SELF-SUPERVISED PSEUDODATA FILTERING FOR IM PROVED REPLAY WITH SUB-OPTIMAL GENERATORS

Anonymous authors

Paper under double-blind review

ABSTRACT

Continual learning of a sequence of tasks without forgetting previously acquired knowledge is one of the main challenges faced by modern deep neural networks. In the class-incremental scenario (aka open-set learning), one of the most difficult continual learning problems, new classes are presented to a classifier over time. The model needs to be able to learn and recognize these new classes while also retaining its knowledge of previously witnessed ones. A common approach is to make it revisit the old classes or their features in some form, either by analysing stored exemplars or by using artificially generated samples. The latter approach, Generative Replay, usually relies on a separate generator trained alongside the main classifier. Since the generator also needs to learn continually, it is usually retrained on every task, using its own generated samples as training data representing older classes. This can lead to error propagation and accumulating features unimportant or confusing for the classifier, reducing the overall performance for larger numbers of tasks. We propose a simple filtering mechanism for mitigating this issue – whenever pseudodata is generated for a new task, the classifier can reject samples it is not able to classify with sufficient confidence, thus preventing both models from retraining on poor-quality data. We tested the filter on several datasets, including real-life images, using various combinations of models, as the method can be applied regardless of the network architectures. We show that filtering improves the classifier's accuracy and provide statistical analysis of the results.

031

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

032

034 035

1 INTRODUCTION

Catastrophic forgetting of previously learned knowledge after being trained on a new task is one of the main drawbacks of modern deep neural networks (French (1999); Jedlicka et al. (2022)). The 037 ability to mitigate this issue, and learn continually, is crucial in many realistic machine learning applications, including autonomous machines navigating in changing environments and real-time decision makers having to adapt and react to shifting incoming data distributions (Shaheen et al. 040 (2022)). In classification problems, such continual learning scenarios are often labeled as Task-, 041 Domain- or Class-Incremental Learning (IL) (Van de Ven & Tolias (2019)). These scenarios differ 042 mostly in terms of the availability of the task identity: In a Task-IL scenario, the model is aware 043 of which task it's solving both in the training and the prediction phase while a Domain-IL model 044 knows the task identity only during training. In a Class-IL, even if the task boundaries are known during training, the model does not explicitly use this information and the task id at any stage. These scenarios are further explained in figure 1. 046

While challenging for artificial neural networks, catastrophic forgetting does not affect biological learning agents, such as humans and other mammals to such a significant degree. The way we interact with our environment is inherently time-dependent – we learn new patterns and skills sequentially, building upon and expanding the previously acquired knowledge instead of completely overwriting it. Several mechanisms have been proposed to be responsible for this ability. In the context of this work the most relevant is the hypothesis of experience replay and the complementary learning systems theory (Abraham (2008); Yger & Gilson (2015); McClelland et al. (1995); Rasch & Born (2013)).

Tas	sk 1	Ta	sk 2	Tas	sk 3	Tas	sk 4	Т	ask 5
0 first class	second class	first class	3 second class	first class	5 second class	b irst ass	2 second class	first	

Figure 1: SplitMNIST task protocol. In task-incremental scenarios the model learns classes pairwise and during testing it knows which pair the current image belongs to. In domain-incremental scenario the model needs to decide whether the image belongs to the first or the second class in its corresponding pair, but the identity of the pair is irrelevant (e.g., all odd numbers in MNIST get the same label assigned). In class-incremental scenario the model needs to learn how to distinguish between a given digit and all other digits witnessed so far. Figure adapted from Van de Ven & Tolias (2019).

054

056

To stabilize the previously learned patterns, an artificial neural network can revisit old experiences, 069 in the mechanism called "replay" or "rehearsal". In the mammalian brain, such reminiscence is observed for example during sleep, when the hippocampal activity reinstates activity in the neocortical 071 processing systems. One hypothesis regarding this behaviour is that it is responsible for effective 072 consolidation and stabilization of long-term memories (McClelland et al. (1995)). The simplest 073 form of rehearsal would be to store a subset of previously encountered training data and iteratively 074 retrain the model from scratch every time a new task arises. However, storing exact copies of past 075 experiences would be impossible in capacity-constrained animal brains, deeming such an approach 076 not biologically plausible. In machine learning there are situations when data storage becomes impractical or impossible, for example, due to privacy issues or computational constraints. Instead, a 077 growing number of methods rely on generative replay, where the data distribution is learned by a generative model. By sampling from the generator, it is possible to access features relevant to the 079 previous tasks and interleave them with the current dataset. In this article, we use the term "pseudodata" whenever we refer to this synthetic data mimicking the previously observed classes. A basic 081 architecture of a generative replay framework, where the generator and the solver are separate neural models, was proposed by Shin et al. (2017). 083

In this work we focus on Shin et al.'s dual-model architecture, even though it does not achieve the 084 highest performance on standard benchmarks (Van de Ven et al., 2020; Kirichenko et al., 2021). 085 We make this choice for two main reasons. First, the dual-model architecture can be applied to any neural classifier without additional modifications to the network's structure. This flexibility 087 makes it convenient in situations when classifier (or, more generally, task solver) models are already 880 well-established and trained, and the requirement to learn class-incrementally arises as an additional functionality, without being considered during the model's design. In such cases, the implementation of suitable generators eliminates the need for a complete redesign and retraining of the classifier, 091 such as incorporating feedback connections. A second noteworthy advantage of the dual-model ap-092 proach lies in its simplicity. The process of generating the pseudodata and training the classifier can be clearly separated, facilitating a more transparent understanding of each component's contribution to the overall performance. 094

095 We propose a simple and universal mechanism for improving generative replay models, addressing 096 one of their common weaknesses - poor scalability to a larger number of tasks due to error propa-097 gation in the generator (Lesort et al. (2019a); Aljundi et al. (2019)). As we investigate a scenario 098 when the original training data cannot be stored, the generative model also needs to learn continually, iteratively retraining itself on its own generated samples. If pseudodata generated for one of the 099 tasks contains features unnecessary or confusing for the classifier, there is a chance that these fea-100 tures are going to be preserved in the distribution learned by the generator, detrimentally affecting 101 replay's effectiveness for all the subsequent tasks. To combat this, we propose a method of filtering 102 the generated data by allowing the classifier to automatically select best-quality samples and remove 103 data lacking necessary features — in other words, we allow the solver to self-supervise the replay 104 process. 105

We tested the method on split EMNIST (expansion of MNIST that includes handwritten letters),
 CIFAR100 and CORE50 datasets, well established baselines in the Continual Learning literature, achieving an improvement in the classifier's accuracy in almost all cases. We present statistical

analysis of the results with regards to the number of tasks, and provide their interpretations in further sections.

To sum up, the main contribution of our paper is a general technique of filtering samples from the generator, improving the performance of generative replay in class-incremental learning scenarios. We also investigate the scalability of this technique with the number of tasks, an approach that can be helpful for the community working on the catastrophic forgetting problem.

115 116

2 Related Work

117 118

Among a large and dynamically growing number of methods being proposed to solve the challenge of continual deep learning, most fall into three main families: architectural, regularisation- and replay-based (Kudithipudi et al., 2022; Wang et al.; Gao & Liu, 2023).

Architectural methods essentially divide the neural network into segments or modules corresponding to different tasks. This is usually done either by allowing only a subset of parameters to change during training of a given task (Masse et al., 2018; Mallya et al., 2018; Jin & Kim, 2022), or, if the computational constraints allow, by allowing the model to grow new nodes and connections, and use them to allocate the new knowledge (Hung et al., 2019; Yoon et al., 2017) – a mechanism inspired by biological neurogenesis (Kudithipudi et al., 2022).

Regularization-based methods revolve around the idea of enforcing negative correlation between the plasticity of neural connections and their importance for previously learned tasks. In other words, if a parameter is assigned a high importance score, its individual learning rate will be reduced if the network gets trained on a new task. The mechanism of assigning the importance score is the main differentiating factor between different regularization-based methods, examples of which being Elastic Weight Consolidation (Kirkpatrick et al., 2017), Synaptic Intelligence (Zenke et al., 2017) and Variational Continual Learning (Nguyen et al., 2017).

135 While successful in many applications of continual learning, most architectural and regularization-136 based methods fall short of being able to solve class-incremental problems (Van de Ven & Tolias, 137 2019). In such scenarios, the network needs to revisit the previous experiences (or their fragments) in 138 order to distinguish between the old and new classes – the process usually referred to as "replay" or 139 "rehearsal" (Lesort et al., 2019b; Hayes et al., 2021). Replay can be exact or generative, depending 140 on whether the samples of old classes are drawn from a stored subset of the original data, or if they 141 were generated by a designated model. In the former case, current research effort often focuses on 142 how to select the data buffer from the previous task, augument it, or make use of large, unlabelled datasets to enrich it (Smith et al., 2021a; Ostapenko et al., 2022; Kumari et al., 2022). On the other 143 hand, generative replay enables continual learning when, for example due to legal or privacy-related 144 reasons, storing the original data is not possible. An important early method developed in this area 145 was Deep Generative Replay (DGR) - a simple architecture where the generator was a standard 146 Generative Adversarial Network (GAN) (Shin et al., 2017). The field grew in the following years 147 to include, among others, combinations of generative replay with Bayesian methods (Farquhar & 148 Gal, 2019; Van De Ven et al., 2021), invertible models serving both as a classifier and as a generator 149 (Kirichenko et al., 2021; Pfülb & Gepperth, 2021; Smith et al., 2021b) and various approaches to 150 knowledge distillation (Van de Ven et al., 2020; Khan et al., 2023). Notably, in cases when the 151 original data is prohibitively complex, training a custom generator may be too difficult or resource-152 consuming for practical purposes. However, it is possible to simplify the problem by replaying pre-extracted features instead of full, original exemplars (Masana et al., 2022). One of the issues 153 of the generative replay methods is that they often require the generator to use its own generated 154 samples for training, which causes their quality to gradually drop as the number of tasks grows (Gao 155 & Liu, 2023; Shumailov et al., 2024). 156

In this work we analyse to what degree filtering the generator's samples based on the classifier's ability to correctly classify them can mitigate this issue. The approach can be treated as a simple method of Out-Of-Distribution detection (Yang et al., 2021; Hendrycks & Gimpel, 2016), which was shown to be necessary for class-incremental learning (Kim et al., 2022). Moreover, it bears a strong resemblance to rejection sampling, which tends to improve the training of generative models (Grover et al., 2018; Azadi et al., 2018).

