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“The cupcake is too far away 
🤔

” “Now I have the cupcake 
😊

”

VLMgineer

Tool Design

Robot Action

Fig. 1: Given a manipulation task that lies outside the robot’s capabilities, VLMGINEER first prompts a vision language model
to generate a tool and action. We then employ evolutionary search in simulation to refine the tool’s geometry and synthesize
the corresponding robot motion plan. Finally, the robot, equipped with the automatically designed tool, successfully completes
the task.

Abstract—Tool design and use reflect the ability to understand
and manipulate the physical world through creativity, planning,
and foresight. As such, these capabilities are often regarded as
measurable indicators of intelligence across biological species.
While much of today’s research on robotic intelligence focuses
on generating better control strategies, inventing smarter tools
offers a complementary form of physical intelligence: shifting
the problem-solving onus onto the tool’s geometry to simplify
control. Given the vast and impressive common-sense, reasoning,
and creative capabilities of today’s foundation models, we ask
the following question: can we use these models as useful priors
to automatically design and effectively wield such tools? We
present VLMGINEER, a framework that harnesses the code
generation abilities of vision language models (VLMs) together
with evolutionary search to iteratively co-design physical tools
and the action plans that operate them to perform a task.
We evaluate VLMGINEER on a diverse new benchmark of
everyday manipulation scenarios that demand creative tool
design and use. Across this suite, VLMGINEER consistently
discovers tools and policies that solve tasks more effectively
and innovatively, transforming challenging robotics problems into
straightforward executions. It also outperforms VLM-generated
designs from human specifications and existing human-crafted
tools for everyday tasks. To facilitate future research on automated
tool invention, we will release our benchmark and code. Project
Website: vlmgineer.github.io.

I. INTRODUCTION

Humans exhibit a remarkable ability to design and utilize
tools, fundamentally extending their capabilities to accomplish
tasks otherwise beyond their reach through creativity, planning,
and foresight. This capacity for tool creation and usage
represents one of our most distinctive cognitive adaptations, and
therefore is widely regarded as a marker of cognitive complexity.
Achieving comparable versatility in robots demands a coupled

approach: the shape of a tool and the motions that wield
it should be co-designed — each constraining and enabling
the other. Much of today’s robotics research concentrates on
enabling complex robot motions that use simple standard
tools [1–5]. In this work, we pursue an alternative form of
physical intelligence: inventing smarter tools that simplify
downstream control — thereby shifting the primary problem-
solving burden from devising control strategies to designing
the tool’s geometry.

State-of-the-art vision–language models (VLMs) possess vast
and impressive common-sense, reasoning, and creative abilities,
alongside extraordinary capabilities in code generation, visual
comprehension, and in-context learning. When combined with
evolutionary search methods, VLMs have successfully crafted
human-level reward functions for reinforcement learning [6, 7],
3D graphics [8], articulations of in-the-wild objects [9], intricate
3D sculptural designs [10], and developing advanced algorithms
to solve mathematics and science problems [11–13].

In the wake of these results, we ask: can today’s VLMs also
guide the design of innovative and action-efficient physical tools
for robots? We introduce VLMGINEER, a fully autonomous
framework that leverages VLMs to jointly evolve both tool
design and manipulation strategies for robots. Our method
demonstrates unprecedented efficacy in developing specialized
tools for diverse manipulation tasks, through an evolutionary
search process guided by VLM-generated tool geometries and
action plans. Compared to prior more limited investigations of
tool design, that largely consider parameter optimization for a
manually designed parametric template, VLMGINEER works
off-the-shelf for new tasks without task-specific templates,
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prompts, or examples. Furthermore, compared to prior works
that use VLMs, VLMGINEER does not require in-context few-
shot examples. To facilitate future research and benchmarking,
we also introduce ROBOTOOLBENCH, a comprehensive simula-
tion suite comprising 12 diverse robotic tool-use manipulation
tasks specifically designed to evaluate tool design and policy
optimization methods.

In summary, we make the following contributions:
• VLMGINEER, a novel evolutionary optimization frame-

work that automatically discovers innovative tools to solve
robotics task more efficiently.

• ROBOTOOLBENCH, a comprehensive simulation bench-
mark consisting of 12 robotic tool-use tasks designed
explicitly for evaluating robotic tool and policy designs.

Our fully autonomous approach demonstrates superior task
performance over designs generated with human specifi-
cations and human-crafted everyday tools. When evaluated
on ROBOTOOLBENCH, VLMGINEER achieves an average nor-
malized improvement of 64.7% over VLM-generated designs
from human language specifications and outperform existing
human-crafted tools by an average normalized improvement of
24.3%. Our results serve to validate both the physical design
intelligence enshrined in VLMs pre-trained on web-scale data,
and also present the promise of more adaptable and capable
robotics systems that can ingeniously create and use tools.

II. RELATED WORK

Task-specific computational agent and tool design. Pre-
vious research has extensively investigated methods for opti-
mizing robot morphology, end-effectors, and tool designs for
robot manipulation through various computational approaches,
ranging from model-based optimization [14], reinforcement
learning (RL) [15], data-driven generative models [16–18],
and differentiable simulation [19]. Others have explored robot
design for locomotion using evolutionary algorithms [20–25],
stochastic optimization [26], and graph search [27]. However,
these existing approaches typically require manual task-specific
pre-definition of a handful of optimization parameters, rely on
fixed trajectories or pre-defined control policies, and tend to
suffer from low sample efficiency. In contrast, we introduce
a VLM-driven approach that simultaneously optimizes both
tool design and manipulation policies, enabling generalization
across diverse manipulation tasks without requiring manual
parameter specifications.

Robot learning for tool-based tasks. To learn effective tool
usage, some have employed learned or simulated dynamics
models for tool manipulation optimization [28–32]. Another
prevalent approach involves learning tool and object affordances
— understanding the functions of objects and tool-object
interactions [1, 33–37]. Recently, large language models have
been leveraged to employ creative tool use [38]. While such
methods typically assume that suitable tools already exist in the
environment, we instead address the more practical scenario
where a general-purpose robot must concurrently optimize both
the tool’s design and its manipulation strategies.

