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ABSTRACT

When learning in Adversarial Markov Decision Processes (MDPs), agents must
deal with a sequence of arbitrarily chosen transition models and losses. In this
paper, we consider the setting in which the transition model chosen by the adversary
is revealed at the end of each episode. We propose the notion of smoothed MDP
whose transition model aggregates with a generic function f; the ones experienced
so far. Coherently, we define the concept of smoothed regret, and we devise
Smoothed Online Mirror Descent (SOMD), an enhanced version of OMD that
leverages a novel regularization term to effectively learn in this setting. For specific
choices of the aggregation function f; defining the smoothed MDPs we retrieve,

under full-feedback, a regret bound of order (5(L3/ 2VTL + Lé;) where T' is the

. . . . —P . .
number of episodes, L is the horizon of the episode, and C' jlisa novel index of
the degree of maliciousness of the adversarially chosen transitions. Under bandit

feedback on the losses, we obtain a bound of order (5(1)3/ 2VXAT + L@;) using
a simple importance weighted estimator on the losses.

1 INTRODUCTION

Reinforcement Learning (RL) studies sequential decision-making problems often modeled through
the framework of the Markov Decision Processes (MDPs, Puterman, 2014). This framework allows
the application of RL to a large variety of challenging problems and paved the way for the growing
success of RL we witnessed in the last decade (e.g., Kormushev et al., 2013; Nagabandi et al., 2018;
Dulac-Arnold et al., 2021). Nevertheless, MDPs are based on some grounding assumptions that may
limit their modeling power in real-world scenarios. In particular, they assume that the environment
dynamics P (i.e., transition model) and loss' ¢ are fixed throughout the whole interaction. However,
in the real world, such elements may change due to external factors which might be the effect of
nature (e.g., system anomaly, aging effects) or strategic actors (e.g., adversarial attacks). While the
former case is usually captured by non-stationary MDPs (Lecarpentier & Rachelson, 2019; Cheung
et al., 2020), the latter scenario is more challenging as it assumes the presence of another agent (i.e.,
an adversary) acting with an objective possibly conflicting with that of the agent.

Since the early work of Even-Dar et al. (2009), this class of problems has been addressed drawing
inspiration from Online Learning (OL) literature (Orabona, 2019). Adversarial Markov Decision
Processes (AMDPs, Even-Dar et al., 2009) have been designed to model the scenario in which the
agent interacts for 7' € N rounds facing an adversarially chosen MDP M, at every round ¢ € [T7].
Here, the performance of the agent’s policy 7 is evaluated in terms of the expected regret competing
against a fixed comparator policy m°.2

When the transition model P is known or fixed (possibly stochastic) and the loss ¢; is adversarially
chosen, several works (Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jin et al., 2020) have

'We comply with the convention of the adversarial literature of using losses instead of rewards.

’This is a notion of static regret which is different from the notion of dynamic regret typically adopted in
non-stationary MDPs in which the comparator policy 7¢ is allowed to change over rounds. It is known that,
even in the simpler bandit setting, when the environment is adversarial, the no-regret property is not achievable
for the dynamic regret (Bubeck et al., 2012).
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achieved compelling regret guarantees of order (5(\/7) However, when the adversary is allowed to
select the transition model P; at every round, the problem acquires new significant computational
and learning challenges. In the full-feedback setting, where the transition model P; is revealed

to the learner at the end of round ¢, Abbasi Yadkori et al. (2013) showed a (5(\/?) regret bound
with a computationally inefficient algorithm running (a variation of) Exp3 (Auer et al., 1995) on a
covering of all stochastic policies. Indeed, the computational barrier has been formalized by (Liu
et al., 2022) showing that no algorithm can simultaneously achieve the no-regret property and be
computationally efficient. The scenario is even less encouraging under the bandit feedback, where the
learner observes only the collected experience. Here, Tian et al. (2021) proved a regret lower bound
of order Q(min{T, 2"}), being H the episode horizon. This formalizes a learning barrier showing
that exponential dependence on the horizon is unavoidable.

Accepting these impossibility results, the research effort has been directed towards the design of
computationally efficient algorithms, allowing their regret to depend on the degree of adversary
maliciousness in the choice of the transition model P;. Inspired from the corruption-robust RL
(Lykouris et al., 2021; Chen et al., 2021; Wei et al., 2022), the degree of maliciousness is formalized
in a parameter CP that quantifies the cumulative dissimilarity between the experienced transition
models P; and a nominal one P:

CP := min Z Z max |P(:|z,a) — Pi(-|z,a)|; . 0
rer te[T] ke[0,L—1] (z,a)eX) x.A

In the worst case, this C” term leads to linear regret but, in general cases, may be significantly smaller.
With these premises, Jin et al. (2023) proposes a state-of-the-art algorithm working under bandit
feedback for both the losses and the transition models. With the knowledge of CF, the algorithm
achieves a regret dependence that gracefully degrades with the level of corruption (7)(\/7 + CP).
However, when CP is unknown, the resulting algorithm necessitates a complex inner subroutine
(based on approaches from the Corral literature) making the final regret guarantee less explicit and,
possibly, affected by large constants. Furthermore, the practicality of the algorithm in terms of
computational complexity remains uncertain.

These results, therefore, leave several open questions. First, it is not clear whether the maliciousness
parameter C* inherited from the corruption-robust RL appropriately captures the challenges of the
AMDP learning problem. Indeed, comparing P; against a nominal MDP does not comply with the
conventional behavior of an OL algorithm, i.e., adapt according to the experience observed so far.
Can different definitions of the degree of maliciousness highlight new properties that OL algorithms
for AMDPs enjoy? Second, the approach proposed (Jin et al., 2023) aspires to directly address the
bandit feedback on both the losses and transitions models. This leaves open the question of whether
with transition models revealed at the end of the episode (and possibly full or bandit feedback on the
losses), tighter results can be achieved, especially without the knowledge of the corruption parameter
CP. When the transition models are revealed at the end of the episode, can OL algorithms achieve
better performances without the knowledge of C* ? This paper aims to address these open questions.

Original Contributions. The contributions of the paper can be summarized as follows.

* In Section 3, we introduce the novel concept of smoothed MDP and the related smoothed regret.
Since OL algorithms make decisions based on past experience, the smoothed MDP is defined
through a transition model P; = fi(Py,..., P;) that aggregates with a generic function f; the
previously experienced ones P, ..., P;. This allows introducing a novel quantification of the

adversary maliciousness C'; by evaluating the dissimilarity between the chosen transition model

P; and that of the smoothed MDP P,. This constant matches the corruption parameter C* up
to logarithmic terms when using an averaging smoothing function (i.e., P; is the average of
Py, ..., P,). Coherently, we define a smoothed regret measuring the learner’s performance against
a comparator policy 7° acting in such a smoothed MDP.

* In Section 4, we propose a novel regret-minimization algorithm Smoothed Online Mirror Descent
(SOMD). Our approach is built upon a simple yet novel instance of Online Mirror Descent (OMD)
with a well-calibrated entropic regularization. Interestingly, the algorithm does not require any

knowledge about 6;. We analyze SOMD for general smoothing functions f; and we show that

3This implies that the no-regret property is achievable only when H = o(log T') which is often unrealistic.
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it achives O(L3/2+/T) smoothed regret, which translates into O(L3/2/T + L@;) for the choice
of the averaging smoothing function. The regret analysis requires managing non-trivial aspects,
which also represents a key component of our contribution.

* In Section 5, through an importance-weighted (IW) estimator of the loss function, we extend
SOMD to the bandit feedback of losses, showing comparable performances on the regret. Still, we
do not require the knowledge of the degree of corruption.

2 PROBLEM FORMULATION

Notation and Definitions. In the following, given a,b € N with a < b, we denote with [a] =
{1,2,...,a} and with [a,b] = {a,a + 1,...,b}. Given two vectors x and y, we denote with
{x,y) the inner product x"y. Given a set A, we denote with |.4] the cardinality of the set, and
with A(A) the probability simplex over the set. For two generic (discrete) distributions ¢, ¢’ €
A(A) we define the negative Shannon Entropy as ¥(q) = >, 4 q(a)logq(a) and the Bregman
Divergence D, (q,q’) which, for the negative Shannon Entropy, corresponds to the generalized
KL-divergence Dy (q,q") = > ,c 4 (¢(a) log(q(a)/q (a)) — q(a) + ¢'(a)). Finally, we denote with
h(p) = —plogp — (1 — p) log(1 — p) the binary entropy function for p € [0, 1].

Setting. We consider the framework of episodic loop-free Markov Decision Processes (MDPs,
Puterman, 2014). Specifically, we assume the agent is interacting with a sequence of 7' € N MDPs
{Mi}iepry with My = (X, A, P, £;). Here, X is the state space, A is the action space, P; is the
transition function P, : X x A — A(X) such that P;(2'|z, a) is the probability of transitioning to
state " after taking action a in state x, and ¢; is the loss function ¢; : X x A — [0, 1], defined such
that ¢;(z, a) is the loss the agent incurs selecting a in x. We consider finite state and action sets
with cardinality |X| < oo and |A| = A < o0, respectively. As common in the literature (Jin et al.,
2020; 2023) and w.l.0.g. the state space is assumed to be decomposed into L + 1 disjoint layers,
namely X = Uke[O,L]] X, and X; 0 X; = {},Vi,j € [0, L], # j. Furthermore, the first and the
last layers are assumed to be singletons: Xy = {x¢} and X;, = {x1}. The layered structure also
imposes P;(z'|x,a) > 0 only if x € X}, and 2’ € X1, for some k € [0, L — 1]. Finally, to ease the
exposition, we assume the cardinality of each layer to be | X} | = X < X.

Interaction Protocol. The interaction proceeds as follows. An adversary selects obliviously the
sequence of transition models and losses {( P, £t) }e[] before the interaction with the agent starts.
Then, in each episode ¢ € [T7], the agent sequentially decides which action to play following a
stochastic Markovian policy my : X — A(A), where 7(a|x) denotes the probability of playing
action a in state . More in detail, starting from the fixed initial state x; o = x, for each layer
k € [L — 1], the agent selects the action a; j, ~ (| ), the environment evolves to the next state
Ty k1 ~ Po(-|Te ks ar k). the agent observes the loss £, (x , a k), and the interaction proceeds until
the terminal state x¢ ;, = x, is reached. At the end of each episode ¢, the full transition model P;
is revealed to the learner. Furthermore, in the full-feedback model, the full loss /; is revealed to the
agent, while in the bandit-feedback model the loss is not revealed.

Occupancy Measures. As customary in the literature (Zimin & Neu, 2013; Jin et al., 2020), the
problem will be treated in the space of occupancy measures. For a generic transition function P and
a policy 7 the occupancy measure ¢©>™ is defined as:

" (x,a,2") = Play = 2,a = a, 511 = 2| P, 7], 2)

where © € Xy, 2’ € Xy41, and a € A. This quantity represents the marginal probability of experienc-
ing the transition (z, a, #") when deploying policy 7 in an MDP with transition model P. Similarly,
we make use of ¢©"(x,a) = Play = z,a, = a|P, 7| = Diex,,, 4@, a,2'), and g7 (z) =
Play = z|P,w] = Y,c49”™(z,a). Importantly, according to (Rosenberg & Mansour, 2019,
Lemma 3.1), any valid occupancy measure is such that each layer of the MDP is visited exactly once,
and thus, for every k € [0, L — 1] it holds that 3}, v, >i4e 4 2upven, ,, 4(%,a,2") = 1, and for every

k € [L—1] andevery state x € Xy itholds 3, /c v, | Duen d(2',0,2) = Y en, | Daea (@, a,2").
This implies that the probability of entering a state coming from the previous layer is equal to the
probability of leaving that same state when going to the next layer.
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Finally, denoting A as the set of occupancies ¢ satisfying the previously defined properties, we have
that every ¢ € A induces both a transition function P? and a policy 7%, computed as:

Zz’eXkqu q(x’ a, 'T/)

ZaGA ZE’GXk(m)-H q(m, a, x/) ’

q(z,a,2’)
Zz’eXk,(m)+1 q(m, a, x/) ’

P2 |z, a) = 7(alr) =

3

where k(z) € [0, L] identifies the index of the layer to which the state 2: belongs. Throughout the
analysis, when we need to refer to the occupancy at layer k, we use a superscript e.g., ¢* in favor
of compactness. For a transition function P, we denote as A(P) < A the set of occupancies that
induce exactly the transition P. Similarly, given a set of transition functions P’ < P, being P the set
of all transition models, we denote as A(P’) the set of ¢’s such that P? € (P’). Finally, we denote
with I the set of Markovian stochastic policies.