162 The works that are most conceptually similar to our approach are Aljundi et al. (2019) and Gao & 163 Liu (2023) which both aim to guide pseudodata sampling using the classifier's feedback. The former 164 method, Maximally Inferred Sampling does this by calculating the estimated parameter update after 165 training the classifier just on the new data (without replay) and then choosing replay samples that 166 would suffer from the maximal increase of loss, compared to the old model. The author's intuition behind it is that "the most interfered samples share features with new one(s) but have different 167 labels". Moreover, they also select images that maximize the prior classifier's confidence, similarly 168 to what we do. The main difference is that Aljundi et al. (2019) use a memory reservoir of a fixed size, independent on the number of classes, and populate it with pseudodata that maximize the 170 aforementioned criteria (interference and classifier's confidence), no matter their exact values. In 171 our approach each class has its own reservoir (to ensure class balance in the training set) and we 172 strictly require the classifier's confidence to be above a certain value for a generated image to be 173 used for training. The latter of the aforementioned works, Deep Diffusion-based Generative Replay 174 (Gao & Liu, 2023), adds a classifier-dependent "instruction-operator" to the sampling process of a 175 diffusion model. By doing so, at every step of the denoising process they encourage the generator to 176 generate images similar to the ones that the classifier has already learned. The intuition behind this 177 method is similar to ours, but the formulation and application of the instruction-operator is specific to diffusion-based generators, while our approach can be used with most, if not all, generator types. 178 That being said, to our best knowledge, our method has no exact counterparts. 179

- 180
- 181 182
- 3 Methods
- 183 184 185

In this section, we describe the models we used for experiments, the datasets, and the training
 procedure applied. The code is publicly available here: *link to code repository anonymized for peer review*

As mentioned, the main contribution of our work is a method of filtering pseudodata sampled from the generator. In order to do this we label each generated image or feature vector using the classifier and then remove samples classified with confidence below a selected threshold ω . Here by "confidence" we mean the highest value returned by the softmax function in the output layer. The higher the threshold, the stricter the filtering policy.

- 194
- 195 196

3.1 MODELS USED IN THE EXPERIMENTS

197 198 199

To investigate and demonstrate the effectiveness of the proposed filtering procedure we performed 200 classification experiments using various neural network models. To generate pseudodata we used a 201 Real-valued Non-Volume Preserving (RealNVP/RNVP) Normalizing Flow (Dinh et al., 2016) or a Variational Autoencoder (VAE) (Kingma & Welling, 2013). To classify EMNIST images we trained 202 a standard, densely connected Bayesian Neural Network (BNN) (Jospin et al., 2022; Izmailov et al., 203 2021) and its regularized variant following the method of Variational Continual Learning (VCL) 204 (Nguyen et al. (2017)), both optimized using variational inference. The models were combined into 205 four experimental setups: RNVP+BNN, RNVP+VCL, VAE+BNN and VAE+VCL. For the exper-206 iments involving CIFAR100 images we used a single experimental setup with a conditional Varia-207 tional Autoencoder as a generator and a Convolutional Neural Network as a classifier (VAE+CNN). 208 Both the classifier and the generator's encoder shared a convolutional feature extractor pretrained 209 on a CIFAR10 classification task, following the procedure described in Van de Ven et al. (2020). 210 The weights of the feature extractor were frozen during continual training. As we found designing 211 a sufficiently complex generator for CORE50 images (128x128 pixels) impractically difficult and 212 resource-consuming, we decided to apply feature replay in this case, following a common approach 213 in such situations (Masana et al., 2022). We used a ResNet50 architecture pretrained on ImageNet to extract feature representations and trained both the generator and the classifier on such obtained vec-214 tors. As a result, simple, densely-connected networks (DNN) were found sufficient for evaluation. 215 The choice of the feature extractor was arbitrary.

216 3.2 EXPERIMENTAL PROCEDURE

We formulated the learning problem as a class-incremental scenario. During each task, the model was presented with only two classes of images, but it was expected to be able to classify all classes witnessed so far.

222 3.2.1 DATASETS

221

245

To extend the number of tasks beyond the maximum five provided by MNIST dataset, a standard benchmark in the field (LeCun (1998); Parisi et al. (2019)), we chose to use EMNIST Balanced (Cohen et al. (2017)), which serves as an extension of the former. It contains pictures of both digits and letters, 47 classes in total. Here we report results of training on up to 16 tasks (covering 32 classes), since for longer training protocols the quality of the generators would often decrease to a point where they did not generate enough good-quality samples to be accepted by the classifier, especially with stricter filtering.

For both training and evaluation, we scaled the pixel values to the range [0, 1]. For experiments using RealNVP we applied additional preprocessing converting pixel intensities to logits as recommended by Dinh et al. (2016).

For experiments on real-life images we used other well-established benchmarks – CIFAR100 (Krizhevsky et al., 2009) and CORE50 (Lomonaco & Maltoni, 2017).

We divided the original CIFAR100 into 10 tasks, each containing 10 classes to be learned. We scaled the pixel values to range [-1, 1] and performed no further preprocessing apart from random image augmentations in the feature extractor.

As mentioned earlier, for practical purposes we decided to adopt feature replay for CORE50 data, due to its relatively high complexity. We preprocessed the images by converting from RGB to BGR format, then zero-centered each color channel with respect to the ImageNet dataset, without scaling.
Next, we used the pretrained ResNet50 model, provided by Tensorflow, to extract a feature vector of 2048 elements from each image. We divided the dataset into 25 tasks, with two classes in each task, and the order of classes was randomized between multiple runs.

246 3.2.2 MODEL TRAINING AND PSEUDODATA GENERATION

The whole generative replay framework consisted of two neural networks: a classifier (solver) and
a generator, both being trained in a continual manner. The training dataset for each new task was
shared between the models and consisted of real data (new classes to learn) and pseudodata (images
or feature vectors resembling previously learned classes, sampled from the generator). The classifier
was further evaluated on test datasets containing original data.

Pseudodata generation. To generate pseudodata we used an internal loop (algorithm ??). There, 253 the current state of the generator (before training on the new task) was used to sample a fixed number 254 of images, so that the training dataset consisting of real and pseudodata pictures was class-balanced. 255 Next, these images were classified by the solver and all samples classified below the assigned level 256 of confidence (maximal softmax value) were removed — a step that we refer to as "pseudodata-257 filtering". Generating and filtering were repeated until the pseudo-dataset reached the requested 258 size - 2500, 500 and 2000 exemplars per class for EMNIST, CIFAR100 and CORE50 experiments, 259 respectively. Samples generated by models with different confidence thresholds in the CIFAR100 260 experiment are shown in Figure 7 in the Appendix.

261 For example, let us assume we chose the confidence threshold $\omega = 0.9$ and we already trained the 262 framework on the first task of the EMNIST experiment. We sample an image A from the generator, 263 use the classifier to label the image and based on the softmax values we assign the label "1". How-264 ever, the maximal softmax value (confidence) returned by the classifier was 0.85, which is below the 265 threshold – meaning that image A needs to be removed and will not be used for training. Next we 266 sample image B and repeat the steps. This time the assigned label was "0" with confidence of 0.95, 267 above the threshold, and the image gets accepted as a part of the training pseudodata. We repeat the whole procedure until we have 2500 accepted samples of both classes. Next, we mix this dataset 268 with the real data belonging to the second task (real images of digits "2" and "3") and train both the 269 classifier and the generator on the whole collection.

Finally, after training on each task, the model was asked to classify real test images or pre-extracted feature vectors belonging to all previously observed classes, without knowing which task did the particular class belong to. In the next section, we report the results in terms of accuracy, averaged over all the random initializations of the models' parameters and sampling functions.

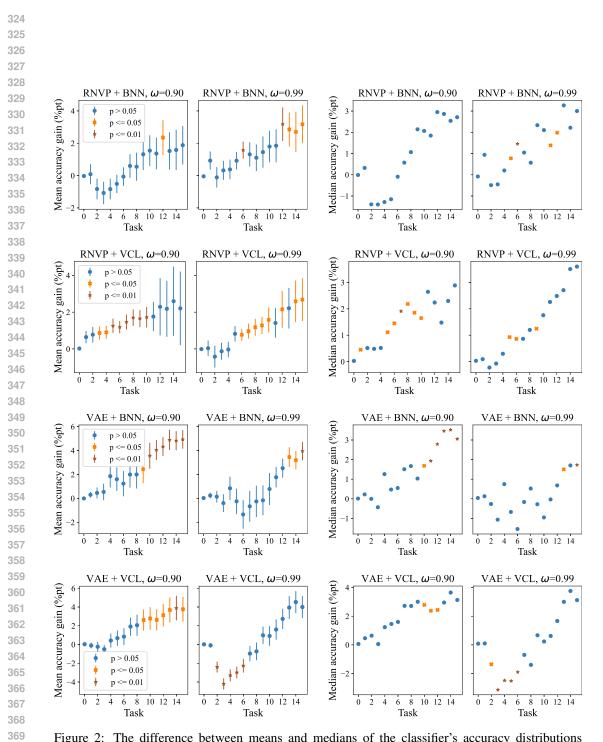
274 275

276

3.3 CHOOSING THE CONFIDENCE THRESHOLD VALUE

277 The main difficulty in applying the softmax-based filter for generative replay, apart from setting 278 up the neural networks, is choosing a proper value of the confidence threshold. Using a too high value can lead to the generator's collapse, reducing the diversity of pseudodata and, indirectly, the 279 classifier's ability to generalize. Moreover, filtering out too many generated samples can signifi-280 cantly increase the computational costs as the framework struggles to reach the requested pseudo-281 data size. In this work we presented results for arbitrarily selected threshold values, but certain 282 strategies for choosing this hyperparameter can be proposed. One variant can be drawn from the 283 Out-Of-Distribution detection literature, where a scoring function is used to determine how likely 284 the sample is to belong to a given distribution (in our case, the scoring function is the classifier's con-285 fidence). The scoring function is evaluated on a separate validation dataset and the cutoff threshold 286 is chosen in such a way that the set "retains at least a given true-positive rate (TPR), e.g. the typical 287 value of 0.95" (Wang et al., 2022). In a continual learning setting this selection could be performed 288 once, using the first generated pseudo-dataset, or the threshold could be adjusted dynamically after each task, based on the varying ability of the classifier to correctly classify samples from the gen-289 erator. An alternative to the fixed threshold would be to use a "top-n" approach. In this case, the 290 filter would keep a fixed number of samples classified with the highest confidence. Since it would 291 be similar to setting the highest possible threshold value, the risk of the model's collapse would be 292 significant and would have to be mitigated using some other measures. On the other hand, given 293 sufficient computational resources, the threshold parameter could be selected using other optimiza-294 tion methods, like evolutionary algorithms and meta-learning. Whether this would be more efficient 295 than a simple trial-and-error approach, would most likely depend on the particular problem at hand. 296

