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Abstract

While genomic foundation models (GFMs) hold
significant potential for biological discovery, their
large parameter sizes and high computational de-
mands imit practical deployment on resource-
constrained devices. We propose GERM, an
outlier-free architecture that replaces standard at-
tention with an outlier-free mechanism, achieving
both accelerated low-rank adaptation and robust
post-training quantization. enhances both train-
ing and inference via outlier removal. We fur-
ther propose GERM-T, a small-step continual
learning strategy with outlier-free framework that
leverages existing checkpoints to avoid costly re-
training from scratch. Our experiments demon-
strate GERM’s superiority over state-of-the-art
GFMs: it achieves 37.98% higher fine-tuning per-
formance and improves quantization performance
by 64.34% , alongside 92.14% reduction in aver-
age kurtosis and 82.77% lower maximum infinity
norm. Notably, GERM enables rapid deployment
on edge devices, completing DNABERT-2 fine-
tuning in 5 minutes on a single 2080Ti GPU with
34.9% faster training, 24.79% inference accel-
eration, and robust 4-bit quantization. GERM
consistently delivers superior performance, mak-
ing it a practical solution for deploying GFMs in
resource-constrained settings.
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1 Introduction
We propose GERM, an efficient DNA genomic foundation
model (GFM) that replaces conventional attention mecha-
nisms (Vaswani et al., 2017) with an outlier-free Hopfield
layer (Hu et al., 2024). This architecture achieves quanti-
zation robustness and rapid adaptability, enabling effective
deployment on resource-constrained devices through post-
training compression and parameter-efficient fine-tuning.

While current GFMs like DNABERT-2 (Zhou et al., 2024)
and GenomeOcean (Zhou et al., 2025b) demonstrate su-
perior task performance, their practical application faces
two critical challenges: massive parameter sizes requir-
ing substantial computational resources, and severe per-
formance degradation when applying standard compression
techniques like SmoothQuant (Xiao et al., 2023) or LoRA-
based adaptation (Hu et al., 2022). Prior studies (Clark
et al., 2019; Kovaleva et al., 2019) identify transformer at-
tention outliers as the primary cause of these limitations.
We address this by replacing standard transformer attention
mechanisms with an outlier-free attention layer proposed
by Hu et al. (2024), which detects and removes outliers dur-
ing both pre-training and adaptation. This outlier reduction
in GERM provides threefold benefits for GFMs: acceler-
ated low-rank adaptation, lower computational costs, and
enhanced robustness to post-training quantization. By inte-
grating parameter-efficient methods like QLoRA (Dettmers
et al., 2024a) and quantization techniques such as Omni-
Quant (Shao et al., 2024), our framework achieves efficient
adaptation and deployment on resource-constrained hard-
ware with negligible accuracy loss, enabling broader de-
ployment on resource-constrained devices. Furthermore,
based on (Hu et al., 2024), we propose GERM-T to ad-
dress its key limitation: avoiding complete retraining from
scratch. GERM-T integrates an outlier-free architecture into
pre-trained genomic foundation models and uses small-step
continual learning to achieve near-optimal performance ef-
ficiently. This design significantly reduces computational
overhead while maintaining stable performance.

Contributions. We propose GERM, an outlier-free GFM
with enhanced quantization robustness and rapid low-rank
adaptation. Our contributions are as follows:

1

mailto:q1320460765@tju.edu.cn
mailto:hluo@u.northwestern.edu
mailto:maojiangsu2030@u.northwestern.edu
mailto:zhihanzhou2020@u.northwestern.edu
mailto:zoe.mehta@vhhscougars.org
mailto:guoye2018@u.northwestern.edu
mailto:jhu@u.northwestern.edu
mailto:hanliu@northwestern.edu


Outlier-Free Genomic Foundation Models for Resource-Efficient Training and Low-Bit Inference

SentencePiece

{A,T, G, C,TA,AC}

ALiBi

AACGCACTATATA

SentencePiece

{A,T, G, C,TA,AC}

Q

K

V

Softmax FFN
Layer

FFN
Layer

Q

K

V

Outlier-free 
Layer

(a) D
N

A
B

E
R

T-2
(b) G

E
R

M

ALiBi

Distribution w/ outlier

Distribution w/o outlier

AACGCACTATATA

Figure 1: Structural Comparison of DNABERT-2 and GERM Models. This diagram compares the processing pipelines of DNABERT-
2 and GERM.The key difference lies in the attention mechanism: DNABERT-2 employs a standard Softmaxthat retains outliers, while
GERM replaces it with an outlier-free layer, effectively removing outliers from the attention output.

• We propose an outlier-free model structure to address
and mitigate outliers introduced by pretrain and low-
rank adaptation. This approach enables rapid low-rank
adaptation and robust post-training quantization, signifi-
cantly enhancing the overall performance of the quantized
model and model finetuning. Notably, our model fine-
tunes DNABERT in just 5 minutes on a single NVIDIA
GeForce RTX 2080 Ti GPU, achieving 14.3% acceler-
ation in quantization, 34.9% faster training during fine-
tuning, and 24.79% inference speedup over baselines.

