
An online passive-aggressive algorithm for
difference-of-squares classification

Lawrence K. Saul
Department of Computer Science and Engineering

University of California, San Diego
9500 Gilman Drive, Mail Code 0404

La Jolla, CA 92093-0404
saul@cs.ucsd.edu

Abstract

We investigate a low-rank model of quadratic classification inspired by previous
work on factorization machines, polynomial networks, and capsule-based architec-
tures for visual object recognition. The model is parameterized by a pair of affine
transformations, and it classifies examples by comparing the magnitudes of vectors
that these transformations produce. The model is also over-parameterized in the
sense that different pairs of affine transformations can describe classifiers with the
same decision boundary and confidence scores. We show that such pairs arise from
discrete and continuous symmetries of the model’s parameter space: in particular,
the latter define symmetry groups of rotations and Lorentz transformations, and
we use these group structures to devise appropriately invariant procedures for
model alignment and averaging. We also leverage the form of the model’s decision
boundary to derive simple margin-based updates for online learning. Here we
explore a strategy of passive-aggressive learning: for each example, we compute
the minimum change in parameters that is required to predict its correct label with
high confidence. We derive these updates by solving a quadratically constrained
quadratic program (QCQP); interestingly, this QCQP is nonconvex but tractable,
and it can be solved efficiently by elementary methods. We highlight the concep-
tual and practical contributions of this approach. Conceptually, we show that it
extends the paradigm of passive-aggressive learning to a larger family of nonlinear
models for classification. Practically, we show that these models perform well on
large-scale problems in online learning.

1 Introduction

As data sets grow in size and complexity, they create new opportunities—and challenges—for large-
scale applications of online learning [1]. These challenges have been extensively studied and, for the
most part, elegantly resolved for the simplest linear models of classification [2]. For such models,
one particularly elegant approach is that of passive-aggressive learning [3]. In this framework, a
model is only updated when it fails to classify an example correctly with high confidence. When
an update is triggered, however, the model is changed by whatever minimum amount is required to
achieve this goal. This approach neatly dispenses with the need to choose or adapt learning rates.

Given the appeal of such updates, it is of natural interest to extend this approach to a larger family
of nonlinear models. Proceeding from the linear model, this can be done most straightforwardly
by the use of kernel methods [4–6]. But kernel methods do not scale effortlessly to the regime
of online learning that we envision in this paper—where the examples are arriving in a streaming
fashion from an essentially unlimited source [7, 8]. It is possible to adopt a budgeted approach [9–14]
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for kernel-based passive-aggressive updates [15–17], conserving memory at the expense of model
capacity, but this approach necessarily entails further complexities.

Without the kernel trick, we must face the crux of the problem. Passive-aggressive updates hinge
on the ability to perform a fundamental calculation: when an update is triggered, we must compute
the minimum change in model parameters that is required to fix the classifier’s decision boundary.
This is a relatively simple calculation for linear models (with hyperplane decision boundaries), but an
enormously complex one for (say) decision trees, ensemble methods, and neural nets with threshold
or ReLU activation functions. The question is whether this is true for all nonlinear models.

This paper investigates a family of low-rank models for quadratic classification inspired by previous
work on factorization machines [18, 19], polynomial networks [20, 21], and capsule-based archi-
tectures for visual object recognition [22, 23]. For models in this family, we show how to derive
passive-aggressive updates by solving a quadratically constrained quadratic program (QCQP). The
QCQP is nonconvex but tractable: it reduces to an elementary minimization over a bounded interval.
In this way, we are able to extend the framework of passive-aggressive learning to a larger family of
nonlinear models. This is the paper’s main contribution.

The organization of this paper is as follows. In section 2, we review the main lines of work that
motivated this study. In section 3, we formulate our model, elucidate its symmetries, and derive the
updates for passive-aggressive learning. In section 4, we provide experimental results on a data set
with 100M training examples. Finally, in section 5, we conclude and suggest some directions for
future work.

