case of RoBERTa). We could have opted out for a more
complex neural network. We leave this direction for future studies.

4.2 COMPARING THE PROPOSED APPROACH TO THE BASELINE

4.2.1 MODEL PERFORMANCE AND ISOSCORE

We proceed by applying our approach and evaluating the performance of the model per dataset
performance metric and the isotropy of the transformed embedding space using the IsoScore. These
measures have been computed over the dev set. Results are displayed in Table 2.

bert-base-case roberta-large
Dataset Method Performance IsoScore Performance IsoScore

RTE
Finetuned Language Model (LM) 67.87 0.0051 85.56 0.0049
Finetuned LM + Isotropy Layer 71.84 0.025 87.36 0.0145
Improvement of the approach +5.8% +390.2% +2.1% +195.9%

CoLA
Finetuned Language Model (LM) 61.61 0.004 67.23 0.0012
Finetuned LM + Isotropy Layer 63.57 0.0255 68.77 0.0023
Improvement of the approach +3.2% +537.5% +2.3% +91.67%

MRPC
Finetuned Language Model (LM) 85.29 0.0033 90.93 0.0016
Finetuned LM + Isotropy Layer 87.99 0.0103 91.17 0.00245
Improvement of the approach +221.2% +221.2% +0.26% +53.13%

Table 2: Internal evaluation of the approach on 3 GLUE benchmarks. We can observe a significant
increase in the isoscore and a notable increase in task performance.

4.2.2 EXPLAINED VARIANCE

We examine the explained variance curve of the models trained by computing the metric over the top
K=20 principal components. The results are displayed in Figure 2. We can see that using the Isotropy
Layer resulted in embeddings with a smaller explained variance compared to the baseline. This
means that the singular values distribute more uniformly in the transformed space, inferring that the
information is spread across more principal components uniformly (the space is more isotropic). We
also notice that the proposed approach had limited improvement in explained variance for RoBERTa,
compared to BERT. We provide multiple explanations in the discussion section for such behavior.

4.3 COMPARING THE PROPOSED APPROACH WITH ISOBN

We compare the proposed approach to IsoBN, the only approach in the literature besides ours that
aims to improve the isotropy of the [CLS] embeddings. To prove that the improvements incurred by
our approach are consistent, we run the approach on each dataset with 5 random seeds. Furthermore,
we measure the isotropy by examining the explained variance of the top 3 principal components. As
we can see, our approach provides consistent improvements in both performance and isotropy. We
notice that our approach is on par with IsoBN in terms of model performance. As for the isotropy,
we can see that our approach results in better explained variance for all BERT models, while IsoBN
results in better explained variance for the RoBERTa models. This is interpreted in the discussion
section.
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Figure 2: The plots present the explained variance of the top principal components on 3 selected
datasets. These plots show that the proposed method results in a smaller explained variance com-
pared to the baseline, which indicates that the variations of the embeddings tend to distribute equally
in all directions (i.e., more isotropic space).

Dataset Method Performance Measure Isotropic Measure
IsoBN IsoLayer IsoBN IsoLayer

RTE

BERT-base 67.87 (1.1) 67.72 (0.83) 0.88/0.93/0.95 0.61/0.75/0.78
BERT-base+Isotropy 70.75 (1.6) 70.40 (1.05) 0.49/0.72/0.85 0.27/0.35/0.38

RoBERTa-L 84.47 (1.0) 85.56 (0.8) 0.53/0.66/0.70 0.44/0.65/0.73
RoBERTa-L+Isotropy 87.00 (1.3) 87.36 (0.6) 0.15/0.29/0.37 0.19/0.31/0.39

CoLA

BERT-base 60.72 (1.4) 60.89 (0.81) 0.49/0.58/0.64 0.60/0.75/0.77
BERT-base+Isotropy 61.59 (1.6) 62.82 (0.85) 0.25/0.37/0.48 0.18/0.30/0.32

RoBERTa-L 68.25 (1.1) 67.33 (0.9) 0.83/0.88/0.90 0.66/0.87/0.91
RoBERTa-L+Isotropy 69.70 (0.8) 68.77 (0.8) 0.21/0.38/0.49 0.41/0.63/0.76