Joint optimization of morphology and control. Jointly
addressing tool design and control problems has often involved
formulating nonlinear programs to solve task and motion
planning (TAMP) given predefined design parameter space,
which are particularly effective for sequential manipulation
over extended horizons [39, 40]. However, given our objective
to deploy VLMGINEER in any arbitrary environment without
manual specification of design parameters, we rely on the
underestimated physical creativity of VLMs. Approaches using
RL [41–44], gradient-based optimization [45], Bayesian opti-
mization, evolutionary algorithms [46–48], or a combination
of them [49–53] have been proposed for joint morphology and
control learning for robot locomotion tasks, in particular with
soft or modular robots. Studies on joint robot or tool and policy
design through RL [54, 55], differentiable simulation [56], and
model-based optimization [57] have also demonstrated effec-
tiveness in tool manipulation. However, since these methods
still all require manual specifications of the design space, they
require significant human efforts to scale beyond a few tasks.

Recent work has explored LLM-aided evolutionary search for
robot design in conjunction with RL-based policy optimization
in locomotion [58, 59], demonstrating the potential of using
LLMs to unlock more performant robot design. Unlike prior
work, our work targets open-world VLM-guided design of
both tools and actions for manipulation without human-in-
the-loop parameter specification. VLMGINEER leverages the
surprising physical creativity of VLMs to automatically
create design solutions using evolutionary search. It can
easily be scaled to a wide range of tasks, and it is much more
efficient in terms of samples, time, and computethan prior
RL-based methods.

III. BACKGROUND

Evolutionary Methods. Evolutionary algorithms [60, 61]
have a long-standing history in solving optimization problems,
inspired by principles of biological evolution and natural selec-
tion. They are particularly effective in black-box optimization
with vast optimization spaces, such as open-ended design. At
their core, these methods maintain a population of candidate
solutions, which iteratively evolve through carefully designed
mutation and crossover operators. Each iteration evaluates
individuals against a fitness function, selecting those with
higher fitness while discarding or replacing less successful
candidates. To balance exploitation and exploration, crossover
combines promising solutions into offspring, and mutation in-
troduces novel variations. Evolutionary algorithms have proven
effective across diverse domains such as program synthesis,
symbolic regression, algorithm discovery, and even robot
design. Nevertheless, their reliance on handcrafted mutation
and crossover operators remains a significant limitation—such
operators are challenging to design and often inadequately
capture essential domain-specific insights.

Large model-guided evolution. To improve the scalability,
performance, and automation of evolutionary algorithms, recent
work has integrated large models into the evolutionary process,
automating mutation and crossover operations. Leveraging the
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Fig. 2: VLMGINEER takes unmodified environment source code, environment image, environmental description, and task
description as context to zero-shot generate tool and action designs from a VLM. It then iteratively refines its tool and action
designs through a loop of candidate sampling, simulation-based evaluation, and evolution improvement

extensive world knowledge and inductive biases inherent in
large models allows for more efficient evolution of candidate
solutions and also eliminates the necessity of manually defining
allowed mutation operations. Moreover, some approaches
exploit the rich semantic understanding of large models to
provide nuanced, semantic feedback beyond simple numerical
fitness scores. Specific implementations of these principles in
evolutionary algorithms vary according to the domain. For
instance, Eureka [7] employs large language models (LLMs)
to guide evolutionary reward design in reinforcement learning.
Eureka generates a population of candidate reward functions
directly from raw environment code, evaluates RL agents
trained with these rewards using a task-specific fitness function,
and selects the best-performing candidates.

Although it omits explicit crossover, Eureka employs LLM-
guided in-context reward mutation by proposing an improved
reward function from an existing one based on textual feedback..
Drawing inspiration from these successes, we investigate
whether vision–language models (VLMs) can similarly offer
valuable inductive biases to guide the evolutionary design of
robotic tools and manipulation actions.

IV. METHOD

VLMGINEER builds upon previous Large Model-guided
evolution methodologies to perform tool-action co-design.
Specifically, VLMGINEER consists of three algorithmic com-
ponents: (1) We prompt the VLM to generate a diverse
population of potential candidate tool-action samples given
raw environment code, task description, and system instructions
as context. (2) We evaluate each of the design samples via
task fitness functions and retain those with the top-k rewards.
(3) We iteratively prompt the VLM to produce novel tool-
sample offspring via guided tool mutation and crossover,

Algorithm 1 VLMGINEER: Evolutionary Tool and Action
Co-Design with VLMs
Require: Environment code E , image render I , task description dtask,

fitness function F , initial prompt PROMPT, Vision-Language
Model VLM

1: Hyperparameters: Number of evolution cycles n, population
size K, top-k selection threshold

2: for n iterations do do
3: // Sample K designs
4: D1, D2, ..., DK ∼ VLM(E , I, dtask, PROMPT)
5: // Evaluate design candidates
6: s1 = F(D1), · · · , sK = F(DK)
7: // Selection
8: Select top-k designs {Dj1 , ..., Djk} with highest sj
9: // Evolution

10: PROMPT := PROMPT : EVOLUTION PROMPT({Dj1 , ..., Djk})
11: end for
12: return Final design D∗ = argmaxD F(D) across all iterations

progressively improving tool and action designs.
Joint tool and action candidate sampling. While pre-

vious approaches of large model-guided evolutionary robot
design [58, 59] typically optimize robot morphology alone,
relegating action or control optimization to a subsequent
evaluation stage. our approach prompts the VLM to simul-
taneously generate paired tool designs and corresponding
action strategies in a single inference step. Our key insight
behind joint tool-action sampling is that it allows for a tighter
coupling between tools and their associated actions. Rather than
sequentially optimizing the tool geometry first and then actions
afterward, simultaneous optimization leverages the VLM’s
inductive biases to smoothly navigate the joint tool–action
design space towards the Pareto frontier. Concretely, within
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Fig. 3: VLMGINEER produces innovative tool designs and their corresponding actions across 12 diverse tasks in
ROBOTOOLBENCH that are challenging to perform using a general-purpose robot arm and gripper.

each evolution cycle, VLMGINEER prompts the VLM to
propose n distinct tool designs along with m candidate action
plans per tool, resulting in n×m total tool-action pairs. This
corresponds to a kind of crude VLM-guided policy optimization,
which merely selects the best among the m generated action
plans. Compared to policy optimization via RL [7, 58, 59],
our action sampling approach, albeit simple, significantly
accelerates iteration cycles and reduces computational overhead
by exploiting the insight that appropriately designed tools
inherently simplify and enhance action plans.