Learning Objectives. Let V;"(z) = E[Zke[[o,Lq]] (e ks, ar k)| Pr, ™, z0] be the expected cumu-
lative loss suffered by the agent experiencing the trajectory {(s¢,x, @z r)}re[z—1] generated under the
state-action distribution induced by transition function P; and policy 7 in M. The expected static
regret of the agent against any comparator policy 7° € II is defined as:*

Re(r?) = E| 3 Vao) = 3 0 (wo)| @

te[T7] te[T]

where the expectation taken w.r.t. the internal randomization of the algorithm and on the possible
stochasticity of the environment. With occupancy measures, the expected cumulative loss can be
conveniently rewritten as V" (x¢) = {(q7*™;¢;). This allows to frame the task of the agent to
select occupancy measures g; instead of policies. Similarly, the expected regret can be expressed as

Rr(n°) = E[X,cpry<a™™ — q™m 0]

3 SMOOTHED MDPS AND SMOOTHED REGRET

As mentioned previously, our goal is to design computationally efficient algorithms for adversarial
MDPs that achieve a regret scaling with a notion of the degree of maliciousness of the adversary in
selecting the transition functions. However, unlike Jin et al. (2023), we aim for such a performance
guarantee without introducing a notion of nominal transition function.

Smoothed MDP. With such an objective in mind, starting from the sequence of 7" MDPs { M }1c[77.

we define a smoothed MDP as { M }cr] with M = (X, A, Py, {;) in which the transition model

P, gets replaced with P;, named smoothed transition model. In general, P, can be any function
of the history of transition functions. Formally, for every ¢ € [T], let f; : P* — P and P; =

fe(P1, ..., P;). This allows the introduction of a novel index for measuring the maliciousness of the
adversary in selecting the transitions, that we call smoothed transition error, defined as follows:
—P —
C, = Pi(-|z,a) — P(-|x, . 5
g 2 2 max  [Pillea) = P(lea), ®)

te[T] ke[0,L—1]
For adequately chosen smoothing functions, this constant interpolates between 0 when the adversary
. . - . —P
is absent, i.e., constant transitions, and 2LT in the worst case. As we shall see, when C' r=0,we

will incur a regret of (5(\/T ) even when the loss functions are completely arbitrary. To exemplify the
opportunities of the smoothed transition error, we discuss the following examples.
Example 3.1. Let us consider the smoothing function f; so that Py = P,_1, i.e., the smoothed MDP

M, has the last revealed transition model. In such a case, the smoothed transition error reduces to
the model variation Vi common in the non-stationary literature as in Cheung et al. (2020):

—P

C, = Z Z max ||P(-|x,a) — Pr_1(-|z,a)|, = V. ©

f , ’ ol
te[T] ke[0,L—1] (z,a)€X) x A

Example 3.2 (Average Smoothing Function). Let us consider the smoothing function f; so that
P, = %Zt,em Py, i.e., the smoothed MDP My has as transition function the average of the

#Usually, the comparator is assumed to be the optimal policy in hindsight: 7* € arg min_ . 3, ey Ve (z0).

4
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transition functions experienced so far. In this case, we can conveniently relate our smoothed
transition error with the C¥ of Jin et al. (2023):

—P
1

logT + 2 CP b

This double-sided inequality is proved in Lemma A.1 and shows the equivalence of the two malicious-
ness measures, up to logarithmic terms.

<logT + 2. @)

Together with the smoothed transition error, we introduce an index of the variability of the smoothed
MDP between consecutive episodes, named smoothed transition variability, defined as follows:

E; = Z xgel/%)iA”Pt Jx,a) — ﬁt_1(~|:c,a)”1. ®)
te[2,T1]

Smoothed Regret. The notion of smoothed MDP allows us to rewrite the static regret in (4) as

RT(WO) _ E[ Z <qFt,7Tt _ Pt7 E >+ Z <th;7Tt _qFt,ﬂ't;gt>+ Z <qﬁt7 Pty £t>:|

te[T] te[T] te[T]

Smoothed Regret R (7°) (Policy) Proxy Regret (Comparator) Proxy Regret

The smoothed regret Rr(n°), accounts for the regret incurred by the agent when acting in the
smoothed MDP M. On the other hand, the two proxy regrets account for the fact that both the
agent’s policy and the comparator policy are employed in the true MDP. Thus, the latter depends
on the adversary and captures its maliciousness, while the smoothed regret is fully dependent on
the algorithm. R (7°) will be treated in the next sections while the following result shows how the
smoothed transition error can be employed to bound the proxy regret terms.

Lemma 3.1 (Proxy Regret Upper Bound). For any policy sequence {m;}1_,, and loss functions
{0.YE | such that £, - X x A — [0,1] foranyt € {1,..., T} it holds that:

Proxy Regret = Z <qﬁ“”* — gy < Lé;. 9)
te[T]

A reference to the proof can be found in Appendix A. Having highlighted the role of proxy regrets, in
the following, we design and analyze our algorithm, namely smoothed OMD.

4 SMOOTHED OMD UNDER FULL-FEEDBACK ON LOSSES AND REVEALED
TRANSITIONS

In this section, we first present a novel, smoothed, version of OMD, namely Smoothed Online Mirror
Descent (SOMD) that exploits the intrinsic structure of smoothed MDPs, and, then, we provide the
analysis of its no-smooth-regret property. We start considering generic smoothing functions f;, then
we focus on the average smoothing function (Example 3.2).

Algorithm Design. Coherently with the OMD algorithmic blueprint, at the end of each episode
t € [T], SOMD (Algorithm 1) computes an occupancy measure ¢;;1 that trades off between
minimizing the loss of the round ¢; and not diverging excessively from a specific regularization
reference g,. In mathematical terms, SOMD solves the constrained convex program:

. 1 _
dt+1 = argmin <Q7ét> + *Dw(q,qt), (10)
4€A(P,) n

where 7 > 0 is a regularization hyperparameter. It is worth noting that the resulting occupancy
gi+1 is constrained into A(P,), i.e., the set of occupancies realizable with the smoothed transition
model P;. More importantly, the resulting policy 7, := 79+ will be evaluated in the environment
paired with the smoothed transition model P, ,, leading to the occupancy qP t+1,Te+1 In general,
we have that qP LD oL gy = qP £t Intuitively, our program in Equation (10) “pretends”
that ;1 will be played in the current smoothed MDP P, instead it will be played in P, ;. This
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Algorithm 1: Smoothed Online Mirror Descent in Full-Feedback

Input : state space X', action space A, episode number 7', learning rate > 0, mixing parameter « € [0, 1],
smoothing functions { f: }sef1]-

Initialize : Set 11 = 7%, q1(z,a,2") = u(z,a,z’') Vk € [L — 1], (z,a,7") € X x A x Xit1.

fort=1,...,7T do
Execute policy m; in M, and observe (P, ;).
Compute smoothed transition Py = f;(P1, ..., P;).
Compute smoothed regularization point g, = (1 — o) ¢+ + au
Perform mirror descent step q1+1 = arg minqu(?t)@, by + %Dw (¢,7,)
Update policy 441 = wdt+1
end

represents a fundamental feature of SOMD that deviates from the classical OMD algorithms, which
are often designed to deal with a fixed decision set A(P) (Jin et al., 2020) or a sequence of nested
sets (Jin et al., 2023). SOMD manages the mismatch between such domains by: (¢) leveraging the

transition variability of smooth MDPs, encoded in term E;; (2%) computing a smoothed regularization
reference, q,, defined as a mixture between the SOMD decision at the previous step, ¢;, and the
uniform occupancy measure u(z,a,z’) = 1/(X;AXy41) for every k € [0, L — 1]. Specifically,
q; = (1 — @) ¢+ + au, where « € [0, 1] is a hyperparameter to be specified later that acts as a further
source of regularization.’ The choice of o > 0 will generate a bias term whose effect on the regret
will be controlled through a proper selection of the value of a. Clearly, as supported by intuition,
the solution delivered by the program in Equation (10) will be a good representative of the actual
occupancy only when two consecutive smoothed MDPs are sufficiently similar Py ~ P;yq. This is

encoded in the variability term ﬁ; that emerges in the regret analysis.
Smoothed Regret Analysis. The following provides the smoothed regret upper bound for SOMD.
Theorem 4.1 (Smoothed-Regret Bound for SOMD under full-feedback). Let n =

\/(10L log(2X2AT)p§)/T and o = 1/(1+T), then for any comparator policy 7° € II Algorithm 1
suffers a smoothed regret of:

Rr(r°) <O (L2D§ + L3? Tlog(X2AT)p§> , (11)

where pé = log(T) + D; + ”HT(D;) and ’HT(D;) = TLh(%)'

. —P . .
As one could expect, the behavior of the constant 7 (D) depends on the choice of the smoothing
function to be used. For specific choices of smoothing functions, as it is for average smoothing
functions, this term will be sub-linear in 7". For the average choice of Example 3.2, we have that

”HT(EE) = O(L?log(T)?); the interested reader can refer to Appendix C for in-detail analysis.

Now, we provide the reader with additional insight into our approach, by specializing the analysis and
results to the specific class of smoothing functions that satisfy P; = % Zt,em Py called “average

smoothing function”. With such an additional structure, our algorithm is able to guarantee,
Corollary 4.2 (Smoothed-Regret Bound for SOMD under full-feedback and average smoothing).
Let n = 3+4/(2L1og(2X2AT)log(T))/T, o = 1/(T + 1) and smoothing functions such that
P, = % > velt] Py, for any comparator policy 7° € 11, Algorithm 1 suffers a smoothed regret of-

Re(n%) <O (L2 log(T) + L¥2y/T log (X2AT) log (T)) . (12)
While the full derivation can be found in Appendix B, here we outline the most relevant steps.