• Methodologically, we replace the standard transformer at-
tention mechanism in the GFM with an outlier-free layer
to enhance the model’s ability to handle and mitigate
outliers during pretraining and fine-tuning. Additionally,
we introduce a continual learning strategy as a compro-
mise version to avoid retraining the model from scratch.
This strategy ensures suboptimal performance in terms of
model quantization robustness and low-rank adaptation.

• Experimentally, We evaluate the performance and effi-
ciency of our method using the existing DNABERT-2
model (Zhou et al., 2024) structure. Additionally, we
benchmark it against the state-of-the-art low-rank adapta-
tion methods and post-training quantization techniques.
Compared to the standard framework, the proposed frame-
work achieves average performance improvements of
37.98% in finetuning and 64.34% in quantization, re-
spectively. Additionally, GERM shows a reduction of
92.14% in the average kurtosis and 82.77% in the maxi-
mum infinity norm on average.

2 GERM

The proposed methodology is structured around three core
components: an outlier-free architectural design, a small-
step continual learning strategy, and DNA GFM implementa-
tion. The outlier-free architecture specifically targets outlier-
related challenges, while the small-step continual learning

strategy builds upon initial checkpoints by incorporating
outlier removal mechanism to reduce outliers.

Our GFM development focuses on DNA sequence mod-
eling using Transformer-based architectures, including
DNABERT (Ji et al., 2021a), which inherently support inte-
gration of techniques like LoRA and our proposed outlier
removal mechanism. The baseline implementation adopts
DNABERT-2 as the reference architecture, with the re-
designed outlier-free structure visualized in Figure 1.
Outliers Challenge in Transformer Architecture. Stud-
ies by Hu et al. (2024); Bondarenko et al. (2024) highlight
the underlying cause of the outlier challenge in transformer-
based models, proposing that transformers do not require
updates when the attention inputs are sufficiently informa-
tive. However, the normalization nature of the Softmax
function forces non-zero attention weights even for irrele-
vant tokens, creating numerical instability. Such outliers
distort gradient updates and hinder model performance. Nu-
merous studies address the outlier problem across different
model stages, including pre-training (Hu et al., 2024), fine-
tuning (Hu et al., 2025), and inference (Bondarenko et al.,
2024; Xiao et al., 2023). In this paper, we follow the ap-
proach proposed by (Luo et al., 2025a), which tackles the
outlier problem in GFMs employing the memory-associated
retrieval dynamics function Softmax1 which is defined as

Softmax1(S) :=
exp(S)

1 +
∑L

i=1 exp(Si)
,

where S is the input to the activation function.
Small-step Continual Learning. The outlier mitigation
strategy in OutEffHop (Hu et al., 2024) effectively sup-
presses outlier impacts during pretraining. However, this
method requires retraining from scratch, which is computa-
tionally prohibitive for large-scale models like GFMs. To
overcome this limitation, we propose GERM-T, a small-step
continual learning framework that extends the GERM archi-
tecture. This approach lowers retraining costs by leveraging
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Table 1: Comparing GERM and GERM-T with DNABERT-2 in a Low-Rank Adaptation Setting. We evaluate GERM against
baselines using three low-rank adaptation methods (LoRA, QLoRA, LoftQ), measuring performance via MCC, Delta MCC, average
kurtosis, and FP16 outlier magnitude maximum infinity norm∥x∥∞. Best results are bolded, second-best underlined.

Models
Low-Rank

Adaptation Method MCC (↑) Delta MCC
different (↓)

Avg Performance
Drop (↓) Avg. kurtosis(↓)

Max inf.
norm(↓)

D
N

A
B

E
R

T-
2 Full 59.11 7.00 - 270.90 61.41

LoRA 50.91±1.67 15.2 13.87% - 219.20
QLoRA 50.65±0.13 15.46 14.31% 292.85 53.91
LoftQ 50.76±0.06 15.31 14.05% 299.18 54.18

G
E

R
M

Full 59.73 6.38 - 21.29 10.62
LoRA 57.27±0.70 8.84 4.12% - 19.41

QLoRA 53.16±0.21 12.95 10.99% 34.29 27.27
LoftQ 53.11±0.08 13.00 11.08% 33.02 27.41

G
E

R
M

-T Full 59.30 6.81 - 251.40 28.49
LoRA 55.60±0.28 10.51 6.23% - 140.86

QLoRA 51.05±0.07 15.06 13.90% 287.95 53.92
LoftQ 51.20±0.13 14.91 13.65% 286.16 53.35

the original checkpoint and reduces outliers in pre-trained
models through outlier removal mechanism.