2 Background and related work

Passive-aggressive updates [3] emerged from a long line of work on incremental learning of linear
classifiers [24–33]. These updates are based on a simple intuition. Suppose that an algorithm has
access to a stream of labeled examples {(xt, yt)}t≥1, where xt ∈ Rn and yt ∈ {−1,+1}. The goal
of the algorithm is to learn a linear classifier parameterized by a weight vector w ∈ Rn. At the outset,
the weight vector is initialized to the origin. Then, after the algorithm sees each example, the weight
vector is updated by solving the following constrained optimization:

wt+1 = argmin
w∈Rn

‖w −wt‖2 such that ytw
>xt ≥ 1. (1)

The optimization is trivial if the algorithm already classifies the input xt correctly with at least unit
margin: in this case, the algorithm responds passively, making no change at all to the weight vector.
When this is not the case, however, the algorithm responds aggressively, changing w by the minimum
amount required to achieve this goal. The optimization in eq. (1) has the closed-form solution:

wt+1 = wt + αtytxt where αt =
max(0, 1−ytw>xt)

‖xt‖2
. (2)

This update is appealing in its simplicity and easily adapted to handle noisy labels or to learn a
separating hyperplane that does not pass through the origin [3]. Similar updates have been studied for
problems in online regression [3], portfolio selection [34], nonnegative matrix factorization [35], and
active learning [36].

The above framework can also be generalized via the “kernel trick” [4–6] to learn nonlinear classifiers.
This is done by substituting kernel function evaluations for dot products between training inputs. In
this case, however, the kernelized algorithm will typically limit the number of examples that are used
to construct the model’s decision boundary [9–17].

In this paper we also develop passive-aggressive updates for a nonlinear model of classification. Our
approach, however, is not rooted in the use of kernel methods, but in low-rank quadratic models of
classification. For practitioners, these models can provide a natural bridge between purely linear
and fully quadratic models of classification. Previous examples of such models include so-called
factorization machines [18, 19] and polynomial networks (of degree two) [20, 21]. Though not the
focus of this paper, it should be noted that factorization machines (and their variants) have been
widely applied to problems in collaborative filtering and click-through rate prediction [37–39].

The specific form of our model is also motivated by so-called capsule architectures for visual object
recognition [22, 23]. Like traditional neural nets, capsule-based architectures compute vectors of

2



…
…

…

affine

affine

sign

+

–

transformation

transformation

x
h+

h–

h+|| ||2

h–|| ||2

sum of
squares

sum of
squares

difference

Figure 1: Difference-of-squares (DoS) classifier visualized as a neural network with one layer of
hidden units. The network uses a pair of affine transformations to map each input x into vectors h+

and h− of hidden unit activities. Then it labels the input by comparing the squared magnitudes of
these vectors.

hidden unit activities; unlike traditional neural nets, they use the magnitudes of these vectors to
encode the probability that an entity is present in an image. This idea has mainly been developed
for deep architectures with multiple layers of interlinked capsules [23, 40–52], although recently it
was explored for a simpler latent variable model of multiway classification [53]. Here we pursue this
simplification even further for problems of binary classification. Whereas the latent variable model
in [53] is well suited for maximum likelihood estimation in a batch setting, the model in this paper is
much better suited to passive-aggressive learning in an online setting. We develop these ideas further
in the next section.

3 Model

In this section we introduce the model at the heart of this paper. We begin by formulating the model
as a neural network (3.1) and elucidating the symmetries of its parameter space (3.2). Next we derive
the passive-aggressive updates for online learning (3.3) and show how to average different models
across time (3.4).

3.1 Difference-of-squares classification

The model we study is most easily visualized as the neural network in Fig. 1. The network maps the
input into a hidden layer by a pair of affine transformations: x 7→ A±x + b±. Then it predicts a
binary label y ∈ {−1,+1} by comparing the magnitudes of the vectors produced in this way. More
concretely, let h± ∈ Rd denote the vectors of hidden unit activities. The label is predicted as follows:

h+ = A+x + b+, (3)
h− = A−x + b−, (4)

y = sign
(
‖h+‖2 − ‖h−‖2

)
. (5)

Based on the form of eq. (5), we refer to this model as a difference-of-squares (DoS) classifier. The
dimensionalities of h+ and h− are hyperparameters of the model, which for convenience we set to
be equal. Eq. (5) also makes plain the connection to capsule-based architectures [22, 23, 53], with h+

and h− playing the role of hidden “pose" vectors whose squared magnitudes determine how inputs
are classified. It should be noted that networks of this form are not universal function approximators
because their decision boundary is necessarily quadratic. This is in contrast to neural networks with
non-polynomial activation functions, which can approximate any decision boundary in the limit of
infinitely many hidden units [54–57].