Proof Sketch. From now on we will overload the notation with qtp =0T — gy and qtp - g; for

compactness. SOMD computes ¢; based on P;_;. Thus we isolate the part of the regret solely

>Parameter « is needed for technical reasons that will become clear in the proof of Theorem 4.1.
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dependent on this algorithmic choice:

= E[ i<qﬁt7m - qﬁt’ﬂo;gﬁ] = E[ i(qt - qf;&}] -I—E[ i Prme _ Ptfl’”t;€t>] .
t=1 t=1 t=1

Algorithmic Regret (ﬁ?) Update Regret (ﬁg)

The Update Regret captures the mismatch in using P;_; to compute 7% and then using the same

policy in P;. This term is affected by the magnitude of E;, thus by the “slowly”-changing behavior
of the smoothed MDP, as analyzed in Lemma B.1. The Algorithmic Regret is the one specifically
controlled by the algorithm, and it can be decomposed into the following terms:

Rr - E| S - aii b)) +E| S ~ i)

~—

Descent Regret (ﬁ?) Regularization Regret (ﬁ? )

where the Regularization Regret describes the degree to which g, is different from ¢; and it is
controlled by the mixing coefficient o (Lemma B.3). The Descent Regret captures how performing
an OMD step in the smoothed MDP affects the overall performance and satisfies:

T T T

=D — o~ « o o — o —

MRy < E[ Z Dy (@4, Gr+1) + W Z Dy (g7, u) + Z(Dw(qtaqt) - D¢(Qt7Qt+1))]a
t=1 t=1

t=1

~
“Stability” term “Residual” term “Penalty” term

where g, 1 is the solution to the unconstrained OMD problem, as can be seen in Lemma B.4. The
related “Stability” term can be bounded by standard OMD analysis as done in Jin et al. (2020). The
“Residual” term catches the effect of mixing the output of the descent step with uniform distributions
but it can be bounded pretty easily as in Lemma B.9. Finally and more interestingly, the “Penalty”
term is due to the presence of a regularizer in optimizing the cumulative loss (see Lemma B.10). In
standard OL analysis, a similar term can be easily bounded using telescoping arguments. However,
the time-varying nature of smooth MDPs prevents us from using such arguments and bounding this
term requires some machinery. Specifically, we first rewrite the penalty term as,

T T
D 1(Dy(a7, @) — Dy(7,Tps1)) < Dy(a7, @) + Y, Dylas, @) — Dylgi1,@)  (13)
t=1 t=2

While the first term can be easily bounded by the maximum range of the regulariser, as shown in
Lemma B.11, the second term requires more machinery despite its non-telescoping behavior. First,
we leverage the properties of the KL-divergence to obtain:

T

> Dyl48,T;) — Dylgi-1,4,) le ;) — (g;_ )]+ > 1108@) o lgf — a5-1 -
t=2 t=2

The second summation can be easily bounded via Lemmas B.21 and B.20. For the first summation,
we employ Theorem 3 by Sason (2013) to bound the absolute entropy differences: we first identify
two different time regimes separated by ¢ = [ : A]. Now, for ¢ < t we simply apply the

above-cited theorem. For ¢ > ¢ instead, the use of averaging as smoothing function allows us to

further bound the total variation distance dry (q; " qf;kl) < L/t as for Lemma F.4. This allows us to
bound the summation with sub-linear terms:

T T
W(g7) — lgr_1)| < D)
t=t k

L-1
h(e) + log (X2AT + X?A) ¢

o+

t=

Finally, optimizing for ) in the Algorithmic Regret and combining all the single terms in the decom-
position returns the final result. O

Overall Regret Analysis. Now that we have proven that Algorithm 1 is no-smooth regret, what is
simply left do is to combine this result with Lemma 3.1, leading to the following result.
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Algorithm 2: Smoothed Online Mirror Descent in Bandit-Feedback

Input : state space X', action space A, episode number 7', learning rate > 0, mixing parameter « € [0, 1],
estimator parameter y > 0, smoothing functions { f; }¢e[ry-

Initialize : Set 11 = 7%, q1(z,a,z’) = u(z,a,z") Vk € [0, L — 1], (z,a,2') € X x A X X1

fort=1,...,Tdo

Execute policy m¢ in M and collect trajectory {(2+,k, @t,k, ¢ (Te.k, k)b repry refo, 1]

Observe P, and compute smoothed transition P, = fi(Pi, ..., P.).

Construct loss estimator: /;(z, a) = %L(m, a), V(z,a)e X xA

Compute smoothed regularization point g, = (1 — ) ¢+ + au
Perform mirror descent step g¢+1 = arg min,c  ,,4, 0y + %Dw(q, q,)
Update policy 7441 = wt+1

end

Corollary 4.3 (Regret Bound for SOMD under full-feedback and average smoothing). For n =
3v/(2L1og(2X2AT)log(T))/T, o = 1/(T + 1), smoothing functions such that P, := 1 2wy v
and any comparator policy 7° € 11, Algorithm I suffers a regret of:

Ro(n®) < O <L3/2\/T + Lﬁ?) . (14)

5 SMOOTHED OMD UNDER BANDIT-FEEDBACK ON LOSSES AND REVEALED
TRANSITIONS

In this section, we extend the previous results to the case in which losses are observed under bandit
feedback. We show that SOMD can be adapted to this setting with limited adjustments.

Algorithmic Design. To face this challenging scenario, a common way to go is to construct loss
estimators based on observations only. In particular, inverse importance-weighted estimators as of
Jaksch et al. (2010) can be used to weight the estimation on the experienced trajectory. Thus, we will
simply substitute the true feedback with an estimator, namely:

. li(z,a
li(r,a) = 5T (2, )
g (z,a) +
where v > 0 is a parameter to be specified later that allows bounding the variance of the estimator,
and 1;(z, a) is the indicator random variable for the event that the (z, a) is visited at round ¢. As

it emerges from the analysis, the SOMD algorithm can be employed by just replacing ¢; with 0.
The intrinsic properties of smoothing in smoothed MDPs will take care of most of the remaining
complexity of the problem and the rest of the SOMD algorithm can be employed as is (Algorithm 2).

1¢(z,a), (15)

Smoothed Regret Analysis. We again proceed in bounding the regret in the smoothed MDP. In
particular, we can state that using generic smoothing functions leads to the following:

Theorem 5.1 (Smoothed-Regret Bound for SOMD under bandit-feedback). Let n =

\/(13L log(QXQAT)p@/(ZXAT), a = 1/(T + 1), v = n, generic smoothing functions and
any comparator policy 7° € 11, Algorithm 2 suffers a smoothed regret of:

Rr(r®) <O (LQD; + Lé? + L3/2\/ X ATp, 1og(X2AT)> . (16)

The corresponding result with the choice of the average smoothing is the following.

Corollary 5.2 (Smoothed-Regret Bound for SOMD under bandit-feedback and average smoothing).
Letn = +/(21L1og(2X2AT)(log(T)))/(2X AT), o = 1/(T + 1), v = n, smoothing functions such
that Py = % Zt,em Py and any comparator policy 7° € 11, Algorithm 2 suffers a smoothed regret

of:

Rp(n°) <O (Lé;’ + L?log(T) + L¥2\/X AT log (X2AT) log (T)) (17)
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The proof for such a result builds upon the same structure of the full feedback case and we refer the
reader to Appendix D for a detailed explanation. Interestingly, and differently from the full-feedback

setting, the smoothing transition error C'; term appears even in the smoothed regret. This is inherited
by the bias of the loss estimator 0y of Equation 15.

Overall Regret Analysis. As for the full-feedback case, now that we have proven the smoothed
regret bound for Algorithm 2 we combine this result with Lemma 3.1, leading to the following:

Corollary 5.3 (Regret Bound for SOMD under bandit-feedback and average smoothing). Letn =
\/(21L1og(2X2AT)(log(T)))/(2X AT), o = 1/(T + 1), v = m, smoothing functions such that

Py = % Zt,em Py and any comparator policy ©°, Algorithm 2 suffers a regret of:

Rey(n) = O (Léfﬁ + L3/2\/XAT) . (18)

6 RELATED WORKS

The presence of disturbances, adversarial attacks, and non-stationary behaviors in MDPs have been
extensively treated through various lenses. We now highlight how this work is related to each subfield.

Adversarial MDPs. When only the losses are adversarially chosen and the transition functions

are either known or fixed (i.e., 6; = (), many are cases of success in obtaining compelling regret
guarantees (e.g. Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jaksch et al., 2010; Jin et al.,
2020), where Zimin & Neu (2013); Jin et al. (2020) in particular take advantage of performing
OMD steps in the occupancy measure space. Under adversarially chosen transitions as well, the
only related work up to our knowledge is Jin et al. (2023), where bandit feedback for both the
losses and the transition model is considered. However, when the degree of maliciousness is
unknown, the resulting computational complexity remains uncertain and the regret guarantees are
rather implicit. Furthermore, Jin et al. (2023) does not take into account the intermediate setting
of revealed transitions, but applying their Algorithm 1 to such a setting would lead to a regret of
O(L?X+/AT log(LX AT?) + L>X*Alog(LX AT?) + CPL° X* log(LX AT?)) even with a known
degree of maliciousness C*, which is significantly worse than the performances of SOMD, constant-
wise. On the other hand, we positively leverage the intermediate setting of revealed transitions,
introducing ad-hoc degrees of maliciousness the notion of smoothed MDP formalism, and finally
recovering comparable performances via computationally efficient OMD-based algorithms.

Corruption Robust RL. Works in this line (e.g. Lykouris et al., 2021; Chen et al., 2021) typically
assume the presence of an adversary corrupting some of the rewards and/or transitions, compared
to a nominal underlying MDP. These works then address a different notion of regret, namely the
one defined coherently with respect to the loss incurred by the best policy in the nominal MDP and
denoting the number of corrupted episodes by C, Wei et al. (2022) is the first to achieve a regret of
O(min {£,+v/T} + C) in a bandit feedback setting without requiring the knowledge of C, with A
being the reward gap between the best and the second-best.

Robust MDPs & RL. Robust MDPs (e.g. Nilim & Ghaoui, 2005; Wiesemann et al., 2013) and
Robust Reinforcement Learning (e.g. Morimoto & Doya, 2005; Lim et al., 2016) focus on computing
policies that exhibit robustness in face of uncertainties over the transition and/or loss models so
that to withstand potential mismatches between the models and the ground truth. Usually, though,
minimax solutions against the worst-case scenario are sought, failing to adapt to easier instances and
to smoothly interpolate performance based on the degree of mismatch.

Non-Stationary RL. Works in this line (e.g. Lecarpentier & Rachelson, 2019; Wei & Luo, 2021;
Cheung et al., 2023) allow the MDP model to change arbitrarily over time and the performance metric
employed is the dynamic regret, i.e. competing against a comparator policy varying over rounds. It
is known that, even in the simpler bandit setting, when the environment is adversarial the no-regret
property is not achievable for the dynamic regret (Bubeck et al., 2012), so the results presented in this
work are not directly comparable with them.
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7 DISCUSSION AND CONCLUSIONS

In this paper, we have addressed the OL problem in MDPs in which the transition functions are chosen
by an adversary. Starting from the known computational and statistical limits of this challenging
setting, we have the scenario in which the transition functions are revealed at the end of the episode.
We have introduced the notion of smoothed MDP and, based on it, we designed suitable indexes

5? and ﬁ; to assess the degree of maliciousness of the adversary that relate and generalize the
existing ones. These indexes allowed us to design a computationally efficient algorithm, SOMD, that

enjoys regret guarantees of order (5(\/T + 6;). These results are in line with the literature (Jin et al.,

2023) but require no knowledge of the maliciousness index C" and are obtained with simple yet
computationally efficient algorithms. Future works include the extension of the proposed approach
to a complete bandit feedback setting where the transition functions are not revealed at the end of

the episode. Furthermore, their generality makes our indexes 6; and ﬁ; suitable to be employed
beyond the specific averaging smooth of Example 3.2 and capture more sophisticated relations in the
sequence of the transition models, such as bounded variation (Example 3.1).
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A THEORETICAL ANALYSIS FOR SMOOTHED MDPs

Lemma A.1. Let Py = § 2uveqe Pu- Then, it holds that:

—P
LS/ SR (19)
logT +2 SCP S8 '

Proof. Let P be the nominal MDP with which CF is defined. We have:

6; = 2 2 max |Py(-|z,a) — P(:|z,a)|,

te[T] ke[0,L—1] (z,a)eXk x A

N Y max  [Pilz,a) — P(la,a)],

te[T] ke[0,L—1] (z,a)eXk x A

+ Z Z max |P(:|z,a) — Pi(|z,a)|,

te[T] ke[0,L—1] (z,a)eXs x A

SN max |2 Y Ru(lwa) - Pllza)| +CP

te[T] ke0.L—1] (BVEXE XA t velt]

N

1

1
S (o e MPuClz,a) = P(lz,a)], +C7

te[T] = t'e[t] ke[0,L—1] T,a)E X} X
1
<2 x X2 max  [Pu(lz,a) = P(lz,a), +C°
1elT] * velT] ke[0,L—1] (P DEEX
< (logT + 2)C’P’

where the first inequality comes from triangle inequality. And the second from Jensen’s. The lower
bound comes from analogous derivation. O

Lemma 3.1 (Proxy Regret Upper Bound). For any policy sequence {m;}1_,, and loss functions
{031 suchthat 0, : X x A — [0,1] forany t € {1,..., T} it holds that:

Proxy Regret = Z <qu — gm0y < L@?. ©)

te[T]

Proof. The proof follows the same steps as in the original derivation of Lemma F.7 in (Jin et al.,
2023), we invite the reader to see the original work for a detailed proof. O

B THEORETICAL ANALYSIS WITH FULL-FEEDBACK AND AVERAGE
SMOOTHING FUNCTIONS

In this section, we present the proofs of the results discussed in Section 4 with the specific smoothing
. t
functions f;(Py,...,P) =+ >, _; Py.