DNA Genomic Foundation Model. As a representative
example, we construct GERM on DNABERT-2 (Zhou et al.,
2024). First, we preprocess DNA sequences using Sentence-
Piece (Kudo & Richardson, 2018) with Byte Pair Encoding
(BPE), a subword tokenization approach, and set the vocab-
ulary size to 4096 to balance performance and efficiency.

The model follows BERT (Kenton & Toutanova, 2019) with
integrated Attention with Linear Biases (ALiBi) (Press et al.,
2022). This enables inherent positional learning from se-
quence order during pretraining and allows the model to
handle sequences of arbitrary lengths during downstream
tasks, even trained on shorter segments initially.

3 Experimental Studies
In this section, we evaluate the effectiveness of our method
through experiments comparing against DNABERT-2.

Models. Following Zhou et al. (2024), we validate our
strategy using the DNABERT-2 model 1. The model is
pretrained via masked language modeling (MLM), with all
from-scratch training spanning 200K steps. For small-step
continual learning, we first train the standard DNABERT-2
from scratch, then switch to the outlier-free structure for
the remaining steps. In experiments, we use the GERM-
T variant trained with 40K continual learning steps as the
example for comparison against DNABERT-2 and GERM.

Datasets. We employ the GUE benchmark in (Zhou et al.,
2024), which comprises 27 datasets covering 7 tasks across
4 species, with input lengths ranging from 70 to 1000.

1https://huggingface.co/zhihan1996

Evaluation Metrics. To evaluate the performance of out-
liers in our strategy, we report the maximum infinity norm
∥x∥∞ of the activation tensors x across all transformer
layers as a metric for detecting outliers. Additionally, we
present the average kurtosis of x, calculated only from
the output tensors from the Feed-Forward Network (FFN)
layer and Layer Normalization. For pre-quantization per-
formance, we also report the FP16 (16-bit floating-point)
Matthews correlation coefficient (MCC) score to assess
model’s downstream classification ability.

3.1 Post-Training Quantization (PTQ)

We assess our method’s Post-Training Quantization (PTQ)
efficiency by replacing DNABERT-2’s attention layer with
the Softmax1 activation function. Using pre-trained check-
points, we conduct full-rank fine-tuning as in (Zhou et al.,
2024), then evaluate test performance under FP16 precision
and apply PTQ to measure quantization-induced accuracy
drops. All experiments repeat three times with different
seeds, reporting mean ± standard deviation. For baselines,
we compare against the official DNABERT-2 model. Evalu-
ations include four PTQ methods : Traditional W8A8 (Bon-
darenko et al., 2024), SmoothQuant (Xiao et al., 2023), Out-
lier Suppression (Wei et al., 2022), and OmniQuant (Shao
et al., 2024), tested at W8A8, W6A6, and W4A4 preci-
sion levels (except W8A8-only methods). Hyperparameters
follow original studies to ensure standardized comparisons.

Results. As shown in Table 3, GERM consistently out-
performs DNABERT-2 under W4A4, W6A6, and W8A8
post-training quantization with advanced PTQ methods. For
W8A8 quantization, GERM achieves a minimal average per-
formance drop of 4.82% with SmoothQuant. At W4A4,
GERM retains 17.17% average accuracy loss under Omni-
Quant, compared to DNABERT-2’s 94.78% drop, demon-

3

https://huggingface.co/zhihan1996


Outlier-Free Genomic Foundation Models for Resource-Efficient Training and Low-Bit Inference

16W/16A 8W/8A 4W/4A
Bits

0

1

2

3

4

5

6

7

8

Ti
m

e 
(S

)
7.66

5.47

3.81

6.70

4.79

3.33

7.01

5.01

3.49

Full LoRA QLoRA LoftQ
Fine-Tuning Method

0

100

200

300

400

500

Tr
ai

n 
Ti

m
e 

(S
)

516

197 206

251

323

154 164

199

326

167 177

220

Full LoRA QLoRA LoftQ
Fine-Tuning Method

0

1

2

3

4

5

6

In
fe

re
nc

e 
Ti

m
e 

(S
)

3.85
4.12

5.28

5.77

3.24 3.30

4.13

4.52

3.25 3.32

4.17
4.52

DNABERT-2 GERM GERM-T

Figure 2: Comparison of Performance in Resource-Constrained Computing Environments. Comparison of three models on the
quantization and fine-tuning task. The training time represents the average time per epoch.

strating superior quantization robustness. While GERM-T
further improves quantization efficiency at 8 and 6-bit lev-
els, it shows a larger W4A4 degradation due to residual
outliers in GERM-T. Outlier metrics reveal GERM reduces
average kurtosis by 92.14% and maximum infinity norm by
82.77%, while GERM-T achieves 7.20% and 53.78% reduc-
tions, respectively. This highlights GERM ’s effectiveness
in mitigating outliers and enhancing quantization stability.