297 298 4


RESULTS

299

For statistical purposes, we ran all the experiments between 20 and 30 times with randomly initialized model parameters. The models were tested after training on each task by classifying the test data belonging to all the classes witnessed so far. Whenever filtering was applied, the confidence threshold ω was set to 90 or 99 percent. Especially with higher thresholds, some generators entered infinite loops at various later points during training, when they kept trying to generate replay samples that kept being rejected by the classifier. In such circumstances, the training was terminated, so not all thirty resulting data points are available for later tasks.

306 To investigate the filtering's impact we trained all the models sequentially on the tasks from the 307 corresponding dataset. After each training task we evaluated the classifier on test datasets containing 308 all classes witnessed up to that point. We calculated the "gain" or "improvement" by comparing the 309 distributions of accuracy values achieved with and without filtering. Figures 2, 3 and 4 show the 310 results of Student's T-test for the difference of means and Mood's test for the difference of medians 311 of these distributions. The exact p-values, as well as the results of the Mann-Whitney U test, for 312 comparison, are provided in the Appendix. By following these steps we wanted to check if a) the 313 gain is positive, and how it scales with b) more tasks and c) more complex data.

314 The gain was indeed positive in almost all cases, especially where the results were statistically 315 significant given the chosen thresholds ($\alpha = 0.05$ and $\alpha = 0.01$ for EMNIST and CORE50; $\alpha = 0.1$ 316 and $\alpha = 0.05$ for CIFAR100), showing that the proposed method of filtering is beneficial for the 317 model's accuracy. This comparison would however benefit from a higher data granularity, as many 318 points did not achieve the required level of significance. As mentioned before, many instances of 319 the experiment failed when the generator lost its ability to generate samples of a sufficient quality. 320 Figure 5 depicts the surviving percentage of the models after training on each task in the CORE50 321 and EMNIST configurations. This "generator divergence" occured for all tested values of ω , but was more common for the more strict filters. Too strict filtering might have reduced the diversity of the 322 generated samples and accelerated the deterioration of the generator after a certain point, while also 323 keeping high expectations regarding the quality of data sampled from it.

Under review as a conference paper at ICLR 2025

Figure 2: The difference between means and medians of the classifier's accuracy distributions trained on EMNIST data with and without pseudodata filtering. Error bars represent the standard error. Positive values mean that filtering was beneficial in preventing the model's forgetting; a positive correlation between the gain and the number of tasks indicates that the benefit was larger for longer training scenarios.

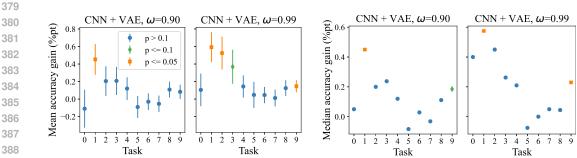


Figure 3: The difference between means and medians of the classifier's accuracy distributions trained on CIFAR100 data with and without pseudodata filtering. Interpretation of the results analogical to Figure 2 – but note that the correlation between gain and number of tasks now is negative.

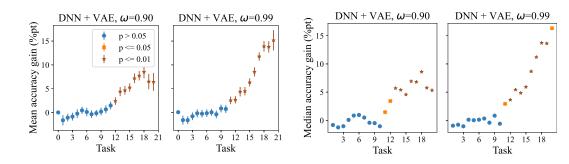


Figure 4: The difference between means and medians of the classifier's accuracy distributions trained on CORE50 feature vectors with and without pseudodata filtering. Interpretation of the results analogical to Figure 2

Results after approximately 15 learned tasks are difficult to compare fairly, as stricter filter values lead to the generator failing more frequently at this point (see Figure 5).

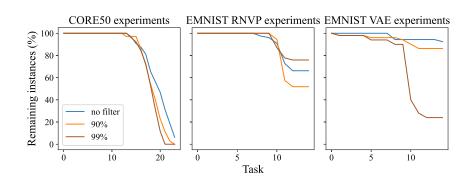


Figure 5: Percentage of surviving models after each training task, for different values of the filtering threshold. Evidently, while stricter filtering led to higher classification accuracy (see Figure 4), it didn't prevent the generator from losing performance. As a result, many models were unable to satisfy the requirements of the filter and training was terminated. This makes a fair comparison after approximately 15 iterations difficult despite the apparent statistical significance.

432	Dataset	Model	Threshold	R
433	EMNIST	RNVP+BNN	0.90	0.87
434			0.99	0.93
435		RNVP+VCL	0.90	0.97
436			0.99	0.97
437		VAE+BNN	0.90	0.97
438			0.99	0.76
439		VAE+VCL	0.90	0.97
440			0.99	0.80
441	CIFAR100	CNN+VAE	0.90	-0.31
			0.99	-0.58
442	CORE50	DNN+VAE	0.90	0.92
443			0.99	0.91
444				

Table 1: Pearson's correlation coefficients between differences of mean accuracies between models with and without filtering, and the number of tasks. All results except for the CNN+VAE setup are statistically significant with $\alpha = 0.05$.

Another issue visible in the figures, especially with VAE as a generator of EMNIST images and CORE50 vectors, is that the filtering procedure had a negligible or even detrimental effect when the number of tasks was low. We suggest an interpretation of this phenomenon and elaborate on its consequences for the applicability of our method in the Conclusion.

We hypothesized that pseudodata filtering could be more beneficial the more tasks are learned, since 454 the error propagation caused by the generator training on its own noisy samples would be more 455 significant as more classes are added. We therefore checked if there exists any correlation between 456 the number of learned tasks and the advantage gained from the technique. In Table 1 we show 457 Pearson's correlation coefficients between the improvement in accuracy and the length of training for 458 the tested setups. This correlation is not consistent between datasets – strongly positive in EMNIST 459 and CORE50 experiments, negative in CIFAR100 experiments. Whether this difference was caused 460 by the increased data complexity, or other factors (like the classifier getting overconfident) remains 461 to be investigated.

462 463

464

448

4.1 COMPARISON WITH BRAIN-INSPIRED REPLAY

Direct comparison of the results presented in the previous subsection with the state of the art meth-465 ods in generative replay would be misleading, since our models were not optimized for performance 466 in terms of the absolute accuracy (for example, we performed only a limited hyperparameter search). 467 However, due to its universality, the softmax-based filtering method can be easily "plugged in" to ex-468 isting algorithms to achieve relative improvement. To demonstrate this, we performed experiments 469 on class-incremental CIFAR100 classification using the publicly available code for Brain-Inspired 470 Replay (Van de Ven et al., 2020). Removing the generated samples classified below the selected 471 threshold was the only modification we made to the original scripts. We ran each configuration 5 472 times, with the confidence threshold value of 80, 90, 95 and 99%. To check if the mean values of the 473 accuracy distributions obtained with filtering are significantly larger than the ones obtained without 474 it, we again performed the Student's T-test. In Table 2 we present the average end-accuracy for each configuration, together with the p value. On average, the framework performed better when the filter 475 was used, which further supports the utility of this method for various generative replay scenarios. 476

477 478

479

5 CONCLUSION

Generative replay is one of the most universal approaches to continual deep learning. It is applicable, among others, to class-incremental learning problems, in which a neural network is trained to label data belonging to a sequentially growing set of classes. Other methods than replay-based, despite their usefulness, tend to fail in this challenging scenario. In this paper, we presented a method of filtering samples from a generative model used for data replay. Our original hypothesis consisted of two parts: first, that data filtering will improve the accuracy of a classifier trained with generative replay; second, that this improvement will positively scale with the number of tasks. The justification

486	Confidence threshold	Mean accuracy	р
487	No filter	21.48%	_
488	80%	22.19%	0.19
489	90%	21.72%	0.32
490	95%	22.40%	0.11
491	99%	22.88%	0.03

Table 2: Mean accuracy obtained on the class-incremental CIFAR100 classification problem using the Brain-Inspired Replay method. The p-value was calculated with the Student's T-test for the "nonfiltered" and the corresponding "filtered" accuracy distribution. While the mean accuracy values are higher in all cases, the difference is statistically significant (α =0.05) only with the strongest filter (ω =99%).

497 498

behind the first part is that by allowing the solver to select data it can classify with the highest level of
confidence, we automatically reinforce the presence of features important for distinguishing between
classes in the replayed dataset. As for scaling of the effect, we assumed that without data filtering
more errors can propagate from task to task, since the generator may learn to repeat its own mistakes.
With filtering, if such a mistake would reduce the sample's usefulness for learning the task, it will
be removed from the training set used both by the solver and the generator.