The DoS model may not be a universal approximator, but with sufficiently many hidden units, it can
mimic any fully quadratic classifier. For example, consider a classifier of the form

y = sign
(
x>Px + q>x + r

)
, (6)
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where the decision boundary is determined by the parameters P ∈ Rn×n, q ∈ Rn and r ∈ R. To
prove the claim, we simply express P as the difference of positive semidefinite matrices P+ and P−.
In particular, if P = P+ −P−, then eq. (6) can be recast in the form of eqs. (3–5) by setting

A± =

[
q>

S±

]
, b± =

[
r ± 1

4
0

]
, (7)

where P± = S>±S±. From the mapping in eq. (7), we also see the potential of this parameterization.
Suppose that the input x is high dimensional but that the matrix P is of low rank. Then the matrices S±
satisfying P± = S>±S± can be short and wide as opposed to square, and the matrices A± in eq. (7)
will have many fewer rows than columns. Such a DoS model, with so many fewer parameters, may
be easier to estimate (robustly) than a fully quadratic classifier.

DoS models differ slightly in form and motivation from the low-rank models of quadratic classification
provided by factorization machines [18]. In factorization machines, the decision boundary is modeled
by a quadratic surface

0 =
∑
j>i

(P+)ijxixj +
∑
i

qixi + r, (8)

where the so-called interaction matrix P+ is a low-rank positive semidefinite (PSD) matrix that can
be expressed as the product of smaller factors. There are two differences between eq. (6) for DoS
models and eq. (8) for factorization machines: first, the interaction matrix in factorization machines is
restricted to be PSD, and second, the decision boundary in factorization machines is only computed
from the off-diagonal terms of this interaction matrix. The first of these differences can be viewed as
a purposeful form of regularization for the sorts of extremely sparse prediction problems, such as
collaborative filtering and click-through rate prediction, to which factorization machines have been
widely applied [19, 21, 37–39]; the second does not have any effect if the input x is a vector of binary
elements (because x2i =xi if xi∈{0, 1}). As shown by eqs. (6–7), however, these restrictions are not
shared by DoS classifiers. In the latter, they are overcome by associating separate low-rank matrices
(namely, A±) to the classes of positive and negative examples.

Before proceeding, we adopt a more unified notation in DoS models for the parameters A± and b±.
We do so by working in an augmented input space; specifically we define

z =

[
x
1

]
, U = [A+ b+] , V = [A− b−] , (9)

so that the vector z has exactly one more row than the input x, and the matrices U and V have exactly
one more column than the matrices A+ and A− . In this notation, the model’s decision boundary
simplifies to

y = sign
(
‖Uz‖2 − ‖Vz‖2

)
= sign

(
z>
[
U>U−V>V

]
z

)
. (10)

The first expression in eq. (10) provides the most efficient way to compute the label y ∈ {−1,+1},
but the second makes plain the model’s symmetries. We explore these symmetries in the next section.

3.2 Symmetries of the model

Eq. (10) shows that the model’s decision boundary and confidence scores only depend on its pa-
rameters through the difference U>U−V>V. From this observation we deduce two important
symmetries. First, the model’s predictions are invariant to orthogonal transformations of the form

U 7→ Ω U, (11)
V 7→ Λ V, (12)

where Ω and Λ are (independently chosen) d× d orthogonal matrices, satisfying Ω>Ω = Λ>Λ = I.
Second, the model’s predictions are invariant to Lorentz transformations (or “ boosts”) of the form

U 7→ U coshϕ−V sinhϕ, (13)
V 7→ V coshϕ−U sinhϕ, (14)

where ϕ ∈ R. (Lorentz transformations are a symmetry of spacetime in the theory of special
relativity [58].) Both symmetries reveal that the model is over-parameterized; by this we mean
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that models with different parameters may describe classifiers with the same decision boundary
and confidence scores. This property is commonly observed in deep neural networks with ReLU
hidden units [59], and rotational symmetries in particular are characteristic of many models of matrix
factorization and low-dimensional embedding [60].

The orthogonal and Lorentz transformations in eqs. (11–14) reflect fundamentally different symme-
tries of the DoS parameter space. Note in particular that the former do not change the Frobenius
norms of the matrices U and V, while the latter do. From eqs. (13–14) it is possible, in fact, to
compute the Lorentz transformation that yields the model parameters of minimum norm:

ϕ∗ = argmin
ϕ

{∥∥U coshϕ−V sinhϕ
∥∥2
F
+
∥∥V coshϕ−U sinhϕ

∥∥2
F

}
(15)

As shorthand notation, we define the matrix inner product 〈U,V〉 =
∑
ij UijVij . Then the solution

to eq. (15) takes the simple form:

ϕ∗ =
1

2
tanh−1

(
2〈U,V〉

‖U‖2F + ‖V‖2F

)
. (16)

We omit the derivation of this result, which is obtained by zeroing the derivative of the bracketed
expression in eq. (15). The result will be needed in section 3.4, when we discuss how to average
different models across time.