3.2 Low-Rank Adaptation

Fine-tuning large models is costly, so parameter-efficient
methods like LoRA are widely adopted. We compare our
method with the standard DNABERT-2 architecture across
three parameter-efficient fine-tuning (PEFT) approaches:
LoRA (Hu et al., 2022), QLoRA (Dettmers et al., 2024a),
and LoftQ (Li et al., 2023). For full fine-tuning, we train the
model at full rank using mixed-precision FP16. For LoRA,
we apply low-rank adaptation with rank r = 128 and scaling
factor α = 256 following (Hu et al., 2022). QLoRA and
LoftQ extend this with 4-bit quantized low-rank updates
under identical rank and alpha settings, as described in
(Dettmers et al., 2024a). All experiments repeat three times
with different seeds, reporting mean ± standard deviation.

Results. As shown in Table 1, GERM significantly im-
proves low-rank adaptation performance, achieving an av-
erage gain of 37.98% over DNABERT-2. GERM-T further
enhances adaptation efficiency with a 20.01% improvement.

3.3 Performance in Resource-Constrained Devices.

In this section, we conduct case studies to evaluate the
effectiveness of our method in resource-constrained devices.

Case Study 1: Performance in Single 2080-Ti GPU Com-
puting Environments. To demonstrate GERM’s capability
in resource-constrained environments, we conduct perfor-
mance tests on a single NVIDIA GeForce RTX 2080 Ti

11GB GPU. We provide the per-epoch training time and in-
ference time for the LoRA, QLoRA, and LoftQ fine-tuning
methods. The results, as shown in Figure 2, show that
GERM achieves 34.9% faster training during fine-tuning,
and 24.79% inference speedup compared to DNABERT-2,
while GERM-T achieves 26.7% and 24.2% acceleration,
respectively. Furthermore, GERM and GERM-T reduce
quantization latency by 14.31% and 9.21%, copmare to
DNABERT-2. Further details are provided in Appendix C.2.

Case Study 2: Performance in CPU-Only Computing
Environments. To demonstrate GERM’s capability in CPU-
only computing environments, we perform performance
tests on CPU-only devices. We compare GERM’s per-epoch
training and inference times for the LoRA and QLoRA fine-
tuning methods. The results, presented in Appendix C.2,
indicate that both GERM and GERM-T achieve shorter fine-
tuning times per epoch compared to DNABERT-2.

4 Discussion and Conclusion
We introduce GERM, an efficient genomic foundation model
designed for limited computational resources. By replac-
ing standard attention layers with outlier-free components,
GERM eliminates outliers throughout both pretraining and
fine-tuning while enabling robust quantization and low-rank
adaptation. Compared with DNABERT-2, GERM reduces
average kurtosis by ∼92.14% and the maximum infinity
norm by ∼82.77% across 27 datasets; it also achieves 14.3%
acceleration in quantization, 34.9% faster training during
fine-tuning, and 24.79% inference speed-up over baseline
models. Overall, quantization robustness improves by lower-
ing the average performance drop by 64.34% and low-rank
adaptation efficiency rises by cutting the performance drop
by 37.98%. The compromise variant GERM-T achieves
31.42% improvement in quantization robustness and 20.01%
gain in low-rank adaptation, balancing performance with
reduced retraining costs through continual learning.
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Impact Statement
We believe this methodology presents an opportunity to
strengthen the core of foundation models, including large
language models, by improving robustness through quanti-
zation and enabling faster low-rank adaptation. However,
this approach may also amplify biases in the training data,
potentially leading to unfair or discriminatory outcomes for
underrepresented groups.
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A Related Work

Quantization. Considering the quantized object, exiting foundation models (FMs) quantization can be classified into two
fields: weight-only quantization and weight-activation quantization. For weight-only quantization, prior studies focus on
converting weights to low-bit values. For instance, GPTQ (Frantar et al., 2023) uses block-wise reconstruction for 3/4-bit
quantization. SpQR (Dettmers et al., 2024b), OWQ (Lee et al., 2024), and AWQ (Lin et al., 2024) emphasize the significance
of weights tied to higher-magnitude activations. Therefore, SpQR and OWQ employ mixed-precision quantization to
safeguard vital weights, while AWQ opts for channel-wise scaling to avoid mixed-precision’s hardware inefficiency.
QLoRA (Dettmers et al., 2024a), LoftQ (Li et al., 2023) and QUIP (Chee et al., 2023) restore the capabilities of the quantized
model through parameter-efficient fine-tuning. For weight-activation quantization, prior studies compress both weights
and activations. SmoothQuant (Xiao et al., 2023), LLM.int8() (Dettmers et al., 2022), and Outlier Suppression (Wei et al.,
2022) achieve W8A8 quantization by managing activation outliers. LLM.int8() uses mixed-precision decomposition, while
the other two employ channel-wise scaling. Furthermore, Outlier Suppression+ (Wei et al., 2023) adds channel-wise shifting
to drive W6A6 quantization. In comparison to other quantization approaches, including prior works (Wei et al., 2023; Xiao
et al., 2023) that address the outlier issue during quantization, the outlier-free layer in GERM is more effective at managing
outliers within the model’s attention mechanism. It provides GERM with a unique advantage in terms of quantization
robustness.