505 The results we present support primarily the first part of the hypothesis. In the majority of cases 506 where performance with and without filtering was significantly different, the filtering did result in 507 improved accuracy. Exceptions were the cases when the number of tasks was small and/or the 508 confidence threshold (the minimal softmax value required for the generated sample to be used for 509 training) was very high. The reason for this may be that for the first few tasks, the error propagation in the generator is not very significant, and radical filtering of the pseudodata reduces the diversity 510 of samples, limiting the solver's ability to generalize. This suggests that the confidence threshold 511 is a hyperparameter that is very important to optimize while taking into consideration the expected 512 scale of the learning problem. 513

514 As for the second part of the hypothesis, our results are inconclusive. In EMNIST and CORE50 515 experiments, with simpler pseudodata, even when the initial improvement was negligible or negative at the beginning, it grew as the training progressed, eventually reaching positive values in all 516 investigated model configurations. In CIFAR100 experiments, on the other hand, the improvement 517 was highest at the beginning, and gradually dropped to values close to or marginally below zero for 518 the later tasks. Possibly, due to the low volume of training data in this dataset (500 images per class), 519 the negative influence the filter had on sample diversity was especially significant and dominated the 520 potential gain in the classifier's accuracy. 521

Figure 5 draws our attention to another important point. While filtering helped the classifier to 522 achieve higher accuracy on multiple tasks, the total number of tasks the system was able to learn did 523 not increase. On the contrary, while diverging and failing to continue generative replay after a suffi-524 ciently high number of tasks was noticeable in all model configurations, models with higher filtering 525 thresholds were more prone to it. Possibly, the strict requirement regarding the quality of generated 526 images/vectors, combined with a reduced diversity of these samples, made the generator less stable, 527 as it approached a certain limit of plasticity. In a practical, applied setting, such frameworks would 528 require much more refined control, such as adaptive thresholds or backup models, in order to ensure 529 a positive ratio between the benefits of increased accuracy and the drawbacks of reduced pseudodata 530 diversity.

In summary, our initial exploration has demonstrated that self-supervised pseudodata filtering can be
 a useful technique for improving generative replay. As a general method, applicable to a variety of
 model configurations, it can become a helpful addition to other approaches combating catastrophic
 forgetting in deep neural networks.

535 536

537 REFERENCES

539 Wickliffe C Abraham. Metaplasticity: tuning synapses and networks for plasticity. *Nature Reviews Neuroscience*, 9(5):387–387, 2008.

540 541 542 543 544 545 545	Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered re- trieval. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 11849– 11860. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/ 9357-online-continual-learning-with-maximal-interfered-retrieval. pdf.
547 548 549	Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena. Discrim- inator rejection sampling. <i>arXiv preprint arXiv:1810.06758</i> , 2018.
550 551 552	Alejandro Baldominos, Yago Sáez, and Pedro Isasi. Hybridizing evolutionary computation and deep neural networks: An approach to handwriting recognition using committees and transfer learning. <i>Complexity</i> , 2019:2952304, 03 2019. doi: 10.1155/2019/2952304.
553 554 555	Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to handwritten letters. 2017 International Joint Conference on Neural Networks (IJCNN), 2017. doi: 10.1109/ijcnn.2017.7966217.
556 557 558	Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. <i>arXiv</i> preprint arXiv:1605.08803, 2016.
559 560 561	Sebastian Farquhar and Yarin Gal. A unifying bayesian view of continual learning. <i>arXiv preprint arXiv:1902.06494</i> , 2019.
562 563	Robert M French. Catastrophic forgetting in connectionist networks. <i>Trends in cognitive sciences</i> , 3(4):128–135, 1999.
564 565 566	Rui Gao and Weiwei Liu. Ddgr: continual learning with deep diffusion-based generative replay. In <i>International Conference on Machine Learning</i> , pp. 10744–10763. PMLR, 2023.
567 568 569	Aditya Grover, Ramki Gummadi, Miguel Lazaro-Gredilla, Dale Schuurmans, and Stefano Ermon. Variational rejection sampling. In <i>International Conference on Artificial Intelligence and Statis-</i> <i>tics</i> , pp. 823–832. PMLR, 2018.
570 571 572	Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T Siegelmann, Terrence J Sejnowski, and Christopher Kanan. Replay in deep learning: Current approaches and missing biological elements. <i>Neural computation</i> , 33(11):2908–2950, 2021.
573 574 575	Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. <i>arXiv preprint arXiv:1610.02136</i> , 2016.
576 577 578	Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song Chen. Compacting, picking and growing for unforgetting continual learning. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
579 580 581	Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are bayesian neural network posteriors really like? In <i>International conference on machine learn-ing</i> , pp. 4629–4640. PMLR, 2021.
582 583 584 585	Peter Jedlicka, Matus Tomko, Anthony Robins, and Wickliffe C Abraham. Contributions by meta- plasticity to solving the catastrophic forgetting problem. <i>Trends in Neurosciences</i> , 45(9):656–666, 2022.
586 587	Hyundong Jin and Eunwoo Kim. Helpful or harmful: Inter-task association in continual learning. In <i>European Conference on Computer Vision</i> , pp. 519–535. Springer, 2022.
588 589 590 591	Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learning users. <i>IEEE Computational Intelligence Magazine</i> , 17(2):29–48, 2022.
592 593	Valeriya Khan, Sebastian Cygert, Bartlomiej Twardowski, and Tomasz Trzciński. Looking through the past: better knowledge retention for generative replay in continual learning. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 3496–3500, 2023.

594 595 596	Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoretical study on solving continual learning. <i>Advances in Neural Information Processing Systems</i> , 35:5065–5079, 2022.
597 598 599	Diederik P Kingma and Max Welling. Auto-encoding variational bayes. <i>arXiv preprint arXiv:1312.6114</i> , 2013.
600 601 602 603	Polina Kirichenko, Mehrdad Farajtabar, Dushyant Rao, Balaji Lakshminarayanan, Nir Levine, Ang Li, Huiyi Hu, Andrew Gordon Wilson, and Razvan Pascanu. Task-agnostic continual learning with hybrid probabilistic models. In <i>ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models</i> , 2021.
604 605 606 607 608	James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. <i>Proceedings of the national academy of sciences</i> , 114(13):3521–3526, 2017.
609 610	Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
611 612 613 614 615	Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black- iston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, et al. Biological underpinnings for lifelong learning machines. <i>Nature Machine Intelligence</i> , 4(3):196– 210, 2022.
616 617	Lilly Kumari, Shengjie Wang, Tianyi Zhou, and Jeff A Bilmes. Retrospective adversarial replay for continual learning. <i>Advances in Neural Information Processing Systems</i> , 35:28530–28544, 2022.
618 619	Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
620 621 622	Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat. Generative models from the perspective of continual learning. In 2019 International Joint Con- ference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019a.
623 624 625	Timothée Lesort, Andrei Stoian, and David Filliat. Regularization shortcomings for continual learn- ing. <i>arXiv preprint arXiv:1912.03049</i> , 2019b.
626 627	Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous object recognition. In <i>Conference on robot learning</i> , pp. 17–26. PMLR, 2017.
628 629 630 631	Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul- tiple tasks by learning to mask weights. In <i>Proceedings of the European conference on computer</i> <i>vision (ECCV)</i> , pp. 67–82, 2018.
632 633 634 635	Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van De Weijer. Class-incremental learning: survey and performance evaluation on image classification. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 45(5):5513–5533, 2022.
636 637 638 639	Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. <i>Proceedings of the National Academy of Sciences</i> , 115(44):E10467–E10475, 2018.
640 641 642	James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. <i>Psychological review</i> , 102(3):419, 1995.
643 644 645	Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv preprint arXiv:1710.10628, 2017.
646 647	Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Rifat Arefin, Arthur Douillard, Irina Rish, and Laurent Charlin. Continual learning with foundation models: An empirical study of latent replay. In <i>Conference on Lifelong Learning Agents</i> , pp. 60–91. PMLR, 2022.

- 648 German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual 649 lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019. 650 Benedikt Pfülb and Alexander Gepperth. Overcoming catastrophic forgetting with gaussian mixture 651 replay. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE, 652 2021. 653 654 Björn Rasch and Jan Born. About sleep's role in memory. Physiological reviews, 2013. 655 656 Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks. *Journal of* 657 Intelligent & Robotic Systems, 105(1):9, 2022. 658 659 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative 660 replay. Advances in neural information processing systems, 30, 2017. 661 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. 662 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759, 663 2024. 664 665 James Smith, Jonathan Balloch, Yen-Chang Hsu, and Zsolt Kira. Memory-efficient semi-supervised 666 continual learning: The world is its own replay buffer. In 2021 International Joint Conference on 667 Neural Networks (IJCNN), pp. 1-8. IEEE, 2021a. 668 James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always 669 be dreaming: A new approach for data-free class-incremental learning. In Proceedings of the 670 *IEEE/CVF International Conference on Computer Vision*, pp. 9374–9384, 2021b. 671 672 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734, 2019. 673 674 Gido M Van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual 675 learning with artificial neural networks. Nature communications, 11(1):4069, 2020. 676 677 Gido M Van De Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 678 pp. 3611–3620, 2021. 679 680 Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-681 logit matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern 682 recognition, pp. 4921-4930, 2022. 683 L Wang, X Zhang, H Su, and J Zhu. A comprehensive survey of continual learning: Theory, method 684 and application. arxiv 2023. arXiv preprint arXiv:2302.00487. 685 686 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: 687 A survey. arXiv preprint arXiv:2110.11334, 2021. 688 Pierre Yger and Matthieu Gilson. Models of metaplasticity: a review of concepts. Frontiers in 689 computational neuroscience, 9:138, 2015. 690 691 Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically 692 expandable networks. arXiv preprint arXiv:1708.01547, 2017. 693 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. 694 In International conference on machine learning, pp. 3987–3995. PMLR, 2017. 696 697 699 700
- 701

A SAMPLES FROM THE ORIGINAL DATASETS

704	
705	
706	BBCBEFBLIjkImnoPARC+UVWXYZ00
707	AbcDefG/154LMNOPQrSturwx/211 abcDefgH1JkLMNOPgrStUVwxY122
708	abcDEFSHISK/MNOPArSTUVWXYZ33
709	ABCderGLIJKIMNOPERSTUNWXYZYY
710	abcdefghljklmnopenstuvwxyzss
711	ABCdefGhj;KLmNOPQrStUUN14266 abcdef6husKIMNOP9RStUUNXYZTA
712	ab CdeF9113K/mn01845+UVW84288
713	ABCOEF9AIJRIMNOPErstuuwxyz98
714	

(a) Sample of original images from the EMNIST dataset (monochromatic pictures, 28x28 pixels). Source: Baldominos et al. (2019).