Specification of how to do crossover and mutation. A
critical part of how VLMGINEER enables effective tool design
evolution is the utilization of inductive in-context crossover
and mutation. We define inductive in-context crossover and
mutation as the process of prompting VLMs to introduce
random, free-form tool mutations and crossovers, conditioned
on previous elite tool candidates, and guided by the model’s
learned inductive biases for producing better task-solving tools.
We use the prompt below to perform inductive in-context
crossover and mutation: Your design decision is part of a
genetic algorithm for tool creation, where each new design
is produced either by mutation—changing exactly one aspect

(e.g., adjusting a component’s dimension or adding/removing
a component)—or by crossover, combining elements from
two existing designs. All resulting mutations and crossovers
should plausibly enhance task success while preserving design
diversity.

Tool representation format. Selecting an appropriate rep-
resentation for tools—balancing abstraction, design flexibility,
and manufacturability—is critical for effective optimization.
Prior works have represented objects and tools as meshes [62],
CAD [63], or blocks [10]. These representations, however,
either introduce excessive complexity and optimization chal-
lenges or lack sufficient expressiveness. Inspired by prior
work [9], we represent tools in Unified Robot Description
Format (URDF). The structured, modular nature of URDF, anal-
ogous to code blocks, aligns seamlessly with vision–language
models’ (VLMs) strengths in code understanding and gener-
ation. Concretely, we prompt the VLM to generate URDF-
defined tool designs as modular blocks that can be directly
integrated into a designated end-effector link of the robot
model.

Action representation format. Building on recent work
that leverages VLMs for action generation [64, 65], we prompt



Fig. 4: This figure compares the reward of Franka Gripper experiments, 3 Human Prompt experiments, and experiments on our
proposed method across 12 tasks. For every method, the bars with the original dark color in the legend indicate the average
reward of the five runs, while the bars with a paler color visible above them indicate the best reward over those runs.

the model to explicitly output action sequences in the form of
an N × 7 array, where N denotes the number of waypoints.
Each row encodes a 6-DoF pose for the robot end-effector,
along with a gripper open/close command.

V. ROBOT TOOL DESIGN BENCHMARK

We propose a comprehensive simulation benchmark
ROBOTOOLBENCH designed explicitly for evaluating robotic
tool and policy design. ROBOTOOLBENCH comprises 12 object
manipulation tasks designed to be challenging for the conven-
tional robot morphology to complete. These task environments
are visualized in Fig. 3. For several tasks (BringCube,
CleanTable, GatherSpheres, ScoreGoal), we took
inspiration from the subset of RLBench [66] tasks that involve
tool use — note, however, that we expect that automated tool
design will replace and improve the original tools from RL-
Bench. Several other tasks (HighObject, ElevatePlate)
are inspired by prior works in computational co-design [55]
that study task-specific design parameter optimization as
discussed in Sec II. Still more task environments are inspired by
everyday home scenarios (LiftBox, MoveBall, OneBook,
SnatchCookie, TurkeyLegs). Finally, DislodgeCube
is inspired by a tool design behavior previously observed in
the Caledonian crow [67], which used tools to retrieve objects
in confined spaces. We adopt the Franka Panda robot arm as
the standard morphology to attach tools to, and implement our
environments using PyBullet [68].

VI. EVALUATION

We begin this section with an introduction to our experi-
mental goals and setups, and then analyze the results of our

comparison and ablation studies in detail. Our experiments
are designed to address the following questions: Q1: Can
VLMGINEER effectively discover innovative tools and ways to
use them? Q2: How does VLMGINEER compare to a human
specifying tool designs to a VLM in natural language? Q3: How
do VLMGINEER outputs improve over evolution iterations?

a) Baselines.: To showcase VLMGINEER’s ability to gen-
erate creative and effective tools and usage actions, we compare
our method with the following baselines: (1) Franka Gripper:
We evaluate the performance of the vanilla Franka Panda two-
finger gripper without additional tools on ROBOTOOLBENCH
to highlight the inherent limitations of the robot’s default
morphology; these tasks are after all explicitly designed to
be very hard or impossible to perform without the right tools.
We derive the no-tool action policy by prompting the VLM to
follow an action-sampling procedure analogous to our proposed
method, minus the use of any tools. (2) Human Prompts: For
these baselines, we ask humans to specify a tool design to
the VLM in natural language, following which it attempts to
generate that tool and several action plans, as in our method.
There is no evolutionary search. We evaluate on humans
with varying expertise: "Robotics expert" (a graduate student
researching robot learning), "LLM expert" (a graduate student
researching LLMs), and "Layperson" (an undergraduate student
with no relevant research experience). The procedure on the
case study is in Appendix A.1. (3) RLBench Tools: We
evaluate four original tools from the tasks we adapted from
RLBench, which are often natural everyday tools for the tasks
considered.

b) Evaluation Metrics.: To assess the quality of a tool-
action design after each execution, we define these evaluation
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Fig. 5: This figure presents a qualitative comparison of human-designed tools, RLBench tools, and VLMGINEER tools on three
tasks: BringCube (top row), ScoreGoal (middle row), and GatherSpheres (bottom row).

metrics: (1) Task Reward, which is a set of pre-defined task
reward function R : S → r ∈ [0, 1] that are unique to each
task, where S is its environmental state and r is a normalized
reward. These rewards are designed to evaluate the progress
made in the task by a certain tool-action pair. (2) Distance
Traversed, defined as the total distance traversed (in meters)
by the robot end-effector for completing a tool-action pair
execution to evaluate the effort efficiency of the design. This is
motivated by how better tools tend to reduce the effort needed
to complete a task.

We run each baseline approach and our method five times
on each task, then report the best and average rewards across
those five runs. To more clearly differentiate experiments that
resulted in similar rewards, we use the distance traversed as a
secondary tie-breaker metric that rewards efficiency.