B.1 MAIN RESULTS

Corollary 4.2 (Smoothed-Regret Bound for SOMD under full-feedback and average smoothing).
Let n = 3+4/(2L1og(2X2AT)log(T))/T, o = 1/(T + 1) and smoothing functions such that
P, = % > velt] Py, for any comparator policy 7° € 11, Algorithm 1 suffers a smoothed regret of:

Re(n°) <O <L2 log(T) + L¥2y/T log (X2AT) log (T)) . (12)

12
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Proof. We first define qf 0T — g, and qﬁ“”O = ¢; for notational simplicity. It follows that the
smoothed regret term can be decomposed as

=E[i<qp“”t—q’°”°;£t>] =E[i<qt—q§;zt>]+za[i Pom - gPamigy),
t=1 t=1 . t=1 )

"

Algorithmic Regret (ﬁ‘;) Update Regret (ﬁ?)
Lemma B.2 Lemma B.1

Then, the result follows directly from the combination of Lemma B.1 for the Update Regret and
Lemma B.2 for the Algorithmic Regret, namely:

Ry (n°) < 2(L* + L)(1 + log(T)) + 2L + 8L+/T Llog (2X2AT) log(T)
= 4L +2L% + 2(L? + L)(1 + log(T)) + 6 L+/2T L log (2X2AT) log(T)
which leads to the final result. L]

Corollary 4.3 (Regret Bound for SOMD under full-feedback and average smoothing). For n =
3v/(2L1og(2X2AT)log(T))/T, o = 1/(T + 1), smoothing functions such that P, := 1 Dwepg v
and any comparator policy 7° € 11, Algorithm I suffers a regret of:

Re(r°) < O (Li”/z\FT + Lﬁ?) . (14)

Proof. The result follows straightforwardly from combining the results from Corollary 4.2 and
Lemma 3.1. O

Lemma B.1 (Update Regret Bound). For smoothing functions such that P; = %Z vl Py and
by X x A —[0,1], for any policy sequence {T} e[ we have that,

T

»U Py, Pi_1,m¢.

RY = E[ 3qPm — Pt < 2L + D)1+ log(T)).
t=1

Proof.
T
I:Z Pf Tt Pf 17\'t;€t>:| [Z quf Tt Pf 1,7t ]
— ) 1
L1
<2AL*+L)) -
t=1 ¢

< 2(L* + L)(log(T) + 1)

The first inequality follows from Holder’s and the fact that |¢;|,, < 1 by definition. The second
inequality follows from Lemma F.10, and the last one comes from the bound on the harmonic
series. O

Lemma B.2 (Algorithmic Regret Bound). Choosing n = 3\/ 2L log(ZX;AT) log(T)

rithmic Regret is bounded by

L= Algo-

1+T

T
Ry = E[ (a — i 00)] < 2L + 6L/TL1og (2X?AT) log(T)
Proof. The proof relies on the following decomposition:

Ry = nE[i@t —qs;zmni@t;@] - nE[iqt — 475 00)| +nE[§<qt ~ai 0]

" "

Descent Regret (ﬁ? ) Regularization Regret (ﬁ?)
Lemma B.4 Lemma B.3

13
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By applying Lemma B.3 for the Regularization Regret and Lemma B.4 for the Descent Regret we
can rewrite the Algorithmic Regret as

WRy < 2nL + n*TL + 18L* log (2X2AT) log (T

We first chose the optimal 7 as:

5 \/2Llog(2X2AT) log(T)
= T

and then we upper bound the Algorithmic Regret after substituting the optimal 7, namely:

18L%log (2X?AT) log(T)
n
< 2L + 3L+/2T Llog (2X2AT) log (T) + 3L+/2T L1log (2X2AT) log(T)

R <2L+yTL +

which leads to the final result. O
Lemma B.3 (Regularisation Regret Bound). For g, = (1—a)¢ + aou, u(z,ax’) =
+—i— Vke[L—1]and a = 7%=, it holds that

k k+1 +1

T
Ry = nE[ > e — qt;£t>] < 2L
Proof.

T T
—R
MRy =n > {q — Ty by = an Z<Qt —u; )

<o} 2 I — uls

2

<on Z lge —ulx
t=1

!

< 2nL

Where the first equality comes from the definition of g,, the first inequality follows from Holder’s and
the fact that ||¢; | < 1. Finally, the last step derives from bounding the 1-norm between distributions
by 2 and the definition of o = O

T+1°

Lemma B.4 (Descent Regret Bound). For o = n > 0 the following fact holds,

_1

T+1’

MRy =1 Y (T, — ¢73 Ly < °TL + 18L7 log (2X2AT) log(T)
t=1

Proof. We start by decomposing the regret at a generic step ¢ into

Gy — g5 3 be) = Z?@t — G130 + G — a3 )

Lemma B.5 Lemma B.6

Where the ¢ represents the unconstrained solution to the OMD optimization problem.

. - - . 1 _
qir1 = argmin Dy(q, Ge+1), Ger1 = argmindg; £r) + —Dy(q, ;)
a€A(Py) q n

14
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We apply Lemma B.5 on (g, — §¢+1; ¢;+» and Lemma B.6 on 1{g;11 — qy; £y obtaining:

@ — 475 6 = Dy(@ys Gev1) + Dyp(Ge+1, ) + D@7, @) — Dy(Ge+1, ) — Dy (a7 Gev1)
= Dy(qys Ge+1) + Dy (¢, @) — Dyl s Ge+1)
Since only the optimality condition for the unconstrained problem and the three-point lemma have
been employed so far, this result holds for any ¢;, g,. Now, considering the result of the projection

step of OMD, g¢;41, the generalized Pythagorean Theorem allow us to state that Dy, (g7, Ge41) =
Dy (g7, ge+1)- Such a result, together with the application of Lemma B.7 to Dy, (qy, g¢+1) provide:

WGy — q55 L) = Dy(Qy, Ger1) + Dy(qs,G;) — Dy(q5, Gegr)
< Dy(Qy, Gev1) + Dy(a7,G;) — Dy(ay, qe41)

. _ _ «
< Dy(@s: Ger1) + Dy(ar5 @) =Du(ar, Gerr) + me(qf,u)
Lemma B.7
Now, summing over ¢ € [T] we get
—D T T o T
Ry :772<5t*q:§5t>< ZD¢(qtaqt+l)+ﬁZDw(qg7u)
t=1 ﬁ:l S o t=1
“Stability”term “Residual” term
Lemma B.8 Lemma B.9

+ 2 (D4 @) = Du(a),Te1)) -

N

1

s
I

“Penalty” term
Lemma B.10

Now we combine the results from Lemma B.8 for the “Stability” term, Lemma B.9 for the “Residual”
term and Lemma B.10 for the “Penalty” term, obtaining:

"Ry < *TL + Llog (X*A) + 17L% log (2X2AT) log(T)

O
B.2 AUXILIARY LEMMAS
Lemma B.5. Forq, € A and G4, = argmin (q; {;) + %Dd,(q, G, ), we have that,
1Kqy = @13 0e) = Dy (@5 Gesr) + Dy (Gev1, Q)
Proof. Applying the first order optimality conditions for unconstrauned optimisation problems,
(G — Gev15 b + %}(VT/)(Q}-H) - Vi(g,))) =0
Rearranging and applying the three-point inequality (Chen & Teboulle, 1993),
Ge+1 — @gs be) = @y — G415 VP (G1) — Vp(@,))
= Dy (@, Ge+1) + Dy (Gr+1,G4)-
O

Lemma B.6. For q; € A and G, = argmin (q; {;) + %Dw(q, q,) we have that,
K Gir1 — 475 be) = Dy (@) — Dy(Gev1, Q) — Dy (a7 s Gev1)
Proof. We apply first-order optimality conditions

qf — Gegr3 b + %(VT/)(Q}H) - Viy(g))) =0

15
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Rearranging and applying the three-point inequality (Chen & Teboulle, 1993),

KGir1 — q55 0e) = <47 — Gev1; VU (Gev1) — VU(G,))
= Dy(q;,Ts) — Dy(Gr+1,Ts) — Dy(ay, Gev1)
O

Lemma B.7. For: A — R as the negative shannon entropy and for ¢7,qi+1 € A and q; , =
(1 — a)qi+1 + au we have:

Dy(qysqt+1) = Dy(qyGpy1) — ( Dy(qy,u).

(6
1—a)
Proof. Due to the convexity of the regularizer, namely the KL divergence, we observe that
Dy(q;,Tp41) = Dy(ar, (1 = @)grer + au) < (1= a)Dy(g;, ge1) + oDy (g7, u)
]. o — (0% [e] o
me(Qt,QtH) - me(Qtﬂt) < Dy(ay, qe+1)

We retrieve that:

1
Where the last step comes from the fact that 1 — o < 1. O

(] o — & ]
Dy(q7,qt+1) = Dy, dpsr) — me(qt,U)

Lemma B.8 (“Stability” Term Bound). Forn > 0, ¢;: X x A — [0,1], g, € A and §i11 =
arg min,{g; £¢) + %Dw (¢,q,) we have that:

T
(STAB) > Dy(@y,Gev1) < n°TL.

t=1

Proof. The term can be easily bounded following standard analysis of OMD:

T
Z Dw(at»dﬁ-&-l)

t=1

I
D=

_ Z G;(w,a,2') log (M) - Z (qt(x,a,x’) — q't+1(l‘,a,$/))]

" x,a,3 qt+1(xaa7x,)

o~
Il
-

T,a,x’

I
1=

Y nl(x.a)d,(@,0.2') + (@ 0,2) exp (<t (. 0) = Gy(x, a,2") |

T x,a,7

o~
Il
—

N
Nl

i Z nzqt(x,a,m’)ﬁf(x,a)]

1 (@a,2)

<n’TL

t

Where the first equality comes from the definition of generalized KL divergence, the second by
applying the definition of the solution of the unconstrained optimization problem, namely:

Gir1(z,a,2") = gy(z,a,2") exp (—nly(z,a)) ,V(x,a,2") e X x A x X

and further simplifications. Finally, we use the standard bound of the exponential function e™* <
1 — 2 — 22, Vo > 0, the fact that losses are bounded, ¢;(, a) € [0, 1] and as a last step we use the
fundamental property of occupancies 3, , .exx.axx 4¢(@,a,z") = L. O

Lemma B.9 (“Residual” Term Bound). For o =
that

u(z,a,2') = and g € A it holds

1 1
T+1’ X AXnt1

T
« (o]
(RES) — ;:1 Dy(q7,u) < Llog (X*A)
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Proof. We first notice that

(o) o qo "I"7 a/ﬂ m,
Dw(Qtau) = qt ($7aaxl) log <t<1>>

=0 2€X), a€ A 2'€X) 41 X AX ki1
1

gz Z Z qto(a:,a,:n’)log(XzA)

k=0 zeX}), ac A z'€X) 41
< Llog (XQA)

The first inequality comes from neglecting negative terms and the last using the fundamental property
of occupancy measures.