718	airplane	🔤 📉 😹 📈 🍬 📼 🌉 🔐 🔤 🛶
719 720	automobile	ar 🖏 🚵 🔜 🔤 😻 🖬 🐨 🐝
721 722 723	bird	🔊 🗾 🗾 🕅 🏩 🔍 🦻 🔯 💩 🐖
723 724 725	cat	🔄 😻 😂 💹 🎉 🗶 🕰 🥪 📂
726 727	deer	M 🐨 🖌 🥐 🏹 N 👬 💒 🎎
728 729	dog	🕺 🔬 👟 🎒 🎘 🎑 🧑 📢 🔊 🎉
730 731	frog	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
732 733	horse	🐳 🐟 🕸 法 🕅 📷 🕾 🐝 🕷
734 735	ship	🗃 🌌 🛥 🚢 📥 🥩 🖉 🚈
736 737	truck	i 🖓 🚛 🌉 👹 💳 📷 🛵 🕋 🚮
738	(b) Sample of original ima	ages from the CIFAR100 dataset (RGB nictures 32x32 nixels)

(b) Sample of original images from the CIFAR100 dataset (RGB pictures, 32x32 pixels). Source: www.cs.toronto.edu/ kriz/cifar.html.

(c) Sample of original images from the CORE50 dataset (RGB pictures, 128x128 pixels). Source:
 www.vlomonaco.github.io/core50/index.html

756 757	B SAI	MPLES F	ROM TH	E GENEI	RATORS					
758			-	Photos I.						
759	- VA	and it	Starte .	PRA I	$\alpha \Lambda$		VA		20.5	
760	-77	A State	1P	R DI			- Inter	(As)		A REAL PROPERTY.
761	-45	and the second	A Local Diversion		11.	- Contraction		Constant of the local division of the local		a second second
762 763	Carlo and	Nices.	Come -	Table	10.00	Sec.	Sec.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Jest V	16-160
764	2 AVE	Laure La	1000	100	10 94	mar 10	and the second	L. Sector	S.F 4	ER.
765	100 Toto 100			-	Children .	Contraction of the		and the second second	State of the local division of the local div	
766	1. 280	100	1000	12 140	Sept.	1200	The second	Sec. 1	12.74	Con State
767	1000	1000	Survey of	2.1	30.00	1000	305	ST 24	and the second	a star
768	10-	COLUMN T	and the second	Sec. 2.65	E LUE	100	1. 15	and the	and the	The state
769 770	1445	- 200	State -	Charges and	Carlos-	1 Barrier	WY	C. Star	All and	and the
771	1 Carton	1 2	100	1 and	C Marco	a state of	1.20	Alterna.	1.2	10.0
772										
773	-	445	100	4.45	- Sala	1.12	- Elle	4	the.	Contraction of the second
774	13	1 Post	10	-		ALC: N	and -	Contraction of the second	Statements of the local division of the loca	1000
775	0	1.10		1. A. B.	C Chesses	Barry B	fr.	100 M		Conservation of the local division of the lo
776 777	- AL	100	LUS	Black	1000	1	- Am	1.00	12	al.
778	2.20	2-11	45MC	1.0	-	1.00	Citra Mar	CON	100	AL STA
779				-				ALC: NAME		
780	Sec.	19 94	12	Ga	Minin	and the second	" OKA	200	1	Sec.
781	Sec. 1	520	S. 10	· seller	1000	10.10	1000	1000		Longe L
782	10.000	10000	1		100	and an other	-	TATLE.	A Print	
783 784	192.1	Sec.	100	1.00	100	24.	12.52	TANK	15	Sec.
785	202	200	- State	62 B. M.	100		Same a	10.00	Sec. 2	100
786										
787	SPA .	1000	-	and the se	Adde	495	Line S	Martin.	a side	and the second
788	-20-2	AND AND AND	No.	14.28	1 1 3 3		and the second	Sel Sel and		and the second
789 790	and the state of the		10.000	and the second				and the second second		1000 Mar 200
791	1		and the	1000	1000		100	1.00	10.00	1000
792	1.12	1994	100	100		10.00		20	and the	
793	12215	THE	14.1	1004.00	1. 1.02	1.00	- A.S. 20		100	ALC: LOW
794	1 and	dia.	And and	ALT	194	2.0	Sam	236	a mon	1000
795	100	100	E	1 years	100-12	1000	Ale and	a start	10.00	-
796 797	- States	Calles 1	and a lot	100	Mar Col	Mar Internet	10.20	1. St 2	1000	Part of
797 798	1000	125.25	100	15 6	March.	Page 1	Test.	The P	1	1000
799	-100	and a		1	Sec. 20.	det.	molal.	1	2.3	1000
800	Figure 7:	Visualiza	tion of ns	eudodata	generated	in the CI	FAR100 e	xperimen	ts The fi	rst row in

Figure 7: Visualization of pseudodata generated in the CIFAR100 experiments. The first row in each group depicts the original images of a given class from the training dataset. The following rows correspond to generators trained without filtering, and with the confidence threshold of 90% and 99% respectively.

810 C RESULTS OF STATISTICAL TESTS 811

C.1 STUDENT'S T-TEST

812

815	Confidence threshold	Trained task	Accuracy difference	р
816	0.90	0	-0.006	0.831
817	0.90	1	0.303	0.206
818	0.90	2	0.453	0.334
819	0.90	3	0.539	0.445
	0.90	4	1.852	0.057
820	0.90	5	1.600	0.115
821	0.90	6	1.231	0.259
822	0.90	7	1.990	0.079
823	0.90	8	1.994	0.098
324	0.90	9	2.431	0.042
325	0.90	10	3.564	0.002
26	0.90	11	4.040	0.000
327	0.90	12	4.323	0.000
328	0.90	13	4.884	0.000
329	0.90	14	4.816	0.000
30	0.90	15	4.928	0.000
	0.99	0	0.024	0.400
31	0.99	1	0.236	0.332
32	0.99	2	0.140	0.778
33	0.99	3	-0.400	0.599
34	0.99	4	0.842	0.400
35	0.99	5	-0.249	0.819
36	0.99	6	-1.348	0.269
37	0.99	7	-0.666	0.612
38	0.99	8	-0.255	0.849
39	0.99	9	-0.165	0.897
40	0.99	10	0.783	0.647
	0.99	11	1.764	0.254
41	0.99	12	2.520	0.086
42	0.99	13	3.453	0.030
43	0.99	14	3.191	
	0.99 0.99	14 15	3.191 3.951	0.033
44	0.99 0.99	14 15	3.191 3.951	
44 45	0.99	15	3.951	0.033 0.008
44 45 46		15	3.951	0.033 0.008
44 45 46 47	0.99	15	3.951	0.033 0.008
44 45 46 47 48	0.99 Table 3: Results of Stude	15 ent's T-test for V	3.951 VAE+BNN model confi	0.033 0.008
44 45 46 47 48 49	0.99	15	3.951	0.033 0.008
44 45 46 47 48 49 50	0.99 Table 3: Results of Stude Confidence threshold	15 ent's T-test for V Trained task	3.951 VAE+BNN model confi Accuracy difference	0.033 0.008 guration
44 45 46 47 48 49 50 51	0.99 Table 3: Results of Stude Confidence threshold 0.90	15 ent's T-test for V Trained task 0	3.951 VAE+BNN model confi Accuracy difference 0.030	0.033 0.008 guration p 0.649
44 45 46 47 48 49 50 51 52	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90	15 ent's T-test for V Trained task 0 1	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107	0.033 0.008 guration <u>p</u> 0.649 0.727
44 445 446 447 448 449 550 551 552 552	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90	15 ent's T-test for V Trained task 0 1 2	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240	0.033 0.008 guration p 0.649 0.727 0.639
44 45 46 47 48 49 50 51 52 53 54	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90	15 ent's T-test for V Trained task 0 1 2 3	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503	0.033 0.008 guration p 0.649 0.727 0.639 0.263
44 445 446 447 448 449 550 551 552 553 553	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90	15 ent's T-test for V Trained task 0 1 2 3 4	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422	0.033 0.008 guration p 0.649 0.727 0.639 0.263 0.575
44 45 46 47 48 49 550 551 52 53 554 55	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90	15 ent's T-test for V Trained task 0 1 2 3 4 5	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678	0.033 0.008 guration p 0.649 0.727 0.639 0.263 0.575 0.420
44 45 46 47 48 49 550 551 552 553 554 555 55	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839	0.033 0.008 guration 0.649 0.727 0.639 0.263 0.575 0.420 0.365
44 45 46 47 48 49 50 51 52 53 54 55 56 57	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6 7	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839 1.912	0.033 0.008 guration 0.649 0.727 0.639 0.263 0.575 0.420 0.365 0.063
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6 7 8	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839 1.912 2.054	0.033 0.008 guration p 0.649 0.727 0.639 0.263 0.575 0.420 0.365 0.063 0.087
44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6 7 8 9	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839 1.912 2.054 2.611	0.033 0.008 guration guration 0.649 0.727 0.639 0.263 0.575 0.420 0.365 0.063 0.087 0.033
443 444 445 446 447 448 449 450 451 455 455 455 455 455 553 455 554 455 555 5	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6 7 8 9 10	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839 1.912 2.054 2.611 2.777	0.033 0.008 guration guration 0.649 0.727 0.639 0.263 0.727 0.639 0.263 0.575 0.420 0.365 0.063 0.087 0.033 0.036
44 445 446 447 448 449 550 551 552 553 554 555 555 556 557 558 559	0.99 Table 3: Results of Stude Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 ent's T-test for V Trained task 0 1 2 3 4 5 6 7 8 9	3.951 VAE+BNN model confi Accuracy difference 0.030 -0.107 -0.240 -0.503 0.422 0.678 0.839 1.912 2.054 2.611	0.033 0.008 guration guration 0.649 0.727 0.639 0.263 0.575 0.420 0.365 0.063 0.087 0.033