Outlier Values in Quantization. Numerous studies (Hu et al., 2024; Ma et al., 2024; Heo et al., 2024; Puccetti et al.,
2022; Kovaleva et al., 2021; Bondarenko et al., 2021; Luo et al., 2021b) observe outlier values in the transformer-based
language models such as BERT (Devlin et al., 2019) and early GPT (Radford et al., 2019) models. Since the advent of FMs
(Zhou et al., 2024; 2025a; Zhang et al., 2022; Brown et al., 2020) root in the GPT and BERT, recent studies by Xiao et al.
(2023); Ahmadian et al. (2023); Dettmers et al. (2022) tackle the existence of outlier values in FMs. According to them,
these outliers exhibit a large magnitude of values at the shared dimensions of hidden states across tokens. More recently,
Bondarenko et al. (2024); Sun et al. (2024); Hu et al. (2024) explain that the outliers attribute to the vertical pattern in the
attention mechanism (Xiao et al., 2024; Kovaleva et al., 2019), influencing the performance of FMs. In particular, Sun
et al. (2024) claim a different type of outlier existing in the hidden states of specific tokens. However, most of these studies
concentrate on language and vision models, leaving the impact of outliers on genomic foundation models largely unexplored.
Additionally, methods like Hu et al. (2024) require training from scratch to eliminate outliers, which is computationally
expensive.

Genomic Foundation Model. The majority of genomic foundation models (GFMs) use transformers to model sequence
dependencies, similar to BERT (Devlin et al., 2019) and GPT (Brown et al., 2020) in NLP. Specifically, DNABERT (Ji
et al., 2021a) and DNABERT-2 (Zhou et al., 2024) leverage transformers for DNA sequence analysis by employing masked
language modeling and fine-tuning for biological tasks. In addition, Nucleotide Transformer (Dalla-Torre et al., 2024)
excels at molecular phenotype prediction and variant prioritization, while HyenaDNA (Nguyen et al., 2024b) is optimized
for modeling long-range genomic dependencies. Furthermore, GenomeOcean (Zhou et al., 2025b) provides an efficient
4-billion-parameter genome foundation model for diverse, context-aware DNA sequence generation. However, these models
demand significant computational resources and lack robustness to quantization, rendering them unsuitable for deployment
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on resource-constrained devices. Specifically, GenomeOcean utilizes 64 NVIDIA A100 80G GPUs over a span of 14 days
for training. This limits accessibility for research labs with limited computational capacity. More recently, Evo (Nguyen
et al., 2024a), a generative genomic model, integrating Transformer and Hyena operator to efficiently capture long-range
dependencies in genomic sequences, achieving a context window of 131k nucleotides. Furthermore, Evo uniquely bridges
bridges the DNA-RNA-protein central dogma via cross-modal inference without task-specific supervision.

Transformer-Based Foundation Models. Transformer-based foundation models have catalyzed progress across AI
subfields, including question answering (Pan et al., 2024; Luo et al., 2021a), reasoning (Jiang et al., 2025; Pan et al., 2025;
Sun et al., 2025), safety (Luo et al., 2025b; 2024; Yu et al., 2024; 2023), multi-modality (Luo et al., 2023; Radford et al.,
2021), edge computing (Qin, 2025; Qin et al., 2025; 2024b;a;d;e), and data cleaning (Zhang et al., 2025). They serve as key
enablers across application domains such as NLP (Guo et al., 2025; Mesnard et al., 2024), speech (Wu et al.; Maiti et al.,
2024; Qin et al., 2024c), finance (Wang et al., 2023; Wu et al., 2023), genomics (Nguyen et al., 2024a; Zhou et al., 2025b;a;
2023; Ji et al., 2021b), and human mobility (Wu et al., 2024; He et al., 2024).

B Experimental Setup

B.1 Computational Resource

We perform all experiments using 2 NVIDIA A100 GPU with 80GB of memory and a 24-core Intel(R) Xeon(R) Gold
6338 CPU operating at 2.00GHz. Our code is developed in PyTorch and utilizes the Hugging Face Transformer Library for
experimental execution.

B.2 Hyperparameters

We present the hyperparameters used in the fine-tuning stage for each model. We use AdamW (Loshchilov & Hutter, 2019)
as the optimizer. Most of the other hyperparameters remain the same across all models and datasets, including a batch size
of 32, a warmup step of 50, and a weight decay of 0.01. A learning rate of 3e−5 is used for all models during fine-tuning.
For low-rank adaptation, we use a learning rate of 1e−4, with a LoRA rank of 8 and LoRA alpha set to 16. For each task, we
use different training steps as shown in Table 2. During pre-training, the model is trained for 200,000 steps with a batch size
of 1024 and a maximum sequence length of 512, using the AdamW optimizer with β1 = 0.9, β2 = 0.98, and ϵ = 1e−6.
The pre-training stage takes approximately 4 days using 2 NVIDIA A100 80G GPUs.