3.3 Passive-aggressive updates for online learning

We consider learning in the online setting where labeled examples arrive one at a time and are
subsequently discarded. Let (Ut,Vt) denote the model parameters before the example (xt, yt)
arrives at time t. We explore a passive-aggressive approach, in which at each time step, the algorithm
updates its model by solving the following optimization:

min
U,V

{
‖U−Ut‖2F + ‖V−Vt‖2F

}
such that yt

(
‖Uzt‖2 − ‖Vzt‖2

)
≥ 1. (17)

Suppose that the example (xt, yt) is already classified correctly and with high confidence. Then the
algorithm does not change the model: i.e., Ut+1 = Ut and Vt+1 = Vt. On the other hand, when
this is not the case, the algorithm performs the minimal update to correct this failure.

The optimization in eq. (17) is a quadratically constrained quadratic program (QCQP). This QCQP
is not convex due to the difference of squared terms that appears in its constraint. It is, however,
tractable [61–63]: nonconvex QCQPs with a single constraint can be efficiently solved by a so-called
S-procedure from nonlinear control theory [64, 65]. This general procedure is beyond the scope of
this study, but for the problem of interest in eq. (17), the solution can be obtained and justified by
more elementary methods.

We start by presenting the solution as a fait accompli. The optimization over matrices (U,V) in
eq. (17) reduces, in the end, to determining a step size αt analagous to the one that appears in eq. (2).
For DoS models, the step size is found by solving the following one-dimensional optimization:

αt = argmin
ν∈(0,1)

[(
1

1− ytν

)∥∥Utzt
∥∥2 +

(
1

1 + ytν

)∥∥Vtzt
∥∥2 − ν

]
. (18)

This minimization is convex, and in practice it is easily solved by standard methods (e.g., golden
section search). Finally, given the step size αt, the updates1 for U and V take the simple form:

Ut+1 = Ut +

(
αt

yt − αt

)
· (Utzt)z

>
t

‖zt‖2
, (19)

Vt+1 = Vt −
(

αt
yt + αt

)
· (Vtzt)z

>
t

‖zt‖2
. (20)

We emphasize that these updates are very nearly as simple to implement as the one for linear classifiers
in eq. (2). At the same time, however, they provide access to a much richer family of models.

1These updates assume that neither ‖Utz‖ nor ‖Vtz‖ is equal to zero. The assumption holds in practice, as
such precise cancellations do not occur when the model parameters are initialized with random values.
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Next we briefly justify the form of these updates. The calculation that follows is a special case
of a more general treatment [66] for nonconvex but tractable QCQPs; treatments of even greater
generality are also available [65, 67, 68]. Note that if an update is required for the example (xt, yt),
it follows (by continuity) that the solution to eq. (17) will satisfy the margin constraint with equality.
We therefore start by forming the Lagrangian

L(U,V, λ) = ‖U−Ut‖2F + ‖V−Vt‖2F + λ
(
yt − ‖Uzt‖2 + ‖Vzt‖2

)
. (21)

The next step is to eliminate the matrices U and V. By setting their partial derivatives to zero, we
find that these matrices satisfy

U = Ut

(
I− λztzt

>
)−1

= Ut

(
I +

λztz
>
t

1− λ‖zt‖2

)
, (22)

V = Vt

(
I + λztzt

>
)−1

= Vt

(
I− λztz

>
t

1 + λ‖zt‖2

)
. (23)

To obtain the rightmost expressions in eq. (22–23), we have inverted the matrices I± λztzt using
the Sherman-Morrison formula and assuming that |λ| 6= ‖z‖−2. (We will verify this assumption in
the course of finding a solution.) Given these expressions for U and V, it remains only to determine
the Lagrange multiplier λ. To do so, we simply enforce the constraint yt = ‖Uzt‖2 − ‖Vzt‖2.
Substituting eqs. (22–23) into this constraint, we obtain the nonlinear equation:

yt =

(
1

1− λ‖zt‖2

)2
‖Utzt‖2 −

(
1

1 + λ‖zt‖2

)2
‖Vtzt‖2. (24)

To simplify what follows, we make the elementary change of variables ν = ytλ‖zt‖2. With this
change, we can rewrite eq. (24) as

0 =
d

dν

[(
1

1− ytν

)
‖Utzt‖2 +

(
1

1 + ytν

)
‖Vtzt‖2 − ν

]
. (25)

Finally we observe that the derivative in eq. (25) is negative at ν=0 and vanishes for some ν ∈ (0, 1)
when yt

(
‖Utzt‖2 − ‖Vtzt‖2

)
< 1; this inequality is, of course, precisely what triggers the update.