A. Comparing VLMGINEER Results to other Tool Designs

The results are summarized in Fig. 4. VLMGINEER works
consistently well across tasks, in terms of both average and
best rewards. We dive into interesting individual method
comparisons now. As expected, the default Franka Panda
two-finger gripper fails on the majority of these tasks. What
is perhaps more noteworthy is that VLMGINEER outper-
forms human-prompting! This is true across all tasks on
both metrics, showing better and more reliable performance.
While human prompts occasionally produced strong solutions,

their results were less consistent and efficient. In tasks like
CleanTable and ScoreGoal, both approaches reached
similar peak rewards, but our method did so with significantly
shorter paths. For further analysis, Fig. 5 shows example
designs from human-prompting and VLMGINEER. Human-
designed tools (left column) generally offer suitable forms
for task completion; however, VLMGINEER (right column)
creates more specialized features that enhance performance.
For instance, in task ScoreGoal, our method produces long
and bent shapes facilitating simpler, more efficient motions,
which the robot just need to move very little along one axis
to hit the puck. On the other hand, the straight tool designed
from human prompts would require more careful control of the
puck. In GatherSphere, our design includes a scoop with
side protection and an overhead stripe structure, effectively
preventing spheres from bouncing away.

VLMGINEER tools also outperform the RLBench original
tools. On the four RLBench-based tasks in ROBOTOOLBENCH,
we evaluated the standard RLBench Tools (Fig. 5 middle
column). These are often designed to be simple everyday
tools that humans might use for those tasks. As shown in
Fig. 7, across every task, VLMGINEER not only attains the
highest possible reward across the repeated five runs but does
so more reliably (on the average reward) than RLBench Tools.
While the rewards in task BringCube and CleanTable are
similar to ours, the average rewards over the five repeated runs



(a) Mean top reward across all evaluated tasks,
comparing the Without/With Evo condition.

Before Evo. After Evo.

(b) Qualitative comparison before/after evolution
on GatherSpheres (top row) and MoveBall
(bottom row).

Fig. 6: We present the quantitative (a) and qualitative (b) effectiveness of evolution in tool design.

are generally lower than VLMGINEER. Given that the best
rewards over five repeated runs are similar in BringCube and
CleanTable, we use distance traversed as the tie breaker.
From Fig. 7, corresponding to the best reward, our method has
a lower distance in BringCube and almost the same distance
in CleanTable.

Quantitatively inspecting the tools further highlights the
advantages of our method compared to RLBench. The RLBench
tools (middle column), originally designed for similar but
distinct tasks, often underperform due to less optimized
features. For example, in BringCube, the RLBench’s simple
stick, from the original reach and drag, provides insufficient
lateral control, resulting in inconsistent cube manipulation.
Our method’s cage-like structure reliably locks and moves the
cube closer, achieving significantly higher rewards. Similarly,
in ScoreGoal, RLBench’s hockey stick, from their hockey
task, demands precise, extensive movements, whereas our
geometrically optimized tool scores easily with minimal end-
effector movement. In GatherSpheres, RLBench’s spatula,
from their scooping with a spatula task, lacks effective side
control, causing frequent sphere roll-offs, while our design
with protective edges achieves more successful scoops and
higher task rewards.

B. Effectiveness of Evolution in Tool Design

To quantify the necessity of the evolutionary optimization
within VLMGINEER, we conducted an ablation study com-
paring our full evolutionary framework against a sampling-
only baseline (VLMGINEER w.o. Evolution), which performs
initial tool and action generation without iterative improvement.
Fig. 6a illustrates the best and average rewards achieved by
both configurations across selected tasks.

The results clearly demonstrate the efficacy of evolutionary
refinement. VLMGINEER consistently achieves higher task
rewards, showcasing its capability to explore and identify
superior regions in the joint tool-action design space that remain
inaccessible through initial sampling alone. This improvement

Fig. 7: This figure shows the reward of experiments with RL-
Bench Tools compared with the experiments on our proposed
method across 4 tasks, in which the bars with darker color
indicate the average best reward across the five runs, while the
bars with paler colors indicate the best reward across the five
runs.

underscores the value of iterative evolutionary optimization.
To gain qualitative insights into how evolution incrementally

enhances designs, we visualize examples from the evolutionary
process in Fig. 6b. In the GatherSpheres task, the initial
scooping tool lacked coverage at the top, allowing spheres
to bounce out frequently. Evolutionary iterations addressed
this by adding guardrails, significantly improving containment
and task success rates. Similarly, in the MoveBall task,
the original tool’s open-ended design made ball handling
challenging. Evolution optimized the geometry by introducing
a hugging rim, greatly enhancing control and maneuverability.

These qualitative examples, together with the quantitative
evidence, confirm that the evolutionary component of VLMGI-
NEER not only refines initial designs but is critical for achieving



robust and effective solutions that maximize performance.

VII. CONCLUSION

We propose a new framework for co-optimizing tool design
and tool use actions by leveraging the creativity from VLM. By
evaluating on 12 different simulation tasks, we demonstrate the
capability to design and use tools to solve robotic manipulation
tasks. Our results show that we outperform baselines that (1)
don’t design or use tools and (2) take the specifications directly
from humans. We also perform an ablation study to show how
our evolutionary module could further boost the performance.

Limitations. While VLMGINEER demonstrates significant
advancements in robotic tool and action co-design, several
limitations remain that future research should address: (1)
Our current framework relies exclusively on simulated envi-
ronments, potentially impacting the real-world effectiveness
and transferability of generated designs. (2) Robot actions
are represented as discrete end-effector poses, limiting the
handling of complex dynamic tasks requiring precise temporal
coordination. (3) Tool representations in URDF format are
constrained to simple geometries and limited material proper-
ties, and while preliminary results suggest generalization to
articulated tools, a comprehensive evaluation is needed. (4)
Currently, VLMGINEER is optimized for individual, isolated
tasks, and we have not explored multitask optimization or
generalization across diverse tasks. Future work should focus on
validating designs with real-world robot experiments, enhancing
action representations to include dynamic control, and exploring
richer, articulated tool designs and multitask generalization.
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VIII. APPENDIX

A. Baseline Details
1) Human-Prompted Designs Experiment Implementation:

Each participant underwent the following experimental pro-
cedure for each task: (i) We provided a screenshot of the
environment and a description of the task, accompanied by a
brief Q&A session to ensure the participants understood the
task. (ii) Participants then had five minutes to write a prompt
in English specifying their desired tool design and robot action.
We instructed participants to be as descriptive as possible while
focusing on both the design of the tool and how the robot
should use it to accomplish the task. (iii) we integrated their
prompt into our standardized request to the VLM (by adding
instructions as shown in Appendix VIII-D9), generating 5 tool
described in URDF format along with a batch of 10 samples
of action waypoints for each tool. (iv) The VLM outputs were
then evaluated in our simulation environment using the same
reward metrics described in Section 6. (v) Finally, we evaluated
and recorded the best-performing tool and action pair based on
the task reward metric for each participant. For a case study,
we obtained prompts from three humans coming from three
different backgrounds, including an LLM expert (a student
with extensive research experience in LLM), a robotics expert
(a student with extensive research experience in robotics), and
a layperson (with no technical background). This case study
will serve as an initial attempt on the concept. In the future, we
plan to recruit more human subjects to conduct human study
experiments on a larger sample population.