Table 2: The number of training steps. We present the number of training steps we use in our experiments. In the task of
Transcription Factor Prediction on the Mouse genome, we train the model for 1000 steps on each dataset.

EMP TF-M CVC TF-H PD-tata PD-o CPD-tata CPD-o SSP

Epochs 3 1k 8 3 10 4 10 4 5

C Additional Numerical Experiments
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C.1 All Results of Performance Comparison in Post-Training Quantisation (PTQ) setting

Table 3: Comparing GERM and GERM-T with DNABERT-2 in a Post-Training Quantisation (PTQ) setting. We compare GERM
against baselines across four quantization methods (Traditional W8A8, SmoothQuant, Outlier Suppression, OmniQuant) and three
configurations (W8A8, W6A6, W4A4). Metrics include Matthews Correlation Coefficient (MCC), Delta MCC relative to DNABERT-2,
average kurtosis, and FP16 outlier magnitude via maximum infinity norm∥x∥∞. Best results are bolded, second-best underlined.

Model #Bits
Quantization

Method MCC (↑) Delta MCC
(↓)

Avg Performance
Drop (↓) Avg. Kurtosis (↓)

Max inf.
norm (↓)

Official 16W/16A - 66.11 - - 39.68 53.61

D
N

A
B

E
R

T-
2

16W/16A - 59.11 7.00 -

270.90 61.64

8W/8A 33.60±0.41 32.51 43.81%
8W/8A

SmoothQuant
36.51±0.02 45.37 38.63%

6W/6A 20.74±0.04 45.37 66.18%
4W/4A -1.03±0.06 67.06 101.24%
8W/8A Outlier 25.26±0.02 40.85 57.60%
6W/6A 27.84±0.28 38.27 52.71%
8W/8A

OmniQuant
49.92±0.05 16.19 15.76%

6W/6A 48.47±0.14 17.64 18.61%
4W/4A 2.94±0.19 63.17 94.78%

G
E

R
M

16W/16A - 59.73 6.38 -

21.29 10.62

8W/8A 57.30±0.08 8.81 3.77%
8W/8A

SmoothQuant
56.65±0.15 9.46 4.82%

6W/6A 56.48±0.07 9.63 5.45%
4W/4A 20.05±0.00 46.06 69.44%
8W/8A Outlier 45.87±0.08 20.24 25.23%
6W/6A 40.57±0.56 25.54 36.27%
8W/8A

OmniQuant
55.99±0.09 10.12 5.95%

6W/6A 55.70±0.03 10.41 6.41%
4W/4A 49.42±0.00 16.69 17.17%

G
E

R
M

-T

16W/16A - 59.30 6.81 -

251.40 28.49

8W/8A 38.38±0.15 27.73 35.27%
8W/8A

SmoothQuant
57.52±0.00 8.59 3.01%

6W/6A 30.34±0.04 35.77 48.83%
4W/4A 0.22±0.00 65.89 99.63%
8W/8A Outlier 42.57±0.05 23.54 28.31%
6W/6A 46.02±0.06 20.06 22.34%
8W/8A

OmniQuant
56.80±0.12 9.31 4.21%

6W/6A 55.41±0.00 10.71 6.57%
4W/4A 3.86±0.00 62.25 93.49%
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C.2 All Results of Performance Comparison in Resource-Constrained Computing Environments

In this section, we present the results of Performance Comparison in Resource-Constrained Computing Environments.

Case Study 1: Performance in CPU-only Computing Environments. All models were trained on the same computing
infrastructure (Nvidia GeForce RTX 2080 TI 11GB) to ensure a fair comparison. The training time represents the average
time per epoch, with OmniQuant used as quantization example.

GERM demonstrates superior adaptability and performance in resource-constrained computing environments compared
to DNABERT-2 and GERM-T. Its consistent high MCC scores and reduced training and inference times across various
quantization levels and fine-tuning methods establish GERM as the most robust and efficient model, with GERM-T following
as a commendable second-best option. These attributes make GERM a promising candidate for further research and
application in settings demanding both high performance and computational efficiency.

Table 4: Comparison of Performance in Resource-Constrained Computing Environments. Comparison of three models
on the quantization and fine-tuning task.

Method #Bits MCC (↑) Time (sec.)

DNABERT-2 16W/16A 59.11 7.66
GERM 16W/16A 59.73 6.70
GERM-T 16W/16A 59.30 7.01

DNABERT-2 8W/8A 49.92 5.47
GERM 8W/8A 55.99 4.79
GERM-T 8W/8A 56.80 5.01

DNABERT-2 4W/4A -1.03 3.81
GERM 4W/4A 20.05 3.33
GERM-T 4W/4A 0.22 3.49

Method
Fine-Tuning

Method MCC (↑) Time (sec.)