In this way, we recover the minimization prescribed by eq. (18). Likewise, we obtain the passive-
aggressive updates in eqs. (19–20) by substituting this solution for the step size into eqs. (22–23).

3.4 Model averaging

Passive-aggressive updates will not converge to a stable solution if there is no model that perfectly
classifies the training examples, and they may converge very slowly even when there is. This may not
matter if the model is to be indefinitely deployed in an online setting (e.g., when the examples are
drawn from a nonstationary or adversarial distribution [69]). But it does matter if the ultimate goal is
to train and deploy a single fixed model.

For linear classifiers, it is known that a stable result can be obtained by averaging models across
time [28, 29, 70]. Let Θm denote the model parameters obtained after m intervals of training (where
each interval corresponds to some period of natural interest—a single update, an epoch, a second,
a minute, etc). In the online setting, an averaged model Θ̂m = 1

m

∑m
k=1 Θk can be computed at

the end of each interval. This type of averaging has a simple intuition for linear models where the
parameters specify a separating hyperplane. For example, consider two models whose separating
hyperplanes are parallel. Averaging their parameters, we obtain another model whose separating
hyperplane is sandwiched in the middle. For linear classifiers, this is a sensible result.

The situation is more complicated for over-parameterized models, and a simple example shows why.
Consider two DoS models with parameters Θ+ = (U,V) and Θ− = (−U,−V); also consider the
model with the averaged parameter Θ̂ = 1

2 (Θ+ + Θ−). Note that the models Θ+ and Θ− specify
exactly the same classifier, whereas the model Θ̂ = (0,0) does not specify a decision boundary at
all. In this case, the naive average has clearly not yielded a sensible result. What has gone wrong?

The problem arises in large part due to the symmetries of the model’s parameter space. The continuous
symmetries, in particular, define low-dimensional manifolds of functionally equivalent classifiers,
and these manifolds are not convex. This lack of convexity can lead to nonsensical results when
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Figure 2: The DoS model is over-parameterized in the sense that different parameters Θ and Θ′

can generate classifiers with the same decision boundary and confidence scores. This is most
evidently true when Θ and Θ′ are related by a continuous symmetry of the model’s parameter
space, such as a Lorentz transformation (top) or a rotation (bottom). Let Θ1,Θ

′
1 be one such pair of

parameters, and let Θ2,Θ
′
2 be another (left). Suppose we desire a model that represents, in some

meaningful sense, the average of the models defined by Θ1 and Θ2. Due to the model’s symmetries,
the midpoint 1

2 (Θ1+Θ2) may yield a nonsensical result for this average (middle). However, the
midpoint 1

2 (Θ
′
1+Θ′2) will define a sensible average if Θ′1 and Θ′2 are appropriately aligned (right).

intermediate models are constructed by linear interpolation. The problem is illustrated in Fig. 2 for the
particular symmetries of DoS models. The figure also depicts a natural solution to this problem: it is to
align the parameters of different models before performing their average. Intuitively, by first aligning
these parameters, we compensate for the invariances of the model’s parameter space. The alignment
can also be viewed as a form of continuous symmetry-breaking [60]; this symmetry-breaking is
needed to compare or interpolate between different overparameterized models in a meaningful way.

More concretely, we perform this aligned average as follows. Suppose that we wish to compute a DoS
model Θ̂ that is intermediate between two other DoS models Θ1 = (U1,V1) and Θ2 = (U2,V2).
We do this in three steps:

1. Account for the model’s invariance under Lorentz transformations. In particular, compute
the boost ϕ1 in eq. (15) that yields the minimum-norm model Θ′1 = (U′1,V

′
1) equiva-

lent to Θ1 = (U1,V1). Also compute the boost ϕ2 that yields the minimum-norm model
Θ′2 = (U′2,V

′
2) equivalent to Θ2 = (U2,V2).