MRPC

BERT-base 85.29 (0.9) 86.64 (1.09) 0.76/0.87/0.89 0.63/0.80/0.81
BERT-base+Isotropy 87.5 (0.6) 87.5 (0.42) 0.37/0.68/0.77 0.43/0.49/0.52

RoBERTa-L 90.68 (0.9) 90.93 (0.2) 0.86/0.90/0.91 0.73/0.96/0.98
RoBERTa-L+Isotropy 91.42 (0.8) 91.17 (0.3) 0.18/0.36/0.43 0.61/0.96/0.98

Table 3: Results on the dev sets of selected GLUE tasks after running 5 times with different random
seeds. For the performance measures, we report the median and standard deviation over the 5
models. As for the isotropy measure, we report the explained variance of the model that exhibits
median EV1. Results from IsoBN have been extracted from the work done by Zhou et al. (2021).
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4.4 DISCUSSION

BERT vs RoBERTa: We notice that the improvements on BERT were higher than the improve-
ments in RoBERTa in terms of performance and isotropy. Investigating this phenomenon is left
for future work. However, we provide some hypotheses that could explain the observed behavior.
One source of this discrepancy can be attributed to the highly anisotropic nature of the RoBERTa
embedding space; Figure 2 shows that most of the variance is concentrated in the top 5 principal
components (unlike BERT, where the variance is more distributed among the PCs). Furthermore,
RoBERTa is more complex than BERT (larger architecture). Therefore, a solution worth explor-
ing is to increase the complexity of the Isotropy Layer (i.e., replacing the one feed-forward neural
network with a deeper network that can learn a more complex transformation resulting in better
embeddings). Another source of the discrepancy observed could be due to the strict constraint im-
posed by the downstream task layers (that are frozen). In other terms, the downstream-task layers
might rely heavily on the information encoded in the top principal components. A solution worth
exploring in future work is to retrain the Isotropy Layer on the improved embeddings, fine-tune the
downstream task layers on these transformed embeddings, and repeat both steps until convergence.
Another potential solution is to jointly train both the Isotropy Layer and the downstream-task layers
with the joint loss function.

IsoLayer vs IsoBN: We pinpoint an interesting analogy between both approaches; the IsoBN ap-
proach employs an isotropic batch normalization to regularize the embeddings, while our method
learns a transformation that adds an isotropic penalty term to regularize the embeddings. We should
note that the IsoLayer method trains only one feed-forward neural network, while the IsoBN method
performs the training for the whole network. A disadvantage of our method is that the performance
is highly constrained by the downstream task layers. Perhaps, a more isotropic embedding space
with better semantic properties can be reached with a different downstream task network.

5 CONCLUSIONS AND FUTURE WORK

As mentioned in the previous sections, BERT-based models suffer from the problem of having an
anisotropic embedding space. This affects the representation capacity of the embedding space and
affects the accuracy of the downstream tasks. In our work, we proposed to learn an embedding
transformation that improves the isotropy of the [CLS] embeddings by adding an Isotropy Layer at
the output of the fine-tuned language model and only training this layer using a joint loss function.
Once trained, the layer will output transformed embeddings of better statistical properties that result
in a better performance on the downstream task. We applied empirical methods to quantitatively
measure the improvement of the models in terms of isotropy and performance on the downstream
task. The experimental results on 3 GLUE datasets showed that our proposed method is on par
with the state-of-the-art, as it achieves performance gains of around 2-3% on the downstream tasks
compared to the baseline. A promising direction would be to understand the impact of our solution
on the semantics of the model. To do so, we propose to employ tools that allow us to navigate the
embedding space, giving us insights into the distribution of the concepts in the embedding space
(i.e., reach more interpretable results). Since this property is not supported by default, we leave this
direction for future work.

REPRODUCIBILITY STATEMENT

As mentioned in the previous sections, all datasets used in this study are part of the GLUE bench-
mark (https://gluebenchmark.com/). Furthermore, all seeds have been fixed to ensure that the results
are reproducible. More information regarding the details of the training process (including hyper-
parameter tuning) is available in a separate technical report (reference to which is not disclosed due
to the double-blind review). The source code of the model is available on GitHub at (URL is not
disclosed due to the double-blind review).
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