Train Inference

DNABERT-2 Full 59.11 516.49 3.85
GERM Full 59.73 323.10 3.24
GERM-T Full 59.30 326.91 3.25

DNABERT-2 LoRA 50.91 197.13 4.12
GERM LoRA 57.27 154.67 3.30
GERM-T LoRA 55.60 167.76 3.32

DNABERT-2 QLoRA 50.65 206.15 5.28
GERM QLoRA 53.16 164.10 4.13
GERM-T QLoRA 51.50 177.95 4.17

DNABERT-2 LoftQ 50.76 251.37 5.77
GERM LoftQ 53.11 199.58 4.52
GERM-T LoftQ 51.20 220.37 4.52
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Case Study 2: Performance in CPU-only Computing Environments. To demonstrate GERM’s capability in CPU-only
computing environments, we perform performance tests on an 64-core Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
with 50GB RAM. We compare GERM’s per-epoch training and inference times for the LoRA and QLoRA fine-tuning
methods. The results, presented in Table 5, indicate that both GERM and GERM-T achieve shorter fine-tuning times per
epoch compared to DNABERT-2, with the only exception being QLoRA when deployed, where the time is slightly longer.
QLoRA can be slower than LoRA during inference and fine-tuning due to hardware limitations when bf16 (bfloat16)
support is unavailable. QLoRA relies on ultra-low-precision quantization (e.g., 4-bit weights) to reduce memory usage
and increase efficiency, which works best on systems that support bf16 or similar mixed-precision operations. However,
without bf16 support, these low-precision operations must be emulated by converting back to higher precision, introducing
computational overhead. This diminishes the intended speed advantage of QLoRA, potentially making it slower than LoRA
on incompatible hardware.

Table 5: Comparison of Performance in CPU-only Computing Environments. Comparison of three models on the
fine-tuning task.

Method
Fine-Tuning

Method MCC (↑) Time (sec.)

Train Inference

DNABERT-2 LoRA 50.91 808.23 29.66
GERM LoRA 57.27 618.68 23.10
GERM-T LoRA 55.60 674.40 23.57

DNABERT-2 QLoRA 50.65 516.04 63.17
GERM QLoRA 53.16 358.34 45.28
GERM-T QLoRA 51.50 418.13 46.91
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C.3 Performance of GERM on Alternative Transformer-based Models

In this section, we conduct our experiment to validate the effectiveness of the outlier removal approach using alternative
transformer-based models, evaluating performance through Matthews Correlation Coefficient (MCC) and average perfor-
mance drop. We use the NT-500M-human2 as the target model for our evaluation. Table 6 compares these metrics across
NT-500M-human, GERM, and GERM-T models using different low-rank adaptation methods. Table 7 examines the impact
of various quantization techniques on the same models. The results demonstrate the effectiveness of outlier removal across
diverse adaptation and quantization strategies, highlighting the balance between performance and resource efficiency.

Table 6: Low-Rank Adaptation Methods Comparison. This comparison evaluates the performance of different low-rank
adaptation methods, including Full, LoRA, QLoRA, and LoftQ, on Nucleotide Transformer 500M models. The best results
are highlighted in bold, while the second-best results are underlined.

Model
Fine-Tuning

Method MCC Delta MCC Average Performance Drop

NT-500M-human

Full 56.05 - -
LoRA 52.66 3.39 6.44%
QLoRA 51.46 4.59 8.19%
LoftQ 51.89 4.16 7.42%

GERM (NT-500M-human)

Full 55.52 0.53 -
LoRA 54.32 1.73 2.16%
QLoRA 53.78 2.27 3.13%
LoftQ 54.24 1.81 2.30%

GERM-T (NT-500M-human)

Full 56.53 -0.48 -
LoRA 54.89 1.16 2.90%
QLoRA 52.78 3.27 6.63%
LoftQ 53.45 2.60 5.45%

2https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-human-ref
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Table 7: Quantization Methods Comparison. This comparison analyzes the performance of various quantization methods,
including FP16, W8A8, Outlier, SmoothQuant, and OmniQuant, on Nucleotide Transformer 500M models. The best results
are highlighted in bold, while the second-best results are underlined.