2. Account for the model’s invariance under orthogonal transformations. In particular, compute
the matrices Ω and Λ that solve the orthogonal Procrustes problems [71]:

Ω = argmin
Q
‖QU′2−U′1‖2F such that Q>Q = I, (26)

Λ = argmin
Q
‖QV′2−V′1‖2F such that Q>Q = I. (27)

Intuitively, Ω and Λ are the orthogonal transformations that best align U′2 with U′1 and V′2
with V′1. These matrices have closed-form solutions that are easily obtained from the
singular value decompositions (SVDs) [72] of the matrices U′1, U′2, V′1, and V′2. Set
Θ′′2 = (ΩU′2,ΛV′2), and note that by construction the models Θ′′2 and Θ2 define the same
classifier.

3. Compute Θ̂ by averaging the newly aligned parameters Θ′1 and Θ′′2 , as opposed to the original
(unaligned) parameters: i.e., for an unweighted average, set Θ̂ = 1

2 (Θ
′
1 + Θ′′2).

We can also extend this procedure to average multiple DoS models across time. To do so, we note
that the unaligned average Θ̂m = 1

m

∑m
k=1 Θk may be computed incrementally by setting

Θ̂m =
(
1− 1

m

)
Θ̂m−1 +

1
mΘm. (28)
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Figure 3: Left: The INFIMNIST data set [7] generates new digit images by distorting training examples
from the original MNIST data set [73]. Right: Fewer pairs of digits remain linearly separable as more
examples are added to the training set. The inset shows when (and which) pairs of digits become
linearly inseparable as a function of the number of training examples.

For the aligned average, we simply replace the terms Θ̂m−1 and Θm in eq. (28) by their equivalent
but aligned counterparts Θ̂′m−1 and Θ′′m from the above procedure.

The additional computations for these aligned averages do not entail much extra cost. The more costly
step is the one that accounts for the model’s invariance under orthogonal transformations. However,
the cost of this step is small for two reasons. First, the model’s parameter matrices are typically short
and wide; thus in solving the orthogonal Procrustes problems of eqs. (26–27), it is fairly cheap to
compute and perform SVDs of the d× d matrices U′1U

′
2
> and V′1V

′
2
>. Second, in order to obtain a

stable result, it is not necessary to average over all of the models estimated throughout the course of
training. In practice, this average can be performed over the models estimated at regular but much
longer intervals (e.g., once per several thousand training examples).

4 Experimental results

We experimented on the INFIMNIST data set of handwritten digit images [7], a purposefully con-
structed superset of the original MNIST data set [73]. The first 10K images of this superset are those
of the MNIST test set, and the next 60K images are those of the MNIST training set. The remaining
images—about one trillion of them—were programmatically generated by distorting the 60K images
of the MNIST training set; see Fig. 3 (left). Our experiments set aside the first 10K images as a test set
and used the next 100M images (without reshuffling) as training examples for online learning.

The MNIST data has been extensively benchmarked. For the original 60K training examples, it is
well known that most pairs of digit classes are linearly separable. This situation changes, however,
when the training data is augmented with more examples as described above. Fig. 3 (right) shows
the number of linearly separable pairs of digits as a function of the number of INFIMNIST training
examples. Note that only only one pair of digits (0 versus 1) remains linearly separable when the
training set contains as few as 500K examples. This suggests a role for models of higher capacity.

Our experimental setup2 was straightforward. We trained linear and DoS models using the updates,
respectively, from eqs. (2) and (19–20). We initialized the parameters of the linear model with zero
values and those of the DoS models with small random values. Specifically, we sampled the elements
of U and V from a zero-mean normal distribution whose variance was inversely proportional to the
number of elements in these matrices. (Note that the DoS models require a nonzero initialization
to break the symmetry between different hidden units.) We computed ten-way error rates from the

2In total we purchased several hundred CPU-hours on an externally managed cluster of Intel Xeon Gold
6132 processors. Much of this was expended on prototyping, debugging, and other intermediate or non-results.
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Figure 4: Cumulative and moving error rates (%) on training examples for different models of
INFIMNIST digits. The latter were computed on non-overlapping sliding windows of 50K examples.

majority votes of 45 = 1
2 (10 · 9) pairwise classifiers. There were no other sources of randomness in

the experiments other than the seed for the random number generator. Though not shown here, we
verified on the first 10M examples that the results varied little across five different values of this seed.