Confidence threshold	Trained task	Accuracy difference	р
0.90	12	3.122	0.020
0.90	12	3.684	0.020
0.90	13	3.888	0.013
0.90	15	3.762	0.007
0.99	0	0.018	0.786
0.99	1	-0.090	0.723
0.99	2	-2.402	0.000
0.99	3	-4.201	0.000
0.99	4	-3.287	0.000
0.99	5	-2.986	0.000
0.99	6	-2.263	0.005
0.99	7	-0.966	0.005
0.99	8	-0.732	0.471
0.99	9	0.983	0.323
0.99	10	0.903	0.529
0.99	11	1.599	0.376
0.99	11	2.730	0.370
0.99	12	3.939	0.272
0.99	13	4.530	0.107
0.99	14	3.998	0.095
0.99	15	5.990	0.203
Table 4: Results of Stude	ent's T-test for '	VAE+VCL model confi	ouratio
			guiuno
Confidence threshold	Trained task	Accuracy difference	р
		-0.026	
0.90	0	-0.076	
	0		0.502
0.90	1	0.085	0.894
0.90 0.90	1 2	0.085 -0.831	0.894 0.213
0.90 0.90 0.90	1 2 3	0.085 -0.831 -1.077	0.894 0.213 0.139
0.90 0.90 0.90 0.90	1 2 3 4	0.085 -0.831 -1.077 -0.838	0.894 0.213 0.139 0.207
0.90 0.90 0.90 0.90 0.90 0.90	1 2 3 4 5	0.085 -0.831 -1.077 -0.838 -0.512	0.894 0.213 0.139 0.207 0.381
0.90 0.90 0.90 0.90 0.90 0.90 0.90	1 2 3 4 5 6	0.085 -0.831 -1.077 -0.838 -0.512 -0.064	0.894 0.213 0.139 0.207 0.381 0.915
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	1 2 3 4 5 6 7	0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596	0.894 0.213 0.139 0.207 0.381 0.915 0.432
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	1 2 3 4 5 6 7 8	0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541
$\begin{array}{c} 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\end{array}$	1 2 3 4 5 6 7 8 9	0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196
$\begin{array}{c} 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\end{array}$	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119
$\begin{array}{c} 0.90\\$	1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.251\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183
$\begin{array}{c} 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\\ 0.90\end{array}$	1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039
0.90 0.90	1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205
0.90 0.90	1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222
0.90 0.90	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259
0.90 0.99 0.99 0.99 0.99 0.99 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\end{array}$	$\begin{array}{c} 0.894\\ 0.213\\ 0.139\\ 0.207\\ 0.381\\ 0.915\\ 0.432\\ 0.541\\ 0.196\\ 0.119\\ 0.183\\ 0.039\\ 0.205\\ 0.222\\ 0.132\\ 0.259\\ 0.114 \end{array}$
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\end{array} \end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863
0.90 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599
0.90 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\end{array}$	$\begin{array}{c} 0.894\\ 0.213\\ 0.139\\ 0.207\\ 0.381\\ 0.915\\ 0.432\\ 0.541\\ 0.196\\ 0.119\\ 0.183\\ 0.039\\ 0.205\\ 0.222\\ 0.132\\ 0.259\\ 0.114\\ 0.863\\ 0.599\\ 0.542 \end{array}$
0.90 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599
0.90 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\end{array}$	$\begin{array}{c} 0.894\\ 0.213\\ 0.139\\ 0.207\\ 0.381\\ 0.915\\ 0.432\\ 0.541\\ 0.196\\ 0.119\\ 0.183\\ 0.039\\ 0.205\\ 0.222\\ 0.132\\ 0.259\\ 0.114\\ 0.863\\ 0.599\\ 0.542\\ 0.107\\ \end{array}$
0.90 0.99 0.99	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599 0.542 0.107 0.006
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\\6\\7\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\\ 1.572\\ 1.313\end{array}$	$\begin{array}{c} 0.894\\ 0.213\\ 0.139\\ 0.207\\ 0.381\\ 0.915\\ 0.432\\ 0.541\\ 0.196\\ 0.119\\ 0.183\\ 0.039\\ 0.205\\ 0.222\\ 0.132\\ 0.259\\ 0.114\\ 0.863\\ 0.599\\ 0.542\\ 0.107\\ 0.006\\ 0.095 \end{array}$
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\\6\\7\\8\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\\ 1.572\\ 1.313\\ 1.102\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599 0.542 0.107 0.006 0.095 0.198
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\\ 1.572\\ 1.313\\ 1.102\\ 1.453\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599 0.542 0.107 0.006 0.095 0.198 0.149
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\\ 1.572\\ 1.313\\ 1.102\\ 1.453\\ 1.797\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599 0.542 0.107 0.006 0.095 0.198 0.149 0.078
0.90 0.90	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\end{array} $	$\begin{array}{c} 0.085\\ -0.831\\ -1.077\\ -0.838\\ -0.512\\ -0.064\\ 0.596\\ 0.549\\ 1.318\\ 1.545\\ 1.362\\ 2.354\\ 1.521\\ 1.585\\ 1.880\\ -0.045\\ 0.929\\ -0.112\\ 0.320\\ 0.381\\ 0.920\\ 1.572\\ 1.313\\ 1.102\\ 1.453\end{array}$	0.894 0.213 0.139 0.207 0.381 0.915 0.432 0.541 0.196 0.119 0.183 0.039 0.205 0.222 0.132 0.259 0.114 0.863 0.599 0.542 0.107 0.006 0.095 0.198 0.149

Confidence threshold	Trained task	Accuracy difference	р
0.99	13	2.852	0.012
0.99	14	2.707	0.041
0.99	15	3.173	0.012

Table 5: Results of Student's T-test for RNVP+BNN model configuration.

Confidence threshold	Trained task	Accuracy difference	р
0.90	0	0.019	0.397
0.90	1	0.642	0.091
0.90	2	0.774	0.110
0.90	3	0.866	0.029
0.90	4	0.899	0.019
0.90	5	1.260	0.003
0.90	6	1.185	0.001
0.90	7	1.463	0.001
0.90	8	1.701	0.000
0.90	9	1.655	0.001
0.90	10	1.725	0.006
0.90	11	1.762	0.095
0.90	12	2.294	0.140
0.90	13	2.182	0.213
0.90	14	2.598	0.187
0.90	15	2.208	0.281
0.99	0	-0.010	0.672
0.99	1	0.037	0.930
0.99	2	-0.421	0.468
0.99	3	-0.130	0.776
0.99	4	-0.032	0.938
0.99	5	0.820	0.060
0.99	6	0.768	0.025
0.99	7	0.966	0.022
0.99	8	1.178	0.015
0.99	9	1.278	0.011
0.99	10	1.581	0.026
0.99	11	1.413	0.091
0.99	12	2.155	0.037
0.99	13	2.213	0.056
0.99	14	2.590	0.034
0.99	15	2.685	0.036
ble 6: Results of Studen	nt's T-test for R	NVP+VCL model con	figurati
Confidence threshold	Trained task	Accuracy difference	p
0.00	0	-0.110	0.624
			0.017
0.90	2	0.205	0.245
	3	0.208	0.243
() 9()	r		
0.90			
0.90	4	0.120	0.371
0.90 0.90	4 5	0.120 -0.091	0.371 0.485
0.90	4	0.120	0.210 0.371 0.485 0.759 0.578
	0.90 0.99 0.99	0.90 0 0.90 1 0.90 2 0.90 3 0.90 4 0.90 5 0.90 4 0.90 5 0.90 6 0.90 7 0.90 6 0.90 7 0.90 8 0.90 9 0.90 10 0.90 12 0.90 13 0.90 13 0.90 14 0.90 15 0.99 0 0.99 1 0.99 2 0.99 3 0.99 4 0.99 5 0.99 6 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 <td>0.90 0 0.019 0.90 1 0.642 0.90 2 0.774 0.90 3 0.866 0.90 4 0.899 0.90 5 1.260 0.90 6 1.185 0.90 7 1.463 0.90 9 1.655 0.90 10 1.725 0.90 11 1.762 0.90 12 2.294 0.90 13 2.182 0.90 14 2.598 0.90 15 2.208 0.90 15 2.208 0.90 1 0.037 0.99 0 -0.010 0.99 1 0.037 0.99 1 0.037 0.99 3 -0.130 0.99 7 0.966 0.99 7 0.966 0.99 1 1.413 0.99</td>	0.90 0 0.019 0.90 1 0.642 0.90 2 0.774 0.90 3 0.866 0.90 4 0.899 0.90 5 1.260 0.90 6 1.185 0.90 7 1.463 0.90 9 1.655 0.90 10 1.725 0.90 11 1.762 0.90 12 2.294 0.90 13 2.182 0.90 14 2.598 0.90 15 2.208 0.90 15 2.208 0.90 1 0.037 0.99 0 -0.010 0.99 1 0.037 0.99 1 0.037 0.99 3 -0.130 0.99 7 0.966 0.99 7 0.966 0.99 1 1.413 0.99

р	Accuracy difference	Trained task	Confidence threshold
0.253	0.108	8	0.90
0.325	0.083	9	0.90
0.586	0.105	0	0.99
0.002	0.592	1	0.99
0.010	0.525	2	0.99
0.072	0.369	3	0.99
0.275	0.144	4	0.99
0.758	0.047	5	0.99
0.634	0.046	6	0.99
0.900	0.013	7	0.99
0.184	0.125	8	0.99
0.048	0.146	9	0.99

Table 7: Results of Student's T-test for CNN+VAE model configuration (CIFAR100 experiment).