Thus, considering the sum over ¢:

T
(0% (e
Dy (qf,u) < ——TLlog (X*A
1_a7;1 w(qt?u) 1_a Og( )
And chosing a so that 127" = 1, namely o = T%rl leads to the desired bound. [

Lemma B.10 (“Penalty” Term Bound). Forq, = (1 — a)q: + au and for o = %ﬂ

T
(PEN) > \(Dy(¢,T;) — Dy (a7, Gp41)) < 17L% log (2X° AT) log(T)

t=1

Proof. First, we unravel the summation:

T
S (Do(67,7) — Dol @11)) = D5, @) — Do(43,) + Do (a5 @r) — D@5 Gr1)
t=1

T

< Dlﬁ(qiql) + Z Dlﬁ(Qf?Qt) - ‘Dd’(q:ﬁ)ﬁlvqt)
" 22
Range of ¢
Lemma B.11 Non-telescoping term

Lemma B.12

Where the inequality comes from neglecting negative terms. What is left to do is to combine Lemma
B.11, that expresses the range of the negative shannon entropy, and Lemma B.12 providing a bound
for the non-telescoping term.

T
21 (Du(67 @) = Dy (4], 0p41)) < Llog (X2A) + 16L% log(2X > AT) log(T)
t=1
O
Lemma B.11 (Range of ¢ Bound). For ¢f € A andq, = (1 — a)q1 + au we have that,
Dy(q7,d1) < Llog (X?4)
Proof. The steps are similar to the ones of Lemma B.9:
O = (o] L71 o / qi)(x7 a7 x/)
Dy(a1, @) = Dy(qf,u) = 2 Z Z Z gi(z,a,2")log | ——F——
k=0 z€X) a€ A x'€X 11 XpAXk11
L-1
< Z 2 2 Z gy (z,a,2")log (X*A)
k=0 zeX} acA x’eX;Hl
< Llog (XQA) .
O

17
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Lemma B.12 (Non-telescoping term Bound). For ¢ € A and g, = (1 — a))q: + au we have that:

T
> Dy(q7.@) — Dylgi1,@,) < 16L7 log(2X> AT log(T).

t=2

Proof. We first focus on each time-step t. From the definition of the Bregman Divergence we have:

Dy(a;,d:) — Dy(gy—1,7;) = ¥(a7) — ¥(g—1) +<{VU(@); a1 — a5)
=(q;) = V(g—1) +og(@); q—1 — @) + Xs5q-1 — @)
< () — (ai—1)] + [Nog(@)lwllay — a7—1 1

Where the second equality comes from the computation of the derivative of the Negative Shannon
Entropy:

T
vilh) = () = tosr) 41, "

Finally, the last step comes from Holder’s inequality and from taking the absolute value of the
difference of the entropies.

‘We combine the results from Lemma B.13 and Lemma B.14 to obtain over the whole time horizon:
T

T
> Dy(q7.a,) — Dyla;1.@) Z Y(g7 )|+ Y. og(@)|wlay — a7l
t=2 t=2 t=2

~

Lemma B.13 Lemma B.14

< 8L%log (2X?AT) log(T) + 8L* log (X? AT + X*A) log(T)

O

Lemma B.13. it holds that

T
Z ‘1/) (7)) — (qf,l)’ < 8L%log (2X2AT) log(T)

Proof. The proof comes from applying Lemma B.15 and Lemma B.16 to the following decomposi-
tion:

T t T
D) = (g-) Z ¥ (g |+ D] [v (@) — ¢ (g5-1)]
t=2 t=2 t=t
Lemma B.15 ) Lemma B.16
< 2L%log (XzA) + 6L%log (2X2AT) log(T)
Simplifying the expression with another upper bound completes the proof. O

Lemma B.14. Defined t = [i] andt = [iJ,JCOV@ = (1—a)g +auand o = 7
2 2
it holds that, o o

T
> og(@)y, a7 — a5-1], < 8L log (X*AT + X*A) log(T)
t=2

Proof. The proof comes from applying Lemma B.20 and Lemma B.21 to the following decomosition,

T t T
N og@)ly a7 — a1, = D) Hog @), a5 — a1, + . Nog(@,)]l.,

t=2 t=2 t=t

@ — a1, -

Lemma B.20 Lemma B.21

18
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Lemma B.15. For X2A > 2andt := l#J

=523
t
Do (a)) =¥ (g5-1)] < 2L log(X>4)
=2

Proof.

Where the second inequality comes from Lemma B.17, while the last step comes from observing that,
for X2A > 2,
- L
1
1= %22
X2A
X2A -1

I+
/

N
[\
S

Lemma B.16. For i := | —Lr— | and e, = % it holds that,

=352
T
D () = (g5-1)| < 6L%log (2X>AT) log(T))
Proof.

T T L—-1
Dl (a)) = (@) < ) Z (er) + log (X2AT + X2A) ¢,
72 =0

t

Il
o+

< 2L21og(T) + L?log®(T) + L?
+ L?log (X?AT + X?A) (log(T) + 1)

Where the first inequality comes from Lemma B.18, the second inequality comes from Lemma B.19
and from the bound on the harmonic series. Further upperbounding to simplify the expression finishes
the proof. O

Lemma B.17 (Per-step entropy difference bound). Foranyt <t := liJ it holds that,
X2A

¥ (¢7) — ¢ (g5-1)| < Llog (X*A)

Proof.

¥ (a7) — ¥ (a7-1) 2’ ( ) <Qt 1)‘
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Z og( X2
k=0
< Llog(X?A)

Again, the first inequality comes from triangle inequality, the rest is a direct consequance of (Theo-
rem 3, Sason, 2013). O

T
1 X2A

Lemma B.18 (Per-step entropy difference bound). Foranyt >t := [
that,

] and €; = % it holds

[0 (¢7) — ¥ (41) Z (e) + log (X2 AT + X A) ¢

Proof. Denoting with ¢; , = dry (qf ’k, qf;kl) the total variation distance between the occupancies

at layer k, we notice that for any ¢ € [T7].

L—-1
0 (a) v (g < ) o (a) = o ()]

k=0
L—1

< Y h(ern) + eplog (XA —1)
k=0
L—1

< h(et,r) + € log (XZAT + XQA)
k=0
L—1

< D h(e) + erlog (XZAT + X2 A)
k=0

The first inequality comes from triangle inequality. The rest comes from a straightforward application
of (Theorem 3, Sason, 2013).

Lemma B.19 (Binary Entropy Bound). Fort := [ ] and €; = % it holds that,

1
1 xX2A

T I[,—
> Z < 2L%log(T) + L?log*(T) + L?
t=t k=0

Proof. For eacht € [t, T] we have that,

>
—~
D
SN~—
\
—
@]
o
7 N\
N~ =+
~__
_l’_
7 N
=
|
|t
N
5}
o
7 N
~
%
h
~__

The last inequality makes use of

t t' + L L L
log { — | =1 =log(1+-) <> ¢+ L
og (t—L> og( v ) og( +t’> 2 (t=t+1L)

Now considering the summations over k and ¢,

T L1 T
Z (; Llog(T)% + 5)
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< L?log(T)

MH
~+ | =

T—-L 1
2
+L7 )] o
1 t'=1

+ L?1og*(T) + L?

~ o~

< 207 log(T

where the last inequality comes from the fact that Z;‘F F<1+4log(T—L)<1+log(T). O

Lemma B.20. Fort € [2,t], where t := [1 ] it holds that,

X2A

i
Z og(@,) |, laf — ai1[, < 4L*log (X?AT + X*A) log(T)

Proof.

T
)

-

t
Z [og(@).0 a7 — ai-1], <2 log (X?AT + X2A) et

-
Il
N
~
|l
_ o

N
[}
M I+

log (X?AT + X?A) ¢

w
Il
[\
-~ o
|l
[

N
[N
M\w

log (X?AT + X?A) %

-
I
[\v)
ke
Il
o

t

= 2L%log (X?AT + X?A)
og( + ; ;
2L%log (X?AT + X?A) (log(t) + 1)
2L%log (X?AT + X?A) (log(T) + 1)

Where the first inequality comes from Lemma B.22, the second from the bound Lemma F.4 and the
last step comes from the monotonicity of the logarithm. O

<
<

Lemma B.21. Fort := [1_L1, €t = dTV(qf’k, qf;kl) and ¢; = % it holds that,

X2A

1=

log (@)l a5 — 71|, <4L?log (X*AT + X*A) log(T)

-+
Il
o+

Proof.

h
L

MH

—ai|, <2 log (X2AT + X?A) e

T
Z [log(q,)|
t=t

~
Il
o~
Il
- O

~ =
|

log (X?AT + X?A) ¢
0
(X2AT + X?A) (log(T) + 1)

Where the first inequality comes from Lemma B.22,the second from the bound Lemma F.4. The last
step comes from the bound on the harmonic series. O

VAN
[\
o &M% ‘

Lemma B.22. Foranyt € [T] and €, = dry (qf " qf’ﬁ) it holds that:
L-1

Nog(@)]., a7 — ai-1], <2 D log (X2AT + X2A) €11
k=0
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Proof. First, we notice that for any ¢ € [T]:
— — T
log(@,) |, = | (log(G;(z,a,2")),...))

(log(au(z, a,z")),...)) "

- o (oee) ) |
o (XiA)

— log (X?AT + X2A)

[ee]
T

N

Where the first inequality comes from the definition g,(z,a,2’) = (1 — @)q:(z,a,2’) +
au(z,a,z'),V(z,a,2") € X x A x X and the monotonicity of the logarithm.

Following this result, it holds that for any ¢ € [T]:

L—1
o8 (@)l a7 — a1, = ) log (X*AT + X*A)
k=0

o,k o,k
4 — 41 |

L—1
—2 Y log (X2AT + X?A) dry (qf’k, qf;k1>
k=0
L—1
=92 Z log (XZAT + X2A) €tk
k=0

C THEORETICAL ANALYSIS WITH FULL-FEEDBACK AND GENERIC
SMOOTHING FUNCTIONS

In this section, we present the proofs of the results discussed in Section 4 related to the regret analysis
agnostic of the smoothing function to be used. For convenience, we will restate the Theorems and
Lemmas before providing a detailed analysis of each and report just the Lemmas that differentiate
from Appendix B.