Fig. 4 compares the cumulative and moving error rates on training examples from different models.
The moving error rates were computed on non-overlapping sliding windows of 50K examples. The
results are shown for the linear model as well as DoS models with hidden vectors h± of dimensionality
d ∈ {1, 2, 4, 8, 16}. It is clear that the DoS models with higher capacity learn more accurate classifiers.
In addition, as one might expect, the error rates stabilize more quickly for smaller models. For the
largest model, the error rates are still decreasing after 100M examples, showing that even at this stage
they are still improving.

Fig. 5 compares the test error rates from models sampled at intervals of 50K training examples.
The error rates of non-averaged models (left) are extremely variable, especially for the smaller
models. However, the results stabilize quickly when these models are averaged across time (right). In
addition, it is clear that the averaged models (right) generalize much better than the non-averaged
ones (left). It required some extra computation in these experiments to average different DoS models
(see section 3.4), but these averaging steps were only performed once per 50K training examples.
Thus the extra cost was essentially negligible.

Overall the results show that DoS models of low rank can learn much more accurate classifiers than
linear models. In addition, these improvements are obtained from online updates that are nearly
as simple to implement; compare eqs. (19–20) to eq. (2). Our results provide further evidence for
the benefits of low-rank models of quadratic classification, and they are consistent with previous
results, on the original MNIST data set, that factorization machines can learn much more accurate
classifiers than purely linear models [74]. This paper is the first, however, to demonstrate the viability
of passive-aggressive updates for these types of models.

It is curious that the linear model slightly outperforms the DoS model with rank-one (d=1) matrices,
even though the latter contains the former as a special case. We do not entirely understand this effect,
but we did observe it repeatedly in our experiments. Presumably this performance gap can be traced
to the different objective functions for these models. Both the linear and DoS models can be viewed as
attempting to minimize an objective function based on the sum of hinge losses. For the linear model,
however, this objective function is convex in the model parameters, while for the DoS models, it is
not. It seems that DoS models with larger capacity easily overcome3 this non-convexity to surpass the
linear model, while the DoS model with rank-one matrices is not able to do so. It should be kept in
mind, though, that the performance gap between the linear and rank-one DoS model is far smaller
than the gap between both these models and DoS models of higher rank.

3Analogous behavior has been observed in neural network classifiers: those with barely more capacity than a
linear model may not always improve on (say) logistic regression, while those with large numbers of hidden
units do so without any difficulty.
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Figure 5: Test error rates (%) for different models of INFIMNIST digits as a function of the number
of training examples. The models on the right were averaged across time; those on the left were not.

5 Conclusion

In this paper we have investigated a family of low-rank models for quadratic classification. Like
factorization machines and polynomial networks, these models provide a natural bridge between
purely linear and fully quadratic classifiers. The DoS models in this paper were trained by passive-
aggressive updates; these updates do not require the tuning of learning rates, and they are only slightly
more complicated than the passive-aggressive updates already in use for linear models. For all of
these reasons, the models in this paper should provide a useful addition to the practitioner’s toolbox.

These models also raise several questions that are deserving of further theoretical study. Many formal
results are available for passive-aggressive learning of linear classifiers, including regret bounds on
the cumulative number of mistakes [3]. It remains to show whether these bounds can be transferred
to DoS classifiers. It would also be interesting to derive some sort of (Lorentztron?) convergence
theorem for the realizable setting.

In pursuing this work, we realize that any technological advance carries the risk of negative societal
impacts. There may be settings (e.g., battlefields, markets, networks) where better online algorithms
could be exploited by adversaries to overcome static or slowly evolving defenses. More generally, any
classifier of sensitive data can be misapplied, deployed with bias, or deliberately put to misuse [77–79].
By raising awareness of these negative impacts, however, we can hope to forestall them.

We conclude by observing that the fields of machine learning and optimization are inextricably
linked. The simplest linear models [80–82] are powered by least-squares methods and singular
value decompositions [72]. With extra machinery, these models can be made more robust [83–85]
or interpretable [86] or even extended to nonlinear settings [87]; these generalizations are often
formulated as convex quadratic or semidefinite programs [88]. In machine learning as a whole,
optimizations that once seemed exotic are now commonplace. In the study of passive-aggressive
learning algorithms, this paper has found a role for nonconvex but tractable QCQPs. It seems likely
that other useful models, yet to be formulated, can benefit from these methods.
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