2) No-Tool Experiment Implementation: In the no-tool
baseline experiment, we evaluate the robot’s performance
without any additional tool attachment. The Franka Panda
robot uses its original two-finger gripper to perform the task,
with the VLM generating action waypoints for the robot end
effector pose and gripper open/close, totaling 7 degrees of
freedom. The prompt for this baseline is adapted from our
proposed prompt by removing the tool design component and
associated instructions, while retaining the task description and
action generation requirements. We use 5 agents with each
generating 10 samples of action waypoints, evaluated using the
same metrics introduced in Section 6. The complete no-tool
prompt is provided in Appendix VIII-D8.

3) RLBench Experiment Implementation: In the RLBench
experiment, we evaluate the robot’s performance with tools
from RLbench. We assume the tool is already attached to the
end effector without considering the picking step. The tool are
scaled to adapt to our tasks which are similar to the ones in
RLBench. The prompt for this baseline is also adapted from our
proposed prompt by removing the tool design component and
associated instructions. We use 5 agents with each generating
10 samples of action waypoints, evaluated using the same
metrics introduced in Section 6. The complete no-tool prompt
is provided in Appendix VIII-D10.

B. ROBOTOOLBENCH Details
In this section, we provide detailed descriptions of each task

and their corresponding dense reward functions in ROBOTOOL-

BENCH.

BringCube

In this task, a red cube on the desk which is
out of the reach of the robot is needed to be
brought closer to the target zone.
The reward measures how close the cube is
to the target as a fraction of its starting
distance, and scales it to 0~1.

CleanTable

In this task, the colorful cubes representing
dusts need to be pushed away from the robot
into a circular target zone marked by the
green boundary.
The reward reflects, on average, how far
each cube has been pushed toward the goal
circle, and scales it to 0~1.

DislodgeCube

In this task, a red cube is confined within a
white, transparent pipe in front of the robot,
which has two exits: one opening faces the
robot (along negative X) and the other at the
front-right corner (along negative Y). The
objective is to dislodge the cube through
either opening.
The reward captures the cube’s progress
toward either of the two pipe exits by
computing two separate, normalized (on a
0~1 scale) “distance-to-exit” scores and then
taking the better one.

ElevatePlate

In this task, a white plate placed on the desk
in front of the robot needs to be securely
lifted up.
The reward measures how far the plate has
moved from its starting position to the
desired lifted position, and scales it to 0~1.

GatherSpheres

In this task, an open three-walled container
filled with small purple spheres is placed
before the robot. The objective is to gather
and elevate as many spheres as possible
above 0.3 m.
The reward captures, on average, how high
the spheres have been lifted up to a specified
cap, and scales it to 0~1.



HighObject

In this task, a green cube sits on the top
shelf. The objective is to place it inside the
beige box positioned between the shelf and
the robot.
The reward combines a hard “in-box” check
with a smooth distance-based signal and a
bonus for lowering the cube off the shelf,
and scales it to 0~1.

LiftBox

In this task, a brown box on the desk in
front of the robot must be lifted above a
height threshold of 0.25 m.
This reward measures how much the box has
moved toward its target (lifted) position, and
scales it to 0~1.

MoveBall

In this task, a red ball on the desk must be
moved from the robot’s left side to its right
side.
The reward balances two objectives, getting
the ball toward the right-side target and
keeping its speed in check, and scales it to
0~1.

OneBook

In this task, two book holders with five
books between them are in front of the robot.
The objective is to pull out the middle (3rd)
book while keeping the others in place.
This reward balances two goals, pulling out
the middle book and keeping the others
perfectly still, and scales it to 0~1.

ScoreGoal

In this task, a hockey puck and a goal are
placed on the ground far from the robot. The
objective is to place the puck inside the goal.
The reward gives full credit once the puck is
entirely inside the goal’s 3D bounding box,
and otherwise scales linearly with how much
closer the puck is, horizontally, to the goal
than it was at the start, and scales it to 0~1.

SnatchCookie

In this task, a transparent jar of cookies sits
on the desk in front of the robot. The
objective is to take at least one cookie from
the jar.
The reward checks whether any cookie has
been lifted out of the jar, and otherwise
gives partial credit, from 0 to 1, based on
how high the tallest cookie has been raised.

TurkeyLegs

In this task, a silver pot with handles on
both sides, full of turkey legs, sits on the
desk in front of the robot. To the pot’s left
(robot’s perspective) is a chef’s box. The
objective is to transfer all turkey legs into
the box without moving the pot.
The reward combines two checks, keeping
the pot out of the box and getting each
turkey leg into the box, by multiplying, and
scales it to 0~1.

C. VLMGINEER Implementation Details

1) Design Agents Context: This section describes the context
that applies to a single design agent. The design agent is
provided with task context as illustrated in Fig. 2, which
includes (1) the environment code, (2) a screenshot of the
environment, (3) a brief task description, and (4) a total text
prompt composed by the prompts in Appendix VIII-D. We
also provide task-agnostic context, including (i) environment
base class, which provides basic task-agnostic functionalities,
(ii) environment runner, which establishes the context for how
we will use the output tool and action, and (iii) a URDF
of the Franka Panda without the tool to indicate where to
attach the tool. All task environments are implemented as child
classes of the environment base class, ensuring they inherit
the fundamental functionalities while allowing for task-specific
implementations.

2) Design Agents Queries: In VLMGINEER, we query VLM
for designs by first initializing nagents number of agents in
parallel with the same prompts. For each agent, we prompt it
to generate ntool number of tool designs, and naction number
of action waypoint samples that correspond to each tool
design. Therefore, the total number of tool-action pairs that are
generated via one complete query is nagents × ntool × naction.
The prompt we use to specify this behavior to each agent is
presented in Appendix VIII-D2.