F	Accuracy difference	Trained task	Confidence threshold
0.713	0.0241	0	0.90
0.158	-1.6113	1	0.90
0.205	-1.0664	2	0.90
0.313	-0.8437	3	0.90
0.805	-0.2318	4	0.90
0.554	0.4598	5	0.90
0.892	0.1247	6	0.90
0.674	-0.3473	7	0.90
0.852	-0.1294	8	0.90
0.799	0.2099	9	0.90
0.440	0.6728	10	0.90
0.074	1.4804	11	0.90
0.003	2.4140	12	0.90
0.000	4.3962	13	0.90
0.000	4.6725	14	0.90
0.000	5.2442	15	0.90
0.000	7.1961	16	0.90
0.000	7.7225	17	0.90
0.000	8.5273	18	0.90
0.000	6.4961	19	0.90
0.007	6.4424	20	0.90
0.091	0.0773	0	0.99
0.120	-1.5754	1	0.99
0.080	-1.5991	2	0.99
0.353	-0.7772	3	0.99
0.846	-0.1557	4	0.99
0.778	-0.2398	5	0.99
0.870	-0.1293	6	0.99
0.937	0.0569	7	0.99
0.662	-0.3679	8	0.99
0.291	0.8648	9	0.99
0.363	0.7578	10	0.99
0.001	2.5566	11	0.99
0.000	2.6908	12	0.99
0.000	4.3777	13	0.99
0.000	4.4863	14	0.99
0.000	6.3269	15	0.99
xt page	Continued on ne		

р	Accuracy difference	Trained task	Confidence threshold
0.000	8.5465	16	0.99
0.000	11.7665	17	0.99
0.000	13.9102	18	0.99
0.000	13.7899	19	0.99
0.000	15.1607	20	0.99

Table 8: Results of Student's	s T-test for DNN+VAE mode	el configuration (CORE	50 experiment).
-------------------------------	---------------------------	------------------------	-----------------

1036 C.2 MANN-WHITNEY U TEST

	Confidence threshold	Trained task	Accuracy difference	р
	0.90	0	-0.006	0.877
	0.90	1	0.303	0.248
	0.90	2	0.453	0.424
	0.90	3	0.539	0.732
	0.90	4	1.852	0.024
	0.90	5	1.600	0.109
	0.90	6	1.231	0.306
	0.90	7	1.990	0.059
	0.90	8	1.994	0.082
	0.90	9	2.431	0.031
	0.90	10	3.564	0.001
	0.90	11	4.040	0.000
	0.90	12	4.323	0.000
	0.90	13	4.884	0.000
	0.90	14	4.816	0.000
	0.90	15	4.928	0.000
	0.99	0	0.024	0.270
	0.99	1	0.236	0.322
	0.99	2	0.140	0.752
	0.99	3	-0.400	0.429
	0.99	4	0.842	0.229
	0.99	5	-0.249	0.734
	0.99	6	-1.348	0.117
	0.99	7	-0.666	0.660
	0.99	8	-0.255	0.829
	0.99	9	-0.165	0.393
	0.99	10	0.783	0.585
	0.99	11	1.764	0.765
	0.99	12	2.520	0.121
	0.99	13	3.453	0.004
	0.99	14	3.191	0.011
	0.99	15	3.951	0.000
Tal	ble 9: Results of Mann-W	Vhitney U test f	or VAE+BNN model co	onfigurat
	Confidence threshold	Trained task	Accuracy difference	р
	0.90	0	0.030	0.631
	0.90	1	-0.107	0.767
	0.90	2	-0.240	0.714
	0.90	3	-0.503	0.439
			Continued on ne	xt page

1	Confidence threshold	Trained task	Accuracy difference	р
	0.90	4	0.422	0.094
-	0.90	5	0.678	0.139
	0.90	6	0.839	0.181
	0.90	7	1.912	0.012
5	0.90	8	2.054	0.016
ò	0.90	9	2.611	0.005
7	0.90	10	2.777	0.006
}	0.90	11	2.629	0.010
)	0.90	12	3.122	0.007
)	0.90	13	3.684	0.004
	0.90	14	3.888	0.004
	0.90	15	3.762	0.009
}	0.99	0	0.018	0.875
	0.99	1	-0.090	0.855
	0.99	2	-2.402	0.001
	0.99	3	-4.201	0.000
	0.99	4	-3.287	0.000
7	0.99	5	-2.986	0.000
	0.99	6	-2.263	0.001
)	0.99	7	-0.966	0.125
)	0.99	8	-0.732	0.132
	0.99	9	0.983	0.693
	0.99	10	0.913	0.982
	0.99	11	1.599	0.457
- -	0.99	12	2.730	0.115
	0.99	13	3.939	0.068
	0.99	14	4.530	0.035
;	0.99 0.99	14 15	4.530 3.998	0.035 0.108
2				
) 7		15	3.998	0.108
; ; ;	0.99	15	3.998	0.108
	0.99	15	3.998	0.108
) })	0.99 Table 10: Results of Mann-	15 Whitney U test	3.998 for VAE+VCL model c	0.108 onfigura
	0.99 Table 10: Results of Mann-V	15 Whitney U test 1 Trained task	3.998 for VAE+VCL model c Accuracy difference	0.108 onfigura
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90	15 Whitney U test T Trained task 0	3.998 for VAE+VCL model c Accuracy difference -0.026	0.108 onfigura p 0.664
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90	15 Whitney U test T Trained task 0 1	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085	0.108 onfigura p 0.664 0.953
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90	15 Whitney U test T Trained task 0 1 2	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831	0.108 onfigura p 0.664 0.953 0.136
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90	15 Whitney U test T Trained task 0 1 2 3	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077	0.108 onfigura p 0.664 0.953 0.136 0.142
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90	15 Whitney U test Trained task 0 1 2 3 4	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test T Trained task 0 1 2 3 4 5 6	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test T Trained task 0 1 2 3 4 5 6 7	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test a Trained task 0 1 2 3 4 5 6 7 8	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227 0.142
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227 0.142
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.247 0.227 0.142 0.193
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.227 0.142 0.227 0.142 0.193 0.028
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.227 0.142 0.193 0.028 0.193 0.201
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585 1.880	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.227 0.142 0.193 0.228 0.193 0.201 0.112
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585 1.880 -0.045	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.227 0.142 0.193 0.228 0.193 0.201 0.112 0.347
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585 1.880 -0.045 0.929	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227 0.142 0.193 0.227 0.142 0.193 0.228 0.193 0.201 0.112 0.347 0.084
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585 1.880 -0.045 0.929 -0.112	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.227 0.142 0.193 0.227 0.142 0.193 0.201 0.112 0.347 0.084 0.681
	0.99 Table 10: Results of Mann-V Confidence threshold 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	15 Whitney U test 1 Trained task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1	3.998 for VAE+VCL model c Accuracy difference -0.026 0.085 -0.831 -1.077 -0.838 -0.512 -0.064 0.596 0.549 1.318 1.545 1.362 2.354 1.521 1.585 1.880 -0.045 0.929	0.108 onfigura p 0.664 0.953 0.136 0.142 0.119 0.245 0.716 0.489 0.549 0.227 0.142 0.193 0.227 0.142 0.193 0.228 0.193 0.201 0.112 0.347 0.084

134				
134	Confidence threshold	Trained task	Accuracy difference	р
36	0.99	5	0.920	0.119
37	0.99	6	1.572	0.010
	0.99	7	1.313	0.073
38	0.99	8	1.102	0.236
39	0.99	9	1.453	0.177
40	0.99	10	1.797	0.084
41	0.99	11	1.844	0.073
42	0.99	12	3.180	0.006
43	0.99	13	2.852	0.017
14	0.99	14	2.707	0.050
15	0.99	15	3.173	0.013
16				
17	Table 11: Results of Mann-W	/hitney U test fo	or RNVP+BNN model	configurat
18				
19				
+9 50		T 1 1	1:00	
	Confidence threshold	Trained task	Accuracy difference	p
51	0.90	0	0.019	0.348
52	0.90	1	0.642	0.109
53	0.90	2	0.774	0.199
54	0.90	3	0.866	0.063
55	0.90	4	0.899	0.023
56	0.90	5	1.260	0.004
57	0.90	6	1.185	0.000
58	0.90	7	1.463	0.001
59	0.90	8	1.701	0.000
60	0.90	9	1.655	0.002
51	0.90	10	1.725	0.006
52	0.90	11	1.762	0.076
63	0.90	12	2.294	0.093
	0.90	13	2.182	0.218
64	0.90	14	2.598	0.272
65	0.90	15	2.208	0.522
66	0.99	0	-0.010	0.815
67	0.99	1	0.037	0.755
68	0.99	2	-0.421	0.741
69	0.99	3	-0.130	0.961
70	0.99	4	-0.032	0.728
71	0.99	5	0.820	0.028
72	0.99	6	0.768	0.012
73	0.99	7	0.966	0.006
74	0.99	8	1.178	0.006
75	0.99	9	1.278	0.006
76	0.99	10	1.581	0.017
10	0.99	11	1.413	0.037
77	0.99	12	2.155	0.035
		13	2.213	0.069
78	0.99		A FOO	
78 79	0.99	14	2.590	0.045
78 79 30			2.590 2.685	0.045 0.046
77 78 79 80 81	0.99 0.99	14 15	2.685	0.046
78 79 80	0.99	14 15	2.685	0.046
78 79 80 81	0.99 0.99	14 15	2.685	0.046
78 79 80 81 82	0.99 0.99	14 15	2.685	0.046
78 79 80 31 32 33 34	0.99 0.99	14 15	2.685	0.046
78 79 30 31 32 33	0.99 0.99	14 15	2.685	0.046

1188		Track 1 (1	A	
1189	Confidence threshold	Trained task	Accuracy difference	р
1190	0.90	0	-0.110	0.597
1191	0.90	1	0.453	0.020
1192	0.90	2	0.205	0.297
1193	0.90	3	0.208	0.239
1194	0.90	4	0.120	0.417
	0.90	5	-0.091	0.636
1195	0.90	6	-0.030	0.914
1196	0.90	7	-0.054	0.636
1197	0.90	8	0.108	0.223
1198	0.90	9	0.083	0.185
1199	0.99	0	0.105	0.408
1200	0.99	1	0.592	0.002
1201	0.99	2	0.525	0.021
1202	0.99	3	0.369	0.074
1203	0.99	4	0.144	0.285
1204	0.99	5	0.047	0.903
1205	0.99	6	0.046	0.925
	0.99	7	0.013	0.914
1206	0.99	8	0.125	0.208
1207	0.99	9	0.146	0.035
1208				
1209 Table 13: Res	sults of Mann-Whitney U	test for CNN+	VAE model configurati	on (CIFA

C.3 MOOD'S TEST

ment).