C.1 MAIN RESULTS

For the proposed Algorithm, we can provide the following:
Theorem 4.1 (Smoothed-Regret Bound for SOMD under full-feedback). Let n =

\/(10L log(QXQAT)p@/T and o = 1/(1+T), then for any comparator policy w° € 11 Algorithm 1
suffers a smoothed regret of:

() < O (L?D? 4132 Tlog<X2AT)P§> » an

where ,0; = log(T) + D; + HT(D;) and HT(D;) = TLh(%)‘

Proof. We first define qf LT — g, and qﬁt'f’ro = ¢; for notational simplicity. It follows that the
smoothed regret term can be decomposed as

Ry(r%) = E[i@w — ") - E[é@t ) +E[§Tl<q% |

Algorithmic Regret (ﬁ?) Update Regret (ﬁg )
Lemma C.3 Lemma C.2
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Then, the result follows directly from the combination of Lemma C.2 for the Update Regret and
Lemma C.3 for the Algorithmic Regret, namely:

Rr(n°) < (L? + L)D} + 2L + QL\/ 10LT log(2X2 AT) ph.
which leads to the final result. O]
Lemma C.1 (Trend of ’HT(ﬁ;) for average smoothing functions). Let Py = 1 e Pos then

5; ~ LlogT and

—P
’HT(E;) =TLh <(L2+L)Df>

oTL
(L? + L)logT 2T
~TL ]
o7 S IZ1L)logT

(12 + L)logT o
T (1 )8,
* ( oT 8\ 2T — (L2 1 L)logT

~ L*(log T)?.
Lemma C.2 (Update Regret Bound). For {; : X x A — [0, 1], for any policy sequence {}c[r)

and defined ﬁ; = ZtT:Q max(; g)exx A | Pe(-|z, a) — Pe—1(-|x, a)||1, then for a generic smoothing
Sfunction f, we have that,

T

7Y P, Tt 7t7 Tt . -P

RTzE[Z@P“ _ P ,€t>]<(L2+L)Df
t=1

Proof.

T
<qﬁt;7"t _ qﬁt—hﬂ't;gt>] g E[ Z Hqﬁtaﬂ't _ qﬁt—lyﬂt
t=1

|

< (L*+1) max |P(-[z,a) = Pra(z,a)|x

-l (z,a)eX x A

D=

ﬁ?:E[

t=1

< (L2 + L)E?
The first inequality follows from Holder’s and the fact that |¢; |, < 1. The second inequality comes

from Lemma F.10 and the remaining step follow from the definition of E?. O

f 7
Lemma C.3 (Algorithmic Regret Bound). Choosing n = w, o = 5

ok o,k —P L%+ L D" —P _
e = drv(a)", q; ), Hr(Dy) = TLh ((zTL)f) D = 3o max(, e |[Pel-|z,a) —

Pi_1(-|z,a)|1 and for pé = log(T) + 5; + HT(E;), the Algorithmic Regret is bounded by

T
R =E[ Yo — i o] <20+ 2L/ 10LT log(2X2AT)p}; (20)
t=1

Proof. The proof relies on the following decomposition:

Ry = nE[i@t —qs;mini@t;m] - nE[iqt — 475 00)| +nE[§<qt ~ai 0]

g Y
Descent Regret (ﬁ? ) Regularization Regret (ﬁ?)
Lemma C.4 Lemma B.3
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By applying Lemma B.3 for the Regularization Regret and Lemma C.4 for the Descent Regret we
can rewrite the Algorithmic Regret as

WRy < 20L +°TL + Hr(Dy) + L*log(2X*AT) D}y + 10L? log (2X AT log(T)
< 2L + °TL + 10(L* log (2X2AT) (log(T) + Dy + Hr (D))
= 2L + 1*TL + 10L% log (2X2AT) pl.
where pé =log(T) + 5; +Hr (ﬁ;). Choosing the optimal 7:

10L1og(2X2AT)p?,
= T

and then we upper-bound the Algorithmic Regret after substituting the optimal 7, namely:

_ 10L2 log (2X2AT) pf,
R < 2L +yTL + 8 ( ) P
0

< 2L+ L\/ 10LT log(2X2AT)pl, + L\/ 10LT log(2X2AT)pl.

<20+ 2L\/ 10LT log(2X2AT)p?,
which leads to the final result. O

Lemma C.4 (Descent Regret Bound). For a = ﬁ e = d(gF ™), HT(E;) =

L?+L)D, AP
TLh ((m)f) and Dy = Y1, max(p ayerna |

holds

Pi(-|z,a) — Pi_1(:|x,a)| the following fact

T
MRy =1 Y@, — 4§36y < °TL + Hr(D}) + L log(2X 2 AT)D)y + 10L° log (2X2AT) log(T)
t=1

Proof. We start by decomposing the regret at a generic step ¢ into

1@ = 475 be) = KTy = Gevrs b + 18Ge1 — 45 be)
Where the ¢, represents the unconstrained solution to the OMD optimization problem.

. - ~ . 1 _
Q41 = argmin Dy (q, Ge+1), Gi+1 = argmindg; ) + ~ Dy (q, ;)
a€A(Py) q n
We apply Lemma B.5 on (g, — §¢+1; ¢;» and Lemma B.6 on 1{g;11 — qy; £y obtaining:
<G, — a3 be) = Dy(@y, Ge+1) + Doy (Ge+1,G) + Dy (a7 Ge) — Dy (Ge+1,Ge) — Doy (a7 Ge+1)
= Dy (@ @r+1) + Dy (a7, @) — Dy (q;, Ge+1)
Since only the optimality condition for the unconstrained problem and the three-point lemma have
been employed so far, this result holds for any g;, g,. Now, considering the result of the projection
step of OMD ¢;1, the generalized Pythagorean Theorem allow us to state that Dy, (g7, Gi+1) =
Dy (g7, ge+1)- Such a result, together with the application of Lemma B.7 to Dy, (g, g¢+1) provide:
1@ — 45 = Dy(@p: Gre1) + Dy (a5 @) — Dy(qy, Gerr)
< DU’(QU q~f/+1) + Dw(q;)?qt) - Dw(q§7 qt-‘rl)

. _ _ a
< Dy(@y: Ge1) + Dy (a5 @) — Dy (a5 Giir) + me(QE, u)
Now, summing over ¢ € [T] we get
—D T T a T
NRr =1 Z@t — a5l < Z Dy(dy, Gr+1) + i—a Z Dy (g7, u)
=1 t=1 A i
“Stability”term “Residual” term
Lemma B.8 Lemma B.9
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Dw Qf s Qt) Dw(‘]f s Qt+1))

)

MH

1

(T

“Penalty” term
Lemma C.5

Now we combine the results from Lemma B.8 for the “Stability” term, Lemma B.9 for the “Residual”
term and Lemma C.5 for the “Penalty” term, obtaining:

"Ry <°TL+ Llog (X?A) + Hp(D}) + L? log(2X > AT) Dy + 9L? log (2X2AT) log(T)
[
C.2 FURTHER LEMMAS
Lemma C.5 (“Penalty” Bound). For g, = (1 — a)g + au, a = ziq, ) = drv(@)", ¢%),

—P L?+L)D, —P — .
Hr(Dy) = TLh (<;Tgf) and Dy = S, max(y aexxa [Pe(-|z,a) — Proi(z,a)|y it

holds that

T
Z Dy(a5,,) — Doa}G11)) < Hr(Dy) + L 1og(2X*AT) Dy + 9L? log (2X2AT) log(T)

Proof. First, we unravel the summation:

Z Dw qt7qt D¢(q§76t+1)) = Dd)(quI) - Dw(Q%QZ) + Dﬂl(q%aQT) - Dw(qi}@Tﬂ)
t=1

T

< Dfﬁ(q;vql) + Z Dl/’(%?v@t) - Dw(qtoflvqt)
— 5
Range of 3
Lemma B.11 non-telescoping term

Lemma C.6

Where the inequality comes from neglecting negative terms. What is left to do is to combine Lemma
B.11, which expresses the range of the negative Shannon Entropy, and Lemma C.6 providing a bound
for the non-telescoping term.

T

o — o — P n
Y (Dy(a;.@) — Dy(a;.Gry1)) < Llog (X2A) + Hp(Dy) + L log(2X*AT) D,
t=1

+ 8L%log (2X>AT) log(T)

Lemma C.6 (Bound on the non-telescoping term). For g € A, G, = (1 — a)qt + au, € =

ok o —P L*+L)D, —P —
dw(qt’k,qt’_kl), HT(Df) = TLh <(2TL)f) and D; = Zthz max (g qyexxA | Pt (|7, a) —

Pi_1(-|z,a)|1 we have that:

T
2 0(67,3,) — Dy(d5_1,q,) < Hr(Dy) + L?log(2X>AT) D}y + 812 log (2X>AT) log(T)

Proof. We first focus on each time-step ¢. From the definition of the Bregman Divergence we have:

Dy(q7,q;) — Dy(q7-1,T) = ¥(q;) — (g—1) + V(@) a5-1 — a5
=P(q;) — Y(g—1) + og(@r); q—1 — @) + Xsq-1 — @)
< () — l(ai—1)] + [ log(@)llo gy — az—1 11
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Where the second equality comes from the computation of the derivative of the Negative Shannon
Entropy:

oP(f)
of

Finally, the last step comes from Holder’s inequality and from taking the absolute value of the
difference of the entropies.

voth - ( )T ~ (log() +1,..)"

We combine the results from Lemma C.7 and Lemma B.14 to obtain over the whole time horizon:

T

T
> Dy(a;.@) — Dylai1,7,) Z [W(g7) — g )l + ] 1og@) el af — ai-1 1
t=2 t=2

Lemma C.7 Lemr;; B.14
< Hr(D}) + L*log(2X>AT) D)y
+8L%log (X*AT + X*A) log(T)

O
(L2+L)D"

Lemma C.7. For HT(ﬁ;) =TLh (mf> and ﬁ; = 2 maxy ayexxa [Pe(|z,a) —

Py 1(-|z,a)|1 we have that:

T
S (@) — ¢ (651)| < Hr(D}) + L*log(2X>AT) D),
t=2

S 2 D" ]
Proof. Once defined e, = drv(¢;", i), Hr(D}) = TLh (‘L;TLL)Df) and D, =

ZtTZQ max(; g)exx A | Pi(-|z, a) — Py—1(-|z, a)|; the proof comes from a direct application of (The-
orem 3, Sason, 2013):

T
S (g]) — o (74)]

T L-1
<32 e (at) e (a)]

t=2 k=0

T L-1
< Z h(er) + € log (XQA — 1)

t=2 k=0

T L-1 1 1 T L-1
2 2 o,k

< TLt:ZQk:Oﬁh(et,k) +log (X2AT + X?4) 5 ; go las™ = g7

h
i

N
S
h
>
T
LD
bl
I
o
=
h‘H
S
e
N——

T

L? + L)log (X2AT + X2A P,( — P, 1(-
(L2 + D)log (XPAT + X24) ), mase [P @) = Pra (o, @)l

l\')\r—l

g *q ") 1 =P
g | + 5L+ D)log (XPAT + X°A) D;

’ﬂ

&=

>
N

D= D=
{2 M»

< 7L < 0w cxa IPi(lne) = Pyl |1>

t

Il
N
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—P
(L? + L)D;

<
TLh < 5T L

1 —P
) + 5(L* + L)log (X*AT + X*A) D;

< #r(D}) + L*log(2X>AT)D}.

where the fourth inequality follows from Jensens’ over the binary entropy. Assuming that

2 P
(L;T# < 1/2 and Pby applying Corollary F.10 we get the fifth inequality. Finally, we use
the definition of ’HT(ﬁf) and further simplify the bound to achieve the final result. O

D THEORETICAL ANALYSIS WITH BANDIT-FEEDBACK AND AVERAGE
SMOOTHING FUNCTIONS

In this section, we present the proofs of the results discussed in Section 5 with the specific smoothing

functions f;(Py,...,P) = % Z:/:1 P;. For convenience, we will restate the Theorems and Lemmas
before providing a detailed analysis of each and report just the Lemmas that differentiate from
Appendix B.