We explicitly choose this style of querying to maximize
time efficiency and design diversity: (1) time efficiency is
achieved by reducing the querying algorithmic complexity by
using parallel VLM agents. (2) Empirically, we found that
design diversity is achieved when we balance dependence and
independence between design decisions. Specifically, when a
single VLM agent auto-regressively generates ntool × naction

tool-actions pairs, having later design outputs be conditioned
on previous design outputs can encourage diversity within that
conditional distribution. However, in order to sample from many



TABLE I: Benchmarking Parameters for Different Tasks

Task Name nagent ntool naction ktop rewardsave niteration ksim

BringCube 20 10 10 5 0.6 3 100
CleanTable 20 10 10 5 0.6 3 100
DislodgeCube 20 10 10 5 0.6 3 100
ElevatePlate 20 10 10 5 0.6 3 100
GatherSpheres 20 10 10 5 0.6 3 100
HighObject 20 10 10 5 0.5 3 100
LiftBox 30 15 15 5 0.1 3 100
MoveBall 20 10 10 5 0.6 3 100
OneBook 20 10 10 5 0.4 3 100
ScoreGoal 20 10 10 5 0.4 3 100
SnatchCookie 5 5 5 5 0.3 3 100
TurkeyLegs 30 10 15 5 0.2 4 100

distinct conditional distributions, as this provides additional
diversity, we found that parallel VLM queries that share no
history can help with that. Ultimately, we found that optimizing
time efficiency and design diversity led to better and faster
initial samples as well as evolutions.

See Appendix VIII-C6 for details on the values we used for
these parameters for benchmarking.

3) Design Agent Outputs: As a part of our prompt to the
VLM to query for designs, we specified our desired tool
and action formats. For our tool design requirements, please
refer to Appendix VIII-D3 for details. For our action design
requirements, please refer to Appendix VIII-D4 for details.
Notably, these prompts are separated into with & without the
Franka gripper usage. During VLMGINEER’s initial sampling,
some design agents are asked to design tools for the gripper,
some are not. This ensures the full capabilities of the default
morphology are used. The two types of tools are also specified
with different required attachment locations: gripper-using tools
are asked to be attached to the two Franka gripper fingers, and
non-gripper-using tools are asked to be attached to a “virtual
joint”, which is a joint we set up positioned at the flange of
the Franka end effector to make the attachment process more
standardized.

4) Simulation Evaluation: From the previous section, we
obtain a list of tool-action pairs in the form of URDF
designs and action waypoints, respectively. To use these for
simulation evaluation, we first merge the tool URDF without
modification into a blank Franka Panda URDF (a blank Franka
URDF will contain a gripper if gripper usage is enabled,
and otherwise will not). For the action waypoints, which are
inherently sparse, we implement linear interpolation for the
position trajectory and SLERP (Spherical Linear Interpolation)
for the orientation trajectory. The Pybullet simulation then
executes these interpolated actions in the designated task
environment. Finally, the environment returns result metrics
for each run with the corresponding samples, allowing for
both choosing evolution candidates and for producing the
quantitative evaluation of the design performance. To speed up
the evaluation, ksim samples are evaluated in parallel Pybullet
simulations at a time.

5) Evolution: After evaluating all previous tool-action pairs,
we perform selection as follows: (1) For every task, we define

two parameters to control the behavior of selection: rewardsave
and ktop. (2) Using these parameters, we first select the ktop
number of tool-action pairs with the highest task rewards, and
then keep only the pairs that have a reward higher than the
rewardsave threshold, resulting in a set of winner tool-action
pairs. We found this selection mechanism empirically allows
for the best signals for evolution.

We then take this winner tool-action pair set and feed it
as context into the next design agent query. These previous
designs are introduced to the VLM by the “evolution mission
introduction prompt” in Appendix VIII-D1, where the VLM
is asked to perform mutation and crossover on the previous
tools via the rules specified in VIII-D7. These evolved design
samples will be fed into the simulation for evaluation, and the
cycle will continue. We define a final niteration parameter to
control the number of iterations that this cycle would go on
for.

See Appendix VIII-C6 for details on the values we used for
these parameters for benchmarking.

6) VLMGINEER Benchmarking Details: When benchmark-
ing VLMGINEER against ROBOTOOLBENCH, we used a differ-
ent set of parameters for each task, detailed in Table. I. We used
gemini-2.5-pro-preview-03-25 as our VLM model
throughout the entire experiment, and ran PyBullet evaluations
on an AMD Ryzen 7 9800X3D 8-Core Processor CPU with
64 GB of RAM. On average, one run of VLMGINEER on one
of these tasks should take around 30 minutes.

D. Full Prompts

In this section, we provide all VLMGINEER prompts.
We show individual prompt components in section VIII-D1-
VIII-D7. We then describe we compose these prompts for
different experiments in section VIII-D8-VIII-D10. For details
of their usage, please refer to Appendix VIII-C.

1) Mission Introduction: Initial sampling mission introduc-
tion prompt:

You are a robotics hardware and controls
expert. You operate with boldness and
brilliance in the physical realm. You
work with a robot arm that sits in the
origin of your environment. You will be



presented with some robotic tasks, and
will be asked to design tools and actions
to complete the task. Your goal is not
to complete the task to perfection in one
fell swoop. Instead, your meta-goal is to
generate a wide range of differentiated
good solutions over time, where one of
them will inevitably succeed.

Evolution mission introduction prompt:

You are a robotics hardware and controls
expert. You operate with boldness and
brilliance in the physical realm. The goal
is to create tools and actions to complete
a given task. You will be given a list
of previously generated tool designs via
JSON with URDF. Your goal is to evolve the
tool designs via mutation and crossover,
and generate the new best actions for the
evolved tools. This will be done in a way
that is similar to genetic algorithms,
and will be specified in detail in the
"Evolutionary Process" section below.