5	Confidence threshold	Trained task	Accuracy difference	р
5	0.90	0	0.010	0.617
7	0.90	1	0.225	0.453
	0.90	2	-0.003	1.000
	0.90	3	-0.430	0.803
	0.90	4	1.258	0.211
	0.90	5	0.472	0.901
	0.90	6	0.549	0.530
	0.90	7	1.509	0.530
	0.90	8	1.670	0.096
	0.90	9	1.032	0.071
	0.90	10	1.683	0.018
	0.90	11	1.932	0.000
	0.90	12	2.789	0.000
	0.90	13	3.458	0.000
	0.90	14	3.516	0.000
	0.90	15	3.055	0.000
	0.99	0	0.040	0.080
	0.99	1	0.130	0.901
	0.99	2	-0.265	1.000
	0.99	3	-1.064	0.377
	0.99	4	0.747	0.901
	0.99	5	-0.672	0.366
	0.99	6	-1.542	0.157
	0.99	7	-0.164	1.000
	0.99	8	0.523	0.900
	0.99	9	-0.276	0.686
			Continued on ne	xt page

р	Accuracy difference	Trained task	Confidence threshold
0.715	-0.951	10	0.99
1.000	-0.032	11	0.99
0.233	0.683	12	0.99
0.047	1.501	13	0.99
0.233	1.702	14	0.99
0.005	1.726	15	0.99
uration	AE+BNN model config	ood's test for VA	Table 14: Results of Mo
n	Accuracy difference	Trained task	Confidence threshold
p	-		
0.527	0.060	0	0.90
0.639	0.465	1	0.90
0.266	0.642	2	0.90
1.000	0.054	3	0.90
0.079	1.235	4	0.90
0.079	1.460	5	0.90
0.266	1.601	6	0.90
0.079	2.726	7	0.90
0.104	2.715	8	0.90
0.104	3.011	9	0.90
0.023	2.794	10	0.90
0.023	2.380	11	0.90
0.023	2.438	12	0.90
0.104	2.956	13	0.90
0.071	3.653	14	0.90
0.251	3.135	15	0.90
0.266	0.080	0	0.99
1.000	0.098	1	0.99
0.036	-1.360	2	0.99
0.000	-3.144	3	0.99
0.000	-2.494	4	0.99
0.000	-2.523	5	0.99
0.000	-1.903	6	0.99
0.863	-0.703	7	0.99
0.330	-1.398	8	0.99
0.745	0.670	9	0.99
1.000	0.235	10	0.99
0.642	0.622	10	0.99
0.100	1.668	11	0.99
0.100	3.004	12	0.99
0.081	3.763	13	0.99
0.081	3.123	14	0.99
0.214	5.125	15	0.99
uration	AE+VCL model config	ood's test for V	Table 15: Results of Mo
			Table 15. Results of Mi
р	Accuracy difference	Trained task	Confidence threshold
	•		
1.000	-0.010	0	0.90
0.763	0.323	1	0.90
0.132	-1.393	2	0.90
0.132	-1.400	3	0.90
0 100	-1.284	4	0.90
0.132	1.204		

1296	Confidence threshold	Trained task	Accuracy difference	р
1297			•	
1298	0.90	5	-1.151	0.132
1299	0.90	6	-0.091	1.000
1300	0.90	7	0.572	0.366
1301	0.90	8	1.067	0.366
1302	0.90	9	2.141	0.366
1303	0.90	10	2.065	0.132
1304	0.90	11	1.845	0.132
	0.90	12	2.954	0.132
1305	0.90	13	2.865	0.763
1306	0.90	14	2.541	0.366
1307	0.90	15	2.711	0.448
1308	0.99	0	-0.080	0.366
1309	0.99	1	0.940	0.132
1310	0.99	2 3	-0.488	0.763
1311	0.99		-0.451	0.763
1312	0.99	4	0.203	1.000
1313	0.99	5	0.773	0.035
1314	0.99	6	1.453	0.007
	0.99	7	1.046	0.132
1315	0.99	8	0.570	0.132
1316	0.99	9	2.335	0.366
1317	0.99	10	2.104	0.366
1318	0.99	11	1.387	0.035
1319	0.99	12	1.982	0.048
1320	0.99	13	3.269	0.171
1321	0.99	14	2.216	0.448
1322	0.99	15	3.003	0.171
1000	Table 16: Results of Mo	od's test for PN	IVP+RNN model confi	guration

Table 16: Results of Mood's test for RNVP+BNN model configuration.

ľ	Accuracy difference	Trained task	Confidence threshold
0.425	0.025	0	0.90
0.037	0.450	1	0.90
0.233	0.513	2	0.90
0.454	0.483	3	0.90
0.233	0.516	4	0.90
0.037	1.111	5	0.90
0.037	1.451	6	0.90
0.003	1.909	7	0.90
0.011	2.186	8	0.90
0.043	1.852	9	0.90
0.015	1.649	10	0.90
0.114	2.645	11	0.90
0.155	2.239	12	0.90
0.155	1.480	13	0.90
0.155	2.298	14	0.90
0.653	2.888	15	0.90
0.281	0.030	0	0.99
0.761	0.092	1	0.99
0.888	-0.227	2	0.99
1.000	-0.075	3	0.99
0.761	0.296	4	0.99
0.037	0.929	5	0.99

1350 1351	Confidence threshold	Trained task	Accuracy difference	р
1352	0.99	6	0.861	0.037
1353	0.99	7	0.862	0.101
1354	0.99	8	1.201	0.099
1355	0.99	9	1.248	0.043
	0.99	10	1.756	0.118
1356	0.99	11	2.259	0.159
1357	0.99	12	2.486	0.116
1358	0.99	13	2.706	0.322
1359	0.99	14	3.508	0.116
1360	0.99	15	3.600	0.365
1361				
1362	Table 17: Results of Mo	od's test for RN	VVP+VCL model config	guration.
1363				
1364				
1365	Confidence threshold	Trained task	Accuracy difference	р
1366	0.90	0	0.050	1.000
1367	0.90	0	0.050	0.027
1368	0.90	2	0.430	0.027
1369	0.90	3	0.200	0.543
1370	0.90	4	0.120	1.000
1371	0.90	5	-0.083	0.752
1372	0.90	6	0.029	1.000
1373	0.90	7	-0.031	1.000
1374	0.90	8	0.111	0.343
	0.90	9	0.185	0.057
1375	0.99	0	0.400	0.343
1376	0.99	1	0.575	0.011
	0.99	2	0.450	0.114
1377	0.99			
1378				
1378	0.99	3	0.263	0.205
1378 1379	0.99 0.99	3 4	0.263 0.210	0.205 0.343
	0.99 0.99 0.99	3 4 5	0.263 0.210 -0.075	0.205 0.343 0.752
1378 1379 1380	0.99 0.99 0.99 0.99	3 4 5 6	0.263 0.210 -0.075 0.000	0.205 0.343 0.752 1.000
1378 1379 1380 1381	0.99 0.99 0.99 0.99 0.99 0.99	3 4 5 6 7	0.263 0.210 -0.075 0.000 0.050	0.205 0.343 0.752 1.000 1.000
1378 1379 1380 1381 1382	0.99 0.99 0.99 0.99	3 4 5 6	0.263 0.210 -0.075 0.000 0.050 0.044	0.205 0.343 0.752 1.000 1.000 1.000
1378 1379 1380 1381 1382 1383	0.99 0.99 0.99 0.99 0.99 0.99 0.99	3 4 5 6 7 8	0.263 0.210 -0.075 0.000 0.050	0.205 0.343 0.752 1.000 1.000

Table 18: Results of Mood's test for CNN+VAE model configuration (CIFAR100 experiment).

389	Confidence threshold	Trained task	Accuracy difference	р
390	0.9	1	-0.8325	0.180
91	0.90	2	-1.2467	0.916
92	0.90	3	-1.0438	0.395
93	0.90	4	0.0760	1.000
94	0.90	5	0.8408	0.537
95	0.90	6	0.9486	0.898
96	0.90	7	0.4931	0.898
97	0.90	8	-0.4289	0.718
98	0.90	9	-0.4965	0.180
99	0.90	10	-1.0527	0.718
00	0.90	11	1.4529	0.037
01	0.90	12	3.4158	0.037
02	0.90	13	5.6961	0.000
03			Continued on ne	xt page

1404 1405	Confidence threshold	Trained task	Accuracy difference	р
406	0.90	14	5.4063	0.000
407	0.90	15	4.5675	0.000
	0.90	16	6.9368	0.000
08	0.90	17	6.8036	0.000
)9	0.90	18	8.6021	0.000
0	0.90	19	5.7730	0.000
1	0.90	20	5.3267	0.001
2	0.99	1	-0.9525	0.096
3	0.99	2	-0.7833	0.445
4	0.99	3	-1.0613	0.445
5	0.99	4	0.1060	1.000
5	0.99	5	0.0208	1.000
7	0.99	6	0.1100	0.890
	0.99	7	0.3169	0.677
8 9	0.99	8	-0.4144	0.755
	0.99	9	0.8215	0.555
	0.99	10	-0.6027	0.445
	0.99	11	2.9254	0.017
	0.99	12	3.6373	0.001
	0.99	13	5.4293	0.000
	0.99	13	4.8513	0.000
	0.99	15	5.9163	0.000
	0.99	16	8.6809	0.000
6 7	0.99	17	11.2064	0.000
	0.99	18	13.7189	0.000
)	0.99	19	13.6390	0.000
	0.99	20	16.3302	0.011
)				
1				
1 Table 19: R	Results of Mood's test for	CNN+VAE m	odel configuration (CIF	AR100
Table 19. K	Results of Mood's test for	CNN+VAE m	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE m	odel configuration (CIF	AR100
Table 19: R	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE m	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE me	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE me	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE me	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100
Table 19: F	Results of Mood's test for	CNN+VAE mo	odel configuration (CIF	AR100