D.1 MAIN RESULTS

Corollary 5.2 (Smoothed-Regret Bound for SOMD under bandit-feedback and average smoothing).
Letn = +/(21L1og(2X2AT)(log(T)))/(2X AT), o = 1/(T + 1), v = 1, smoothing functions such
that P, := % Zt,em Py and any comparator policy 7° € 11, Algorithm 2 suffers a smoothed regret

of:

Re(n%) <O (Lé? + L2 log(T) + L¥2\/X AT log (X2AT) log (T)) (17)

Proof. We first define ¢; = qf =0T and q; = qﬁf’”o. It follows that the smoothed regret term can
be decomposed as

T T T
Rr(7°) < Y {g"™ —¢"™ ity = B lZ<Qt - qf;@] + ) gPeme = gPerTe gy,
t=1 t=1 t=1

Algorithmic Regret (ﬁ?) Update Regret (ﬁg)
Lemma D.1

Where the expectation is with respect to the internal randomisation of the agent. Then, the result
follows directly from the combination of Lemma B.1 for the Update Regret and Lemma D.1 for the
Algorithmic Regret, namely:

Ror(7°) < 2(L2 + L)(1 + log(T)) + 2Ly + 4(L? + L)(1 + log(T))
+ 14L\/LX AT log (2X2AT) log(T)
< 2LC + 1212 + 1217 log(T) + 14L\/LX AT log (2X2 AT log(T)

which leads to the final result. O

Corollary 5.3 (Regret Bound for SOMD under bandit-feedback and average smoothing). Let n =
v/ (21L1og(2X2AT)(log(T)))/(2X AT), a = 1/(T + 1), v = n, smoothing functions such that

Py = % Zt,em Py and any comparator policy ©°, Algorithm 2 suffers a regret of:

Re(n°) = O (LT} + LY*V/XAT). (18)

Proof. The result follows straightforwardly from combining the results from Theorem 5.2 and Lemma
3.1. O
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and

21L1log(2X2AT)(log(T)) 1
2XAT ’

Lemma D.1 (Algorithmic Regret Bound). Choosing n = a =73

~ = n the Algorithmic Regret is bounded by

T
Ry =E lZ@t — ¢ m] < 2LC, + 4(L* + L)(log(T) + 1) + 14L\/LX AT log (2X2AT) log(T)
t=1

Proof. The proof relies on the following decomposition:

T T I d
ﬁ? =E lZ@t - Q§;@t>] +E lZ@t _qt;ét>1 +E lE@t;ét - @Q} +E lZ@f;@ - £t>1

Bias 1 (B1) Bias 2 (B2)

Descent Regret (ﬁ? ) Regularization Regret (ﬁ? )

By applying Lemma D.2 for the Regularization Regret, Lemma D.3 for the Descent Regret and
Lemmas D.5, D.6 for the bias terms respectively, we can rewrite the Algorithmic Regret as

Ry < L +nLXAT + 2(L* + L)(log(T) + 1) + Léfﬁ + Ligre log(2X2AT) log(T)
n n

oL _
+ 5 ILXAT + LT + 2(L* + L)(log(T) + 1)

. 1
< 2LC'; +4(L* 4+ L)(log(T) + 1) + n2LX AT + —21L*log (2X>AT) log (T)
. 1

We first chose the optimal 7 as:

21Llog(2X2AT)(log(T))
T \/ 2XAT

and then we upperbound the Algorithmic Regret after substituting the optimal 7, namely:

— i 1
R < 2LC’; +4(L* + L)(log(T) + 1) + n2LX AT + —21L*log (2X>AT) log (T)
n

< 2L6§ +4(L* 4 L)(log(T) + 1) + 2LA/42LX AT log(2X2AT) log(T)
< 2LC +4(L? + L)(log(T) + 1) + 14L/LX AT log(2X AT log(T)

which leads to the final result. O
Lemma D.2 (Regularisation Regret Bound). For §, = (1—«a)q¢ + au, u(z,a,2') =
m Vke[L-1], a= ﬁ_l and v =, it holds that

—nr ) L L
SO, D
= Yo
Proof.

T T
=R _ 5 .
Rr = Z<Qt — Qi) =« Z<Qt —us by
t=1 t=1

T
a
<= > g —ulh
7
o I L-1
< *Z lgf — uly
7 i1 ko
1 2 L
<28 =22 _1<2=
¥ y1+T 0

Where the first equality comes from the definition of g,, the first inequality follows from Holder’s

and the fact that ||/, ], < % The last from the trivial bound on the 1-norm between distributions and

the definition of o = 74 O
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Lemma D.3 (Descent Regret Bound). For o = 7~ +1 the following fact holds
=D d 5 n? 2 n? 2 I
MRy =nE | Y@ — q7: by | < ﬁL +n?LAXT + 72(L + L)(log(T) + 1) + ?ch
t=1
+ 18L% log (2X 2 AT) log(T)

Proof. The proof follows the same steps as those in Lemma B.4 replacing ¢, with 7, to obtain,

T
—D - o 7
Ry =k lZ<Qt - qt;€t>]

t=1

T a T T
o o —
Z (s> Ge1) + ——— > Dylai, u) + > (Dy(a7,@) — Dy (a7 Try1))
T
t=1 t=1 t=1
" ~~
“Stability” term “Residual” term “Penalty” term

Now we combine the results from Lemma D.4 for the “Stability” term, Lemma B.9 for the “Residual”
term and Lemma B.10 for the “Penalty” term, obtaining:

2 2
Ry < L 2L+ W LAXT + - D 9(L2 + L)(log(T) + 1) + %L@? + Llog (X?A)

+ 17L2 log (2X*AT) log(T)

D.2 AUXILIARY LEMMAS FOR THE BANDIT FEEDBACK

Lemma D.4 (“Stability” Term Bound). Choosing o = 7~ + 7 and y > 0,

T 9 ) ,
— o~ n n n _p
E [Z D¢(Qtvqt+l)] < ?L +n?LAXT + 72(L2 + L)(log(T) + 1) + ;ch

t=1

Proof. The term can be bounded as follows:

T T ’
ElZ Dw(qt,q;ﬂ)] B[S Y aa :c)log<qf(““)) = (qt<z,a,x'>qm(x,a,x'))]]

t=1 lt=1 =z,a,2’ thrl(aj a, ' z,a,r’
e ) )
=E Z 2 ngt(xaa)Qt(xvaax,) +§t(l'aavx/) exXp (*ngt(xaa)) 76t($7aa xl)]‘|
t=1"z,a,2’

N
&=
M%

: ,Enw”m[umn]

O A T S L X

gt (x, a) (g (z,a) + )

t=1x,a
T Phﬂ't,(ma)
e ZZ Pfﬂfxa>+v>
Pt 17Tt
2 " (z,a)
\7aTL+77 ZZ Ptﬂ'txa JF’-Y)

t= lza
Py_y,me (l‘, a) + qﬁtm’t (Z‘,(I) + thth ($,CL)

(g™ (z,a) +7)

Troryy

t=1z,a
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2 ‘q?t—l,ﬂ't (x,a) _ qftaﬂ't (:c,a)‘
P

t=1z,a (thﬂTt (CE, a) + 7)

‘qpt,m a) — gPrm (2 a)‘ T Peme(z, q)

2 2 q
o ;; @ @a+y t;;(qﬂ’“(%aﬂv)

25
h
+
dl\')
b(
>
o
’ﬂ

2 \5

HM’ﬂ

Z ‘qﬁt»ﬂ't (I’, a) _ th,‘ﬂ't (l‘, CL)‘
lz,a

T
< L+n2LXAT %ZE’ Pom(a P“’“(x)’
L . -
Pt sT0t Pt,ﬂ't
= 1

L+ n?LXAT + 77chf + (L2 + L)(log(T) + 1)

Where the first equality comes from the definition of generalized KL divergence, the second by
applying the definition of the solution of the unconstrained optimization problem, namely:

Gir1(w,a,2") = q,(z,a,2") exp (—ngt(x,a)) NV(zya,2’) e X x Ax X.
The first inequality comes from the standard bound of the exponential function,

; . " 2 N
e D <1 =iy (w,a) + (nl(w,0)) ¥ nli(,a) > 0

which is satisfied Vv > 0. The fifth inequality comes from setting o = T%rl and from triangle

inequality. Finally, the last step comes from Corollary F.6 and Lemma B.1. O

Lemma D.5 (Bias 1 Bound). For ét as in Algorithm 2 it holds that,

T Y ~ —
(BIAS1) E lz<qum;et — m] < YLXAT + LC; +2(L? + L)(log(T) + 1)

t=1

Proof.

1=

qTrm (2, a) (6, a) — B [e;(:c,a))]]

t

lz,a

o o) ()

AP a) £y

I
=

t=1z,a

d Y
+ Pore (g, a)ly(z,a) | —————
22 ot (Gt

MH

"™ (2, a)l, (x, a) (”)

qPome(z,a) +y

t=1=x,a
T B 2

n (thfl,Trt z,a —qP”’m(l‘,a)) bz, a) ()
tg“lm,a ( ) qpt’m (I7a’) +
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<

T
t=

P (2, )ty (z, a) <7>

P (,a)

lz,a
9 P v

+ } Py 1,m¢ CE,(I _ Py, x,a )

ZEq (r.0) =" ™o ( e

T —
< yLXAT + Z 2 "= (2, a) — qP“’”(x,a)‘

t=1=z,a

T J— J—
< yLXAT + 2 Z qP“l’”t(x,a) - qP“’”(x,a) + g (9@@)’

t=1z,a

T J— J—
< yYLXAT + Z Z qP‘*l’”t(:c,a) —gFem (m,a)’

t=1x,a

t=1x,a

T
< ,nyAT + Z Hth—hﬂ't _ th77Tt
t=1

1

Y S|P ) =g o)

t=1 x
< YLXAT +2(L? + L)(log(T) + 1) + LT

Where the last inequality comes from applying Lemma B.1 and Corollary F.6. O

Lemma D.6 (Bias 2 Bound). For @t as in Algorithm 2 it holds that,

T oo
(BIAS2) E lZ@f"“ ;Et—&ﬂ <0

t=1
Proof. 1Tt is sufficient to recall that,

R b (,
li(x,a) — Ey [ft(ﬂ%a)] € [07 m]

Namely, that we are underestimating the true loss. O

E THEORETICAL ANALYSIS WITH BANDIT-FEEDBACK AND GENERIC
SMOOTHING FUNCTION

In this section, we present the proofs of the results discussed in Section 5 related to the regret analysis
agnostic of the smoothing function to be used. For convenience, we will restate the Theorems and
Lemmas before providing a detailed analysis of each and report just the Lemmas that differentiate
from Appendix B and Appendix D.