2) Procedure Instruction:

The procedure you will follow:
1. Receive Environment Descriptions:
The user will provide some detailed
environment descriptions, robotic task
instructions, and an initial image of the
workspace area from the overhead camera.
2. Describe the Scene: Analyze the
environment. Write down the spatial
relationship, including by not limited to
the position, orientation, dimension, and
geometry of all the objects in the scene.
Use all the information provided to you,
including all text, code, and images.
3. Create Strategies and Designs: You
will need to create ntool tool that you
can use to complete the task. For each of
the tools you designed, you must generate
naction set of action waypoints that you can
use to complete the task. Specifically,
for a total of ntool times, do the following
steps:

(a) First, write down a completely
different, out-of-the-box tool design
to tackle the task. Make it unlike
any other tool design you made in your
other strategies.
(b) Create these tools following the
"Tool Specification" section below.
(c) For this tool, write the following
down: (1) The spatial relationship
(pose transformation) between the
end-effector and each component of the
tool; (2) The 3D space that each tool
component will take up when connected
to the robot; (3) The usage of each
component of the tool when carrying out
the task.
(d) Use your previous analysis to tweak
any obvious issues with the position,

orientation, and dimension of your tool
design.
(e) Next, using your knowledge of
the tool and your in depth analysis
regarding the intricate 3D spatial
relationships between the tool and its
environment, create naction number of
different step by step action plans
to enable to effective tool use (See
more in "Desired Action Criteria
Definitions"). Be very wary about how
objects interact with each other
(f) Transform your step-by-step action
plan into waypoints adhering to the
"Action Specifications". During
this transformation, think about
the inherent nature of controlling
robots with waypoint control and the
difficulty that may present.

3) Tool Specifications: Tool specification prompt without
the use of Franka Grippers:

(Tool Specifications) Your design of the
tool must follow these rules: (1) You must
only use 3D rectangles for each component;
(2) Your tool will be outputted in a URDF
block format, which should be directly
added to the end of a panda URDF file,
before the robot closing declaration; (3)
Make sure your tools weigh very little in
the URDF file, where each tool part should
weigh no more than a few grams (these
weights do not have to be realistic, it
is just for the robot inverse kinematics
to have a easier time converging). (4)
Your design will be a single rigid tool,
which should be attached directly to the
"panda_virtual" link, which you can safely
assume to have the same orientation as
the world frame. (5) Any attachments you
design should geometrically be directly
connected to their parent links in the
URDF (there should be no gaps in between!)
(6) As a general observation, you perform
better when the tools you design are
complex and intricate.

Tool specification prompt with the use of Franka Grippers:

(Tool Specifications) Your design of the
tool must follow these rules: (1) You must
only use 3D rectangles for each component;
(2) Your tool will be outputted in a URDF
block format, which should be directly
added to the end of a panda URDF file,
before the robot closing declaration; (3)
Make sure your tools weigh very little in
the URDF file, where each tool part should
weigh no more than a few grams (these
weights do not have to be realistic, it
is just for the robot inverse kinematics
to have a easier time converging). (4)
Your design will be a pair of attachments
to the robot gripper fingers (which allows
the tool to be actuated with the robot



gripper); You should attach the left
attachment to "panda_leftfinger" and the
right attachment to "panda_rightfinger".
(5) Any attachments you design should
geometrically be directly connected to
their parent links in the URDF (there
should be no gaps in between!) (6) As a
general observation, you perform better
when the tools you design are complex and
intricate.

4) Action Specifications: Action specification prompt with-
out the use of Franka Grippers:

(Action Specifications) Your tool-using
action will be a Nx6 numpy array of
action waypoints, where N is the number
of waypoints, and each waypoint is of
dimension 6 (xyz position + roll-pitch-yaw
euler angle orientations). Your action
needs to be precisely six numbers
per waypoint. Your waypoints will be
carried out by the EnvRunner class. It
is important to stress this: the action
waypoints are controlling the robot
end-effector "panda_virtual" link: this
means you have to carefully take into
account the dimensions of the tool and
the thickness of its parts when designing
effective waypoints. Again, you can
safely assume the end-effector has the
same orientation as the world frame upon
initialization (see frame clarification
again for details)!

Action specification prompt with the use of Franka Grip-
pers:

(Action Specifications) Your tool-using
action will be a Nx7 numpy array of
action waypoints, where N is the number
of waypoints, and each waypoint is of
dimension 7 (xyz position + roll-pitch-yaw
euler angle orientations + binary gripper
open/close state in integers [0 for open,
1 for closed]). Your action needs to be
precisely seven numbers per waypoint.
Your waypoints will be carried out by the
EnvRunner class. It is important to stress
this: the action waypoints are controlling
the robot end-effector "panda_virtual"
link: this means you have to carefully
take into account the dimensions of the
tool and the thickness of its parts when
designing effective waypoints. Again, you
can safely assume the end-effector has the
same orientation as the world frame upon
initialization (see frame clarification
again for details)!

5) Action Diversity Specification:

(Desired Action Criteria Definitions)
For the description below, we will call
a single sequential set of waypoints in
a single rollout as one "action set".

For each tool you created, the goal
is to generate naction action sets that
optimize the task success and motion
differentiation. Task success is optimized
when an action set is able to complete the
task successfully. Motion differentiation
is optimized when there exists a large
variance in the motion taken across all
action sets you design for the same tool.
A large variance in motion is defined the
tool, at each time step, is located at a
different location in the 3D space. Think
about how a tool can be used to interact
with the object from many different sides,
angles, and ways. When both conditions are
met, you have successfully designed a good
set of actions sets.

6) Frame Clarifications:

(Frame Clarification) In the world frame,
front/back is along the x axis, left/right
is along the y axis, and up/down is along
the z axis with the following directions:
Positive x: Towards the front of the table.
Negative x: Towards the back of the table.
Positive y: Towards the left. Negative
y: Towards the right. Positive z: Up,
towards the ceiling. Negative z: Down,
towards the floor. In terms of orientation,
starting from the origin frame, Positive
rotation about the x-axis: tilting the
end-effector head to the left. Negative
rotation about the x-axis: tilting the
end-effector head to the right. Positive
rotation about the y-axis: tilting the
end-effector head down. Negative rotation
about the y-axis: tilting the end-effector
head up. Positive rotation about the
z-axis: rotating the end-effector head
counter-clockwise. Negative rotation about
the z-axis: rotating the end-effector head
clockwise.