Model #Bits Quantization Method MCC Delta MCC Average Performance Drop

NT-500M-human

16W/16A - 56.05 - -
8W/8A - 34.66 21.39 38.17%
8W/8A Outlier 32.95 23.10 41.21%
6W/6A 26.65 29.40 52.45%
8W/8A

SmoothQuant
38.23 17.82 31.79%

6W/6A 28.67 27.38 48.84%
4W/4A 3.54 52.51 93.68%
8W/8A

OmniQuant
47.35 8.70 15.52%

6W/6A 43.63 12.42 22.16%
4W/4A 5.34 50.71 90.47%

GERM (NT-500M-human)

16W/16A - 55.53 0.52 -
8W/8A - 53.67 2.38 3.35%
8W/8A Outlier 45.71 10.34 17.68%
8W/8A 41.38 14.67 25.48%
8W/8A

SmoothQuant
53.18 2.87 4.23%

6W/6A 52.43 3.62 5.58%
4W/4A 24.96 31.09 55.05%
8W/8A

OmniQuant
52.45 3.60 5.55%

6W/6A 51.56 4.49 7.15%
4W/4A 46.45 9.60 16.35%

GERM-T (NT-500M-human)

16W/16A - 56.53 -0.48 -
8W/8A - 40.71 15.34 27.99%
8W/8A Outlier 45.98 10.07 18.66%
6W/6A 43.38 12.67 23.26%
8W/8A

SmoothQuant
54.19 1.86 4.14%

6W/6A 38.67 17.38 31.59%
4W/4A 10.57 45.48 81.29%
8W/8A

OmniQuant
52.46 3.59 7.20%

6W/6A 51.34 4.71 9.18%
4W/4A 23.57 32.48 58.31%
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C.4 Performance of GERM on Large-scale GFMs

In this section, we present experiments to validate the effectiveness of GERM on large-scale GFMs. We use the NT-
2.5B-multi3 as the target model for our evaluation. Table 8 compares these metrics across NT-2.5B-multi, GERM, and
GERM-T models using different low-rank adaptation methods. Table 9 extends this analysis to evaluate the impact of
various quantization techniques on the same models. In the larger-parameter model, we adopt stricter quantization bits. This
choice aims to save computation and improve efficiency, as finer compression is crucial when model parameters scale up.
Additionally, experiments conducted with a larger-parameter model further validate these findings, demonstrating that outlier
removal consistently enhances performance and resource efficiency across diverse adaptation and quantization strategies.

Table 8: Comparison of Low-Rank Adaptation Methods in Large-Scale Models. This comparison evaluates the
performance of different low-rank adaptation methods, including Full, LoRA, QLoRA, and LoftQ, on Nucleotide Transformer
2.5B models. The best results are highlighted in bold, while the second-best results are underlined.

Model
Fine-Tuning

Method MCC Delta MCC Average Performance Drop

NT-2.5B-multi

Full 56.98 - -
LoRA 53.50 3.48 6.11%
QLoRA 52.29 4.69 8.19%
LoftQ 52.89 4.09 7.17%

GERM (NT-2.5B-multi)

Full 57.16 -0.18 -
LoRA 55.98 1.18 2.06%
QLoRA 55.52 1.64 2.87%
LoftQ 55.80 1.36 2.38%

GERM-T (NT-2.5B-multi)

Full 56.82 0.16 -
LoRA 55.24 1.58 2.78%
QLoRA 53.32 3.50 6.16%
LoftQ 53.74 3.08 5.42%

3https://huggingface.co/InstaDeepAI/nucleotide-transformer-2.5b-multi-species
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Table 9: Comparison of Quantization Methods in Large-Scale Models. This comparison analyzes the performance
of various quantization methods, including FP16, W6A6, W4A4, Outlier, SmoothQuant, and OmniQuant, on Nucleotide
Transformer 2.5B models. The best results are highlighted in bold, while the second-best results are underlined.

Model #Bits Quantization Method MCC Delta MCC Average Performance Drop

NT-2.5B-multi

16W/16A - 56.98 - -
6W/6A - 18.52 38.46 67.50%
4W/4A - 1.39 55.59 97.56%
6W/6A Outlier 50.23 6.75 11.85%
4W/4A 40.74 16.24 28.50%
6W/6A SmoothQuant 47.23 9.75 17.11%
4W/4A 35.16 21.82 38.29%
6W/6A OmniQuant 49.55 7.43 13.04%
4W/4A 43.63 13.35 23.43%

GERM (NT-2.5B-multi)

16W/16A - 57.16 -0.18 -
6W/6A - 45.96 11.2 19.59%
4W/4A - 42.48 14.68 25.68%
6W/6A Outlier 52.24 4.92 8.61%
4W/4A 49.00 8.16 14.28%
6W/6A SmoothQuant 51.95 5.21 9.11%
4W/4A 48.15 31.09 15.76%
6W/6A OmniQuant 52.55 4.61 8.07%
4W/4A 49.26 7.90 13.82%

GERM-T (NT-2.5B-multi)

16W/16A - 56.82 0.16 -
6W/6A - 32.58 24.24 42.66%
4W/4A - 10.49 46.33 81.54%
6W/6A Outlier 52.14 4.68 8.24%
4W/4A 46.24 10.58 18.62%
6W/6A SmoothQuant 51.61 5.21 9.17%
4W/4A 48.12 8.70 15.31%
6W/6A OmniQuant 52.43 4.39 7.73%
4W/4A 47.28 9.54 16.79%
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