E.1 MAIN RESULTS

Theorem 5.1 (Smoothed-Regret Bound for SOMD under bandit-feedback). Let n =

\/(13L log(QXQAT)pé)/(QXAT), a = 1/(T + 1), v = n, generic smoothing functions and
any comparator policy 7° € 11, Algorithm 2 suffers a smoothed regret of:

Rr(r°) <O (LQD; + L@? + L3/2\/ X ATp, 1og(X2AT)> . (16)
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Proof. We first define ¢; = th =T and q; = qﬁt”fo. It follows that the smoothed regret term can
be decomposed as

T o T T -
ﬁT(’n’O) < Z<qpt,7l't _ thﬂT ,€t> =F l2<qt — q?7£t>] + Z<th;T(t _ th—177Tt;‘€t>7
t=1 t=1 t=1

Algorithmic Regret (ﬁ?) Update Regret (ﬁg)
Lemma E.1
Where the expectation is with respect to the internal randomisation of the agent. Then, the result
follows directly from the combination of Lemma C.2 for the Update Regret and Lemma E.1 for the
Algorithmic Regret, namely:

Ro(n°) < (L* + L)D} + 2(L> + L)D; + 21T + 12L\/ LX AT log(2X2AT) .
which leads to the final result. O]

13Llog(2X2AT)p},

Lemma E.1 (Algorithmic Regret Bound). Choosing n = X AT ,

O =T =,
—P L*+L)D5\ =P - -
Hr(D}) = TLh <<;Tgf> Dy = 37 max(eaersa |Pi(le,a) = Pri(|a, )|y and for

p{r =log(T) + ﬁ; + Hy ,the Algorithmic Regret is bounded by

T
Ry =E lz<qt — g m] <2L*+ L)D, +2LC, + 12L\/LXAT log(2X2AT) .
t=1

Proof. The proof relies on the following decomposition:

Ry =E [Z@t - qf;@] +E lZ<Qt —qt;@} +E lZ@Mt - lft>1 +E lZ@f;& - £f>1

_

~~

Descent Regret (ﬁ? ) Regularization Regret (ﬁ? ) Bias 1 (B1) Bias 2 (B2)

By applying Lemma D.2 for the Regularization Regret, Lemma E.2 for the Descent Regret and
Lemmas E.4, D.6 for the bias terms, we can rewrite the Algorithmic Regret as

_ L _ . . _
Ry <2= + L+ nLXAT + 210} + (12 + L)D} + 7LX AT + LT} + (I* + L) D,
Ny o v
1, _
e (Hr(Df) + L10g(2X>AT)D; + 10L% log (2X>AT) log(T) )
L 1 —P 9 —P —P 9 —P
< 2H + EL +nLXAT + LC; + (L* + L)D; + nLX AT + LC; + (L* + L) Dy
1, _
e (#r(D) + L2 log(2X>AT)D] + 10L log (2X?AT) log(T) )
< 2LX AT + 2LCy + 2(L* + L)D;

1/ .
= (#r(D) + L2 log(2X>AT)D] + 131 log (2X?AT) log(T) )
<2LX AT + 2LC + 2(L* + L)Dy
1 e
+ ;13L2 log (2X2AT) (HT(DJT) + D + log(T))

_ 1
<MRLXAT +2(L* + L)D; + 21T, + §L2 log (2X2AT) pl.

We first chose the optimal 7 as:

_ [13L1og(2X2AT)p},
= 29X AT
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and then we upperbound the Algorithmic Regret after substituting the optimal 7, namely:

Ry <2(L* + L)D} + 2LT} + ZL\/ 26LX AT log(2X2AT)pl,

—P —P
2(L* + L)Dy + 2LC + 12L\/ LX AT log(2X2AT)p}.

which leads to the final result. O

—P
Lemma E.2 (Descent Regret Bound). For o = T+1 and defining Hr (D ) TLh (L;TLL)Df>

1, it holds that:

Ef = Zt=2 mMax(z a)ex xA Hﬁt“xﬂ a) - ?tfl("mv a)

=D S NP U AT RC
MRy = nB | Y (G, — ;3 by < J3LH+PLXAT + L)+ (L2 + LD

t=1

+ Hr(D}) + L* log(2X>AT) Dy + 1012 log (2X*AT) log(T)
Proof. The proof follows the same steps as those in Lemma C.4 replacing ¢; with 7, to obtain,

T
—D - o 7
nRy =nk lZ<Qt - qt;€t>]

t=1

T T T
o o —
Z (e Gev1) m Z w(gy,u Z Dy(4¢,qy) — Dy(dr Qes1))
t=1

t=1 t=1

Stability term Residual term Penalty term

Now we combine the results from Lemma E.3 for the “Stability” term, Lemma B.9 for the “Residual”
term and Lemma C.5 for the “Penalty” term, obtaining:

n?

Ry < Z L+n?LXAT + —ch + (L*+L)D;

+ Hr(D}) + L log(2 XQAT)D; + 1012 log (2X*AT) log(T)

E.2 AUXILIARY LEMMAS FOR THE BANDIT FEEDBACK

P

Lemma E.3 (Bound of “Stability” term). Chosing o = ~v > 0 and defining Hr(D

7=

T+1’
L2+1)D,\ =P =
TLh ((T)) D" = 7 maxgeayenna |Pi(le, @) - Prs ()

1, it holds that:

T ,',]2 772 _p 772 .
E ZDw(ata(jtJrl) <?L+n2LXAT+7LCf+7(L2+L)Df

t=1

Proof. The term can be bounded as follows:

t=1 Lt=1  =z,a,x’ q“_l(m a $) x,a,x’

=E 2 [ Z nly(x,a)g,(z,a,2") + G, (2, a,z') exp (—ngt(x, a)) —q(z,a, m’)]

j; [z;z/n G (v, a, 2" )E, [E (, a)]”

T
t=1 z,a,z’
T

N
=
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E lz Dw(qndm)] =E Z [ Z Gy(z,a,2")log (qt> - Z (qt(x7a7x/) - §t+1(x,a7x/))]
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< ?L—i-n LXAT—I——ZZ g " (x,a) —q T (2 a)‘
t=1=x,a
s
+ L Z‘qpt 177Tt(x a) th m(l‘ a)‘
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Where the first equality comes from the definition of generalized KL divergence, the second by
applying the definition of the solution of the unconstrained optimization problem, namely:

Gir1(r,a,2") = q,(x,a,2') exp (—nét(x, a)) NV(zya,r’) e X x Ax X

and further simplifications. The first inequality comes from the standard bound of the exponential
function,

N . N 2 ~
e D <1 =iy (w,a) + (nl(w,0)) ",V nli(,a) > 0

which is satisfied Vy > 0. The fourth inequality comes from setting & = 7 and from triangle
inequality. Finally, the last inequality comes from Corollary F.6 and Lemma C.2. O

Lemma E.4 (Bound on Bias 1). For v > 0 and defining ﬁ? = ZtT:2 max(; gyexxa |Pe(-|z, a) —

P 1(-|z,a)|1, it holds that:
T
E lZ@Pt—l””;ét - @] < yLXAT + L@? + (L + L)E';
Proof.
T T _
E [Z(qptl’”‘;ét - E}}} =E [Z P (2, a) (6 (2, a) — By [ét(a:,a))]]
=1 t=1z,a
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=lz,a

T

ol
n Py, me V4 AP () A~
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d P Y
+ (th*I’m (z,a) — gleme (z, a)) l(z,a) ()
d Y
< g™ (2, a)l(x, a ()
2 ua" " @ he ) e

T
Py_1,me _ P, N
+;;)q (z,a) —q (:ma)) <qPNTt(x,a) +,y)

T
< yLXAT + Z Z qP"‘l’”t(Jj,a) — qP*’”*(m,a)‘

t=1x,a

T
< YLXAT + Z Z gF=rm(z,a) — P (2, a) + ¢F ™ (a, a)‘

t=1x,a

T
<yLXAT + Z Z gFrm (2, a) — P (x,a)‘

t=1x,a

T —
£ 32" w,0) = 0™ @, 0)

t=1x,a

T —
S "}/LXAT-F Z Hth—hﬂ't _ PtﬂTt
t=1

EE‘th,TFt Ptaﬂ't(x)

<yLXAT + (I* + L)D; + LT}

Where the last inequality comes from applying Lemma C.2 and Corollary F.6. O

F INSTRUMENTAL LEMMAS

Here we report a few additional instrumental lemmas used throughout the proofs together with known
lemmas from some references.

F.1 STATISTICAL PROPERTIES OF Zt

Lemma F.1 (Bias of fAt). Given the estimator used by Algorithm 2, and for v > 0 we have that,

- UGN
li(z,a) — By [lr(z,a)] < qPrme(z, a)
Proof.

b,) ~ Exlfa(o.0)] = (o) - A )

— t(w,a) (1 - W)

qPom(@,a) +
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= 0,(z, a) (1— ¢ (x,0) )

q"eme(z,a) +
'Ygt(x’a)
h qhem (z,a)
O

Lemma F.2 (Second-order moment of ét). Given the estimator used by Algorithm 2, and for v > (
we have that,

20 (2, a)
Ei[62(z,a)] < (Pt (z,a) + )

Proof.

)2 é?(x,a)
E. |43 (z,a)] < 5
il < (@Pm(x,a) )
52(56 a)qt ™ (x, a)
P“”(x a) +7)*
G

z,a)
S @ () 1)

E: [14(z, a)])

F.2 PROPERTIES OF AVERAGE SMOOTHING

Lemma F.3 (Bound on Smoothed Transitions). Let Pi(:|r,a) = %Zz,zl Py(-|lz,a), then
|Pi(|z,a) — Pra(|z,a)|, < 2, Vte [T],Vz,ae X x A

Proof.

H?t(~\x, a) — Pi_1(|z, a)H1 =

ZP{»/ |:cafizpt/ |za

1
+] ;Ptux,a)

<

1 1

t—
=1 ZPt |z, a)
=1

) t,Zl +3

Where the first inequality comes from triangle inequality and the second from the fact we are dealing
with elements of simplexes. O

Lemma F.4 (Bound on €, ;). For e ), = %Hqsk — qf’_kl |1 and Py = ¢ Z:’:l P, we have that,
L

€tk < € = 7

Proof.

1
2

LTT S etas-itean],

zeXk ac€A x'€Xy 11

:72 Z Z ‘ M, 0)Pi(a |,a) — ¢;” 1($a)Pt 12|z, a)

IEX]C a€A x EXk+1

o,k o,k
q;’ qt—l

€tk =
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b1 k k 1
<§Z qg()‘Qfl()"Fg
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Where “a” comes from Lemma F.3 and “b” from Lemma F.8 and finally “c” from Lemma F9. [

F.3 KNOWN LEMMAS AND COROLLARIES

Lemma F.5 (Lemma D.3.3, Jin et al. 2023). Denote the set of tuples X}, x A x X1 by Wy. For
any transition functions Py, P, and any policy T,

_ k(z)-1 _
P @) =P @) = Y S qPm(w,0) (Pl v) — Prlwle, 0)g" (ol
k=0 (u,v,w)eEW}
k(z)—1 . _

> Y dPTw o) (Pu(wlu,v) = Pi(wlu, 0)g" T (z|w)

k=0 (u,v,w)eWy

where qF" (z|w) is the probability of visiting x under m executed in P.

According to Lemma F.5 we can estimate the occupancy measure difference caused by the error on
the transition function at episode ¢ with the following corollary.

Corollary F.6 (Corollary D.3.6, Jin et al. 2023). For any episode t and any policy m we have:

g7 (z) — qP“’T(w)] <CP Vo £ap, and Yy, |¢7"(2) — ¢ (@) < LCT

TH#x]

Py,

Corollary F.7 (Corollary D.3.7, Jin et al. 2023). For any policy sequence {m}1_,, and loss functions
{0.YE | such that ¢, - X x A — [0,1] foranyt € {1,..., T} it holds that

T
D" =gy < LOT

Lemma F.8 (Lemma D.2, Rosenberg & Mansour 2019). Let 7 be a policy and let Py, Py_y be
transition functions such that |Py(-|z,a) — Py_1(:|z,a)| < v, Y&,a € X x A then the following
equations hold,

2 ’qﬁt,w( s 1 ‘_ Z Z ‘qu, z,a) _qu LT, a)‘

TEX zeX aeA
S S P - Pl < Y Y P e - P )

X aceA r€X a€A 2/ €X(5) 41
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XX Y | war) - " ea)| = 3 Y [ (a) — a7 @ a)| 4 Lo

2€X a€A 2/ €Xy ()41 TEX acA

Lemma E9 (Lemma E.2, Rosenberg & Mansour 2019). Let 7 be a policy and let Py, P;_1 be
transition functions such that | P, (:|z,a) — Py_1(-|z,a)| < v, V&,a € X x A. Then Vk € [0, L—1]

3 [a" (@) = aP ()| < b

TREXL

Corollary F.10 (Corollary E.2, Rosenberg & Mansour 2019). Let m be a policy and let Py, P,_, be
transition functions such that [P (-|z,a) — Py (-|z, a)Hl < v, Vx,a € XxA ThenVk € [0, L—1]

Py, Pyq,m

—q

Hq . < L*v+ Lv = O(L*v)
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