7) Evolutionary Instructions:

(Evolutionary Process) Your design
decision is a part of a tool design
genetic algorithm. For each of the ntool

tool designs, you can choose to either
mutate or crossover. Specifically, tool
mutation is defined as one change to a
single randomly selected previous tool
design. Mutation changes include:

(1) Changing the dimension, location,
or orientation of a single component of
the tool.
(2) Adding, removing, or replacing a
single component of the tool.

Crossover is defined as the process of
combining two randomly selected previous
tool designs to create a new tool design.
Combination is defined as:

(1) Selecting components from two
previous tool designs and combining
them to form a new tool design.



Fig. 8: Comparison of the mean and standard deviation of reward generated by VLMGINEER, human-prompted designs, and
Franka Gripper across 12 tasks. Error bars represent standard deviation (clipped to the range [0, 1]).

All mutation and crossover decisions must
potentially increase the likelihood of
task success, yet all decisions must be
different and diverse.

8) No Tool Instructions:

You are a robotics hardware and controls
expert. You operate with boldness and
brilliance in the physical realm. You work
with a robot arm that sits in the origin
of your environment. You will be presented
with some robotic tasks, and will be asked
to design actions to complete the task.

...

The complete prompt is composed together with instructions
from VIII-D2, VIII-D4, VIII-D5, and VIII-D6.
9) Human Specification Instructions:

You are a helpful robotics hardware and
controls expert. You have a robot arm that
sits in the origin of your environment.
You are working with a colleague as a
team to design tools and actions for a
robot to complete a task. Your colleague
will provide you with a design and action
instructions in the form of natural
language instructions. Your goal is to
use your colleague’s design and action
instructions to output URDF and action
waypoints for the robot to use. You should
not use your own knowledge to design the
tool and action, but rather follow your
human colleague’s instruction. Here is the
human colleague’s prompt: {human_prompt}

...

The complete prompt is composed together with instructions
from VIII-D2, VIII-D3, VIII-D4, VIII-D5, and VIII-D6.
10) RLBench Instructions:

You are a helpful robotics hardware and
controls expert. You have a robot arm that
sits in the origin of your environment.
You are working with a colleague as a
team to design tools and actions for a
robot to complete a task. Your colleague
will provide you with a design in the
format of a URDF, which is attached for
you as tool.txt. Your goal is to use your
colleague’s URDF to come up with an action
plan for the robot to use.

...

The complete prompt is composed together with instructions
from VIII-D2, VIII-D4, VIII-D5, and VIII-D6.

E. Statistical Significance Analysis

Fig. 8 presents our primary quantitative results, includ-
ing standard deviations across 5 runs. Across all 12 tasks,
VLMGINEER consistently surpasses all baselines, exhibiting
notably low variation between trials. This indicates that
VLMGINEER reliably produces high-performing and stable
tool-action designs.

In contrast, results obtained from human-prompted designs
not only yield significantly lower performance but also show
greater variations across runs. We attribute this discrepancy
to several factors. First, human-specified tools often require
more intricate control strategies; even if capable of completing
the task, these designs tend to be less resilient to subopti-
mal or imperfect executions. By comparison, VLMGINEER-
generated tools typically exhibit greater robustness to action
imperfections. Second, human prompts sometimes suffer from
specification ambiguity or misalignment with the VLM. There
can be discrepancies between human intent and the VLM’s
internal representation and physical modeling capabilities. By
automating the design process, VLMGINEER avoids these
alignment issues, resulting in more effective and precisely
realizable solutions.



F. Tool Design Gallery

Table II and III show our tool gallery. In this tool design
gallery, we take the opportunity to display tools from a
few tasks that seemed to have allowed VLMGINEER the
most creative freedom. These are tool designs that are not
presented elsewhere in the paper. We believe this illustrates
VLMGINEER’s impressive physical creativity and problem-
solving capabilities.

G. Licenses

The cardboard box asset used in LIFTBOX environment is
from PartNet-Mobility Dataset [69]. Their terms of use are
stated here: sapien.ucsd.edu/about.

The book assets and the book holder used in the ONEBOOK
environment came from the YCB Dataset [70]. This dataset is
under the CC BY 4.0 license.

The goal frame and net assets used in the SCOREGOAL
environment came from the Meta-World Benchmark [71]. This
benchmark is under the MIT License.

The transparent jar asset used in the SNATCHCOOKIE
environment came from cgtrader, a 3D CAD model website.
This asset is under the "Royalty Free No Ai License", detailed
here.

The cookie assets used in the SNATCHCOOKIE environment
came from sketchfab, a 3D CAD model website. This asset is
under the CC BY 4.0 license.

The turkey leg assets used in the TURKEYLEGS environment
came from sketchfab, a 3D CAD model website. This asset is
under the CC BY 4.0 license.

https://sapien.ucsd.edu/about
https://www.cgtrader.com/free-3d-models/household/kitchenware/glass-mason-jar-16oz
https://www.cgtrader.com/pages/terms-and-conditions#royalty-free-license
https://sketchfab.com/3d-models/cookie-778c9c225d904e60b890cc43875a7aad
https://sketchfab.com/3d-models/turkey-leg-3c889b5ee6b64a2aafb9b8977f8a8219


Task Name Example Tool Designs

BRINGCUBE

CLEANTABLE

ELEVATEPLATE

TABLE II: Tool-gallery for BringCube, CleanTable, and ElevatePlate.



Task Name Example Tool Designs

GATHERSPHERES

MOVEBALL

TABLE III: Tool-gallery for GatherSpheres and MoveBall.


	Introduction
	Related Work
	Background
	Method
	Robot Tool Design Benchmark
	Evaluation
	Comparing VLMgineer Results to other Tool Designs
	Effectiveness of Evolution in Tool Design

	Conclusion
	Appendix
	Baseline Details
	Human-Prompted Designs Experiment Implementation
	No-Tool Experiment Implementation
	RLBench Experiment Implementation

	RoboToolBench Details
	VLMgineer Implementation Details
	Design Agents Context
	Design Agents Queries
	Design Agent Outputs
	Simulation Evaluation
	Evolution
	VLMgineer Benchmarking Details

	Full Prompts
	Mission Introduction
	Procedure Instruction
	Tool Specifications
	Action Specifications
	Action Diversity Specification
	Frame Clarifications
	Evolutionary Instructions
	No Tool Instructions
	Human Specification Instructions
	RLBench Instructions

	Statistical Significance Analysis
	Tool Design Gallery
	Licenses


